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Abstract

Traditional query optimizers assume accurate knowledge of run-

time parameters such as selectivities and resource availability

during plan optimization, i.e., at compile-time. In reality,

however, this assumption is often not justified. Therefore, the

“static” plans produced by traditional optimizers may not be

optimal for many of their actual run-time invocations. Instead, we

propose a novel optimization model that assigns the bulk of the

optimization effort to compile-time and delays carefully selected

optimization decisions until run-time. Our previous work defined

the run-time primitives, “dynamic plans” using “choose-plan”

operators, for executing such delayed decisions, but did not solve

the problem of constructing dynamic plans at compile-time. The

present paper introduces techniques that solve this problem.

Experience with a working prototype optimizer demonstrates (i)

that the additional optimization and start-up overhead of dynamic

plans compared to static plans is dominated by their advantage at

run-time, (ii) that dynamic plans are as robust as the “brute-force”

remedy of run-time optimization, i.e., dynamic plans maintain

their optimality even if parameters change between compile-time

and run-time, and (iii) that the start-up overhead of dynamic plans

is signifmantly less than the time required for complete

optimization at run-time. In other words, our proposed techniques

are superior to both techniques considered to-date, namely

compile-time optimization into a single static plan as well as run-

time optimization. Finally, we believe that the concepts and

technology described can be transferred to commercial query

optimizers in order to improve the performance of embedded

queries with host variables in the query predicate and to adapt to

run-time system loads unpredictable at compile-time.

1. Introduction

Contrary to the assumptions underlying traditional query

optimization, parameters important to cost computations can

change between compile-time and run-time, e.g., set cardinality,

predicate selectivity, available real memory, available disk

bandwidth, available processing power, and the existence of

associative search structures. The values of these parameters may

vary over time because of changes in the database contents,

database structures (e.g., indexes are created and destroyed), and

the system environment (e.g., memory contention). Moreover,

queries themselves may be incompletely specified, e.g., unbound

predicates containing “user variables” in an SQL query embedded

within an application program. Therefore, the execution of

traditionally optimized, static query plans is often sub-optimal

when cost-model parameters change, an important unsolved

~roblem in database query optimization [Loh89].
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In previous work, we identified run-time primitives that

permit optimization decisions to be prepared at compile-time and

evaluated at run-time [GrW89, Gra93]. This primitive was called

the choose-plan operator. However, our previous work left two

all-important questions unanswered, namely how to choose which

optimization decisions to delay and how to engineer a query

optimizer that efficiently creates dynamic plans for arbitrarily

complex queries at compile-time. These two questions are

addressed in the present paper, together with experiences gained

from a working optimizer prototype.

The key concept in our research is incomparability of costs

at compile-time. Contrary to traditional query optimization, we

acknowledge that missing run-time bindings may render it

impossible to calculate and compare the costs of alternative plans

at compile-time. If so, alternative plans are only partially ordered

by cost (instead of being totally ordered as in traditional query

optimization) and we delay the choice between such plans until

start-up-time. At start-up-time, when all run-time bindings have

been instantiated, cost calculations and comparisons become

feasible and the optimal plan can be chosen and evaluated. In

other words, we presume in this paper that any compile-time

ambiguity in selectivity and cost calculations can be resolved at

start-up-time.

A number of sources may prevent accurate and reliable

cost estimation and plan comparisons at compile-time. The three

most important sources are errors in selectivity estimation

[IoC91], unknown run-time bindings for host variables in

embedded queries, and unpredictable availability of resources at

run-time. While we are currently working to address the first

problem, as will be discussed briefly in the final section, the

present paper presents a solution for the last two problems. These

two problems represent a large number of situations in real

database applications, and we believe that the concepts and

technology described here can be transfemed to commercial query

optimizers to improve the performance of embedded queries with

host variables in the query predicate and to adapt to run-time

system loads unpredictable at compile-time.

In order to validate and experiment with dynamic plan

optimization, we extended the Volcano optimizer generator

[GrM93] to permit partial orders of costs and have implemented a

prototype relational query optimizer using the extended generator.

The concept of incomparability is independent of the source of

incomparability and of the data model of the generated optimizer.

While the prototype is based on the relational data model, the

problem of uncertain cost-model parameters and its solution using

incomparable costs are also applicable to other data models that

require query optimization based on estimation of uncertain

parameters. In object-oriented database systems, for example,

exact bindings of types (due to the use of subtypes), the existence

of path indices, and the current state of object clustering can be

modeled as run-time bindings and addressed effectively with our

optimization techniques.

If two or more alternative plans are incomparable at

compile-time, they are both included in the query evaluation plan

and linked together by a choose-plan operator, thus creating a
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dynamic plan as defined in our earlier research [GrW89, Gra93].

The choose-plan operator allows postponement of the choice

among two or more equivalent, alternative plans until start-up-

time, when the decision can be based on up-to-date knowledge,

e.g., the bindings of user variables unbound at compile-time.

Choose-plan operators may be used anywhere as well as multiple

times to link alternative subplans in a query evaluation plan.

The overall effectiveness of our approach depends on

several factors, namely the optimization time necessary to build

dynamic plans, the size of these plans, the speed with which

choose-plan decisions can be made at start-up-time, and plan

robustness when parameter values change. Experimental analysis

of a prototype optimizer permits the following conclusions:

● Plan size increases significantly, but not unreasonably in a start-

up-time architecture that supports bringing tbe entire plan into

memory using a small number of I/O requests. (Note that

production database systems that support compile-time

optimization typically already have such support.)

● The time required for choose-plan decisions is small, and the

combined I/O and CPU overhead of starting a dynamic plan is

significantly less than the corresponding overhead of

completely optimizing queries at start-up-time.

● Finally, dynamic plans are highly robust when actual values of

run-time parameter values differ from their values expected at

compile-time.

The prime difference of our approach from other work in

this area [Ant93, CAB93, DMP93, HaP88, HoS93, MHW90,

0HM92] is the extension of compile-time dynamic programming

with costs that cannot be compared until run-time. Much of the

previous work has focused on developing heuristics applied at

start-up-time; therefore, there has been no guarantee of plan

optimality. The same is true for (compile-time) parametric query

optimization based on randomized optimization algorithms

[INS92]. Our approach is capable of guaranteeing plan

optimality, while overhead at start-up-time is quite small because

most of the optimization effort remains at compile-time.

Other work, in particular [GHK92], has considered

dynamic programming for partially ordered plans, formalizing the

concept of System R’s “interesting orders” [SAC79]. In that

model, however, the partial Ordering is resolved into a total

ordering later in the optimization phase, which does not address or

solve the problem of run-time bindings for parameters relevant to

the cost calculations. In our work, plans remain partially ordered

even after compile-time optimization has completed, until run-

time bindings are supplied. Thus, the present work goes beyond

previous work and addresses a heretofore unsolved problem in

database query optimization. In addition, the Volcano optimizer

generator and its extensible architecture ensure that the approach

is independent of the data model and the source of

incomparability.

The rest of the paper is organized as follows. After we

briefly discuss a motivating example and provide background

information in Section 2, we describe the effects of incomparable

costs on the search engine in Section 3 and then address issues of

choose-plan decision procedures in Section 4. In Section 5, we

detail our prototype dynamic plan optimizer, followed by an

experimental analysis of its performance in Section 6. The final

section summarizes our results and outlines future research

directions.

2. Motivating Example and Background

To illustrate the benefits of dynamic plans over traditional, static

plans, we present a very simple, motivating example. The

example query’s logical algebra definition and a dynamic plan are

illustrated m Figure 1. Diagram (a) shows the logical expression,

a Get-Set operator to retrieve data from permanent storage

followed by a Select operator with a single predicate. If the

predicate is unbound (i.e., it compares a database attribute with a

user variable), the optimizer cannot accurately estimate its

selectivity until it is bound at start-up-time; therefore, the

optimizer cannot accurately determine and compare the costs of

the two alternative implementations for this query, a file scan or an

index scan. If very few records satisfy the predicate, even an

uncluttered B-tree scan is far superior to the file scan. The

situation is reversed if many records qualify. If the selectivity is

not known at compile-time, the choice among these alternative

plans should be delayed until run-time using a dynamic plan. In

(b) we see a dynamic plan using a Choose-Plan operator to link

the two alternative plans for this query.

While this example is very limited in scope (in fact, some

but certainly not all relational query optimizers consider dynamic

choices among file and index scans for a single relation [Ant93,

MHW90]), our optimization technique and prototype

implementation are much more general; the creation of this simple

dynamic plan is a trivial case, As an example that requires more

general dynamic plans, consider a hash join of relations R and S.

The size of S is predictable, while the join input from R can be

very small or very large depending on a selection of R based on a

user variable, Since hash joins perform much better if the smaller

of the two inputs is used as the build input [Gra93], two join plans

should be included in a dynamic plan for this query. A suitable

dynamic plan for this query is shown in Figure 2; this plan can

Choose-Plan

Select

unbound pred. /\

I Filter
Filter-

Get-Set R
I

B-tree-Scan R.A

File-Scan R

(a) Algebraic Query (b) Dynamic Plan

Figure 1, Alternative Implementations of Simple Selection.

Choose-Plan

/\

Hash-Join Hash-Join

Choose-Plan File-Scan S

/\

Filter Filter-

1 B-tree-Scan R.A

File-Scan R

Figure 2. A More Complex Dynamic Plan.
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switch among the scan methods and among the join orders at

different selectivities. In our work, we consider alternative plans

of arbitrary complexity. In other words, generating the dynamic

plan of Figure 2 is another trivial case for our optimizer, which

permits dynamic choices not only of individual algorithms but

also of operator orderings and plan shapes.

Alternative Optimization Scenarios

Figure 3 shows three alternative optimization scenarios that

address the problem of inaccurate estimates at compile-time.

With traditional static plans, shown in the first horizontal line,

optimization is performed once at compile-time. For each

invocation at run-time, the plan is activated (includlng reading an

access module and some I/O operations to verify that the plan is

still feasible [CAK81]) and then executed. In Figure 3, the

optimization time is labeled a, the time to activate a plan is b, and

the run-time for a sequence of invocations is ci.

If, however, a static plan’s run-times vary widely due to

suboptimal plan execution, as in Figure 3, it might be useful to

optimize the query anew for each invocation. This is shown in the

second horizontal line of Figure 3. (We assume in Figure 3 that

the optimization time a is constant for all run-time bindings,

which is realistic for most optimizers.) If a suitable plan can be

chosen for each individual run-time invocation, the total run-time

will be less than in the first scenario. Thus, the execution times

will be Vi di < ci. Moreover, activation time can be avoided

entirely by passing a plan directly from the optimizer to the

execution engine. Unfortunately, this approach also implies

repetitive and redundant optimization effort, which is troublesome

because the most important performance issue is the effort at run-

time, i.e., whether N x a + ~~= 1 di < N X b + ~~= 1 cl, for

some number N of query invocations.

A variation on run-time optimization is compile-time

optimization with conditional run-time re-optimization. Tbk idea

was pioneered in System R for plans that have become infeasible

[CAK81], but it has also been implemented for plans that have

become suboptimal, e.g., in IBM’s AS/400 [CAB93]. The

problem with this approach is to detect suboptimality reliably. For

example, not every change in the available set of indices, in file

sizes, or in run-time parameters will render a pre-optimized plan

suboptimal. In order to ensure that each query execution always

uses the plan that is optimal for its current run-time bindings,

however, systems using thk approach typically perform many

more re-optimizations than truly necessary, As an extreme

Static Opt.

Run-Time Opt.

Compile Time ~

optim.
I
I

I 4 1
a I

I

I

I

I

optim, I
Dynamic-Plan Opt. ~ 1

e

Run ‘Hrne

act. exec.

b
c1

optim. exec.

example, if run-time situations alternate, each query invocation

includes re-optimization, even if only two alternative plans are

actually used.

The third alternative is the one advocated in the present

paper since it avoids many of the problems identified for the other

approaches. Optimization is performed only once, at compile-

time. The plan produced at compile-time includes plan

alternatives, and the actual plan to be executed will be chosen

when the entire, dynamic plan is activated. While the

optimization time and the plan activation time, tagged e and $ in

Figure 3, are longer than those for static plans, the total execution

times of dynamic plans can be dramatically less than for static

plans, In other words, we will argue and demonstrate in this paper

that the plans executed using dynamic plans are as good as the

ones chosen in run-time optimization, i.e., Vi gi = di, and that

over many invocations, dynamic plans are more efficient than

static plans, i.e., e+ Nxf+~~=lgi <

a+ Nxb+~~=lci, and more efficient than run-time

optimization, i.e., e + N x f + ~y= 1 gi < N X a + ~y= 1 di.

Volcano Optimizer Generator

In order to integrate our work on dynamic query evaluation plans

with our other research into database query optimization and

execution, our work is based on an algebraic transformation model

as implemented in the Volcano optimizer generator [GrM93]. The

Volcano optimizer generator is an extensible, data model

independent tool for creating efficient algebraic query optimizers

and has been used in several optimizer prototypes [BMG93,

WOG93]. The optimizer generator’s modularized components

support several optimization abstractions including logicrd and

physical algebra operators, logical and physical properties, a cost

model, and a search engine. The logical algebra describes a query

as input to the optimizer, while the physical algebra describes the

algorithms implemented in the database execution engine.

Alternative logical algebra expressions are considered by the

optimizer through the application of logical transformation rules,

e.g., join associativity and commutativity. The transformation

from logical to physical algebra is defined by implementation

rules, e.g., join may be implemented by merge-join.

Associated with the logical and physical algebras are

abstract data types for logical and physical properties. Logical

properties, such as a relation’s schema or its cardinality, define

logical attributes of the data sets produced by logical algebra

operators. Analogously, physical properties such as sort order and

act. exec. act. exec.
I I t I
b

. . .

C2
b

CN

optim. exec. optim. exec.
~ ~ . . . ,

a dl a dz a dN

act. exec. act. exec. act. exec.
~ . . .

T f gz ~ gN

Figure 3, Alternative Optimization Scenarios.
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cost define attributes of the physical algebra. While physical

properties can be delivered by particular physical algorithms, e.g.,

merge-join delivers a sort order, they are also delivered by

“enforcers,” e.g., sort. Enforcers are physical algorithms without

equivalent logical operators, instead being associated with the

properties they enforce. The application of implementation rules

during the search process is guided by considerations of physical

properties. An optimization goal is the combination of a logical

algebra expression and the desired physical properties, which are

a generalization of “interesting orderings” addressed in System R

and many other database systems [SAC79].

The Volcano optimizer generator’s search engine uses a

top-down, memoizing variant of dynamic programming to search

the plan space [CLR89], which is a refinement of the bottom-up

variant used in traditional optimizers based on the techniques of

System R [SAC79]. Therefore, certain sub-problems need not be

optimized (depending on the requested physical properties). In

~ddition, the search algorithm prunes the search space using the

cost of current feasible plans as upper bounds for new plans. Such

branch-and-bound pruning is not a heuristic; it still guarantees that

dynamic programming finds the best plan given the cost model

and supplied cost-model parameter values.

3. Search and Cost Incomparability

Traditional optimizers have a cost model in which all feasible

plans are totally ordered by cost. The dynamic programming

model used in the System R optimizer [SAC79] and most other

optimizers require that it always be possible to determine which of

two equivalent plans is more expensive and therefore can be

ignored in further optimization. The cost model of our dynamic

plan optimizer and its search engine do not require a total

ordering. This is one essential difference between traditional

optimization and dynamic plan optimization,

Other researchers have made forays into query

optimization using dynamic programming for partially ordered

plans, e.g., optimization for first-item or last-item response time

[GHK92]. In those models, however, cost incomparability affects

only optimization. In other words, all uncertainty is resolved at

compile-time, before the optimizer terminates. Our problem is

very different, since we address parameter bindings that are not

known until run-time. Thus, while nearly all previous optimizers

produce fully determined or static query evaluation plans, our

optimizer delays some selected optimization decisions until run-

time, creating a dynamic plan.

In parametric query optimization [INS92], the problem of

unknown parameter bindings has been addressed, but the

approach is not based on incomparable costs and the

encapsulation of uncertainty within cost. Instead, every possible

combination of uncertain parameter values is treated as a separate

optimization problem. For example, if each of three cost model

parameters cart have 10 different values, 1,000 optitnizations have

to be performed. In order to deal with this combinatorial

explosion, randomized search algorithms includh’tg side-ways-

information-passing are applied in parametric query optimization

[INS92]. Unfortunately, randomized algorithms cannot guarantee

plan optimality, and part of the goal of parametric query

optimization seems defeated.

Extensibility and Generality of Approach

Let us presume that a query optimizer encapsulates cost in an

abstract data type, as is done in the Volcano optimizer generator as

well as many other optimizers. The functions on this abstract data

type include addition, subtraction, comparison, and the cost

functions associated with the query processing algorithms. Earlier

optimizers require that the cost comparison function return one of

the values “greater than;’ “less than;’ and “equal to!’ In support

of incomparable costs, the cost comparison function may return

“incomparable” in addition to the standard values. The reason for

incomparability can be one of many; in order to preserve

extensibility, we do not want to assume one reason or another.

If the anticipated query evaluation cost is encapsulated in

an abstract data type, the cost model is completely in the control

of the database implementor (DBI). Thus, cost can be defined to

be the response time for the first, Nth, or last result item, CPU,

I/0, and network time and effort (time and effort can differ due to

parallelism), total resource usage, a time-space product of

required memory usage or concurrency locks, a combination of

the above, or some other performance measure, If cost is a

combination of multiple measures, which are not simply added

into a single value such as the weighted sum used in System R

[SAC79], cost values are partially, not totally, ordered and costs

may therefore be incomparable at compile-time. Our optimization

model supports such partially ordered cost measures, although we

currently require that two alternative plans’ costs be comparable

either at compile-time or at start-up-time, As mentioned in the

introduction, we are currently working on a query optimization

model and prototype that permits delaying optimization decisions

beyond start-up-time into run-time.

As a concrete example, our experimental prototype models

cost (as well as selectivity, cardinally, and available memory) as

an interval rather than a single (expected) value. Thus, a cost

value in this model captures the entire range in which the actual

cost during query evaluation may fall. If two intervals overlap, it

is impossible to claim that one plan is always better than the otbec

therefore, two overlapping cost intervals are declared

incomparable. 1

Guarantees of Optimality

While delaying some decisions from compile-time to run-time

creates a more flexible plan, it may not guarantee that the actual

execution plans included in a dynamic plan and chosen at start-up-

time are as good as the plans chosen by a run-time optimizer. In

the notation of Figure 3: can we guarantee that Vi gi = di? The

essential consideration focuses on cost comparisons. If truly all

cost comparisons are declared incomparable, the resulting

dynamic plan will include absolutely all possible plans for a

query. We call this dynamic plan the “exhaustive plan.” Because

it includes all plans, it must also include the optimal one for each

set of run-time bindings. Presuming that the cost comparisons at

start-up-time are comect,z the exhaustive plan is optimal for all

run-time bindings, and we are assured that Vi gi = di.

1This is merely one (rather simple) way to model uncertain

cost model parameters and incomparable costs. The database

implementor is free to choose an alternative selectivity and cost

model.

2 In this paper, we deal with unbound cost model

parameters. Inaccuracy in the cost functions is a separate issue

that has been addressed elsewhere, e.g., by Mackert and Lehman

[MzL89]. Any query optimization cart only be as good as the cost

functions; if the cost formulas do not map file sizes and other cost

model parameters correctly to costs, query optimization at

compile-time and branch-and-bound pruning cannot possibly

work.

153



In our approach, we do not advocate exhaustive plans,

Instead, we only delay those cost comparisons and plan choices

from compile-time to run-time that depend on parameters

unbound at compile-time. ‘Ilms, the decisions made at compile-

time do not depend on run-time bindings and their outcomes do

not differ whether they are made at compile-time or at run-time.

I?lans not included in a dynamic plan cannot possibly be optimal

for any run-time binding of the unknown parameters, and a

dynamic plan is guaranteed to include all potentially optimal plans

for all run-time bindings. Thus, a dynamic-plan optimizer can

guarantee that a produced dynamic plan is optimally adaptable to

all run-time bindings, and we are assured that Vi gi = di.

Modifications to Plan Search

Although cost comparisons are performed by DBI-defined

functions, the ramifications of incomparable costs must be

handled by the search engine. Such plans are linked together

using a choose-plan operator, which incorporates a decision

procedure to choose among alternative plans at start-up-time using

up-to-date knowledge. Thus, there may be more than a single

plan for a given combination of a logical algebra expression and

desirable physical properties, and it is impossible to prune all but

one of them, as is the assumption and foundation of most database

query optimizers. Inserting a choose-plan operator into the query

evaluation plan’s tree creates a dynamic plan, i.e., a plan that is

completely generated at compile-time but adapts at start-up-time

to changes in cost-relevant parameters.

Since a choose-plan operator and a dynamic plan can be

part of a larger plan, the optimizer must be able to calculate their

costs. Intuitively, the cost of a dynamic plan is the cost of the

decision procedure in the choose-plan operator plus the minimum

cost of the equivalent, alternative subplans. Since a choose-plan

operator always chooses its cheapest input plan, this minimum

reflects the minimal cost for each possible run-time binding. For

example, if cost is modeled as minimum-maximum intervals as in

our optimizer prototype, the cost of a dynamic plan with two

equivalent, alternative subplans is an interval ranging from the

smaller of the two minimum costs to the smaller of the two

maximum costs. In other words, in the best case, the cost of the

dynamic plan is the lower one of the two best-case costs of the

two alternative plans, and in the worst case, the cost of the

dynamic plan is the lower one of the two worst-case costs (plus

the decision cost).

An important concern of partial plan ordering is its effect

on search complexity. The worst case complexity of search based

on dynamic programming using a total ordering of plans is known

to increase exponentially with the number of join operators

[OnL90]. An accurate analysis of the effects of partial orders is

not possible without an understanding of the dependencies

between variables contributing to incomparable costs, but our

experimental evaluation demonstrates that robust plans can be

optimized for a significant, but reasonable time increase.

In our experiments, reported later in this paper, we

observed a marked increase in optimization time, largely due to

the fact that branch-and-bound pruning is less effective when cost

is modeled as an interval and only the minimum cost can be

subtracted when computing bounds. For example, a traditional

optimizer can use the expected cost of a known alternative plan as

a cost bound. When optimizing the two inputs of a join with a

c-ost bound, it can use the expected cost of the first input to reduce

the cost bound for optimizing the second input. Our optimizer, on

the other hand, because cost is modeled as an interval, can only

use the maximum cost of a known alternative plan as cost bound,

and can stop optimizing the second input only when the two

inputs’ minimum costs together exceed the bound. Clearly, this

restriction severely erodes the effectiveness of branch-and-bound

pruning. We will come hack to this issue when we discuss

optimization times in the experimental section.

Techniques to Reduce the Search Effort

Fortunately, there are a number of considerations that reduce the

search effort in dynamic plan optimization. The most important

among them is sharing of subpl&: in our experience, alte”mative

plans often include large common subexpressions. These

subpkms need to be optimized only once, and their cost can then

be used in the cost computation for multiple alternative plans.

Notice that the size of access modules representing a dynamic

plan typically does not grow exponentially with the complexity of

the query in spite of the fact that the number of possible plans

grows exponentially [OnL90]. To limit the growth of search effort

and access module, all plans and alternative plans must be

represented as directed acyclic graphs (DAGs) with common

subexpressions, not as trees. Thus, subplans are shared, and the

exponential number of combinations in an exhaustive plan is

captured by many points at which sharing occurs rather than an

exponential number of operators in the plan, The representation

of dynamic plans as DAGs also reduces the time to read and

activate an access module, as will be discussed in the following

section,

Depending on the nature of the cost model that induces

cost incomparability and dynamic plans, there may be many

situations in which costs seem incomparable but actually are not.

We have identified two such types of situations. First, two plans’

costs are consistently equal. For example, except in- rare

circumstances (lots of duplicates), it does not matter which of two

merge-join inputs serves as outer and inner input. In those cases,

it would be acceptable to make an arbitrary decision,

Second, two plans’ costs are similar, but one plan is

actually consistently cheaper than the other. In that case, it would

be perfectly acceptable to choose the plan that consistently

outperforms the other one. However, depending on the detail with

which costs are modeIed, the two pkms’ costs may be

incomparable during compile-time, and both plans are retained as

alternatives of a choose-plan operator, although at run-time the

choose-plan operator will always choose one plan and never the

other.

These situations could be avoided by an analytical

comparison of the two cost functions. Attempting such a deep

analysis of cost functions is, unfortunately, not realistic, in

particular for an extensible database system in which one does not

want to pose any restriction on the form and complexity of cost

functions. Thus, analytical comparisons of cost functions is not a

viable solution for this problem,

A more realistic, though heuristic, approach is to evaluate

the cost function for a number of possible parameter values and to

surmise that if one plan is estimated more expensive than the other

for all these parameter values, it is always the more expensive plan

and therefore can be dropped from further consideration. This

solution requires that the DBI implement complex cost

comparisons with multiple parameter settings. Nonetheless, it

guarantees optimal plans only inasmuch as the DBI can guarantee

that cost comparisons are correct, If two plans are actually both

optimal for different bindings but the cost comparison does not

detect the fact, the optimizer will not find the optimal dynamic

plan.

In our prototype, both types of situations discussed above

are handled in the most naive manner. In other words, equal-cost

plans such as two merge-joins of the same inputs are both

included in a resulting dynamic plan, and the costs of alternative
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plans are declared incomparable even if one of the two plans

actually is consistently better than the other. The reason for this

decision is to present our techniques in the most conservative way:

if our optimizer prototype can work effectively and outperform

static plans as well as run-time optimization without these

optimizations, it certainly would do so if these two optimization

were implemented.

4. Start-Up-Time Considerations

As part of the formulation of dynamic plans, we must consider the

form of choose-plan decision procedures and their evaluation at

start-up-time. For best start-up-time performance, we should

attempt to minimize the size of decision procedures by only

including the logic necessary to differentiate between alternative

plans. For example, if the costs of two alternative plans are

incomparable due to an unbound predicate’s unknown selectivity,

only an updated selectivity is necessary for the decision at start-

up-time (one of the proposed approaches in our earlier research

[GrW89]). However, it is not easy to build these minimal decision

procedures since it requires building inverses for all cost

&nctions,3 While cost functions are typically fairly simple, they

can sometimes be very complex, in particular in object-oriented

database systems [KGM91 ] or if detailed buffer effects are taken

into consideration [MaL89]. Moreover, since each cost function is

typically a function of many variables such as input cardinalities,

selectivity, and resource allocation, multiple inverse functions

would be required, In an extensible system, we consider it

entirely unrealistic to assume that inverses of cost functions can be

provided. Thus, we needed to identify and use a different

mechanism for decision procedures in choose-plan operators.

Fortunately, it is not really necessary to minimize the

decision procedures and to invert the cost functions, A much

simpler approach is to re-evaluate the cost functions associated

with the participating alternative plans. The decision procedure is

now merely a cost comparison of the plan alternatives with run-

time bindings instantiated; thus, the reasons for incomparability of

costs at compile-time have vanished. Compared to performing the

actual data retrieval and manipulation, evaluating the cost

functions takes only a small amount of time. Our experimental

results demonstrate that using the original cost functions of the

alternative plans contributes only relatively small overhead at

start-up-time. Comparing dynamic plans with run-time

optimization, re-evahrating the cost functions is much faster than

optimizing a query, because optimization requires many more cost

calculations in addition to the actual plan search.

Another consideration is the means by which new and

tipdated cost-model parameter values are obtained at start-up-

time. Typically, these values are user variables that are passed to a

dynamic plan in exactly the same way as to a traditional static

plan. In the worst case, these new values require a very small

number of system calls or catalog lookups, and again should go

unnoticed compared to a query’s execution, Also note that the

start-up-time effort for a dynamic plan correlates with the

complexity of the query, another reason to expect start-up-time

overhead to be relatively small relative to a query’s execution

time.

3 At best, if the database system were implemented in a

programming language in which functions are objects that can be

manipulated and modified at run-time (e.g., Lisp or ML), cost

functions could be “curried” with the bindings known at compile-

time.

In order to reduce the CPU effort, the start-up procedure

for dynamic plans can employ two techniques that are well-known

to be very effective in optimization, namely sharing of subplans

and branch-and-bound pruning. Obviously, if a dynamic plan is

represented as a DAG, not as a tree, and if the cost of each

subplan is evaluated only once, not as many times as the subplan

participates in some larger plan, the start-up-time is much smaller.

Moreover, if the cost of one plan has already been computed, it

can be used as a bound when computing the cost of an alternative

plan; if the cost computation exceeds the bound, cost calculation

can be aborted since the alternative plan cannot possibly be less

expensive than the plan that created the bound. In our

experiments, we represented dynamic plans as DAGs and

computed each subplan’s cost only once; however, for simplicity,

we did not implement branch-and-bound pruning at start-up-time.

Finally, since dynamic plans contain more nodes than static

plans, both more data manipulation operators and choose-plan

nodes, the 1/0 cost to read a dynamic-plan access module into

memory is larger than the I/O cost for reading a static-plan access

module. We presume that either type of plan is in contiguous disk

locations; thus, in our performance comparison, we need only

consider their difference in transfer times when comparing the

start-up-times of static and dynamic plans.

In order to reduce both I/O and CPU effort at start-up-time,

we propose a heuristic technique that shrinks dynamic plans over

time. During each invocation, the access module keeps statistics

indicating which components of the dynamic plan were actually

used. After a number of invocations, say 100, the access module

analyses which components have been used and replaces itself

with a dynamic-plan access module that contains only those

components that have been used before, This self-replacement by

an access module is similar to that used to execute queries whose

compile-time-generated plans have become infeasible [CAK81 ];

the main difference is that infeasible plans require re-optimization

whereas our shrinking heuristic only requires effort comparable to

the cost analysis at start-up-time. On the one hand, this technique

will eliminate components from a dynamic plan that are never

chosen. On the other hand, it is a heuristic technique because it

may remove dynamic-plan choices that have not been used in the

first invocations but would actually be used, if available, in later

runs. We leave an analysis of this technique to later research.

5. Optimizer Prototype

In this section, we present a prototype optimizer that produces

dynamic query evaluation plans, including the optimizer’s logical

algebra, physical algebra, and cost model. Since the objective of

this research is optimization of dynamic plans, not data modeling

or extensible query processing models, the algebras in this

prototype define a basic relational data model and typical

execution algorithms. However, our extensions to the search

engine for cost incomparability do not depend on these particular

definitions; other data models and query algebras are also

possible. This observation is equally applicable to the particular

cost model we will defin~ other cost definitions based on different

sources of incomparability are possible.

Logical operators and physical algorithms are listed in

Table 1. Logical transformations include join commutativity and

associativity. The transformation rules permit generation of all

“bushy trees;’ not only the “left-deep trees” of traditional

Optimizers. The prototype includes two enforcers, also listed in

Table 1, one for sort order and one for plan robustness. Plan

robustness is the property enforced by choose-plan.
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~ Operator Type Logical Algebra Corresponding

Operator or Physical Algebra

Physical Property Algorithm

Data Retrieval Get-Set File-Scan

B-tree-Scan

Select, Project Select Filter

Filter-B-tree-Scan

Join Join Hash-Join

Merge-Join

Index-Join

Enforcer Sort Order sort

Plan Robustness Choose-Plan

Table 1. Logical and Physical Algebra Operators.

Like traditional optimizers, our prototype optimizer

computes costs from the cardinality of a query’s input relations,

selectivity of predicates, and availability of resources (e.g.,

available memory). But unlike traditional optimizers, cost is not

restricted toasingle point or value. Instead, itisextended froma

point to an interval, defined by upper and lower bounds, i.e.,

[lower-bound, upper-boundl. Thus, thiscost model acknowledges

the inherent error in selectivity and cost estimation [Chr84,

IoC91 ], although only in a somewhat crude form. Comparing the

costs of two plans requires a comparison of their cost intervals.

Within these intervals, we do not pretend to know precisely (at

compile-time) what the cost (at start-up-time) will be. Therefore,

when intervals overlap one another, we cannot determine whether

one is greater or less than the other.

The upper and lower bounds of the cost intervals are

computed using traditional cost formulas supplied with the

appropriate upper and lower bound values for the parameters of

the cost model (e.g., selectivity bounds of [0, 1] for an unbound

predicate) and assuming that cost functions are monotonic in all

their arguments (input file sizes and available memory). Bounds

of the parameters are computed using a parameter’s minimum and

maximum.

The costs of a choose-plan operator, a dynamic plan, or a

subplan are, of course, also intervals in this model. Given two

alternative plans, the cost of a dynamic subplan is the minimum of

the corresponding values of the alternative plans, plus the

evaluation overhead of the choose-plan operator. For example, if

two alternative plans have costs [0, 10] and [1, 1] and if a choose-

plan introduces an overhead of [0. 01,0.01 ], the combined plan

including the choose-plan operator linking the equivalent

alternative plans has the cost [0. 01, 1.01 ]. The addition of two

costs simply adds together the respective lower and upper bounds

of the costs, but subtracting costs (used to maintain bounds in

branch-and-bound pruning) only subtracts the lower-bound, since

we can only be sure that the lower-bound cost will be “used up.”

As mentioned before, subtracting only the lower bound from an

overall cost limit has a serious effect on branch-and-bound

pruning, as we will see in the next section.

6. Experimental Evaluation

As a preliminary experimental evaluation of dynamic plans, we

optimized five queries of increasing complexity and analyzed their

average run time, optimization time, start-up time, and number of

operator nodes in a plan. The queries were optimized using

traditional optimization based on expected value parameters, i.e.,

with costs as points represented by intervals

[expected-value, expected-value], and with dynamic-plan-

optimization enabled, i.e., with cost intervals

[domain-minimum, domain-maximum].

It can easily be argued that optimizing only a few queries

does not truly reflect the “average” effectiveness (if such a

measure can be defined) of dynamic plans relative to static plans

or run-time optimization, However, that is not our point here,

since it is clear from the motivating examples (e.g., file scan vs.

index scan) that dynamic plans can be much faster than static

plans. Instead, the purpose of these experiments is to demonstrate

that (i) the overhead of dynamic plan optimization is tolerable,

even for complex queries (e.g., a 10-way join) and a substantial

number of unbound variables (e.g., 10); (ii) while the start-up-

time effort is substantial, it is small compared to the possible

performance penalty of running static plans only; and (iii) the

start-up time of dynamic plans optimized at compile-time is much

shorter than the time required for optimization at run-time. In

other words, we do not advocate to use dynamic plans at all times

and for all queries. However, they are an extremely useful

technology in those cases where they apply. We plan on

characterizing those cases more thoroughly in the future.

Definitions of the five queries and the number of logical

alternative plans (based on the transformation rules) considered by

the optimizer’s search engine were as follows: query 1 — a query

of a single relation with a single predicate (see the earlier

motivating example) having one logical algebra alternative (with

three different physical algebra expressions); query 2 — a two-

way join with two selections (each referring to a different input

relation) and 2 logical alternatives; query 3 — a four-way join

with four selections and 48 alternatives; query 4 — a six-way join

with six selections and 2,432 alternatives; and query 5 — a ten-

way join with ten selections and 74,022,912 logical alternatives.

In all cases, selectivities of the selection predicates were presumed

uncertain, while the join predicates’ selectivities were computed

using the cross product of the joined relations divided by the

larger of the join attribute domain sizes. Thus, query 5 had a total

of 10 uncertain cost model parameters based on selectivity,

(Although not part of a query’s definition, we also considered the

effects of uncertain available memory, thus introducing an

additional uncertain cost model parameter.)

These five queries were optimized using traditional query

optimization at compile-time (resulting in a static query evaluation

plan), optimization at run-time, and dynamic plan optimization.

For each query, we compare query execution time, optimization

time, query plan size, and start-up-time, which are defined as

follows. Optimization time, times a and e in Figure 3, is the

CPU-time required to optimize and build the query evaluation

plan. The reported times are truly measured with our prototype.

Start-up-times, times b and .f in Figure 3, include 1/0 and CPU

times: I/O effort is required to read the access module and to

validate a plan against the current catalogs, and CPU effort is

required in dynamic plans to evaluate all choose-plan decision

procedures and to choose among alternative plans. I/O costs to

read an access module were derived from the plan sizes, which is

a count of operator nodes in the directed acyclic graph (DAG),

i.e., in the physical representation of the plan. The CPU effort for

dynamic-plan-start-up was also measured using our prototype.

Since both measured CPU-time and estimated I/O-time are in

seconds, we can add them to obtain total start-up-times. Average

run-times for static and dynamic plans were determined using

N = 100 sets of randomly generated values for the uncertain cost-

model parameters. The execution times reported are those
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predicted by the optimizer.4 The CPU times for optimization and

for dynamic-plan start-up, however, are truly measured.

Measured CPU times refer to a dedicated DECstation 5000/125

with 32 MB of memory.

The random values for selectivities of selection operations

are chosen from a uniform distribution over the interval [0, 1]. In

static-plan query optimization, we used an expected value of 0.05.

Note that traditional optimizers often use a small default

selectivity for selection predicates, represented here by the value

0.05. Attribute domain sizes varied from 0.2 to 1.25 times the

respective relation’s cardinality. The expected memory size was

64 pages of 2,048 bytes. When memory was considered an

unbound parameter, a run-time value for the number of pages was

chosen from a uniform distribution over [16, 112].

The number of records in each relation varied from 100 to

1,000, Using only such a small range of relation cardinalities

increases the number of cases in which cost intervals will overlap,

thus inducing cost incomparability and pushing our dynamic plan

optimizer towards its worst case, i.e., forcing it to generate

exhaustive plans. All relations had a record length of 512 bytes.

Attributes referenced by the unbound selection predicates as well

as all join attributes had uncluttered B-tree structures suitable for

predicate evaluation. All reported times, both measured (e.g.,

start-up CPU effort) and estimated (e.g., start-up 1/0 effort), are

given in seconds.

Each of the following diagrams shows four curves, Each

curve has five data points, which correspond to the five queries.

Curves drawn with solid lines represent the times for traditionally

optimized, static query evaluation plans. Curves drawn with

dashed lines represent the times of dynamic plans, Curves

indicated by o’s show uncertainty in the selectivity of query

selection predicates; the number of uncertain variables varies from

1 for query 1 (one selection predicate) to 10 for query 5 (10

predicates). Curves indicated by ❑’S add uncertainty in available

memory. Because memory is one more uncertain parameter for

each query, these curves are shifted to the right by one in the

number of uncertain variables.

First, we compare execution times of static and dynamic

plans in Figure 4. In the notation of Figure 3, this diagram

quantifies the extent to which ~lN= * gi < ~~= , ci by reporting

their averages E and C. The x-axis of Figure 4 is the number of

uncertain variables as defined by the five experimental queries.

For each data point in Figure 4, N = 100 sets of random values for

the unbound parameters were chosen and execution costs of the

optimized static and dynamic plans were determined with each of

these sets of values. Obviously, the static plans are not

competitive with their equivalent dynamic plans. The

~erformance difference varies between a factor of 5 for query 1 to

a factor of 24 for query 5, the most complex query. In absolute

numbers, the average run time for query 5 improved from

4 We propose and use the following definitions: An

optimizer’s eficiency measures the time to produce a query

evaluation plan, Its effectiveness measures the quality of the plan,

i.e., execution cost, and its accuracy measures how well it models

resource use. Optimizer accuracy depends on the statistical

descriptions of operator inputs (selectivity estimation) and on the

mapping of such descriptions and algorithms to cost. In turn,

optimizer effectiveness is a combination of optimizer accuracy,

search space, and search strategy. In order to evaluate a search

strategy without the distorting influences of selectivity estimation

and cost calculation, plans should be compared on the basis of

anticipated execution costs, not of real execution costs.
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Figure 4. Execution Times of Static and Dynamic Plans.

E = 194.1 sec to jj = 7.8 sec. Thus, all dynamic plans exhibit

vastly improved robustness and performance over the static plans.

Notice in particular that the performance advantage of dynamic

plans increases with the number of uncertain variables. The

additional uncertainty of available memory accentuates the

difference between static and dynamic plans even further.

The main cost of dynamic plan optimization is its

optimization time. Figure 5 shows the times for exhaustive,

bushy-tree optimization generating static and dynamic plans, or

times a and e in Figure 3. For any query, the worst increase in

optimization times is less than a factor of 3, 27.1 sec versus 80.6

sec for query 5. This difference is primarily due to the reduced

effectiveness of branch-and-bound pruning, as discussed earlier.

(Conversely, this experiment demonstrates the effectiveness of

branch-and-bound pruning for traditional query optimization

using the Volcano optimizer generator’s search strategy.) Notice

that this increase is paid during compile-time, i.e., only once, and

that the dynamic plan contains every potentially optimal plan;

therefore, optimality can be guaranteed. Uncertain available

memory adds little or no additional optimization time; the effects

of uncertain memory size are overshadowed by those of uncertain

selectivities.

The start-up-time of dynamic plans, times b and ~ in

Figure 3, is the CPU time for decisions based on cost function

evaluations and increased I/O effort due to the increased size of
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Figure 5. Optimization Time for Static and Dynamic Plans.
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Figure 6. Plan Sizes for Static and Dynamic Plans,

the plan itself. The latter can be computed from the number of

operator nodes in the optimized plan and therefore in the access

module, Figure 6 shows the number of operator nodes in static

and dynamic plans. As the complexity of the queries increases,

the number of nodes also increases, For query 5, which has 11

uncertain variables (10 simple predicates and the size of memory),

the difference in plan size is 14,090 versus 21 operator nodes.

While this difference might seem alarming, it is important to note

that this represents a rather extreme case, a query with as many as

11 uncertain variables. Moreover, we will show that the absolute

size of even our largest dynamic plan is acceptable.

As can also be seen in Figure 6, making the amount of

available memory uncertain only barely increases the sizes of the

dynamic plans. This lack of effect is an argument for believing

that there are a limited number of potentially optimal plans, and

that additional uncertain variables will not increase the size of the

dynamic plans significantly beyond that point. It depends on a

number of factors whether or not the dynamic plan including all

these potentially optimal plans is, in fact, the exhaustive plan; the

much more important issue, however, is the extra effort required

to read and start an access module containing a dynamic plan

compared to those times for a static plan.

In order to compute the time to read an access module from

disk, the number of operator nodes in a plan must be multiplied

with the node size and divided by the disk bandwidth. For a node

size of 128 bytes and a bandwidth of 2 MB/see, about 16,000

nodes can be read per second. Thus, the run-time improvement

from from 194.1 sec to 7.8 sec discussed above requires additional

1/0 for the access module of less than 0.9 sec. Catalog validation

and one seek operation to read the access module are equal,

because both approaches use compile-time optimization. In the

following, we will presume that this time is z = 0.1 see, where b

and z are almost identical due to the small size of static-plan

access modules.

The other component of the start-up-time is the CPU-time

for evaluating the decisions in choose-plan nodes, which is shown

in Figure 7. Not surprisingly, the increase in start-up CPU time

introduced by dynamic plans almost exactly parallels the increase

in plan size. More important, however, is the fact that choose-plan

decisions can be made quite rapidly: for the most complex

dynamic plan in Figure 7, the CPU effort at start-up-time is 5.8

see, in spite of the fact that a cost function must be evaluated for

each node in the dynamic plan. Notice that the dynamic plan is

stored as a DAG, not as a tree, and that the cost of shared

subexpressions is computed only once, not once for each usage.

/
start-up- .d “d

CPU-Time 0.1 –
“.”

‘.

[see]
H’ti

//
/x

0.01 –
,@’’Ff ’

II

O.OQ1– d’ d’

I I I I I I I I I I I

1234567891011

Number of Uncertain Variables

Figure 7. Start-Up-Times for Dynamic Plans, CPU Only,

Thus, the execution time improvement from Z = 194.1 sec to

g =7.8 sec required additional start-up effort (CPU+ I/0) of only

about 7 see, resulting in an overall improvement in run-time effort

from b+~ = 0.1 +194,1 = 194,2 sec to ~+~ =

0.1 + 0.9 + 5.8 + 7.8 = 14.6 see, or an overall improvement in

run-time performance by a factor of 13. In other words, for the

most complex query requiring the largest, most complex

evaluation plan, the dynamic plan is significantly faster than the

static plan.

Given the substantial execution-time savings of dynamic

plans, we might want to determine how many query executions

are required to justify their extra optimization and start-up effort.

Let us call this number of executions Nbreak_eVen, defined to be

the smallest N for which e + N x (f + j) < a + N x (b + F). If

a query is to be executed at least Nbreak_eVen times, dynamic

plans can be expected to be faster overall than static plans.

Reformulating the above inequality determines Nbrea&.eVen =

T (e - a) I ((~ + @ -(f+ g)) 1. Applying this formula to the
times measured in our experiments, the break-even points are

consistently as low as Nbreak_eVen = 1. Thus, in these

experiments, dynamic plans were a better choice than static plans

when run-time bindings were not known at compile-time, even if

the plan ended up running only once.

While dynamic plans are clearly much more robust and

efficient than traditional, static plans, one might ask whether
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I
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Figure 8. Run-Time Optimization versus Dynamic Plans.
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dynamic plans are actually better than delaying all query

optimization until start-up-time. The obvious advantage of rrm-

time optimization is that no choose-plan nodes are required,

because run-time values for all cost-model parameters are known

during optimization. The disadvantage of run-time optimization is

that the same query must be optimized repetitively whenever cost

model parameters change. In the notation of Figure 3: is

f+~<a+d?

In answer to this question, Figure 8 compares the run-time

components of run-time optimization with compile-time generated

dynamic plans. For other than the simplest queries, there is a

significant overall decrease in execution time when using dynamic

plans. For query 5, the decrease exceeds a factor of 2. This

substantial difference is primarily due to the cost of the start-up-

time optimization, which is large when compared to the relatively

small run-time overhead of dynamic plans.

Finally, we cOIZipUte the break-even pOiIIt Nbreak_wen

between dynamic plans and run-time optimization, i.e., the

smallest ~umber of queries N for which e + N x (~ + g) ~

Nx(a+d). Given that Vi gi = di and therefore j = d,

Nbreak_even = r e / (a - f ) 1. For Nbre~-even or more query

invocations, dynamic plans require less total computational effort.

The largest break-even point in Figure 8 is Nbre&-even = 4

(query 5); the smallest break-even point 1s Only Nbre&_even =2,

for query 2. These encouraging results are due to the fact that the

dynamic-plan start-up-time is much smaller than the optimization

effort (f e< a), dominating the differences in optimization time

(e> a). Thus, even for relatively few invocations of a query,

dynamic plans can be much more efficient than inn-time

optimization.

7. Summary and Conclusions

In this paper, we have addressed an important open problem in

database query optimization, namely that the execution of

traditionally optimized, “static” query plans is often sub-optimal

when cost-model parameters change between compile-time and

run-time. While some previous work has considered optimization

at run-time as well as run-time mechanisms that facilitate dynamic

plans, the present paper is the first to outline a general technique

to create dynamic plans at compile-time using exhaustive search

in a dynamic programming framework. Our solution is based on

the following essential concepts:

.

.

.

.

●

Uncertain cost-model parameters and therefore costs

incomparable at compile-time.

A partial ordering of alternative plans by cost, instead of a total

ordering, induced by incomparable costs.

The choose-plan operator, which enables the building of

dynamic plans that incorporate alternative subplans.

Decision procedures for choose-plan operators based on cost

function evaluations with instantiated run-time bindings,

Extensions to dynamic uromamming, memorization, and

branch-and-bound - pruning’ n~cessary ‘for optimization and

generation of dynamic plans.

Unfortunately, despite using dynamic programming and

memorization, dynamic plan optimization is slower than traditional

optimization. In dynamic plan optimization, branch-and-bound

pruning is less effective than in traditional query optimization,

because less knowledge about run-time bindings and about costs

prevents tight bounds and cost comparisons. We have found that

this is the most important impediment to optimization efficiency,

but believe that the added optimization effort is well worth the

improved run-time behavior of dynamic plans over traditional,

static plans.

We applied these optimization concepts to the construction

of a prototype dynamic plan optimizer using the Volcano

optimizer generator. As a particular instance of dynamic-plan

optimization, we extended plan cost from traditional point data to

interval data and defined costs to be incomparable if these

intervals overlap, illustrating one possible use of incomparable

cost estimates and dynamic plan technology.

Experiments with this prototype demonstrate that our

approach to dynamic plan optimization using dynamic

programming techniques is an effective and efficient way to build

plans exhibiting robust performance characteristics. In particular,

our experiments permit the following conclusions:

.

.

Dynamic plan optimization produces robust plans that maintain

their optimality even when parameters change between

compile-time and start-up-time. The reduced execution time of

dynamic relative to static plans more than offsets the additional

overhead for plan activation.

The combined I/O and CPU overhead of dynamic plan

evaluation is significantly less than the corresponding overhead

of completely optimizing queries at start-up-time, Thus,

dynamic plans generated at compile-time are more efficient

than run-time optimization, in particular for complex queries,

In summary, we have presented an effective and general

solution to the important and heretofore open problem of

unknown run-time bindings, particularly for program variables in

embedded queries and for other uncertain variables such as join

selectivities and memory availability when they are known at

start-up-time. Our experiments with a working prototype

demonstrate that for queries with run-time bindings unknown at

compile-time, the proposed approach is superior to both static

plans and inn-time optimization.

Our approach is extensible in terms of the data model and

in terms of the sources of cost incomparability, because it is based

on extensions to the Volcano optimizer generator’s search engine

and because the criteria for cost incomparability are encapsulated

by the abstract data type for cost. The optimizer generator has

already been used successfully in optimizing object-oriented

queries for the Open 00DB system [BMG93] and analysis

queries in scientific databases [WOG93]. Because of the optimizer

generator’s encapsulation of the sources of cost incomparability, it

could easily be extended to handle uncertainty in object-oriented

clustering techniques [TsN92] and in the existence of path indices

[OHM92] as well as other issues of compile-time versus inn-time

bindings.

While the discussion here has focused on delaying

decisions from compile-time to start-up-time, decisions can also

be delayed further into run-time. This generalization is necessary

if cost-model parameters may change after start-up-time, either

because the start-up-time expected values were inaccurate (i.e.,

selectivity estimation errors [IoC91 ]) or because parameter values

change during run-time. While we have not completed our

research into this problem, our initial approach has been to handle

inaccurate expected values by evaluating subplans as part of

choose-plan decision procedures. When a subplan has been

evaluated into a temporary result, its logical and physical

properties (e.g., result cardinality and value distributions) are

known and therefore may contribute to decisions with increased

confidence in the resulting plan’s optimality. The novel aspect of

this approach when compared with previous approaches to run-

time optimization decisions [Ant93, BPR90, MHW90] is that

dynamic plan optimization, in combination with statistical

decision theory as used by Seppi et al, [SBM89], will provide

sound decisions based on the concept of incomparable costs.

Thus, our research into compile-time optimization of dynamic
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plans creates promising opportunities for further research, in

addition to already solving an important open problem in database

query optimization.
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