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Abstract: Fuel cell hybrid electric vehicles have attracted a large amount of attention in recent years
owing to their advantages of zero emissions, high efficiency and low noise. To improve the fuel
economy and system durability of vehicles, this paper proposes an energy management strategy
optimization method for fuel cell hybrid electric vehicles based on dynamic programming. Rule-based
and dynamic-programming-based strategies are developed based on building a fuel cell/battery
hybrid system model. The rule-based strategy is improved with a power distribution scheme of
dynamic programming strategy to improve the fuel economy of the vehicle. Furthermore, a limit on
the rate of change of the output power of the fuel cell system is added to the rule-based strategy to
avoid large load changes to improve the durability of the fuel cell. The simulation results show that
the equivalent 100 km hydrogen consumption of the strategy based on the dynamic programming
optimization rules is reduced by 6.46% compared with that before the improvement, and by limiting
the rate of change of the output power of the fuel cell system, the times of large load changes are
reduced. Therefore, the strategy based on the dynamic programming optimization rules effectively
improves the fuel economy and system durability of vehicles.

Keywords: electromobility; hybrid drive; fuel cell; energy management; optimization process; fuel
economy; durability

1. Introduction

With the rapid growth of global car ownership and the consumption of nonrenewable
energy, the world is facing challenges such as the energy crisis and climate change. The
development of new energy vehicles is considered to be an effective solution to this
challenge. A battery electric vehicle (BEV) is mainly composed of a battery, a motor and its
controller. The energy required by the vehicle is only provided by the battery pack, which
means that the capacity of the battery pack determines the driving range of the vehicle [1].
With the increase in battery capacity, the cost and weight of BEVs increase rapidly, which
also determines that the capacity of BEV battery packs is limited [2]. Additionally, charging
the battery pack takes longer than in conventional combustion engine vehicles, often taking
hours to complete [3]. The hybrid electric vehicle (HEV) uses the internal combustion
engine and the electric motor to provide power for the vehicle, and the vehicle has a
longer driving range, and can make full use of the working characteristics of the internal
combustion engine and the electric motor to improve the system efficiency [4,5]. The
plug-in hybrid electric vehicle (PHEV) has the advantages of both BEVs and HEVs, which
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can effectively reduce exhaust emissions and provide a longer driving range [6,7], and
are currently the most widely used in the field of public transportation. The mild hybrid
electric vehicle (MHEV) uses a different low-voltage hybrid technology than the other two,
and its configuration is simpler and lower cost [8,9]. The extended-range electric vehicle
(EREV) only uses the motor to provide power for the vehicle, and the range extender
directly charges the battery pack, so as to achieve the purpose of extending the driving
mileage of the vehicle [10,11]. The fuel cell hybrid electric vehicle (FCHEV) uses the fuel
cell as the main energy source and the battery/supercapacitor as the auxiliary energy
source to jointly provide energy for the vehicle. The fueling time and driving range of
FCHEVs are comparable to those of traditional internal combustion engine vehicles, and
FCHEVs have the advantages of zero emission, high efficiency and low noise, and has
broad application prospects [12]. At the same time, FCHEVs also face many problems that
need to be solved urgently. The durability and cost of fuel cell systems (FCSs) are the major
technical challenges for the application of FCHEVs [13].

Owing to its low operating temperature, high power density and fast response speed,
proton-exchange-membrane fuel cells (PEMFCs) are the most widely used in FCHEVs [14].
However, it is difficult for the FCS to meet the frequently changing power demand of the
vehicle in actual operating conditions, and it cannot recover the energy during braking.
Therefore, an FCS is usually combined with a battery or supercapacitor in a hybrid system
to provide electric power for the vehicle [15].

For FCHEVs equipped with two or more energy sources, energy management strategy
(EMS) is a key technology to determine vehicle power performance and fuel economy. For
an FCHEV, the aim of an EMS is to distribute the power demand among different energy
sources to drive the vehicle, which leads to the improvement of the performance of both
the fuel economy and the system durability. The control strategy for energy management
can be divided into three categories: rule, optimization and learning-based strategies [16].
Rule-based strategies have the advantages of a convenient design, easy implementation and
high robustness, which are widely used in vehicles. The strategies, including deterministic
rules and fuzzy rules, which reasonably allocate the power of each energy source through
preset rules, are mainly based on engineering experience [17,18]. Chen et al., and Li et al.,
verified that a state machine strategy can meet the requirements of a high-power hybrid
powertrain and improve powertrain efficiency [19,20]. However, the rules are usually
determined based on engineering experience and cannot achieve the optimal effect.

The optimization-based strategy derives the optimal power allocation strategy by calculat-
ing the optimal cost function, including dynamic programming (DP), Pontryagin’s minimum
principle (PMP), equivalent consumption minimization strategy (ECMS) and model predictive
control (MPC). The DP algorithm is a classic offline optimization method, which can solve
and obtain the control effect of the theoretical global optimum. However, its reliance on prior
knowledge of the driving cycle and the curse of dimensionality amplify the computational
burden [21]. Its solution time increases exponentially with the increase in state variables and
control variables. Dima et al., adopted the improved DP to add weights to the fitness function
to guarantee faster convergence, which solved the limitation of dimensionality constraints [22].
Through this method, the optimal power allocation rule can be obtained and injected into the
EMS of the Simulink model. However, DP is reliant on prior knowledge of the full driving cy-
cle and cannot realize online application. PMP can obtain almost the same control effect as DP,
and can also simplify the calculation [23]. PMP introduces a co-state variable and transforms
a global optimization problem into an instantaneous optimization problem, which means
that online application is possible [24–26]. However, for the complex operating conditions of
vehicles, there is no effective and adaptable method to determine the co-state variable. The
ECMS introduces an equivalent factor to obtain an instantaneous optimal control effect by
minimizing the instantaneous cost function, which can be applied online [27,28], similarly
to PMP. However, its control effect depends on the determination of the equivalent factor.
Deng et al., improved ECMS through the DP algorithm to obtain a better control effect [29].
Based on the prediction model, MPC determines a global optimization algorithm solution in
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the prediction horizon. The model is simplified using a control model with piecewise-affine
functions to achieve the optimal control effect, which can be applied online [30,31]. However,
the algorithm has high requirements for the accuracy of the established vehicle model.

Owing to the complex operating conditions of vehicles, the adaptability of the opti-
mization algorithm to complex operating conditions is poor. Therefore, some scholars apply
the learning-based strategy to design EMSs. The strategy has good real-time performance
and adaptability to working conditions through the use of big data for learning [32,33], but
this strategy requires a large amount of data to learn.

These methods have been studied in hybrid electric vehicles with engines and motors,
but they are not fully applicable to FCHEVs. As the core component of FCHEVs, the
characteristics of FCSs play a key role in the performance and life of the vehicle. Compared
with engines, FCSs have the characteristics of difficulty in starting, slow dynamic response,
etc., and have more stringent requirements for operating conditions. At present, the cost
of the fuel cell system is much higher than that of the engine, but its service life is still far
behind that of the engine. Therefore, for vehicles equipped with an FCS and a battery or
supercapacitor, the design requirements for EMSs are higher, and more factors need to
be considered. Owing to the poor dynamic responses of FCSs, it is necessary to consider
the influence of factors such as the rate of change of the output power of the FCS on its
durability degradation. Wang et al., briefly described the factors affecting the durability of
fuel cells [34]. Kwon et al., developed a near-optimal energy management control method
that takes into account degradation costs and fuel costs during the design process [35].
Song et al., and Hu et al., incorporated the calculation of fuel cell and battery durability
degradation into the optimization objective function to compare the fuel economy and
system durability [36,37]. Using a nonlinear optimization method, He et al., improved the
durability of the fuel cell by adding constraints on the current of the fuel cell [38]. In the
process of EMS design, it is important that the development of the strategy can be guided
by the analysis of the factors affecting the durability of the FCS. In the process of EMS
design, it is necessary to analyze the influencing factors of FCS durability.

However, in the current research on EMSs with FCHEVs, considering the durability
of fuel cells and developing practical and efficient energy management strategies still
face many challenges: (1) rule-based control strategies are more suitable for engineering
applications, but are not economical; (2) optimization and learning-based algorithms can
effectively improve the fuel economy, but they are faced with problems such as extensive
calculation and low robustness, which pose great challenges in practical application; (3) fac-
tors affecting the durability of fuel cell vehicles are complex and diverse, and it is difficult
to optimize through energy management strategies.

In summary, the EMS of the FCHEV is developed for the FCS bench in our laboratory.
The advances presented by this paper follow: Based on the bench test data and dynamic
system parameters, an FCHEV dynamic system model is established. The factors affecting
the fuel economy and system durability of FCHEVs are analyzed, and an energy manage-
ment strategy optimization method based on dynamic programming is proposed. In this
rule-based strategy, the influencing factor of fuel cell durability decline is added, and the
economical optimal power distribution scheme is obtained through dynamic programming.
This method can improve the fuel economy and system durability of FCHEVs, and has
high practical value and application potential.

The paper is organized as follows: Section 2 establishes the forward simulation model
of the FCHEV. Section 3 analyzes the influencing factors of FCHEV fuel economy and
durability and establishes a rule- and DP-based EMS. Section 4 extracts the power allocation
rules from the DP strategy and discusses a strategy to improve the rules. Section 5 compares
and analyzes the simulation results of an improved EMS before and after the improvement.
Section 6 provides the conclusions.
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2. FCHEV Powertrain System Modeling

In this paper, the fuel cell hybrid electric passenger car is studied. Its powertrain
system uses the FCS as the main energy source, which adjusts the FCS output power
through DC/DC. The FCS is connected in parallel to the auxiliary energy source, the
battery, on the DC bus to transmit electric energy to the electric drive system and other
accessories. The powertrain system structure is shown in Figure 1 and modeled in MATLAB.

Figure 1. Structure of the fuel cell hybrid electric vehicle powertrain system.

2.1. Vehicle Dynamics Modeling

In the modeling process, the influence of the lateral and vertical dynamics of the
vehicle is ignored. According to the longitudinal dynamics of the vehicle, the dynamic
equation of the vehicle [24] is as follows:

m
du
dt

= Ft − Ff − Fw − Fi (1)

where Ft is the driving force; Ff is the rolling resistance, Ff = mgf cosα; Fw is the air resistance,
Fw = 1

2 ρCD Au2; and Fi is the slope resistance, Fi = mg sinα. The key parameters of FCHEV
are listed in Table 1.

Table 1. Parameters of the fuel cell hybrid electric vehicle.

Component Parameter Value

Vehicle

Vehicle weight/kg 1625
Wheel radius/m 0.316
Frontal area/m2 2.711

Coefficient of air resistance 0.31
Coefficient of rolling resistance 0.009

Final drive ratio 6.52

Fuel cell system

Effective area of cell/cm2 280
Number of cells 300

Rated power/kW 62
Maximal power/kW 80

DC/DC converter Efficiency 0.97
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Table 1. Cont.

Component Parameter Value

Battery
Capacity/Ah 12

Rated voltage/V 384
Allowed range of state of charge (SOC)/% 10–95

Motor
Maximal power/kW 100

Rated/maximal speed/rpm 3200/8000
Maximal torque/Nm 256

2.2. Motor Modeling

By analyzing the pedal opening signal, the required torque of the motor is obtained.
Combined with the motor speed, the power demand of motor is calculated as follows:

Pm =

{
Tmwm/ηm, (Tm ≥ 0)
Tmwmηm, (Tm < 0)

(2)

where Tm is the motor torque; wm is the rotating speed of the motor shaft; and ηm is the
motor efficiency, ηm = f (Tm, wm). The efficiency map diagram is shown in Figure 2.

Figure 2. Motor-efficiency map.

In this paper, the vehicle’s total power demand includes the required power of the
motor and the power consumed by the auxiliary equipment of the FCS:

Pdem = Pm + Paux (3)

where Paux is the power consumed by the auxiliary equipment of the FCS.

2.3. Modeling of Fuel Cell System

The FCS usually includes a fuel cell stack, air supply system, hydrogen supply sys-
tem and hydrothermal management system. The output power of the fuel cell stack is
determined by the voltage and current density, which can be written as follows:

Pf c = Vf cN × i f cS (4)
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where Pf c is the output power of the fuel cell stack, Vf c is the voltage of the monolithic fuel
cell, N is the number of cells, i f c is the current density of the fuel cell, and S is the effective
area of the cell.

This paper uses a 62 kW proton exchange membrane fuel cell stack developed by
Wuhan University of Technology. The specific parameters are shown in Table 1. According
to the bench test, the relationship curve between the output current of the FCS and voltage
and power is obtained, as shown in Figure 3.

Figure 3. Current, voltage and power curves of the fuel cell system.

This paper assumes that the air pressure and hydrogen pressure entering the stack are
constant, while the hydrothermal management system always maintains the humidity of
the air and hydrogen within a reasonable range. During normal operation, the hydrother-
mal management system can maintain the temperature of the system at approximately
75 ◦C for most of the time and the temperature variation range is relatively small. Addition-
ally, during the cold start of the fuel cell, the hydrothermal management system can quickly
increase the temperature of the FCS to the temperature during normal operation. The effect
of temperature change on the output performance of the fuel cell can be considered small,
assuming that the system temperature is always maintained at approximately 75 ◦C during
the operation of the FCS. The output power command of the fuel cell is converted into the
demand current according to the curve shown in Figure 3, and the flow rates of air and
hydrogen are obtained using a lookup table according to the bench test data and input into
the stack.

The air compressor and the water pump are the main auxiliary equipment in the FCS
that consume power. The power consumption of the air compressor accounts for more than
95%, which increases with the increase in the FCS output power, as shown in Figure 4. The
power consumed by the water pump and other auxiliaries is relatively small, and does not
change much, so it can be regarded as a constant. The power consumed by the auxiliary
equipment of the FCS is as follows:

Paux =

{
0, , f cs_state_o f f
f (Pf cs), f cs_state_on (5)

where Pf cs is the FCS output power, and f cs_state_o f f and f cs_state_on represent the start
and stop states of the FCS.
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Figure 4. The power consumption curve of the air compressor.

The instantaneous hydrogen consumption rate of the FCS
·

m f c is calculated as follows:

·
m f c =

Pf cs

η f cs × LHV
(6)

where η f cs is the FCS efficiency, according to the polynomial fitting of the experimental
data, which changes with power, as shown in Figure 5. The highest efficiency point is
Pf cs_e f f = 16 kW, and LHV is the hydrogen lower heating value (120 kJ/g).

Figure 5. Fuel cell system efficiency.

2.4. Battery Modeling

In this paper, the lithium-ion battery is the auxiliary energy source, which is composed
of 116 single cells and the battery cell-type is lithium–iron phosphate. It is simplified based
on the equivalent internal resistance model. The battery power Pb is calculated as follows:

Pb = Uocv Ib − Ib
2Rb (7)

This paper assumes that under the normal operation condition, the battery thermal
management unit controls the temperature at approximately 25 ◦C, with little temperature
change. Therefore, it ignores the effect of temperature changes on the interior of the battery
and assumes that the internal resistance of the battery is a constant, Rb = 0.1125 Ω. The
curve of the open circuit voltage of the battery pack as a function of battery state of charge
(SOC) is shown in Figure 6.
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Figure 6. Open circuit voltage of the battery.

When the battery power is known, Ib can be calculated as follows:

Ib =
Uocv −

√
Uocv − 4RbPb
2Rb

(8)

The SOC is calculated using the ampere-hour integral method:

SOC = SOCinit −
1
Q

∫ t f

t0

I(t)dt (9)

where SOCinit is the state of charge at the initial moment of the battery, and Q is the capacity
of the battery.

In order to accurately evaluate the fuel economy of the vehicle, the charging and
discharging power of the battery is equivalent to the instantaneous hydrogen consumption
rate

·
mb, which is calculated as follows [36]:

·
mb =


Pb

ηbη f c×LHV , Pb ≥ 0
Pbηb

η f c×LHV , Pb < 0
(10)

where ηb is the charge and discharge efficiency, which is calculated as follows:

ηb =


(

1 +
√

1− 4RbPb/Uocv2
)/

2, Pb ≥ 0

2
/(

1 +
√

1− 4RbPb/Uocv2
)

, Pb < 0
(11)

3. Design of the Energy Management Strategy

The EMS of the FCHEV is the key to vehicle control technology, which directly affects
the performance of the vehicle. The optimization of the control strategy can improve the
system efficiency and slow down system life degradation. A good EMS can improve the
fuel economy and durability of the powertrain system. Combining the fuel economy and
durability influencing factors of FCHEV, rule- and dynamic-programming-based energy
management strategies are developed on the basis of the models described above.

3.1. Influencing Factors of Economy and Durability

For the FCHEV, the total hydrogen consumption is the sum of the hydrogen consump-
tion of the FCS and the equivalent hydrogen consumption of the battery, which is calculated
as follows:

mH2 =
N

∑
k=1

(∫ k+1

k

( ·
m f c +

·
mb

)
dt
)

(12)
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where mH2 is the total hydrogen consumption (g).
Taking an equivalent 100 km hydrogen consumption as the economic evaluation index,

it is calculated as follows:
mH2/100 km =

mH2

S
× 100 (13)

where mH2/100 km is equivalent 100 km hydrogen consumption (g/100 km), and S is the
distance the vehicle is driven.

The fuel economy is related to the hydrogen consumption of the FCS and the equiva-
lent hydrogen consumption of the battery. Furthermore, hydrogen consumption is specifi-
cally related to the efficiency of the powertrain system, the number of energy conversions,
brake energy recovery, etc. Among them, improving the efficiency of the powertrain system
can significantly improve the fuel economy. Therefore, in order to enhance fuel economy,
the FCS should be operated within the high-efficiency range for as long as possible. In
addition, the energy conversion between the FCS, battery and electric drive system also
causes a certain amount of energy loss. Therefore, in the EMS, the number of energy
conversions should also be minimized.

In summary, when designing the EMS, the following principles should be followed
from the perspective of the fuel economy:

(1) Make the FCS run in the high-efficiency range (8–40) kW;
(2) Reduce the amount of energy conversion;
(3) Maximize the recovery of braking energy.

On the other hand, the durability of the FCHEV, which includes the durability of the
FCS and battery, should also be noted. The durability of the FCS is the focus of this paper.
The main factors affecting battery durability are the number of charge–discharge cycles,
temperature, discharge rate, depth of discharge and SOC. This paper assumes that the
battery temperature is a constant; therefore, reducing overcharge and overdischarge of the
battery can effectively prolong the battery life.

The durability of the FCS is closely related to the operating state. Operating condi-
tions with frequent switching between start–stop, idling, high current density, large load
changing, overload, cold start, etc., will accelerate the degradation of the FCS [39–41]. The
start–stop of the FCS is expected to form a hydrogen–air interface that leads to a high
potential, accelerates the corrosion of the carbon support and degrades the performance of
the catalyst. When running at idling speed, the performance of the Pt catalyst is degraded
due to the high potential. In the case of high power, it leads to a high current density, which
often leads to flooding inside the stack and gas starvation that accelerate the aggregation
of Pt particles, thereby reducing performance. When the load changes greatly, flooding
and local starvation of gas are expected to occur inside the stack, resulting in the rapid
degradation of the stack performance.

In the actual operating conditions of the vehicle, the large-load-change conditions have
the largest impact on the durability of the fuel cell, followed by the start–stop conditions and
the idle speed condition. The high-load operating conditions account for a small proportion.

In summary, from the perspective of durability, the following principles should be
followed when designing an EMS:

(1) Avoid large-load-changing frequency and switch between the start–stop of the FCS;
(2) Limit the FCS output power and the rate of change in the output power;
(3) Avoid running at idle speed and high power for a long time;
(4) Maintain the SOC of the battery within the allowable range (0.35–0.85);
(5) Try to keep the SOC within the target range (0.5–0.7);
(6) Limit the charging and discharging power of the battery.

3.2. Rule-Based Control Strategy

Under actual operating conditions, the vehicle can be divided into several different
modes and performs different actions according to the driving conditions and the state of
the powertrain system. Therefore, based on the idea of power that follows, this paper uses
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Stateflow of the MATLAB platform to establish a rule-based EMS to realize the regulation
and energy flow control of the vehicle, and to reasonably allocate power to the FCS and
battery. The modes of the vehicle are determined according to the vehicle speed and
accelerator pedal position, namely, idle, running and braking, as shown in Figure 7. In
this figure, vx represents the speed of the vehicle, and pacc represents the accelerator
pedal position.

Figure 7. Flowchart of rule-based control strategy in vehicle operation mode.

3.2.1. Idle Mode

When the vehicle is in idle mode, the power required by the motor is Pm = 0, and
the power demand of the vehicle is determined by the power consumed by the auxiliary
equipment of the FCS. First, determine the on–off state of the FCS, then determine the size
of value of the SOC, as shown in Figure 8. In this figure, f cs_state_on and f cs_state_o f f
represent the start and stop states of the FCS, respectively; f cs_state = 1 represents sending
a start command to the FCS; and f cs_state = 0 represents sending a stop command. To
avoid jitter between different states when near the critical value, define |SOC− 0.5| < 0 .02 .
If the FCS is turned on, the operation state of the FCS is determined according to the SOC
value. When the FCS is turned off, the power demand of the vehicle is provided by
the battery.

Figure 8. Flowchart of rule-based control strategy in idle mode.
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A short-term idling operation can avoid a frequent switch between the start–stop of
the FCS. However, a long-term idling operation not only increases hydrogen consumption,
but also accelerates the decline in fuel cell durability. Therefore, after the idling operation
exceeds the Ti time, a stop command is sent to the FCS.

3.2.2. Running Mode

The flowchart of the vehicle when it enters the running mode is shown in Figure 9. First,
determine the on–off state of the FCS. When the FCS is turned off, that is, f cs_state_o f f , the
power demand of the vehicle is provided by the battery, Pbat = Pdem. In order to maintain
the SOC within a reasonable range and prevent the output power of the battery exceeding
its limit, i.e., when SOC < 0.55, Pdem > 35 kW or |SOC− 0.7| < 0 .02 and Pdem > 25 kW
are satisfied, a start command is sent to the FCS.

Figure 9. Flowchart of rule-based control strategy in running mode.

When the fuel cell is turned on and SOC > 0.7, it is defined as a discharged state in
which the battery is discharged. When Pdem ≤ 40 kW, then the FCS output power takes
the smaller value between the highest efficiency operating point and the power demand of
the vehicle, Pf cs = min

(
Pdem, Pf cs_e f f

)
. When 40 kW < Pdem ≤ 62 kW, improve the FCS

output power and prevent the output power of the battery from exceeding its maximum
discharge power, then Pf cs = 30 kW. When Pdem > 62 kW, then Pf cs = 50 kW. When
SOC > 0.74 and Pdem ≤ 25 kW, after running for more than the Ti time, a stop command is
sent to the FCS.

When the FCS is turned on and SOC < 0.5, it is defined as a charge state in which
the battery is charged within the normal output power range of the FCS. When the power
demand of the vehicle does not exceed Pf cs_e f f , the FCS output power is maintained at
the highest efficiency point and the remaining power is used to charge the battery. When
16 kW ≤ Pdem ≤ 40 kW, then to be able to charge the battery, Pf cs = 1.2Pdem. When
40 kW < Pdem ≤ 62 kW, in order to maintain the FCS output power within an appropriate
range and prevent SOC from deviating too far from the target range, then Pf c = Pdem.
When Pdem > 62 kW, in order to prevent adverse damage to the durability of the FCS
due to heavy load and to maintain the output power near the rated power point, that is,
Pf cs= 62 kW, the remaining power is taken up by the battery.

When the FCS is turned on and 0.5 ≤ SOC ≤ 0.7, the SOC is in the ideal range and the
FCS can be operated in the high-efficiency range as much as possible. When Pdem ≤ 40 kW,
the FCS output power is Pf cs = Pdem. When 40 kW < Pdem ≤ 62 kW, the FCS output power
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is Pf cs = 40 kW, and remaining power is taken up by the battery. When Pdem > 62 kW,
then Pf cs = 62 kW.

3.2.3. Braking Mode

The flowchart for the vehicle when it enters the braking mode is shown in Figure 10.
At this time, if the FCS is turned on, it maintains the idle speed, while the battery recovers
the kinetic energy according to the designed maximum braking energy recovery strategy.
When SOC > 0.85, it will stop recovering the braking energy.

Figure 10. Flowchart of rule-based control strategy in braking mode.

Considering the response characteristics of the FCS, in this paper, the change rate of
the power demand of the vehicle is greater than 7 kW/s and less than −10 kW/s, which
is defined as a large-load-changing condition. To prevent the fuel cell from being in a
large-load-changing condition and to respond to the demand of the vehicle as soon as
possible, the rate of change in the FCS output power, ∆Pf cs(k), is limited. It is calculated
as follows:

∆Pf cs(k) = Pf cs(k)− Pf cs(k− 1) (14)

The rate of change in the FCS output power is related to the stack and system param-
eters, including the effective reaction area of the proton exchange membrane, pressure,
humidity and air excess coefficient of reaction gas. Within a certain range, with the in-
crease in reactive gas pressure, humidity and air excess coefficient, the dynamic response
rate of the FCS is faster. For the FCS applied in this paper, the range of ∆Pf cs(k) is set at
−10 kW/s ≤ ∆Pf cs(k) ≤ 7 kW/s.

3.3. DP-Based Control Strategy

The DP algorithm is a global optimization method for solving multistage decision-
making problems. The essence is a nonlinear programming algorithm, and the core is
the Bellman equation. Using the dynamic programming algorithm, the global optimal
EMS of the hybrid system can be obtained under the pre-knowledge of the driving cycle.
Owing to the inability to realize real-time applications, the results calculated by the DP
method are usually used as a benchmark for evaluating vehicle performance [42]. The
energy management problem is a typical multistage decision problem, and its essence is to
realize the optimal control of fuel economy under the condition of satisfying the constraints.
However, this optimal control problem is very complicated due to the nonlinearity and
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multiple constraints of the hybrid system [43]. The dynamic programming algorithm is
suitable for this, which can solve the power distribution scheme that optimizes the fuel
economy of the FCHEV.

Therefore, in order to obtain the most economical power allocation strategy for the
FCHEV, the prior knowledge of the driving cycle is discretized and divided into N stages
according to time. The discrete form of the system state transition equation follows:

x(k + 1) = f (x(k), u(k)), k = 0, 1, · · · , N − 1 (15)

where x(k) = SOC(k) is the state variable of stage k, and u(k) = Pf cs is the control variable
of state k. In the fuel cell/battery hybrid system, the SOC of the battery can reflect the
current state of the system. Therefore, the state variable is x(k) = SOC(k), the output power
of the FCS is used as a control variable to achieve power distribution in different stages,
u(k) = Pf cs, and the output power of the power battery is Pb = Pdem − Pf cs. Therefore, the
state transition equation of system follows:

SOC(k + 1) = SOC(k)−
Uocv −

√
Uocv2 − 4Rb(Pdem(k)− Pf cs(k))

2RbQ
(16)

In essence, the purpose of the DP algorithm is to solve the optimal control variable,
Pf cs(k), in each stage, so that the objective function, J, is minimized. The objective func-
tion [44,45] follows:

J = min
N

∑
k=0

L(x(k), u(k)) (17)

where L(·) is the transition cost function for each stage. In this paper, the total hydrogen
consumption of the vehicle is taken as the objective function. The transfer cost function of
each stage follows:

L =
∫ k+1

k

( ·
m f c +

·
mb

)
dt (18)

During the actual operating conditions of the vehicle, the following constraints [46]
should be satisfied: 

SOCmin ≤ SOC(k) ≤ SOCmax
SOCN_min ≤ SOC(N) ≤ SOCN_max
Pf cs_min ≤ Pf cs(k) ≤ Pf cs_max
Pb_min ≤ Pb(k) ≤ Pb_max

(19)

where SOCmin and SOCmax are the minimum and maximum values of the allowable
variation range of SOC, which are 0.35 and 0.85, respectively; SOCN_min and SOCN_max are
the minimum and maximum SOC endpoint values, which are 0.7 and 0.5, respectively;
Pf cs_min and Pf cs_max are the minimum and maximum output power of the FCS, which are
0 and 80 kW, respectively; Pb_min and Pb_max are the maximum values of battery charging
and discharging power, which are −42 and 42 kW, respectively.

4. Optimization of Energy Management Strategy

The simulation results of the dynamic programming algorithm are analyzed based
on the MATLAB platform, and the power distribution characteristics of the method are
obtained. Using this feature to optimize the policy of the rule, the target policy of this paper
is obtained.

The DP algorithm can obtain the most economical power allocation strategy, but it
needs to have prior knowledge of the driving cycle and cannot realize online application.
Therefore, some researchers extract the simulation results of DP to optimize the rule-based
strategy to obtain a better control effect [47–49]. Therefore, the DP algorithm is used in this
paper to optimize the rule-based control strategy to improve the fuel economy.
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In the EMS of the FCHEV, the power allocation between the FCS and the battery is
the key point. By controlling the FCS output power, the energy flow of the vehicle can
be controlled, so as to achieve the purpose of controlling the power allocation among
different energy sources. The WLTC driving cycle includes four parts: low speed, medium
speed, high speed and ultrahigh speed. The whole cycle time is 1800 s, the total mileage
is 23.25 km and the average speed is 46.5 km/h. The entire driving cycle includes idle
speed and frequent acceleration and deceleration, and the driving conditions are complex
and diverse, which are closer to the driving conditions of the actual road. Therefore, the
initial value of SOC is set to 0.6, and the comparison between the power demand of the
vehicle and the FCS output power of the DP-based strategy under WLTC conditions is
shown in Figure 11. It can be seen from the figure that the FCS output power increases
with the increase in the power demand of the vehicle. However, at Pdem = 25 kW the
FCS output power jumps, which is mainly determined by the objective function J. The
objective function reflects the sum of the hydrogen consumption rate of the FCS and the
equivalent hydrogen consumption rate of the battery. Therefore, with the increase in the
power demand of the vehicle and the FCS output power, the total hydrogen consumption
rate also increases rapidly. When Pdem ≤ 25 kW, the FCS output power is maintained
between 8 and 28 kW most of the time. The FCS operates in the highest efficiency range and
the remaining power is used to charge the battery when the total hydrogen consumption
rate is relatively small. The total hydrogen consumption rate increases gradually with
the increase in the FCS output power. The total hydrogen consumption rate when the
FCS output power alone is greater than the simultaneous output power of the FCS and
the battery. Therefore, allocating the power demand of the vehicle to the FCS and battery
reduces the total hydrogen consumption and provides better fuel economy.

Figure 11. Output power of the fuel cell system and vehicle power demand on the WLTC drive cycle.

Summarizing, there is an obvious characteristic law between the FCS output power
and the power demand of the vehicle. Therefore, the ratio of the FCS output power to the
power demand of the vehicle is defined as the power distribution ratio, par = Pf cs/Pdem.
Under the WLTC driving cycle, the DP algorithm is used to simulate different initial SOC
values, and the power allocation ratio is obtained, as shown in Figure 12. It can be seen
from the figure that the power allocation ratio can be divided into two parts. The first half
shows a nonlinear change, while several stages in the second half are fixed values, and the
change trend of the power allocation ratio under different initial SOC values is basically the
same. In the case of different initial SOC values, in order to maintain the SOC within the
target interval of 0.5 ∼ 0.7, different vehicle power demands correspond to the boundary
points of the front and rear parts of different initial SOC values.
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Figure 12. The power allocation ratio, par = Pf cs/Pdem under different initial SOC values: (a) initial
SOC value is 0.8; (b) initial SOC value is 0.6; (c) initial SOC value is 0.4.

Therefore, according to this analysis, it is concluded that the ratio of the FCS to the
vehicle power demand is used to optimize the rule-based strategy. The power distribution
rules obtained under different initial SOC values are used to improve the power distribution
in the running mode by using the lookup table, so as to distribute the FCS output power
and the battery and maintain the balance of SOC.

When the vehicle is in the running mode and SOC > 0.7, the power is allocated
according to the analysis result when the initial SOC value is 0.8. When Pdem ≤ 17 kW,
the output power of the FCS varies nonlinearly with the power demanded by the vehicle,
that is, Pf cs = par × Pdem. When 17 kW < Pdem ≤ 28 kW, Pf cs = 0.475× Pdem. When
28 kW < Pdem ≤ 62 kW, Pf cs = 0.526× Pdem. When Pdem > 62 kW, Pf cs = 0.58× Pdem.

When 0.5 ≤ SOC ≤ 0.7, the power is allocated according to the analysis result
when the initial SOC value is 0.6. When Pdem ≤ 25 kW, Pf cs = par × Pdem. When
25 kW < Pdem ≤ 45 kW, Pf cs = 0.6× Pdem. When Pdem > 45 kW, Pf cs = 0.7× Pdem.

When SOC < 0.5, the power is allocated according to the analysis result when the initial
SOC value is 0.4. When Pdem ≤ 30 kW, Pf cs = par × Pdem. When 30 kW < Pdem ≤ 45 kW,
Pf cs = 0.64× Pdem. When Pdem > 45 kW, Pf cs = 0.75× Pdem.
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5. Simulation Results and Discussion

In this section, the rule- and DP-based strategies are compared, the analysis results
visualized, and their advantages and disadvantages analyzed. The strategy based on the
DP algorithm optimization rules is compared with the previous two methods.

5.1. Comparison of Rule-Based and DP-Based Strategy

The rule-based strategy is solved using the vehicle’s forward simulation model estab-
lished above and the DP-based strategy is solved using the vehicle’s backward simulation
model. In the rule-based strategy, the power demand of the vehicle is compared with
the FCS output power and battery power, as shown in Figure 13. It can be seen from the
figure that the FCS output power follows the change in the power demand of the vehicle
most of the time, and the change range is between 0 and 62 kW. The output power of the
lithium-ion battery is very small or recovers the braking energy.

Figure 13. Power allocation with rule-based strategy.

In the rule-based strategy, when the vehicle has a large load-change condition, the
power demand of the vehicle, the output power of the FCS, and the power of the battery
are shown in Figure 14. By configuring the battery and limiting the rate of change of the
FCS output power, the durability decline in the FCS caused by the large load change is
reduced, and the dynamic response requirements of the vehicle are also met.



Energies 2022, 15, 4325 17 of 25

Figure 14. Rule-based power allocation with large load-change condition.

In the DP-based strategy, the power demand of the vehicle and the output power of
the FCS and battery are compared, as shown in Figure 15. When the power demand of
the vehicle is relatively small, that is, Pdem ≤ 40 kW, the FCS output power hardly exceeds
30 kW, and the battery has low-power discharge or braking energy recovery. When the
power demand of the vehicle is high, that is, Pdem > 40 kW, the FCS output power increases,
but does not exceed 50 kW, and the battery bears part of the power. This is beneficial to
maintain the FCS in a high-efficiency range while also avoiding the high-power discharge
of the battery.

Figure 15. Power allocation with DP-based strategy.
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Figure 16 shows the change trend of the SOC within rule- and DP-based strategies.
In the rule-based strategy, since the FCS output power follows the change in the vehicle’s
power demand most of time and the battery only compensates for the lack of dynamic
response of the FCS or performs braking energy recovery, so the fluctuation of SOC is
smaller. However, in the DP-based strategy, in order to make the FCS operate in the
high-efficiency range, the SOC of the battery fluctuates greatly, but it is still within the
target range.

Figure 16. The changing trend of SOC.

The simulation results of the rule- and DP-based strategies are compared in Table 2.
Among the above two control strategies, the rule-based strategy makes the hydrogen
consumption larger, while the fluctuation of SOC is smaller, and the DP-based strategy
is the opposite. In the rule-based strategy, the FCS output power has a wider variation
range, and the time of the high-power operation is longer, resulting in poor fuel economy.
However, by limiting the power change rate, so that the load does not change significantly,
it is beneficial to prolong the durability of the FCS. In these two strategies, the FCS is a
start–stop state once in a driving-cycle condition. In the DP-based strategy, the FCS output
power has a small variation range and most of the time runs in the high-efficiency range,
which is beneficial to improve the fuel economy. However, the change rate of the FCS
output power is very large and the number of large load changes is 103. This means that the
FCS is frequently heavily loaded and unloaded, which will seriously damage the durability
of the FCS.

Table 2. Performance comparison between rule- and DP-based strategies.

Rule-Based DP-Based

Total hydrogen consumption 320.2 g 278.7 g
Fluctuation of SOC 60% ∼ 66% 58% ∼ 70%

Output power variation range 0 ∼ 62 kW 0 ∼ 53 kW
Start and stop times 1 1

Output power change rate of FCS −10 kW/s ∼ 7 kW/s −17.4 kW/s ∼ 17.3 kW/s
Number of large load change 0 103

According to Table 2, the total hydrogen consumption of the rule- and dynamic-
programming-based energy management strategies developed in this paper under a WLTC
cycle condition is 320.2 and 278.7 g, respectively, and the equivalent hydrogen consumption
per 100 km is 1377 and 1198 g/100 km, respectively. The equivalent hydrogen consumption
of the rule-based and dynamic-programming-based strategies designed in [24] is 253,502
and 233,627 g, respectively, under a combined operating condition of about 1300 s. In
reference [36], the equivalent hydrogen consumption per 100 km of the above two strategies
under two operating conditions is 1074 and 1060 g/100 km, and 1206 and 1161 g/100 km,
respectively. In reference [22], the rule-based strategy is 1278 g/100 km. By comparing
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with existing research, it can be seen that the rule-based strategy designed in this paper is
feasible. At the same time, factors such as the structural configuration of the vehicle and
the parameters of the powertrain, as well as whether to consider the power consumed by
accessories, will have a certain impact on hydrogen consumption.

5.2. Improved Rule-Based Strategy Analysis

Based on the comparative analysis of the advantages and disadvantages of the two
control strategies, the optimal power allocation ratio obtained by the DP algorithm is used
in the rule-based strategy to optimize the control strategy. Both the rule- and the dynamic-
programming-optimization rule-based strategies have the potential for real-time application,
and the dynamic-programming-based strategy can be used as a reference in most cases.
Therefore, we focus on analyzing the performance improvement of the strategies before and
after optimization, and compare the strategies based on dynamic programming.

The comparison of the FCS output power results between the rule- and the dynamic-
programming-optimization rule-based strategy is shown in Figure 17. Compared with the
rule-based strategy before optimization, the FCS output power in the strategy optimization
based on the DP algorithm is obviously more likely to be distributed in the region with
higher system efficiency.

Figure 17. The fuel cell system output power before and after improvement.

Figure 18 shows the changes in the SOC for the rule, the DP and the improved rule-
based strategies under the WLTC driving cycle and the initial SOC value of 0.6. It can be
seen from the figure that the change trend of the improved rule-based strategy is closer
to that of the DP-based strategy. Compared with the rule-based strategy, the SOC of the
improved strategy fluctuates more, but is still within the target range. The rapid decrease
in SOC in the second half is due to the high-speed condition in the second half of the WLTC
driving cycle while the power demand of the vehicle is large. In order to maintain the
high efficiency of the system, this strategy reduces the output power of the FCS, and the
remaining power required by the vehicle is transported by the battery.
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Figure 18. Change trend of SOC before and after improvement.

During the actual operation of the vehicle, the SOC may also deviate from the target
range. At this time, the EMS should enable the vehicle to maintain the SOC within the
target range after running for a period of time. In order to verify this situation, under the
WLTC driving cycle, the SOC is set to different initial values for simulation and the results
are shown in Figure 19. The improved rule-based strategy is able to maintain the SOC
within the target range of 0.5 to 0.7 under different initial SOC values.

Figure 19. Variation in SOC under different values.

Compared with the rule-based and the DP-based strategies, the equivalent 100 km
hydrogen consumption of the improved rule-based strategy under different initial SOC
values is significantly reduced, as shown in Figure 20. Under different initial SOC values,
the equivalent 100 km hydrogen consumption in the improved rule-based strategy is
reduced by 5.31%, 6.46% and 4.85%.
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Figure 20. The equivalent 100 km hydrogen consumption under different initial SOC values.

At the same time, in order to verify that the improved strategy has good adaptability
under different driving cycles, the rule-based, DP-based, and improved strategies are simu-
lated and analyzed using different driving cycles. The driving-cycle conditions employed
include compound driving cycles: WLTC, UDDS, NEDC, FTP75, JC08, urban driving cycle
NYCC and suburban driving cycle HWFET. When the initial SOC value is 0.6, the simu-
lation results of the three strategies under various cycle conditions are shown in Table 3.
Regardless of the driving cycle under which the simulation is performed, the equivalent
100 km hydrogen consumption of the improved strategy is always better than that of the
rule-based strategy. It can also be shown that the improved strategy has good adaptability
to different driving cycles.

Table 3. The equivalent 100 km hydrogen consumption (g/100 km) under different driving cycles.

EMS
Driving Cycles

WLTC UDDS NEDC FTP75 JC08 NYCC FTP75

DP-based 1198 896 956 913 862 1268 1122
Rule-based 1377 1160 1047 1201 1009 1481 1219

Improved Rule 1288 1126 1000 1155 966 1443 1180
Percent fuel economy improvement 6.46% 2.93% 4.49% 3.83% 4.26% 2.57% 3.2%

6. Conclusions

To improve the fuel economy and system durability of the FCHEV, this paper proposes
an EMS based on DP algorithm optimization rules. By establishing a vehicle simulation
model, the EMS design is verified. The main conclusions follow:

(1) In the rule-based strategy, factors such as the large load change and on–off state of the
FCS are taken into account, which effectively reduces the working time of the FCS
under unfavorable conditions, avoids the large load change in the FCS and effectively
prolongs the durability of the FCS.

(2) The DP algorithm is used to obtain the most economical power allocation strategy.
The variation rule between the FCS output power and the power demand of the
vehicle is obtained.

(3) The power allocation rules are extracted from the DP algorithm and used to optimize
the rule-based strategy. The improved effect of this method is verified in the WLTC
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driving cycle. For the improved rule-based strategy, the simulation results show that
the equivalent 100 km hydrogen consumption is reduced by 6.46% and that the fuel
economy of the vehicle was significantly improved.

(4) Simulations are carried out under different initial SOC values and different driving
cycles. The results show that the EMS with the improved rule-based strategy can
maintain the SOC within the target range, and the fuel economy is improved in
different drive cycles. This shows that the method has good adaptability to operat-
ing conditions.

This paper focuses on the fuel economy and durability of the FCHEV, the results of
which can provide a reference for relevant researchers. Although a large amount of work
has been conducted in this field, there are still some limitations and challenges: on the one
hand, it is not enough to analyze fuel cell degradation at the system level under typical
operating conditions. On the other hand, the improved energy management strategy based
on dynamic programming can be applied in real time, but the relevant verification has
not been carried out. These limitations and challenges need to be further explored in
future research.
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Abbreviations

BEV Battery electric vehicle
HEV Hybrid electric vehicle
PHEV Plug-in hybrid electric vehicle
MHEV Mild hybrid electric vehicle
EREV Extended-range electric vehicle
FCHEV Fuel cell hybrid electric vehicle
PEMFC Proton exchange membrane fuel cell
FCS Fuel cell system
EMS Energy management strategy
DP Dynamic programming
PMP Pontryagin’s minimum principle
ECMS Energy consumption minimization strategy
MPC Model predictive control
SOC State of charge
WLTC World light vehicle test cycle
NEDC New European driving cycle
UDDS Urban dynamometer driving schedule
Nomenclature
m Vehicle mass/kg
u Vehicle speed/(km/h)
Ft Driving force/N



Energies 2022, 15, 4325 23 of 25

Fw Rolling resistance/N
Fi Slope resistance/N
α Inclination angle of the road/rad
CD Coefficient of air resistance
A Front m2 area/
Tm Motor torque/Nm
wm Rotating speed of the motor shaft/rpm
Pm Power demand of motor/kW
ηm Motor efficiency
Pdem Total power demand of vehicle/kW
Paux power consumed by the auxiliary equipment of FCS/kW
Pf c Fuel cell stack output power/kW
Vf c Voltage of monolithic fuel cell/V
N Number of cells
i f c Current density of fuel cell/(A/cm2)
S Effective area of fuel cell/m2

Pf cs Fuel cell system output power/kW
·

m f c Hydrogen consumption rate of fuel cell system/(g/s)
η f cs Fuel cell system efficiency
Pf cs_e f f The highest efficiency point of fuel cell system/kW
LHV Hydrogen lower heating value/(kJ/g)
Pb Battery power/kW
Uocv Open circuit voltage/V
Ib Current of battery/A
Rb Battery internal resistance/Ω
Q Capacity of battery/Ah
·

mb Hydrogen consumption rate of battery/(g/s)
ηb Efficiency of battery
mH2 Total hydrogen consumption/g
mH2/100 km Equivalent 100 km hydrogen consumption/(g/100 km)
∆Pf cs Change rate of fuel cell system output power/(kW/s)
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