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Abstract 

Maximization of the total present net worth of an investment in 

production equipment is studied. A model which gives rises to the 

optimum life as well as the optimum production rate is proposed and 

the optimal decisions are determined by the maximum principle. That 

there exists three typl'S of investment is a well known fact in the 

business world. These a,'e (1) investment with a net loss in all phases, 

(2) investment with loss at an initial period but with a net profit after 

that period, and (3) investment with a net profit from the beginning to 

a certain time. The proposed model can take this fact into account. 

Introduction 

A problem faced by a manufacturing company when investing in 

production equipment is that of maximizing the total net worth of such 

an investment. The sales of goods generate a continuous stream of 

revenue over the productive life of the equipment. Associated in time 

with this stream of expenses necessary for the production of these goods. 

The difference between these two streams represents the return on 
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investment before deducting capital costs. 

In this paper, basic model for profit maximization treated by 

Preinreich [8] and others [1, 10] is introduced and then a more compre

hensive model is proposed. The optimal solution is obtained by means 

of the maximum principle [2,3,5, 7,9]. 

A Classical Model for Profit Maximization 

From the efficiency point of view, two general kinds of equipment 

may be distinguished: the "constant efficiency" and the "diminishing 

efficiency" types. Under the first category we may classify those items 

whose efficiency remains fairly constant throughout their service lives 

and whose service terminates abruptly with their first failure. An 

electric light bulb is the best example of this type of equipment. To 

the second classification belong those durable goods whose service life 

may be extended almost indefinitely if their component parts are re

placed or repaired as necessary. This type of equipment is characterized 

by a decline in productivity or an increase in maintenance costs as they 

are used over time. 

The economics of replacement associated with these two types of 

equipment are very different. For those goods displaying a constant 

efficiency, a probability distribution for the length of their lives may be 

obtained from life tests and various replacement policies may be evaluated 

on the basis of this distribution. Since there is no cost of declining 

efficiency associated with the problem, the analysis is often reduced to 

a comparison of the expected values of the several alternatives. 

If a simple piece of equipment of the diminishing efficiency type 

earns revenue according to some function, R(t), and incurs a stream of 

maintenance and operating expenses given by the function U(t), the net 

present value of the investment to the firm is given by [8] 

(1) Vl=)~ (R(t)-U(t»e- it dt+D(T)e- iT -B, 
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where 
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V1 =net present worth of the investment, 

B=installed cost of the equipment, 

T=economic life of the equipment, 

D(T)=salvage value of the equipment at time T, 

i=annual rate of interest. 

Note that the expense function, U(t), excludes depreciation costs and 

interest on investment in order to avoid double counting these items in 

equation (1). 

For an infinite chain of similar machines, the present worth formula 

given by equation (1) becomes [8] 

( 2 ) 

Equations (1) and (2) are very often of the discrete character in which 

a summation of the discrete revenue and expenditures discounted to the 

present replaces the integrals of equations (1) and (2). 

We shall consider only the continuous case for a single machine. 

The objective function for the case under consideration can be written 

as 

The problem, therefore, becomes that of determining the optimum life 

of the equipment, T, so that the net present value as given by equation 

(1) attains its maximum. 

Taking the derivative of equation (1) with respect to T and applying 

the condition. 

( 4 ) 

given by the differential calculus, we: obtain 

(5) R(T)- U(T)=iD(T)-lY(T) 
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where 

D'(T) = (lD(T) 
dT 

If the functions for revenue, expenditure and depreciation are known, 

the optimum service life, T, can be obtained from equation (5) by means 

of a simple numerical analysis. 

A Modified Model for Profit Maximization 

In .the model discussed above, it has been assumed that the invest

ment time, T, is solely responsible for the maximization of profits. It 

is easy to visualize, however, that under actual conditions there are 

other factors which are equally or more significant than the investment 

time and which should therefore be brought into the analysis. One such 

factor is the production rate at which the equipment is operated. In 

the analysis that follows, the production rate is introduced as the second 

decision variable which is dependent on time. 

The manner in which the production rate affects the operation of 

the system varies with the market conditions (revenue function), the 

manufacturing process (expense function) and the type of equipment 

used (depreciation function). These factors are not completely inde

pendent of each other but for computational purposes they may be con

sidered so without lessening the efficiency of the model. 

A mathematical model which accounts for all possible forms of 

variation in the system is obviously unattainable and therefore simplify

ing assumptions are made here. 

1. The company's share of the market, M" remains constant 

throughout the investment time, T. 

2. The cost of any shortage is negligible* and no inventory is car

ried. Consequently, we can write 

* It will be seen later that, despite of this assumption, the conditions for 

optimality require a rate of production as close as possible to the market share. 
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(6) O-::;'P(t)-::;'M" O-::;,t-::;, T, 

where pet) is the production rate. 

3. The amount of maintenance and servicing required per unit time, 

M(P, t), is proportional to the cumulative service obtained from the 

machine up to time t, ,I P(t)dt, and is inversely proportional to the total 
.0 

expected service of the machine, A. We may write 

( 7 ) 

where E is the fixed overhead cost ($/time) associated with the machine. 

The constants m and r are positive parameters characteristic of each 

type of machine and can be determined from the company record (or 

manufacturer's data) on similar machines in the past. 

It can be derived from equation (7) that when the expected pro

duction has been obtained from the machine by a certain time t, 

t P(t)dt= A (units produced), 

and the rate of maintenance and servicing required becomes, at t, 

M(P, t)=mE ($/time). 

Figure 1 is a graphical representation of the effect of the value of r on 

the maintenance cost function. Both m and r must be chosen according 

to the maintenance conditions dictated by each particular type of machine 

In all cases, these parameters as well as all other parameters in the 

model may be functions of time but, for simplicity, we shall treat them 

as constants throughout the analysis. 

4. The revenue function, R(P, t), is proportional to the production 

rate since we assume that the sale price, Sp to be constant. Then, 

(8) R(P, t)=SpP(t) . 

Similarly, the function 
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A 
t 

----+Cumulatiye pruductiull, jP(t)dt 
u 

Fig. I. The effect of r on the 
maintenance cost function. 

(9~) VC(P, t)=CvP(t) 

represents all various costs other than maintenance cost, overhead cost, 

and depreciation cost, with Cv being the pre-unit various cost. 

5. With the total installed cost, B, and a constant rate of depre

ciation, k, the salvage value of the machine at time t is given by 

(10) D(t) = Be-kt . 

Using the net present worth as the criteria for optimality we write 

(11) V = ~; (R(P, t)- VC(P, t)-E-M(P, t))e-it dt+D(T)e-iT-B 

The term under the integral sign represents the present worth of 

revenues minus all expenses except depreciation. The two terms outside 
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the integral sign may be understood as the net total cost of buying the 

equipment and selling it at a price D( T) after T years of use. 

Let us, for simplicity, assume r=2. Substituting equations (6) 

through (10) into equation (11) and rearranging, we obtain 

V=~; {(SP-Cv)P(t)-E(l+ m(~~: p(r:)dr:r) }e-udt+B(e-<Hi)T-1). 

(12) 

Our objective is to maximize the net present value of the investment 

as given in equation (12) by choosing the most profitable rate of pro

duction, P(t), during the optimum investment time, 1'. We shall ac

complish this through the use of the maximum principle. 

Optimization based on the modified model 

The maximization of the net present value of the investment, V, 

given by equation (12) with respect to the optimal life, 1', as well as 

the optimal production rate, P, is difficult, if not impossible, to obtain 

by use of the differential calculus alone. 

To apply the maximum principle let the production rate be the 

decision variable, i.e., 

(13) f}(t)=P(t), O~f}(t)~f}l<l"X 

The state variables are defined as follows: 

(14) 

(15) 

(16) 

Xl(t)= ~): f}(r:)dr: , 

dXl f}(t) 
--dt- = A-' Xl(O)=O, 

x2(t)=B(e-<Hi)I-1) , 

(17) d;2 = - (k+ i)Be-<Hi)l, X2(0) =0 , 

(18) Xa(t) = ): (qf}(t)-E(l + mXI2))e-ildt , 

(19) d;a =(qf}(t)-E(1+m:rI2))e-il , Xa(O)=O, 
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where 

(20) q=(Sp-C,»O. 

q is the unit logistic margin, that is the scale price minus the variable 

cost per unit. 

_ Since the system defined by equations (15), (17), and (19) is non

autonomous (the right hand sides of equations depend explicitly on time), 

we shall introduce an additional state variable x" defined by [3] 

(21) 

x,(t)=t, 

!ix'_=l 
dt ' 

The objective function to be maximized now becomes 

4 
(22) S= 2..; CiXi(T)=X2(T)+xa(T) • 

i=1 

Therefore, 

The Hamiltonian function and adjoint variables of the system can 

be written as [2, 3, 5, 9] 

(23) H=Zl{~ }+Zd -(k+i)Be--(k+i)x4} 

(24) 

(24a) 

(25) 

(25a) 

(26) 

(26a) 

+za{[q(}-E(l+m x12)]e- ix,} +z,{l} , 

zl(T)=Cl=O, 

j,z2_=_3H =0 
dt OX2 ' 

z2(T)=c2=l, 

dZa =_ oH_=O 
dt oXa ' 

z8(T)=c8=l, 
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(27) 

(27a) z4(T)=C4=0. 

It is worth noting that the optimal control problem given by the set of 

equations, equations (15), (17), (19), and (21), is a problem which has the 

trajectory with a free right end and the free terminal time. Very little 

has appeared in literature concerning this class of optimal control 

problems. However, the validity of the boundary condition of the 

adjoint variables given by equations (24a), (25a) , (26a), and (27a) for this 

class of problems are described in reference [9]. 

Solving equations (25) and (26), we obtain 

(28) z2(t)=I, O::;;,t::;;, T, 

(29) za(t)=I, O::;;,t::;;, T. 

Substituting equations (28) and (29) into equation (23) and separating 

terms, we obtain 

where 

(31) H* = (~ + qe- ix4) (J(t) 

is the variable part, with r;)spect to (J(t), of the Hamiltonian. 

It is now apparent from equation (31) that the optimal control as

sociated with this problem is of the "on-off" or "bang-bang" type, or 

of the combination of this type of control with the singular control, in 

which the variable part of the Hamiltonian function takes the form 

[3,4,6] 

(32) H*=hO . 

This type of control is characterized by the variation of the decision 

variable, (J, which may take its maximum value (when h is positive) or 
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its minimum value (when h is negative) in order to maximize the 

Hamiltonian function. When h=O, the optimal decision, 0, is either 

unspecified or singular. (h is often called the switching function). 

Let h be the coefficient of 8 in equation (31), that is 

(33) h= ~ +qe- it 
• 

Then the optimal control which renders the Hamiltonian its maximum 

value will be 

(34) 
o = {8 max (Production at. the maximum rate) ~f h >0 } 

8min =0 (no productIOn at all If h<O 

where 0 is the optimal decision policy (optimum production rate) which 

will maximize the objective function. Recall that 8;;:::0. We shall now 

find the switching time, is, at which h changes sign. The switching 

time may be found from the condition 

(35) h(ts) = 0 . 

From the optimality condition obtained in equation (34) it is seen 

that 8 is not a continuous function of time and that it may take only 

one of the extreme values. For computational purposes, 8 may be as

sumed to be a constant, cjJ, i.e., 

(36) 8=cjJ 

1

8max 

where cjJ = ~r . 

Using equation (36) and solving for Xl and Zl in equations (15) and 

(24) with the boundary conditions, Xl(O)=O, and zl(T)=O, we obtain 

(37) 

(38) 
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and h can now be written 

Since q>O in the practical situation, it follows from equation (39) that 

(40) h>O for O~t~ T 

and consequently, 

(41) t,>T. 

It appears that the singular solution (when h=O during the finite time 

interval) [4,6] may possibly occur only when the unit logistic margin, 

q=Sp-C'v is non positive. This corresponds to a trivial problem of the 

production with the obvious loss. 

Since we are concerned only with the interval 0 ~ t~ T at the end 

of which the service life of the machine is terminated, the optimum 

production policy for this period is 

(42) F(t)=8(t)=Omax=min {MaXimum Plant Capacity 1 , 
Ms, the market share f 
O~t~T . 

In order to maximize the total present worth of the investment, then, 

the maximum possible rate of production should be maintained through

out the service life of the machine. The rate of production, however, 

should not exceed the market share of the company since inventories 

are not allowed. The optimal condition given by equation (42) precludes 

the first part of assumption number two since the optimal condition 

minimizes shortages regardless of how inexpensive they may be. The 

assumption, however, is not redundant since the introduction of a 

shortage cost and its effect on the optimality condition were not tested. 

It only remains to be determined what the optimum investment 

time l' should be. According to the maximum principle, the optimal 

time is determined from the condition that max H=O for tQ~t~ T [3,7,9]. 
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Solving equation (27) for Z4, we obtain 

(43) Z4(t) = (k+ i)B(e-CHi)t _e- CHDT) + (q{)- E)(e-;T -e-U) + 

+_~~~2 ((i2t2+2it+2)e-U -(i2T2+2iT+2)e-;T) . 

Substituting expressions for Zl. Z2, Za, Z4 and q into equation (23), the 

Hamiltonian function becomes 

Letting H=O in equation (44), we obtain 

(45) 
_ - (Sp-Cv)8-E mE82 -e kT= -. ---.- .. --- _ --------- T2 

(k+i)B (k+i)A2B 

from which the optimum investment time T can be found. 

Equation (45) can also be obtained by taking the derivative of V 

given by equation (12) with respect to T and equating to zero once we 

know that the optimal production rate, 8(t), is a constant which is given 

by equations (34) and (36). 

Let us define 

(46) 

(47) 

(48) 

(49) 

(Sp-Cv)8-E 
a = --------------

(k+i)B ' 

mE02 

f3 = (k+-i)A2B ' 

Equation (45), then, can be written as 

Note that the maximum values of Fl and F2 are 1 and a respectively, 

which occur at T=O and both are monotonically decreasing functions of 

T. As shown in Fig. 2, therefore, three situations must be considered 
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a<au a=au au<a<1 a<1 

Fig .. 2. Three situations in solving for T. 

in solving l' from equation (50). 

When a> 1 only one real and positive root occurs at which the 

objective function (net present worth) attains a unique extremum. 

When ausa:S:l, there exist two positive real roots, which satisfy 

equation (50). a u is the value of a at which the two roots coincide. In 

other words, when a=a., the curves representing Fl and F2 are 

tangential to each other. 

When a<a., there is no real value solution to equation (50). 

The tangential point of Fl and F2 where a = a. and 1'= 1'., can be 

determined by simultaneously solving equation (50) and the condition, 

Equations (50) and (51) can be written respectively as 
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I I 
i-Phase I--~----Phase TI----Phase ill 

I 

:1 
::l I 

'" :> 

-Time, t 

a<au 

Fig. 3. Net present value under three 

conditions for a. 

(52) e- kT =au -{3T2, 

(53) ke- kTu=2{3Tu , 

And the solution for Tu can be carried out numerically. 

Summary of results 

It has been shown that, in order to maximize the total present worth 

of the investment according to the modified model, the maximum pos

sible rate of production which is either the maximum plant capacity or 

the market share should be maintained throughout the service life of 

the machine. 

That there exists three types of investment is a well known fact in 
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the business world. Figure 3 is a graphical representation of the be

havior of the net present worth function under these three conditions. 

These are (1) investment with a net loss in all phases, (2) investment 

with a loss at a certain initial period in Phase I but a net profit after 

the initial period in Phase n, and (3) investment with a net profit from 

the beginning to the end of Phase Ill. Optimization based on the more 

realistic model can take into account this fact. The determining factor 

of these three situations is a (see equation (46» which is a function of 

parameters including the sale price, Sp, the various cost per unit, Cv, 

the optimal production rate, 8, the fixed overhead cost, E, the rate of 

depreciation, k, the annual interest rate, i, and the installment cost of 

the equipment, B. The three situations are summarized as follows: 

1. a> 1. In this case equation (45) generates only one root at 

which a positive extremum is attained by the net present worth function. 

2. a.::O;a::O;1. Two roots, 1'1 and 1'2, where 1'2>1'1, are obtained. 

1'1 occurs before the break-even point indicating the time at which the 

maximum loss occurs. At 1'2 the net present worth of the investment 

is maximized. 

3. a<a u • Equation (45) fails to have a root and the net present 

worth function does not have an extremum. Losses increase indefinitely. 

Figure 3 is a graphical representation of the net present worth 

function under these three conditions. Extensive numerical simulation 

parameters have confirmed the validity of analytical results presented. 
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