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Extraordinary optical absorption (EOA) can be obtained by plasmonic surface structuring. However, studies that
compare the performance of these plasmonic devices with similar structured dielectric devices are rarely found in
the literature. In this work we show different methods to enhance the EOA by optimizing the geometry of the
surface structuring for both plasmonic and dielectric devices, and the optimized performances are compared.
Two different problem types with periodic structures are considered. The first case shows that strips of silicon
on a surface can increase the absorption in an underlying silicon layer for certain optical wavelengths compared to
metal strips. It is then demonstrated that by topology optimization it is possible to generate nonintuitive surface
designs that perform even better than the simple strip designs for both silicon and metals. These results indicate
that in general it is important to compare the absorption performance of plasmonic devices with similarly
structured dielectric devices in order to find the best possible solution. © 2013 Optical Society of America

OCIS codes: (240.0310) Thin films; (310.6628) Subwavelength structures, nanostructures.
http://dx.doi.org/10.1364/JOSAB.30.001154

1. INTRODUCTION
The field of plasmonic structures has developed quickly since
the results on extraordinary optical transmission through
subwavelength apertures in metal films were published more
than a decade ago [1]. The theory behind this has been exam-
ined [2], and the extreme light concentration of plasmonic
structures has been used in a wide range of applications such
as sensors, novel optical lenses, ultrafast and compact photo-
detectors and modulators, near-field scanning optical micros-
copy and nonlinear optics [3,4]. Recently, plasmon excitation
and light localization have been used to enhance the optical
absorption, the so-called extraordinary optical absorption
(EOA), in a number of different thin-film solar cell structures
[5–9]. Purely dielectric gratings can also enhance absorption
[10]; however, the enhancement factors reported for plas-
monic structures are usually based on comparisons with bare
dielectric surfaces. An example is found in [8], where a sys-
tematic approach is suggested to increase the absorption in a
thin Si film over the solar spectrum by distributing Ag strips on
top of a SiO2-coated Si film on a SiO2 substrate. The optical
waves pass through the slits between the Ag strips, and
localized modes are generated in the Si film. It is shown that
the normalized short-circuit current for the solar spectrum is
enhanced by more than 40% compared to a bare dielectric
surface. Lately, however, some researchers [11–15] have re-
ported that equal or even better absorption enhancement
can be obtained from simple purely dielectric grating surfaces
that eliminate thermal losses associated with losses in
metallic parts.

In this paper we further challenge the idea of EOA through
purely dielectric designs described in more detail. In a pre-
vious work [12] the authors studied simple grating structures
with strips made from three different metals (Ag, Al, and Au)

and compared them to the performance for Si and SiO2 strips.
The study showed that similar enhancement can be obtained
for strips of metals and Si, as similar localized mode effects
are generated in the structures. For Si strips, however, less
energy is lost in the strips and hence the enhancements are
in general greater and less dependent on cell dimensions
and wavelength. This leads to a normalized short-circuit cur-
rent that is four times bigger for the Si strips compared to the
metal strips. SiO2 strips only show a slightly better perfor-
mance compared to a bare surface, because the refractive in-
dex contrast is too low to support localized modes. For this
particular device a purely dielectric grating outperforms the
plasmonic-based counterpart, and we did not observe any
of the advantages usually associated with metallic gratings.
References [11] and [14] point in the same direction by sug-
gesting use of semiconductor-based nanowires and grating
structures instead of plasmonics for similar reasons. We there-
fore argue that comparisons with bare surfaces are not appro-
priate when designing plasmonic devices, and in general they
have to be compared to similarly structured dielectric devices
in order to find the best technological solution.

In the present paper we study the topic in more detail.
Again, we approach it by examining two different solar cell
problems where the surface structures are composed of either
metal or dielectric material. First, the performance is
optimized by parameter studies, and subsequently we use
topology optimization to find optimal grating profiles for both
plasmonic and purely dielectric structures. The problems
considered are both based on periodic cells with incident
waves normal to the surface. The numerical model is
described in Section 2.

The first problem type is studied in Section 3 and concerns
the enhancement of the EOA in a structure where strips of
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either Si or a metal are deposited on the surface of a Si sub-
strate. The structure is inspired by [7], and a parameter study
on the size of the strips is performed for the different strip
materials for four individual wavelengths in order to increase
the absorption in the Si substrate. The results are compared to
see if the metals or the Si are performing the best.

In Section 4 we extend the study of the cell by applying a
gradient-based topology optimization method to design surfa-
ces that additionally enhance the EOA. Topology optimization
as a computer-based method was originally developed in 1988
in order to maximize the stiffness of structures for a limited
amount of material [16]. The method allows air and solid
material to be distributed freely in a chosen design domain
such that the size, shape, and number of holes are determined.
The method therefore offers more freedom in the design than
can be obtained by simpler parameter studies. The method
was later applied to a range of other engineering fields includ-
ing mechanism design, heat transfer, and fluid flow problems
[17]. During the last decade it has been extended to the field of
electromagnetic wave propagation problems and applied to
design planar photonic-bandgap materials [18,19], bends,
and splitters based on 2D bandgap materials [20–22], optical
fibers [23,24] and 2D periodic structures with desirable trans-
mission properties [25]. Topology optimization for plasmonic
structures is presented in [26], where grating couplers for
the efficient excitation of surface plasmons are designed.
Recently, the approach has also been used to design nanosur-
faces for structural color generation [27]. Theory and
applications of topology optimization within the field of nano-
photonics are reviewed in the paper by Jensen and Sigmund
[28]. The method therefore proves promising for designing
structures that can improve EOA. In the present work a layer
on top of the Si layer is used as the design domain, where an
optimized distribution of air and solid material (either Si or Al)
is determined by topology optimization. The method is
employed in order to enhance the structure both for one
wavelength and for a number of wavelengths.

2. NUMERICAL MODEL
The structures considered in the present work are periodic,
and the geometry of the cell with period p is seen in Fig. 1.
The geometry is inspired by the structure found in [7]. The
optical wave with amplitude u0 is excited along the input
boundary Γin. A part of the energy from the optical wave is
absorbed in the Si layer Ωabs, which has thickness a. Each
end of the cell is terminated by perfectly matched layers
(PMLs) [29], and the lower and upper boundaries, Γl and
Γu, are periodic. The strips on the surface can consist of
the four different materials Si, Al, Ag, and Au. It is assumed

that the problem with the domain Ω is governed by the scalar
Helmholtz equation for time-harmonic waves [30],

1
γi

∂
∂xi

�
1
γi
A
∂u
∂xi

�
� k20Bu � 0 in Ω; (1)

where A � 1∕εr and B � μr for H3 polarization and A � 1∕μr
and B � εr for E3 polarization. εr is the relative permittivity of
the materials. μr is the relative permeability and will be equal
to 1 in the following. k0 � ω∕c0 is the propagation constant, ω
is the angular frequency of the optical wave, and c0 �
1∕ ���������

μ0ε0
p

is the speed of light in vacuum, with μ0 and ε0 being
the permeability and permittivity in vacuum. The parameter γi
is an artificial extra damping at the position xi in the PML and
has the value 1 in the normal domains. As the PML is added in
the x1 direction, only γ1 has a value different from 1 and is
given by the expression

γ1�x1� � 1 − jσ�x1 − xn�2; (2)

where xn is the coordinate at the interface between the nor-
mal domain and the PML and σ is a suitable constant. Three
different boundary conditions are used for the incoming wave,
absorbing boundaries, and inner boundaries:
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A
∂u
∂xi

�
� 0 on ΓnfΓin ∪ Γoutg: (5)

The unit vector ni is pointing out of the surface. Periodic
boundary conditions must be induced for u at the boundaries
Γu and Γl (see Fig. 1). When ul represents this quantity on the
lower boundary Γl and uu the quantities on the upper boun-
dary Γu, then the condition ul�x1� � uu�x1� holds. The optical
model is solved by the commercial finite element program
COMSOL Multiphysics with MATLAB [31]. Here the complex
field u is discretized using sets of finite element basis func-
tions fϕ1;n�r�g:

u�r� �
XN
n�1

unϕ1;n�r�: (6)

The degrees of freedom are assembled in the vector
u � fu1; u2;…uNgT . A triangular element mesh is employed,
and second-order Lagrange elements are used. This results
in the discretized equation

Su � f; (7)

where S is the system matrix and f is the load vector, both
being complex valued due to material damping, which is rep-
resented by a complex part in εr . The Si layer Ωabs with thick-
ness a absorbs a part of the optical energy, which is calculated
by the expression

Fig. 1. Periodic cell structure with period p. The strips on the surface
with thickness t can consist of the four different materials Si Al, Ag,
and Au. The absorbed energy is measured inΩabs, and PMLs are added
at each end of the domain.
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for H3 polarization. The asterisk indicates complex conjuga-
tion. The absorbed energyΦE for E3 polarization is calculated
by the expression

ΦE �
Z
Ωabs

R
�
−
ωε0I�εr�

2
E3E�

3

�
dr: (9)

3. PARAMETER STUDY
A parameter study of the gap thickness t and width w from
Fig. 1 is now performed such that the air gap is optimized
for the largest absorption in Ωabs. This is done for the chosen
period p � 500 nm and for each of the strip materials Si, Al,
Ag, and Au. For the calculations H3 polarization is used
together with the parameters a � 500 nm, σ � 1014 m−2,
and the length of the PMLs is 250 nm. The wavelength-
dependent dielectric constant εr for Si is taken from [32],
and the values for the metals are found in [33]. The optimal
values for t andw are found for each of the materials individu-
ally for the four increasing target wavelengths λ � 440, 633,
849, and 1051 nm. The absorption in Ωabs normalized to the
case with a bare surface as a function of the wavelength is
plotted in Figs. 2(a)–2(d), where the target wavelength in each
case is indicated by the vertical dotted line. In general the
structures perform better than a bare surface for the
wavelength they are optimized for. For λ � 440 and 633 nm
the case with the Si strip performs the best and is furthermore
better than the metals and the bare surface in almost the
entire wavelength interval. For λ � 849 nm Ag is better than
Si, and for λ � 1051 nmAg and Au perform significantly better
than Si. However, also in the last two cases the optimized Si
strips perform well over a broader wavelength interval. Thus,
these results indicate that surface structures with Si can in
some cases perform better than structures with metals.
Furthermore, structures of Si also seem to perform well for
broader intervals in general compared to metals.

In order to explainwhySi structures can performbetter than
plasmonic structures, the absolute value of the magnetic field
normalized to the amplitude of the incomingwaveH0 is plotted
for the structures with Si and Al in Figs. 3(a) and 3(b), respec-
tively, for the case where they are optimized for λ � 633 nm.
It is seen that the field reaches higher values for
the case with the Si strip, and here the wave can also exist
within the strip. This helps in building up the mode in Ωabs,
and the absorption is enhanced by 107% compared to a bare
surface. In contrast to that, the wave field can only exist at
the border of the metal strip and the enhancement is only
52% for Al. The logarithm to the absorption ΦH with the base
10 normalized to the amplitude of the incoming wave is plotted
for the same two cases in Figs. 3(c) and 3(d). Here it is seen
that more energy is absorbed in Ωabs in the case with Si com-
pared to Al, where a significant part of the energy is lost in the
Al strips.

4. TOPOLOGY OPTIMIZATION
In the previous section the absorption inΩabs is optimized by a
parameter study for the dimensions of rectangular strips on

the Si surface. A more systematic way to optimize the absorp-
tion is to apply the method of topology optimization, where
an optimized distribution of air and either Si or a metal is
determined in a design domain Ωd. The structure from Fig. 1
is employed, where Ωd now constitutes the entire layer at the
surface with thickness t and width p.

A. Design Variables and Optimization Formulation
Optimizing the material distribution is a discrete problem, as
there should be either air or solid material in each point. In
order to optimize the problem efficiently, the gradient-based
algorithm known as the method of moving asymptotes [34] is
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Fig. 2. Normalized absorption inΩabs compared to a bare surface for
strips made of the four materials Si, Al, Ag, and Au as function of the
wavelength λ. The four plots are made when the sizes of the strips are
optimized for the wavelength, indicated by the vertical dotted line.

1156 J. Opt. Soc. Am. B / Vol. 30, No. 5 / May 2013 M. B. Dühring and O. Sigmund



employed. Therefore, as is usually done in topology optimiza-
tion, the problem is formulated with continuous material
properties, which can take any value in between the values
for air and solid material. Hence, to control the material
properties a continuous material indicator field 0 ≤ ρ�r� ≤ 1
is introduced, where ρ � 0 corresponds to air and ρ � 1 to
solid material. The relative permittivity εr is interpolated
linearly between the two material phases:

εr�ρ� � εa � ρ�εs − εa�: (10)

In order to get a mesh-independent and discrete (ρ � 0 or
ρ � 1) design, a density filter is employed, where the filter
radius is decreased during the optimization. This method also
partially counteracts convergence to local optima. The aim of
the optimization is to distribute air and solid material in the
design domain Ωd such that the absorption is maximized in
the absorbing domain Ωabs. As H3 polarization is used, the op-
timization problem takes the following form:

max
ρ

log�ΦH�; objective function (11)

subject to 0 ≤ ρ�r� ≤ 1 ∀ r ∈ Ωd; design variable bounds:

(12)

The logarithm is taken to the objective function in order to
obtain better numerical scaling for the optimization algorithm.

B. Sensitivity Analysis
The design variables are updated based on their values from
the previous iteration step as well as the derivatives of the
objective function with respect to the design variables. In or-
der to calculate these sensitivities, the design variable field ρ is
discretized in a similar way as the dependent field:

ρ�r� �
XNd

n�1

ρnϕ2;n�r�: (13)

The degrees of freedom are assembled in the vector
ρ � fρ1; ρ2;…ρNd

gT . Zero-order Lagrange elements are used,
and Nd is therefore typically smaller than N . As is seen from
the governing equation [Eq. (7)], the complex magnetic field
vectorH3 is an implicit function of the design variables. This is
written as H3�ρ� � HR

3 �ρ� � jHI
3�ρ�, where HR

3 and HI
3 denote

the real and the imaginary part. The derivative of the objective
function ΦH � ΦH�HR

3 �ρ�;HI
3�ρ�; ρ� is calculated by the chain

rule in the following way:

dΦH

dρ
� ∂ΦH

∂ρ
� ∂ΦH

∂HR
3

∂HR
3

∂ρ
� ∂ΦH

∂HI
3

∂HI
3

∂ρ
: (14)

The derivatives ∂HR
3 ∕∂ρ and ∂HI

3∕∂ρ are not known directly, as
H3 is an implicit function of ρ. The sensitivity analysis is there-
fore performed by employing a standard adjoint method
[20,35], where the unknown derivatives are eliminated at
the expense of determining an adjoint and complex variable
field λ from the adjoint equation

STλ � −

�
∂Φ
∂HR

3

− j
∂Φ
∂HI

3

�
T
; (15)
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Fig. 3. Results for the structures optimized for λ � 633 nm: the
absolute value of the magnetic field normalized to the amplitude of
the incoming wave H0 for (a) Si and (b) Al strips; the logarithm to
the absorptionΦH normalized to the amplitude of the incoming wave
for (c) Si and (d) Al strips.
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Equation (14) for the derivative then reduces to

dΦ
dρ

� ∂Φ
∂ρ

�R
�
λT

∂S
∂ρ

H3

�
: (17)

The vectors ∂Φ∕∂ρ and Eq. (16), as well as the matrix ∂S∕∂ρ,
are assembled in COMSOL Multiphysics as described in [36].

C. Optimized Designs
The topology optimization is now performed for several exam-
ples with λ � 633 nm, and the results are illustrated in Fig. 4.
Two optimized designs are shown for Si in Figs. 4(a) and 4(b)
for t � 100 and 200 nm, respectively, where the white indi-
cates air and the black is solid material. The starting guesses
were chosen such that all design variables were equal to 0.5,
and the optimized designs turned out to be discrete. The ab-
sorption in Ωabs for the optimized designs normalized with the
absorption for a bare surface is plotted in Fig. 4(d) as a func-
tion of the wavelength λ. The performance from Fig. 2(b) for
the optimized structure from the parameter study in the pre-
vious section is indicated as well. The two new designs both
perform better for λ � 633 nm than the simpler strip design,
where the case for t � 100 nm performs 117% better than a
bare surface and the case for t � 200 nm performs 232% bet-
ter. In comparison the strip design performed 107% better than

a bare surface for λ � 633 nm. This shows that topology
optimization is a suitable method to improve the EOA with
designs that are nonintuitive and could not be obtained from
a simple parameter study. However, the designs from the top-
ology optimization in general have more details, which can be
more complicated to fabricate compared to the strip designs.
When comparing the two optimized designs, it is seen that the
thicker design layer results in an improved performance for
the target wavelength, which is a general tendency for increas-
ing thickness, as more material can be used to create greater
absorption. This, however, comes at the cost of a worse per-
formance in a broader wavelength interval around the target
wavelength.

The topology optimization is also done with Al in the design
domain instead of Si. In this case it is more complicated to
obtain designs that perform well, because of the negative real
part of the relative permittivity. This property makes it hard to
change design variables that are close to air into elements
with Al and vise versa. Therefore, a more clever initial guess
must be used compared to Si, where good designs appear for a
simple uniform material distribution. The negative permittiv-
ity also prevents the designs from performing better for an
increasing thickness of Ωd, as the optical wave cannot go
through the Al layer as in the case with Si. The design in
Fig. 4(c) is therefore the best that is obtained for a number
of different starting guesses and thicknesses. The starting
guess here was a gap structure with width w � 100 nm, with
design variables equal to 1 outside the gap and 0.9 inside the
gap. The thickness is t � 80 nm. The performance improve-
ment of the optimized design is 58%, which is only slightly bet-
ter than the performance improvement 52% for the optimized
strip design with Al. The design is illustrated in Fig. 4(d).
Hence, using topology optimization also indicates that in some
cases Si can increase the EOA more than metals.

The optimization procedure can also be extended to opti-
mize the structure for a sum of the absorptions for a number
of wavelengths. An example is presented in Fig. 5, where the
optimized design is obtained for the three wavelengths
λ � 440, 633, and 849 nm, which are indicated in Fig. 5(b)
by the vertical dotted lines. Here a uniform material distribu-
tion in the design domain with the design variables equal to 0.5
is used as the initial guess and the thickness is t � 150 nm.
The optimization results in a design with a better absorption
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for a bigger part of the interval between the three target
wavelengths compared to the other three designs obtained
for Si [see Fig. 5(b)].

Apart from the topology optimization results shown here,
we also experimented with a three-phase version of the soft-
ware that allows free distribution of three material phases, i.e.,
void, dielectric, and metallic at the same time. When allowing
the optimizer to use free volume fractions, it always ended up
in solutions with no metallic content. Metallic designs were
only obtained for fixed nonzero volume fractions of metal,
and for these structures the objective function values were
lower than for purely dielectric designs. This observation
clearly demonstrates that for the considered structures, plas-
monic effects are undesired. This numerical observation also
lead us to the conclusion that purely dielectric strip structures
may outperform their plasmonic counterparts, as discussed
in [12].

5. CONCLUSION
Previous studies have proven that both dielectric and plas-
monic structures can cause EOA. Based on two case studies,
we show here that it is possible to optimize the EOA using
parameter studies and topology optimization of the geometry,
as well as by changing the materials.

First, a parameter study is performed where the thickness
and the width of strips on top of a Si layer are found for chosen
wavelengths in order to increase the absorption in the Si layer.
The results are compared for strips made of Si and the three
metals Al, Ag, and Au. This shows that for some wavelengths
the Si strips perform better than the metal strips, and that the
optimized structures in general are performing better for a
broader wavelength interval.

Second, surface designs of the Si layer are generated with
topology optimization. Nonintuitive designs of either air and
Si or air and Al are obtained, which perform better than the
simpler strip designs for a chosen wavelength. For the target
wavelength the optimized designs for Si also perform better
than the design with Al. This study shows that the method
of topology optimization is suitable for obtaining designs that
can increase the EOA for a fixed wavelength, and it is also
demonstrated that the results can be improved even further
by optimizing for a number of wavelengths.

For these particular devices the absorption enhancement is
not generated by plasmonic effects but rather is due to con-
finement of modes related to the surface structuring and the
refractive index contrasts. In general we therefore conclude
that absorption enhancements for plasmonic structures have
to be compared against modulated dielectric structures in-
stead of bare surfaces, so that technologically sensible com-
parisons can be made.
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