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2is study presents the Taguchi design method with L9 orthogonal array which was carried out to optimize the flux-cored arc
welding (FCAW) process parameters such as welding current, welding voltage, welding speed, and torch angle with reference to
vertical for the ferrite content of duplex stainless steel (DSS, UNS S32205) welds. 2e analysis of variance (ANOVA) was applied,
and a mathematical model was developed to predict the effect of process parameters on the responses. 2e results indicate that
welding current, welding voltage, welding speed, torch angle with reference to vertical, and the interaction of welding voltage and
welding speed are the significant model terms connected with the ferrite content.2e ferrite content increases with the increase of
welding speed and torch angle with reference to vertical, but decreases with the increase of welding current and welding voltage.
2rough the developed mathematical model, the target of 50% ferrite content in weld metal can be obtained when all the welding
parameters are set at the optimum values. Finally, in order to validate experimental results, confirmation tests were implemented
at optimum working conditions. Under these conditions, there was good accordance between the predicted and the experimental
results for the ferrite content.

1. Introduction

Duplex stainless steel (DSS) typically contains the micro-
structures consisting of almost equal proportions of ferrite
and austenite phases. 2e fine ferrite-austenite micro-
structure of these materials promotes a good combination of
anticorrosion and mechanical properties [1–3]. Duplex
stainless steel is a common engineering material used in oil
refining, food processing, wastewater treatment, and phar-
maceuticals as well.

2e increased use of duplex stainless steels in industrial
applications will demand a better understanding of those
weld parameters that affect weldability. Most of the welding
processes, such as laser beam welding (LBW), shielded metal
arc welding (SMAW), tungsten inert gas (TIG) welding, and
submerged arc welding (SAW), can be used for welding
duplex stainless steels [4–6]. Flux-cored arc welding
(FCAW) process is also one of the most popular technol-
ogies for duplex stainless in manufacturing industries

because it produces better and more consistent mechanical
properties and higher deposition rates. However, a major
problem is that the thermal cycle can degrade the strength
and corrosion resistance of weld metal by producing un-
balanced ferrite/austenite content, and any attempt to in-
crease heat input changes the welding parameters, probably
leading to precipitation of the secondary phase such as σ
phase which also reduces the corrosion resistance and
strength of weld [1, 7]. 2erefore, the studies that control the
ferrite/austenite phase ratio of weld metal are necessary.
Welding process parameters are important factors that es-
tablish the approximately equal proportion of the ferrite/
austenite phase (1 :1) in the weld metal area. Usually, the
appropriate ferrite content is 40–60% for good performance
of the dual-phase steel to satisfy the requirement for which it
is expected in the weld joint.

2e relationship between the welding process parame-
ters and the ferrite content can be modeled by using
mathematical means. Mathematical models can be used to
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understand the effect of welding process parameters on the
ferrite content variables. 2e Taguchi method (TM) was a
robust design method, originally developed to improve the
quality of manufactured goods by Genichi Taguchi, and was
effectively used in the optimization of multiple objectives by
gray relational analysis [8–10].2e Taguchi method provides
the research staff with a scientific and efficient way for
ascertaining nearly optimal design parameters.

2ough the study using Taguchi methods on weld ge-
ometries and mechanical properties has always been re-
ported in literatures [11–14], it appears that the optimization
of FCAW process parameters for the ferrite content in
duplex stainless steel using the Taguchi method has hardly
been studied. In view of the abovementioned facts, the
Taguchi method with L9 orthogonal array and ANOVA is
employed to analyze the effect of each weld processing
parameter (welding current, welding voltage, welding speed,
and torch angle with reference to vertical) for the ferrite
content in flux-cored weld metal of 2205 DSS. 2e final
intent of this research is to optimize the FCAW process
parameters using the developed model to ensure that the
ferrite content is close to 50% in 2205 DSS welds.

2. Experimental Work

2e experiments were implemented by using a set of pro-
grammable welding equipment. 2e material chosen for the
study was 12mmDSS boards corresponding to UNS S32205,
whose chemical composition is given in Table 1. Also, the
chemical composition of filler metal (ER 2209, 1.2mm di-
ameter) is listed in Table 1. 2e welding joints were designed
into a single V groove with an angle of 60° and a blunt edge of
1mm. 2e welding parameters are given in Table 2. 2e
interpass temperature was 150°C. 2e mean ferrite content
in weld metal was measured by the FERITSCOPE MP30.
Metallographic sample preparation has been carried out by
grinding and polishing. To characterize the microstructures,
the samples were etched by using a solution of 1 g K2S2O5,
30ml HCl, and 80ml H2O. Microstructures were observed
by using an optical microscope and a field emission scanning
electron microscopy. 2e scanning electron microscope was
operated at an accelerating voltage of 15 kV. 2e chemical
composition of different phases was analyzed by using an
energy dispersive spectrometer connected to a scanning
electron microscope.

3. Results and Discussion

3.1. Construction of Design Matrix. 2e experimental data
required to relate the FCAW process parameters with re-
sponse were arranged by using the Taguchi L9 (34) or-
thogonal array with nine experimental runs. 2e results of
process parameters and their corresponding average ferrite
content of weld metal are presented in Table 3. Figure 1
shows the optical micrographs of the weld metal micro-
structures. 2e dark regions are ferrite while the bright
regions are austenite. Obviously, the weld ferrite content of
sample 3 is higher than that of sample 9.

3.2. Effect of Parameters on Ferrite Content. 2e analysis of
variance (ANOVA) was performed for the ferrite content
with a confidence interval of 95 percent, and a p value less
than 0.05 was considered to be statistically significant
[15–17].2e test for significance of the developed model and
the test for significance on individual coefficients were
performed by using Design-Expert software. By using the
stepwise regression method, which removes the insignificant
model items automatically, the ANOVA (Table 4) for the
reduced quadratic model summarizes the analysis of the
ferrite content variance of the response and shows the
significant model items. 2e F-test named after Fisher [18]
can be used to find out which welding process parameters
have a significant effect on the ferrite content. Usually, the
change of the welding process parameter has a significant
influence on the ferrite content when the F value is large [19].
In addition, the table also reveals the adequacy measures R2,
predicted R2, and adjusted R2. 2e adequacy measures are
very close to 1, which is appropriate and indicates the ad-
equate model. “Adeq Precision” measures the signal-to-
noise ratio, and the value greater than 4 is considered to
be desirable [20].

In this study, from the analysis of variance, it is clear that
the ferrite content model is significant. 2e table indicates
that welding current, welding voltage, welding speed, torch
angle with reference to vertical, and the interaction of
welding voltage and welding speed are the significant model
terms affecting the ferrite content, and the result also shows
that the highest F value was obtained for the welding speed
equal to 5003.32 in the model.2e F value for the interaction
of welding voltage and welding speed was equal to 76.58,
which indicates that the interaction term has a relatively less
effect on the model. 2e Adeq Precision value of 146.135
indicates an adequate signal and implies that the model can
navigate the design space.

2e ANOVA shows that there is a connection between
the main effects of the four parameters. 2e final mathe-
matical model for the ferrite content is determined by the
following procedures and represented as follows:

(a) In terms of coded factors:

ferrite content � 42.14− 5.24I− 3.72U + 4.8S

+ 1.82T + 0.92US.
(1)

(b) In terms of actual factors:

ferrite content � 107.41556− 0.131I− 2.92556U
− 0.56333S + 0.12111T + 0.076667US.

(2)

Further, the validity of the developed regression model
was confirmed by constructing a scatter diagram. A typical
scatter diagram for the ferrite content is shown in Figure 2.
2e scatter diagram reveals that there is a good correlation
between the experimental and predicted values.

Figure 3 is a perturbation plot, which helps to compare
the effect of all the factors at the center place in the design
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Table 3: Design matrix with measured responses.

Trial no.
Process parameters Response

I (ampere) U (volt) S (cm/min) T (degree) Average ferrite content (%)

1 160 20 18 0 45.5
2 160 23 22 15 47.2
3 160 26 26 30 51.3
4 200 20 22 30 47.6
5 200 23 26 0 45.1
6 200 26 18 15 32.8
7 240 20 26 15 44.6
8 240 23 18 30 33.9
9 240 26 22 0 31.3

(a) (b)

Figure 1: Optical micrographs of weld metal microstructures of (a) sample 3 with the highest ferrite content and (b) sample 9 with the
lowest ferrite content.

Table 1: Compositions of 2205 DSS and ER 2209 (wt.%).

Element C Si Mn P S N Mo Ni Cr Cu

2205 DSS 0.195 0.520 0.829 0.026 0.002 0.156 3.23 5.70 22.09 0.229
ER 2209 0.032 0.601 0.666 0.012 0.004 0.137 4.29 7.95 22.59 0.202

Table 2: Process parameters and design levels used in experiments.

Parameters Symbol Units Level 1 Level 2 Level 3

Welding current I Ampere 160 200 240
Welding voltage U Volt 20 23 26
Welding speed S cm/min 18 22 26
Torch angle with reference to vertical T Degree 0 15 30

Table 4: ANOVA and R-square table for ferrite content reduced quadratic model.

Source Sum of squares DF Mean square F value Prob > F
Model 437.98 5 87.6 3170.36 <0.0001 Significant
I 102.97 1 102.97 3726.65 <0.0001 Significant
U 82.88 1 82.88 2999.74 <0.0001 Significant
S 138.24 1 138.24 5003.32 <0.0001 Significant
T 19.8 1 19.8 716.68 0.0001 Significant
US 2.12 1 2.12 76.58 0.0031 Significant
Residual 0.083 3 0.028
Cor. total 438.06 8

R2 � 0.9998 Pred R2 � 0.9957
Adj. R2 � 0.9995 Adeq Precision � 146.135
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space. It can be noticed that the ferrite content increases with
the welding speed and torch angle with reference to vertical.
2is is because a higher welding speed reduces the heating
time, and the electric arc becomes more decentralized from 0
degrees to 30 degrees for torch angle with reference to vertical.
2ese two factors can cause lower heat input to the weld zone.
Low heat input results in a fast cooling rate. 2ere is no
sufficient time for the diffusion of alloying elements (Cr, Ni,
and Mo). 2e ferrite-to-austenite transformation ratio re-
duces during solidification [21]. From this figure, it is ap-
parent that the welding current and the welding voltage have a
negative effect on the ferrite content. It is due to the fact that
heat input increases with welding current and welding
voltage. 2ere is sufficient time for the diffusion of alloying
element under a slow cooling rate. Consequently, the ferrite-
to-austenite transformation ratio increases under the effect

of increased heat input, and a more austenite phase is gen-
erated during the process. In addition, σ phase precipitates in
ferrite for a long time at high temperature, which further
reduces the ferrite content. 2e SEM micrograph and EDS of
the phases are shown in Figure 4. In contrast to the ferrite (α)
and austenite (c) phases, the light gray σ phase is richer in Cr.

4. Optimization of Results

In statistical software, the optimization part searches for a
group of factor levels that simultaneously meet the goals
placed on each of the factors and responses by using the
developed mathematical model in the design space. 2e
goals are combined into an overall desirability function. As
displayed in Table 5, the optimization criterion has been
executed for 2205 DSS welds. In the criterion, the process
parameters are kept within the scope of the stationary design
space. 2e goal response was set to the target of 50% ferrite
content. However, the ferrite-austenite phase balance (1 :1)
imparts very desirable properties to the material [22–24].
2e optimal results are listed in Table 6 with their
desirability.

5. Confirmation of Model Validity

2rough analysis of desirability function, optimal results
have been validated by conducting three confirmatory tests.
2e process parameters and corresponding ferrite content
have been selected randomly from Table 6. Table 7 displays
the tested results at optimum condition. It is revealed from
Table 7 that there is a small error ratio between predicted and
the experimental values, which validates the applied opti-
mization research. 2e error percentage in this table was
calculated as follows:

error% �
observed values− predicted values

predicted values
. (3)

Figure 5 shows the SEM micrographs of the validation
samples. 2e micrographs also prove that the ferrite content
is very close to the ideal value (50% ferrite) and no detri-
mental intermetallic phases appear in it.

6. Conclusions

2e influence of flux-cored arc welding parameters (welding
current, welding voltage, welding speed, and torch angle
with reference to vertical) on the ferrite content for 2205 DSS
welds has been studied, and the following conclusions are
drawn.

A relationship model was developed to predict the ferrite
content of weld metal by using the Taguchi design method.
Welding current, welding voltage, welding speed, torch
angle with reference to vertical, and the interaction of
welding voltage and welding speed are the significant terms
for the model. Welding voltage and torch angle with ref-
erence to vertical have a negative effect on the ferrite content,
while the welding speed and welding current have a positive
effect on it. 2e developed model can be successfully used
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Figure 4: (a) SEMmicrograph from 2205 DSS sample welded at trial no. 9 (I � 240A,U � 26V, S � 22 cm/min, and T � 0 degree); (b) EDS of
σ phase corresponding to (a); (c) EDS of austenite phase corresponding to (a); and (d) EDS of ferrite phase corresponding to (a).

Table 5: Process parameter and response constraint.

Parameter or response
Limit Goals Importance

Lower Upper 3

Welding current 160 240 Is in range 3
Welding voltage 20 26 Is in range 3
Welding speed 18 26 Is in range 3
Welding torch angle with reference to vertical 0 30 Is in range 3
Ferrite content 31.3 51.3 Is target � 50 3

Table 6: Desirable solutions.

Number I (A) U (V) S (cm/min) T (degree) Ferrite content Desirability

1 161.97 21.81 22.94 17.96 49.9999 1.000
2 185.79 20.25 25.55 7.37 50.0001 1.000
3 196.95 20.63 25.70 21.17 50 1.000
4 160.82 20.06 20.47 19.71 50 1.000
5 171.10 20.71 21.84 26.51 49.9999 1.000
6 174.18 20.74 22.34 25.93 50.0001 1.000
7 185.80 20.07 22.68 29.02 50.0001 1.000
8 174.37 20.32 22.32 22.17 50 1.000
9 161.08 25.98 25.28 29.58 49.9999 1.000
10 163.85 20.09 19.71 29.49 49.9999 1.000
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to predict the ferrite content at 95% confidence level and
verified by F-test by using the ANOVA table.

To verify the predicted results, three confirmation tests
have been implemented, and in the results, errors have been
found less than 2%. 2e results indicate that the developed
methods can accurately determine welding parameters so
that the desired ferrite content for 2205 DSS welds is
achieved.

Data Availability

In the paper, all of the data is available.2e data from Table 1
weremeasured by X-ray fluorescence. In Table 2, the welding
parameters are given. For the data from Tables 3–7 and
Figures 2 and 3, the optimization process is showed by using
the Design-Expert software, and the average ferrite content
was measured by the FERITSCOPE MP30.
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