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Optimization of Fed-Batch Saccharomyces cereWisiae Fermentation Using Dynamic
Flux Balance Models

Jared L. Hjersted and Michael A. Henson*
Department of Chemical Engineering, University Massachusetts, Amherst, Massachusetts 01003-3110

We developed a dynamic flux balance model for fed-batchSaccharomyces cereVisiaefermentation
that couples a detailed steady-state description of primary carbon metabolism with dynamic
mass balances on key extracellular species. Model-based dynamic optimization is performed to
determine fed-batch operating policies that maximize ethanol productivity and/or ethanol yield
on glucose. The initial volume and glucose concentrations, the feed flow rate and dissolved
oxygen concentration profiles, and the final batch time are treated as decision variables in the
dynamic optimization problem. Optimal solutions are generated to analyze the tradeoff between
maximal productivity and yield objectives. We find that for both cases the prediction of a
microaerobic region is significant. The optimization results are sensitive to network model
parameters for the growth associated maintenance and P/O ratio. The results of our computational
study motivate continued development of dynamic flux balance models and further exploration
of their application to productivity optimization in biochemical reactors.

Introduction

Large-scale production of biotechnological products is per-
formed in biochemical reactors operated in batch, fed-batch,
and continuous mode. An important advantage of fed-batch op-
eration is that nutrient levels can be varied to achieve favorable
growth conditions. Fed-batch yeast fermentation is a powerful
technology for producing metabolic products such as ethanol
(1-3) and therapeutic proteins such as human interferon, hepa-
titis B surface antigen, and insulin (4). The primary operational
challenges associated with fed-batch operation are the deter-
mination of the initial nutrient concentrations and liquid volume,
the feeding policies of the nutrients throughout the batch, and
the final batch time. Fed-batch performance can be highly
sensitive to these variables as a result of their complex effects
on cellular metabolism. Therefore, model-based optimization
is an essential tool for determining fed-batch operating strategies.

The transient nature of fed-batch fermentation requires that
the optimal operating policy be determined by solving a dynamic
optimization problem in which a final time objective (e.g.,
productivity and yield) is maximized, subject to constraints
imposed by dynamic model equations (5, 6). A number of
computational algorithms have been proposed to solve such
dynamic optimization problems (7). Sequential solution methods
involve repeated iterations between a dynamic simulation code
that integrates the model equations given a candidate feeding
policy and a nonlinear programming code that determines an
improved feeding policy given the dynamic simulation results.
Simultaneous solution methods based on temporal discretization
of the dynamic model equations have proven to be more
effective as a result of their ability to handle state-dependent

constraints and their applicability to large optimal control
problems (8, 9). The formulation and solution of dynamic
optimization problems for maximizing ethanol productivity in
fed-batch yeast fermenters have been extensively investigated
(10-15). These studies were based on simple unstructured
models with phenomenological descriptions of cell growth and
constant yield coefficients. Unstructured models cannot be
expected to provide accurate predictions over the wide range
of transient conditions observed in fed-batch culture. Therefore,
dynamic models based on more detailed representations of
cellular metabolism are desirable. The challenge not only
involves the development of more accurate models, but also
on the application of more sophisticated dynamic optimization
techniques demanded by such models.

Dynamic flux balance modeling provides a practical approach
for the construction of detailed metabolic models in the absence
of enzyme kinetic data and substantial information about cellular
regulatory processes. The method is based on the reasonable
assumption that metabolite concentrations rapidly equilibrate
in response to extracellular perturbations (16). Dynamic mass
balances on extracellular species are coupled to a stoichiometric
model of intracellular metabolism through substrate uptake
kinetics and product secretion rates. The stoichiometric model
is comprised of a linear system of flux balance equations that
relate metabolic species to their intracellular fluxes through a
reaction network (16). Typically there are more fluxes than
intracellular species, and the linear system is underdetermined.
The fluxes can be resolved by specifying a cellular objective
such as maximization of cell growth and solving the resulting
linear programming problem (17, 18). A flux balance description
of intracellular metabolism combined with dynamic mass
balances on extracellular substrates and products allows the
prediction of cellular behavior as the extracellular environment

* To whom correspondence should be addressed. E-mail:
henson@ecs.umass.edu.

1239Biotechnol. Prog. 2006, 22, 1239−1248

10.1021/bp060059v CCC: $33.50 © 2006 American Chemical Society and American Institute of Chemical Engineers
Published on Web 08/04/2006



changes with time. Dynamic flux balance models have been
used to analyze the dynamic behavior of bacterial (19, 20) and
yeast (21) cultures operated in batch mode.

Conventional steady-state flux models predict secretion rates
for all nonaccumulating metabolic products present in a network.
A yeast metabolic network was shown to predict growth pheno-
type with an≈70-80% success rate for various gene knockouts
(22) by constraining fluxes associated with these genes. There-
fore, dynamic flux balance models may be used to generate
dynamic predictions of extracellular metabolite profiles and to
predict the dynamic effects of gene knockouts on the productiv-
ity of fed-batch cultures. Unlike unstructured representations,
a dynamic flux balance model efficiently captures carbon parti-
tioning between all the represented intracellular pathways as
the extracellular environment varies with time. The pathways are
not modeled separately; they are instead captured by the distri-
bution of fluxes within a single integrated metabolic network.

Recently, dynamic flux balance analysis has been extended
to allow the determination of genetic alterations that optimize
metabolite production in batch culture (23). The problem was
posed as a bilevel optimization problem consisting of an outer
nonlinear program in which metabolite production was maxi-
mized by dynamically manipulating predetermined fluxes and
an inner linear program that maximized the growth rate by
distributing fluxes among the unaltered reactions. The bilevel
optimization problem was solved using a sequential strategy in
which a nonlinear programming code repeatedly called a
subroutine that evaluated the inner linear program, integrated
the extracellular balance equations, and returned the value of
the objective function. Although not investigated in (23), an
alternative approach involves simultaneous solution by refor-
mulation of the bilevel optimization problem into a single level
nonlinear program through the replacement of the inner linear
program with a set of equivalent algebraic constraints. Potential
advantages compared to the sequential solution strategy include
improved computational efficiency and superior robustness for
large models. Two formulations have been proposed for
handling the inner linear program. Duality theory has been used
to infer cellular objective functions (24) and to predict optimal
knockouts (25, 26) with steady-state flux balance models. We
believe that an alternative formulation based on the replacement
of the inner linear program with its associated first-order
optimality conditions to generate a mathematical program with
equilibrium constraints (27) is more promising for large-scale
problems resulting from dynamic optimization of fed-batch
bioreactors. This method has been used previously to perform
data reconciliation and parameter estimation with steady-state
flux balance models (28).

The objective of this paper is to develop a general methodol-
ogy for utilizing dynamic flux balance models to optimize
metabolite production in fed-batch fermentation. We use ethanol
production with the yeastSaccharomyces cereVisiaeas a model
system to illustrate our computational framework. Although
other metabolites could be investigated, ethanol is a readily
measurable product of central metabolism and serves as a
convenient target metabolite for the evaluation of predicted
trends and future experimental model verification. The dynamic
flux balance model is constructed by coupling dynamic balances
on extracellular glucose and ethanol, with a detailed stoichio-
metric model of primary carbon metabolism. Assuming direct
manipulation of the dissolved oxygen concentration, oxygen and
glucose uptake kinetics are modeled with standard empirical
expressions to provide an integrated description of aerobic and
anaerobic metabolism. We employ a simultaneous solution

strategy to determine fed-batch operating policies that maximize
an objective function that is a weighted sum of ethanol
productivity and ethanol yield on glucose. Optimization tests
are performed to investigate the impact of objective function
weighting, model parameters, and modeling errors on achievable
performance.

Dynamic Flux Balance Model.The modeling objective is
to predict cellular growth and ethanol production for anaerobic
and aerobic growth on glucose in fed-batch culture. The dynamic
balances for the extracellular environment are described by the
following equations:

whereV is the liquid volume,Gf is the glucose feed concentra-
tion, F is the glucose feed flow rate,µ is the cellular growth
rate,Vg andVe are the membrane exchange fluxes for glucose
and ethanol, respectively, andX, G, andE are the extracellular
concentrations of biomass, glucose, and ethanol, respectively.
The growth rate (µ) and the exchange flux of ethanol (Ve) are
resolved by solution of the inner flux balance model. The
exchange fluxes for glucose (Vg) and oxygen (Vo) are modeled
as:

whereO is the dissolved oxygen concentration,Kg andKo are
saturation constants,Kig and Kie are inhibition constants that
reduce glucose uptake in the presence of high glucose or ethanol
concentrations, respectively, andVg, max and Vo, max are the
maximum uptake rates. The glucose uptake follows Michaelis-
Menten kinetics with additional inhibitory terms to capture
regulatory effects due to high glucose and ethanol concentra-
tions.

Direct dissolved oxygen manipulation was assumed for all
simulations, and, therefore, oxygen balances were not included
in the dynamic flux balance model (eqs 1-4). Instead, fed-
batch optimization was performed with a maximum value of
the dissolved oxygen concentration,DOmax (DO ) O/O*, where
O* is the saturation concentration). This simplification was
deemed reasonable because optimal ethanol production leads
to near anaerobic growth conditions at higher cell densities.
Therefore, the dissolved oxygen concentration was treated
directly as a decision variable under the assumption that the
computed trajectory could be rapidly tracked with a suitably
designed feedback controller. The uptake of ethanol as a carbon
source was excluded from the model because diauxic growth
is not observed until glucose is almost completely exhausted,
which occurs at the final batch time. A gas-phase ethanol
balance was not included under the assumption of negligible
ethanol holdup in the vapor space of the bioreactor.

dV
dt

) F (1)

d(VX)
dt

) µVX (2)

d(VG)
dt

) FGf - VgVX (3)

d(VE)
dt

) VeVX (4)

Vg ) Vg, max
G

Kg+ G + (G2/Kig)

1
1 + (E/Kie)

(5)

Vo ) Vo, max
O

Ko + O
(6)
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A metabolic network that describes primary carbon metabo-
lism and the formation of cellular biomass in the yeast
Saccharomyces cereVisiae was used for this study (29, 30).
Construction of the flux model required exclusion of some fluxes
and determination of species that should be allowed to ac-
cumulate. Aerobic and anaerobic growth on glucose was
captured with 82 fluxes and 98 biochemical species, whereas
the original flux model referenced contained 99 fluxes. Sixteen
fluxes pertaining to alternate carbon substrates or organisms
other thanS. cereVisiae(fluxes 13-14, 25, 37-42, 52-57, and
65 in the original model) were removed. An additional anaero-
bic-only flux (flux 24) was removed because it produced false
predictions for aerobic conditions and had a minimal effect under
anaerobic conditions. The numbering of the fluxes in the original
model was preserved for the sake of clarity.

A series of steps were followed to determine the intracellular
species that accumulate. We initially allowed all of the species
to accumulate to account for dead-end pathways and the
incomplete nature of the metabolic model. Solution of the linear
program for this case yielded an optimal distribution of fluxes
with very few accumulating species. The flux model was then
reformulated to only allow the accumulation of species located
at the end of a pathway or metabolites for which accumulation
has been experimentally demonstrated (31). The latter group
consisted of acetate, fumarate, malate, pyruvate, and succinate.
The remaining 68 species were constrained to be nonaccumu-
lating. Complete specification of the metabolic network required
values for the growth-associated maintenance coefficient (k) and
the P/O ratio (PO). The flux model constructed allowed
predictions for fully aerobic, mixed aerobic (constrained oxygen
uptake), microaerobic, and anaerobic conditions. Cell densities
encountered in batch and fed-batch cultivations are such that
fully aerobic conditions are rarely achieved as a result of
transport limitation. Consequently, we liberally use the term
aerobic to describemixed aerobicconditions in this study.

The inner linear program (LP) for maximization of the cellular
growth rate is posed as:

where E is the set of intracellular species with externally
determined exchange fluxes,N is the set of species that do not
accumulate,M is the set of species that are allowed to
accumulate,A is the stoichiometric matrix for the metabolic
network,V is a vector of reaction fluxes, andb is a vector of
accumulation and exchange rates. The cellular growth rate (µ)
is determined from the fluxes producing biomass precursors,
where the weights (w) are determined from the amount of each
precursor necessary for biomass formation (29). The metabolic
network (29) used in this study includes a single flux to represent
biomass formation (flux 99) that simplifies the expression for
the growth rate.

Nominal model parameter values are presented in Table 1.
A significant advantage of the proposed methodology is that
only a small number of parameters must be specified to construct

a detailed dynamic model of the fermentation process. The
maximum uptake rates (Vg, max and Vo, max) and the saturation
constants (Kg andKo) were obtained from literature values (32)
after basic unit conversions. Values for the inhibition constants
(Kig andKie) were chosen to yield reasonable model predictions.
The saturation concentration of liquid-phase oxygen (O*) was
determined from Henry’s law using a peak oxygen concentration
of 0.21 atm in the reactor headspace and a liquid temperature
of 30 °C. A constant glucose feed concentration was used
throughout this study to avoid the situation where the maximum
concentration is always selected by the optimizer. The metabolic
network parametersk andPO were obtained from the original
reference where the steady-state flux balance model was
formulated (29). A conversion of 25.593 31 g of biomass per
C-mol of biomass was used (30). The model parametertss

represents the time required for equipment maintenance between
fed-batch runs.

We used the MATLAB interface to the LP code MOSEK to
solve eq 7 given a set of glucose and oxygen uptake rates. Figure
1 shows the growth rate and ethanol production rate surfaces
obtained when the LP was repeatedly solved over a representa-
tive grid of glucose and oxygen uptake rates. Although
alternative optimal solutions are a well-known problem with
classical flux balance analysis (33), we did not encounter this
issue in the computational studies shown in this paper. The
surfaces are nontrivial functions of the substrate uptake rates,
as demonstrated by the maximum in the ethanol production rate
for microaerobic growth conditions. These surfaces suggest that
the development of a comparable unstructured model would
minimally require the specification of different metabolic

max
V,b

µ ) wTV (7)

subject to:

AV ) b
Vmin e V e Vmax

bi ) bi, i ∈ E

bi ) 0, i ∈ N

bi,min e bi e bi,max i ∈ M

Table 1. Nominal Model Parameter Values

variable value variable value

Vg,max 0.02 mol g-1 h-1 Kg 0.5 g L-1

Vo,max 0.008 mol g-1 h-1 Ko 3 × 10-6 mol L-1

Kig 10 g L-1 Kie 10 g L-1

O* 2.53× 10-4 mol L-1 Gf 50 g L-1

DOmax 50% tss 6 h
k 1.37 mol Cmol-1 PO 1.20 mol atom-1

Figure 1. Surfaces for the optimal growth rate (µ) and corresponding
ethanol production rate (Ve) obtained by repeatedly solving the linear
program (eq 7) for a range of glucose (Vg) and oxygen (Vo) uptake rates.
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parameters for anaerobic, microaerobic, and aerobic growth.
Considerably more complicated behavior can be observed, as
recently demonstrated by the existence of seven metabolic
phenotypes in a genome-scale flux model ofS. cereVisiae
metabolism (34). While conceptually possible, the development
of unstructured models that attempt to reproduce multiple
metabolic phenotypes quickly becomes unwieldy. Given the
development of highly efficient dynamic simulation and opti-
mization schemes, as reported in this paper, there is little
motivation to develop unstructured models when a dynamic flux
balance model is available.

Dynamic simulations were performed in MATLAB using the
routine ODE15s to integrate the extracellular mass balance
equations. A fed-batch simulation for a constant glucose feed
flow rate and an aerobic (50%DO) to anaerobic (0%DO) switch
is shown in Figure 2. The biomass concentration increased
rapidly under aerobic growth conditions. The switch to anaerobic
growth at 10 h resulted in a substantially increased ethanol
production rate at the expense of the biomass growth rate. These
types of dynamic simulations have been performed with
previously developed dynamic flux balance models and have
shown good agreement with batch experimental data (20, 21).
The primary contribution of this computational study is the use
of a dynamic flux balance model for fed-batch optimization.

Fed-Batch Optimization Strategy. The objective function
maximized was the weighted sum of ethanol productivity and
ethanol yield on glucose. This dual objective allowed the
tradeoff between high production rates and efficient substrate
usage to be examined. The initial volumeV(0) and glucose
concentrationG(0), the feed flow rateF(t) and dissolved oxygen
concentrationDO(t) profiles, and the final batch timetf were
treated as decision variables. Therefore, the dynamic optimiza-
tion problem had the form

The ethanol productivityP and the ethanol yield on glucose
Y at the final batch time were defined as:

where tss is the turnover time for startup and shutdown of a
fed-batch run. The parameterscp and cy are weights for the
productivity and yield objectives, respectively.

The variable bounds were primarily specified to ensure a
physically realistic solution. The bounds on the initial and final
volumes were chosen for consistency with our experimental

system. Lower and upper bounds on the final batch time were
included to confine the solution space, but they had no effect
on the optimal solutions generated. The nominal values for the
glucose feed concentrationGf and fed-batch turnover timetss

listed in Table 1 were used in the optimization studies. Dissolved
oxygen DO appeared directly as a decision variable in the
dynamic optimization problem. As discussed earlier, the upper
bound DOmax was chosen to avoid the calculation of high
dissolved oxygen concentrations that might be unachievable in
practice due to oxygen mass transfer limitations. This formula-
tion also avoided problems caused by the insensitivity of the
objective function to oxygen transport variable, such as the air
flow rate and the mass transfer coefficient.

Our initial attempts to solve the dynamic optimization
problem using a sequential method (23) failed. The method
proved to be intractable due to the size of the problem and
suffered from the absence of analytic Jacobian or Hessian
information. Therefore, we employed a simultaneous solution
method in which the bilevel dynamic optimization problem (eq
8) was reformulated as a single level nonlinear program. The
procedure required temporal discretization of the extracellular
balances (eqs 1-4) and replacement of the inner LP (eq 7) with
its associated first-order optimality conditions (28). Discretiza-
tion was performed with Radau collocation on finite elements
using a monomial basis representation (35) with 61 finite
elements and 2 internal collocation points per element for a total
of 184 nodes. The linear program (eq 7) was only enforced at
the beginning of each finite element to reduce the overall
problem size. As shown below, comparisons with direct
simulation results showed that this approximation was adequate
provided that a sufficient number of finite elements was
employed. The decision variablesDO(t) andF(t) were restricted
to change only at the element boundaries.

The single level nonlinear program consisted of only algebraic
constraints. The discretized dynamic balances for biomass (VX),
glucose (VG), ethanol (VE), and volume (V) had the form

whereZ is the appropriate variable, the superscript 0 indicates
a value at the beginning of an element,i is the finite element
index, j is the collocation point index,h is the width of an
element,ncp is the number of internal collocation points, andD
is the Radau collocation matrix. More details on this collocation
strategy and monomial basis representations can be found in

max
V(0),G(0),F(t)DO(t)tf

cpP(tf) + cyY(tf) (8)

subject to: extracellular balances (eqs 1-4)

uptake kinetics (eqs 5 and 6)

flux balance LP (eq 7)

V(0) g 0.5 L, V(tf) e 1.2 L

0 e G(0) e 50 g/L

0 e DO(t) e 50%

F(t) g 0 L/h
1 h e tfe 36 h

X(t), G(t), E(t) g 0 g/L

P(tf) )
V(tf)E(tf)

tf + tss
(9)

Y(tf) )
V(tf)E(tf)

V(0)G(0) + ∫0

tfGfF(t)dt
(10)

Figure 2. Fed-batch simulation with a constant glucose feed flow rate
and an aerobic to anaerobic switch at 10 h.

Zi,j ) Zi
0 + hi ∑

k)1

ncp + 1

Dk,j

d(Zi,k)

dt
(11)

1242 Biotechnol. Prog., 2006, Vol. 22, No. 5



Biegler et al. (8). Karush-Kuhn-Tucker (KKT) optimality
conditions and complementarity constraints resulted from
replacement of the linear program with equivalent optimality
conditions. The KKT conditions enforced were

where λ, R, and η are multipliers, the subscriptsL and U
correspond to lower and upper bounds, respectively,m repre-
sents the species index, and the indexi indicates that the
constraints are imposed at the beginning of each element. The
complimentarity constraints had the following form

wheren indexes the fluxes. These relations represent one of
four sets of complementarity constraints, which were applied
to the variablesV and b with respect to the lower and upper
bounds. More details on the representation of the optimality
conditions are available in Raghunathan et al. (28).

The dynamic optimization problem was solved through the
AMPL interface to the nonlinear program solver CONOPT.
AMPL is a mathematical programming language that provides
analytic Jacobian and Hessian information to the solver through
integrated automatic differentiation. CONOPT is a feasible path,
multi-method nonlinear program solver based on the generalized
reduced gradient method. The optimization model consisted of
36 049 decision variables and 30 496 constraints. The computa-
tion time varied from 126 to 221 s, depending on the initializa-
tion and objective function used. Subsequent solutions for small
changes in the objective function or constraints required only a
small fraction of the initial computation time. All computations
were performed on a 3.0 GHz Pentium 4 CPU.

Results and Discussion

The first set of simulation results were generated from
solution of the dynamic optimization problem for maximization
of ethanol productivity:cy ) 0 in eq 8. Figure 3 shows the
optimal control profiles for the feed flowrate and the dissolved
oxygen. The calculated optimal state profiles and simulated
profiles obtained from direct simulation of the optimal control
profiles are also displayed in Figure 3. Slight differences
between the optimal and simulated profiles originated from the
approximation of constant fluxes across finite elements used in
the optimization problem. The optimal control policy produced
an initial glucose concentration (14.6 g/L) well below its upper
bound and no initial glucose feed. The glucose concentration
declined until feeding began att ) 7.0 h. Then the glucose
feed flowrate increased over time such that the glucose
concentration remained approximately constant until the final
volume constraint was encountered att ) 13.4 h. Analysis of
eq 5 revealed that this constant glucose concentration resided
very close to the relatively flat maximum in the glucose uptake
rate. Despite the approximately constant glucose concentration
observed in the final half of the batch, the high initial glucose
concentration followed by the transient decrease during the first
half of the batch suggests that direct substrate concentration
control (36) may not be suitable for ethanol productivity
maximization. A sudden switch in the dissolved oxygen from
the initial maximum to a final value near zero was observed at

t ) 8.4 h. This switch divided an initial aerobic phase of high
cell growth followed by a microaerobic phase of high ethanol
production.

Snapshots of the metabolic network fluxes at two time points
in the optimal productivity profiles are shown in Figure 4. The
time points were chosen to demonstrate the difference in the
flux distribution for the aerobic (t ) 5 h) and microaerobic (t
) 10 h) operating regions. A higher growth rate and more
activity in oxidative phosphorylation were observed under
aerobic conditions. Increased ethanol production, lower growth,
and less TCA cycle utilization were observed under microaero-
bic conditions. Complete dynamic profiles of selected exchange
and intracellular fluxes are shown in Figure 5. The onset of
glucose feeding at 7.0 h and the switch in dissolved oxygen at
8.4 h were distinctly visible in the flux profiles. The influence
of inhibition was also observed in the increasing rates of growth
and glucose uptake as extracellular glucose concentrations
decreased in the preliminary batch phase and in the decreasing
rates of growth and glucose uptake as extracellular ethanol
concentrations increased in the final batch stage. These results
demonstrate the detailed dynamic information that can be
extracted from dynamic flux balance models that is unavailable
in unstructured models.

Sensitivity analysis of the optimal solution to various bounds
and model parameters is shown in Figure 6. Repeated solution
of the dynamic optimization problem for different parameter
values and bounds was performed to generate the results. The
square indicates the nominal value and corresponds to the
optimal solution shown in Figure 3. The productivity showed a
sharp decrease whenDO was below 10% of the saturation value.
Because there were only slight performance improvements
above this point, an upper bound of 50% dissolved oxygen was
used for all other optimizations. The productivity increased
linearly with the glucose feed concentration, except at low
concentrations where a sharp decline was observed. The effect
of the maximum oxygen uptake parameter on the productivity
was linear, except for large parameter values where oxygen was
in stoichiometric excess compared to glucose and very small

w + ATλ + Ri
L - Ri

U ) 0 (12)

λi,m - ηi,m
L + ηi,m

U ) 0, m∈ N (13)

Vi,n - Vn
L g 0 (14)

(Vi,n - Vn
L)Ri,n

L ) 0 (15)

Figure 3. Optimal glucose feed (top left) and dissolved oxygen (top
right) profiles for optimization of ethanol productivity and the corre-
sponding simulated and optimal profiles of biomass, glucose, and
ethanol (bottom).
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values where diminished oxygen transport produced a sharp
decrease. The ethanol inhibition constant displayed the expected
trend where inhibition had a large impact on productivity only
for small parameter values.

The dynamic optimization problem formulated in eq 8 con-
tains a dual objective for ethanol productivity and ethanol yield.
The optimization results presented in Figures 3-6 were gener-
ated from a productivity only objective (cy ) 0). A parametric
sensitivity analysis was performed to examine the tradeoff
between productivity and yield. The analysis involved repeated
solution of the optimization problem (eq 8) with a constant value
for the productivity weight (cp ) 0.81-1) and a wide range of
values for the yield weight (0e cy e 60). A nonzero value of
the productivity weight was used to avoid solutions lying at
the maximum bound of the final time constraint and exhibiting
a dramatic decline in the productivity for an insignificant
increase in the yield. Therefore, this strategy produced optimal
policies for maximization of ethanol yield where the overall
productivity loss was minimized. Figure 7 shows that increasing
yields were achieved at the expense of decreasing productivities
and longer batch times. The productivity versus yield curve
represents the locus of achievable optimums for the dual
objective where the entire area above the curve is unachievable.

During calculation of the yield-productivity tradeoff curve,
the ethanol yield eventually saturated with respect to increasing

values of the yield weight (cy). This indicated that the yield
was at its overall maximum and the productivity was at its
maximum with respect to this yield. Figure 8 shows the optimal
feeding policy that generated this point (circle in Figure 7). The
calculated optimal state profiles and the simulated profiles
obtained from direct simulation of the optimal control profiles
are also shown in Figure 8. The results obtained were markedly
different from the maximum productivity results (Figure 3).
While the glucose concentration decreased until feeding began
such that a relatively constant glucose concentration was
maintained, the combined objective produced a lower initial
glucose concentration to increase yield and earlier glucose
feeding to achieve the glucose concentration that maximized
uptake. Consequently, direct control of the extracellular glucose
concentration would be expected to provide satisfactory per-
formance for this case. The dissolved oxygen concentration in
Figure 8 showed that microaerobic growth conditions were
utilized throughout the batch. This effect was evident in the
relatively constant rates of biomass and ethanol increase, which
suggested that a high ethanol yield was maintained throughout
the batch.

Both the productivity and combined yield-productivity
objectives generated optimal solutions that suggest microaerobic
growth is beneficial compared to purely anaerobic growth. These
results are consistent with continuous culture experiments (37,

Figure 4. Flux distributions at two time points from the optimal productivity profiles in Figure 3, with key pathways indicated. The first time point
(t ) 5 h) is during the aerobic phase characterized by higher growth (flux 99), whereas the second time point (t ) 10 h) represents the microaerobic
phase where higher ethanol production (flux 43) is observed. The primary fluxes from pyruvate (9-12) are included in glycolysis. Biomass synthesis
includes formation of precursors (i.e., protein, RNA, nucleotides, polysaccharides, and so on) and the synthetic flux representing cellular growth
rate (flux 99) in m Cmol g-1 h-1. The unlabeled fluxes are: 13 and 14 (growth on ethanol), 24 (anaerobic only), 25, 37 and 38 (unused forS.
cereVisiae), 32 and 33 (glyoxylate shunt), 39-44 (alternate carbon substrates), 45-47 (1-carbon compound transfer), 48-57 (transport), and 58
(H+ATPase). The flux numbers and directions are consistent with the network published in van Gulik et al. (29) and Vanrolleghem et al. (30), with
the exception of flux 43 (negative as written in the references), which has been reversed for visual purposes.
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38) and conventional flux balance analysis (34). We performed
additional simulations to quantify the significance of the
microaerobic region on optimal fed-batch performance. The
optimal control profiles previously obtained for the two objec-
tives were modified by constraining dissolved oxygen concen-
trations less than 1.0%DO to be identically zero. Dynamic
simulations with these modified control profiles showed a 19%
decrease in productivity for the optimal productivity case and
a 76% decrease in yield for the combined yield-productivity
case. The large yield decrease was mainly due to the presence
of substantial residual glucose at the final batch time, although
higher glucose concentrations throughout the batch also led to
glucose uptake inhibition, as per eq 5. The simulation tests were
repeated, with flux 24 included in the network to ensure that

the microaerobic result had not been partially achieved by
elimination of this anaerobic-only flux, which allows conversion
between FADH2 and NADH in the absence of oxidative
phosphorylation. While this flux was active when included, the
effect was apparent only in oxidative phosphorylation, and no
impact on the overall predictions was observed. The significance
of the microaerobic region motivates reassessment of the perfect
control assumption for dissolved oxygen. In practice, tracking
of very low dissolved oxygen concentrations that characterize
the microaerobic growth region might be problematic due to
DO measurement limitations. Possible solutions include refor-
mulation of the dynamic optimization problem such that low
concentrations are avoided, development of a system-dependent
oxygen transport model, or implementation of closed-loop
dynamic optimization with measurement feedback. The latter
option might be preferred due to the added advantage of model
correction and disturbance rejection.

The previous optimization results were generated with the
values of the maintenance coefficientk and the P/O ratioPO

Figure 5. Dynamic profiles of exchange (top) and intracellular (bottom)
fluxes corresponding to the optimal productivity case in Figure 3. The
intracellular fluxes correspond to the reactions catalyzed by the enzymes
pyruvate dehydrogenase (PDH, flux 10), pyruvate carboxylase (PC,
flux 12), citrate synthase (CS, flux 15), and glucose-6-phosphate
dehydrogenase (G6PDH, flux 26). The initiation of glucose feeding at
7.0 h and the switch in dissolved oxygen at 8.4 h were observed in the
flux profiles. *Biomass formation (flux 99) has units on a carbon mole
basis (m Cmol g-1 h-1).

Figure 6. Sensitivity of the ethanol productivity obtained with the
optimal profiles in Figure 3 to the upper bound on dissolved oxygen
(top left), upper bound on glucose feed concentration (top right),
maximum oxygen uptake rate (bottom left), and inhibition constant
for glucose uptake due to ethanol (bottom right). The square indicates
the productivity obtained with the nominal parameter values.

Figure 7. Tradeoff between ethanol productivity and ethanol yield on
glucose (left), and the relationship between ethanol yield and the batch
time (right). The square and the circle correspond to the optimization
results shown in Figures 3 and 8, respectively.

Figure 8. Optimal glucose feed (top left) and dissolved oxygen (top
right) profiles for a combined yield-productivity objective, where yield
was most heavily weighted, and the corresponding simulated and
optimal profiles of biomass, glucose, and ethanol (bottom).
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listed in Table 1. Because there is considerable uncertainty
associated with these nominal values (30), we examined the
sensitivity of the optimal solution obtained for the productivity
objective to these two metabolic network parameters. The
optimal control profiles obtained with the nominal parameter
values (Figure 3) were applied to dynamic flux balance models
with differentk andPOvalues. The results are shown in Figure
9. As expected, the largest productivity and yield were obtained
for the nominal parameter values (indicated by the squares).
Fed-batch performance was most sensitive to underestimation
of the maintenance coefficient (large processk values) and
overestimation of the P/O ratio (small process P/O values).
Largerk values indicate increased ATP consumption for growth
associated maintenance, while smallerPO values represent
decreased ATP production via oxidative phosphorylation.

Figure 10 shows simulation profiles obtained with the optimal
input profiles in Figure 3 for the nominal values ofk andPO
(Table 1) and altered values chosen to evaluate the effects of
modeling error. The second set of results were generated with
the growth associated maintenance coefficient increased by 2.1%
(1.37 to 1.4 mol Cmol-1) and the oxidative phosphorylation
ratio decreased by 4.35% (1.2 to 1.15 mol atom-1). This
comparison mimics a scenario where the optimal profiles were
generated offline with an available model and then implemented
online to an actual fermenter. A 23% decrease in the overall
productivity was observed despite the relatively small changes
in the two network parameters. The profiles for the altered case
closely tracked the nominal profiles during the initial phase of
the batch, but the profiles quickly diverged once glucose feeding
began at 7.0 h. Both changes to the network parameters had a
negative effect on cellular energy generation and, therefore, led
to the phenotype of a slower growing cell. While the biomass
profiles appeared to show the closest agreement, the difference
resulted in an insufficient cell density to consume the supplied
glucose and accumulation of glucose during feeding. The need
for feedback in online implementation was evident from the
sensitivity of the system to the metabolic network parameters.
Feedback tracking of the optimal profiles could provide
improved performance, but optimal performance would require
a closed-loop formulation of the full optimization problem.

Conclusions and Future Work
A dynamic flux balance model for batch and fed-batch yeast

fermentation was developed by embedding a steady-state flux

balance description of intracellular metabolism within a system
of dynamic mass balances on the extracellular environment. This
framework is based on the assumption that intracellular me-
tabolite concentrations rapidly equilibrate to extracellular per-
turbations and takes full advantage of flux balance models
available for various microorganisms. The dynamic flux balance
model was incorporated within a dynamic optimization frame-
work to compute fed-batch operating policies that maximized
ethanol productivity and/or ethanol yield on glucose. Decision
variables were the initial volume and glucose concentration, the
feed flow rate and dissolved oxygen concentration profiles, and
the final batch time. The resulting bilevel optimization problem
was formulated as a single level nonlinear program by temporal
discretization of the dynamic balance equations and replacement
of the inner linear program with its associated first-order
optimality conditions.

Optimal solutions for the productivity objective were char-
acterized by an initial phase of aerobic growth for maximal
biomass production, followed by a switch to microaerobic
growth for increased ethanol production. Glucose feeding was
initiated near the end of the aerobic growth phase, such that
the glucose uptake rate was maximized until the final volume
constraint was encountered. By contrast, the yield objective
produced optimal solutions characterized by microaerobic
growth throughout the batch and much earlier initiation of
glucose feeding. Prediction of the microaerobic growth region
was found to be particularly important for the yield objective,
where a 76% decrease in ethanol yield was observed when the
optimal feeding profile was modified, by constraining dissolved
oxygen concentrations less than 1.0% to be identically zero.

We believe dynamic flux balance modeling offers numerous
advantages over typical unstructured models for analysis and
optimization of batch and fed-batch cultivations. The incorpora-
tion of a detailed metabolic model alleviates the need for
constant yield coefficients and parametrization of cellular growth
into distinct pathways. The dynamic flux balance model
formulation requires uptake kinetics for growth limiting sub-
strates, which we believe is preferable to empirical modeling
of the entire cellular growth process. While dynamic simulation
of a dynamic flux balance model is relatively straightforward,
an inner linear program for determination of intracellular fluxes
causes the dynamic optimization problem to become a bilevel
nonlinear programming problem. We have demonstrated that
the dynamic optimization problem can be successfully refor-

Figure 9. Sensitivity of the ethanol productivity and yield on glucose
to the maintenance coefficient and P/O ratio. The square indicates the
predicted optimal for the nominal parameter values and corresponds
to Figure 3.

Figure 10. Comparison of simulated profiles obtained with the optimal
inputs in Figure 3 for nominal (solid lines) and altered (dashed lines)
values of two metabolic network parameters. The growth associated
maintenance (k) was increased from 1.37 to 1.4 mol Cmol-1, and the
oxidative phosphorylation ratio (PO) was decreased from 1.2 to 1.15
mol atom-1.
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mulated into a single level nonlinear program that is efficiently
solved with existing software.

This initial study demonstrates that dynamic flux balance
models hold considerable promise for the simulation and
optimization of yeast fed-batch cultures. While our study focused
on ethanol optimization with a wild-type strain ofSaccharo-
myces cereVisiae, the proposed methodology is equally ap-
plicable to other microorganisms and metabolic products for
which steady-state flux balance models have been developed.
The increasing availability of genome-scale flux balance models
for bacteria (39, 40) and yeast (41) opens the possibility of
utilizing molecular level detail for dynamic simulation and
optimization of microbial cell culture systems. A limitation of
the current dynamic flux balance methodology is the lack of
intracellular regulation. Our future work will focus on the
inclusion of regulatory mechanisms, incorporation of genome-
scale metabolic networks, optimization of other high value
metabolites, analysis of gene knockouts and overexpression, and
experimental evaluation of the dynamic flux balance modeling
and optimization framework. For example, we have been
exploring the incorporation of yeast genome-scale metabolic
networks within a dynamic flux balance model to investigate
the effects of candidate gene knockouts on metabolite production
in batch and fed-batch cultures. This recent work will be
presented in a future publication.

Notation
DO dissolved oxygen concentration [%]
E ethanol concentration [g/L]
F feed flowrate [L/h]
G glucose concentration [g/L]
Gf feed glucose concentration [g/L]
Kie glucose uptake inhibition constant with respect to

ethanol [g/L]
Kig glucose uptake inhibition constant with respect to

glucose [g/L]
Kg glucose uptake saturation constant [g/L]
Ko oxygen uptake saturation constant [mol/L]
O liquid oxygen concentration [mol/L]
O* saturation liquid oxygen concentration [mol/L]
PO P/O ratio [mol-ATP/atom-O]
V liquid volume [L]
X biomass concentration [g/L]
k growth associated maintenance coefficient [mol-ATP/

Cmol-biomass]
tss batch startup and shutdown time [h]
Ve ethanol exchange rate [mol/g/h]
Vg glucose uptake rate [mol/g/h]
Vo oxygen uptake rate [mol/g/h]
µ specific growth rate [h-1]
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