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Abstract  
This paper presents an application of Genetic 
Algorithm and Sequential Quadratic 
Programming in improving the performance of 
flapping wings.  A Vortex Lattice Method was 
employed to model a finite-span flapping wing.  
The flapping wing model investigated was a 
rigid rectangular-planform plate with two 
degrees of freedom, i.e. pitching and heaving.  A 
combination of Genetic Algorithms and 
Sequential Quadratic Programming was 
employed to find out the optimum combination 
of flapping frequency, flapping amplitude, pitch 
amplitude and phase difference between 
pitching and heaving that gave maximum 
efficiency for a given thrust.  The hybrid 
optimization method was superior in solution 
search capability to that of GA or SQP alone.  A 
function approximation of aerodynamic forces 
was made using Radial Basis Function to 
improve computational time cost. However, 
further refinement was necessary for a 
successful application of this method in high 
dimensional search space.   

1  Nomenclature 
A = heave amplitude 
Aij, Bij  = influence coefficient to the control 

points 
ijij BA ~ ,~  = influence coefficient to the quarter 

chord 
AR = aspect ratio 
c = wing chord 
D = drag as in wind tunnel coordinate 

ea = center of pitch location 
h = panel vertical distance (heaving) 
L = lift as in wind tunnel coordinate 
m = number of wake vortex lattices 
n = number bound vortex lattices 
q = pitch rate 
S = wing area 
t = time 
U = free-stream velocity 
V
�

 = velocity vector 
x, y, z = wing coordinates with y along 

elastic axis 
xi = x-coordinates of control points 
Γ  = vortex or circulation 

bΓ  = bound vortex 

wΓ  = wake vortex 
Θ  = pitch amplitude 
θ  = pitch angle 
ρ  = air density 
φ  = potential function or phase angle 
ω  = circular flapping frequency 
 

2 Introduction  
Recently, flapping wing flight has attracted 

considerable attention partly due to the increase 
in interest towards Micro Air Vehicles (MAVs).  
In the past years, there has been a fairly good 
number of research concerning the mechanics 
and aerodynamics of flapping or oscillating 
wings [1, 2, 8].  However, few literatures have 
addressed the problem of designing an optimal 
flapping wing. Computational tools for 
designing a flapping wing with desired 
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performance are needed.   This paper will 
present advances towards such objectives.  
Here, Vortex Lattice Method was employed to 
model the aerodynamic force exerted to a rigid 
flapping wing.  The coupling of heaving and 
pitching motion was optimized using Genetic 
Algorithms and Sequential Quadratic 
Programming codes [4]. Inertial forces due to 
the mass and geometry of the wing are not 
considered in this paper.   

Although Vortex Lattice Method is not 
appropriate for modeling low-Reynolds number 
aerodynamics, it incorporates unsteady-
aerodynamic effects at modest computational 
cost, and it serves the purpose of this research, 
in which the prime objective is to design an 
optimization procedure for flapping wings.    

The challenge of optimizing flapping 
wings is two fold.  One is the computational 
cost caused by the unsteady aerodynamics.  The 
aerodynamic force calculations are 
computationally intensive. To obtain average 
thrust and power, time integration of the 
aerodynamic force is required, which makes it 
more time consuming than the steady-state case.  
The other is the number of parameter to be 
optimized is bound to be large (especially if we 
want to find an optimum planform geometry), 
and as result, search for an optimum solution 
has to be conducted in a high-dimensional space 
which are likely to have highly multimodal (i.e. 
many local minima or maxima) response 
surfaces.   

3 Vortex Lattice Method  
The VLM in this paper represented the 

wing as a planar surface on which a grid of 
vortex lattices was superimposed.  The 
velocities induced by each vortex lattice at 
specified control points (3/4 of the chord on the 
mid-span of each panels) were calculated using 
the law of Biot-Savart.  A summation was 
performed for all control points on the wing to 
produce a set of linear algebraic equations for 
the vortex strengths that satisfied the condition 
of no flow through the wing, i.e. the tangential 
condition (at the control points).  A few 
governing equations are in order, and we follow 

closely the presentation given in [5], [6], and 
[9].  For an irrotational flow, the velocity may 
be expressed in terms of a potential function 
 

φ∇=V
�

 (1) 
 
In incompressible flow, the continuity equation 
is 
 

0=⋅∇ V
�

 (2) 
 
Thus, 
 

02 =∇ φ  (3) 
 
Another condition that has to be satisfied by the 
solution is Kevin’s theorem, namely, that there 
is no net change in the circulation in the field at 
any time step, or 
 

0=Γ
dt
d  (4) 

 
In this research, the model, which satisfied these 
four equations, consisted of panels having a 
constant bound vortex in each quarter chord of a 
rectangular cell.  A control point was located in 
each cell at the three-quarter point of centerline.  
As stated previously, if the incident air velocity 
to the control points are known, a linear 
algebraic system of equation can be set up to 
solve for the unknown bound vortex strengths at 
every time step.  The vortex strengths Γ s 
determined from the past time steps were shed 
behind the wing to form the wake.  In the 
present model, one panel was used chordwise to 
represent the bound vortices and the wake was 
planar, and constrained in the same plane as that 
of the wing as shown in Fig. 1.   
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Fig. 1 The wing and the vortex lattices (dashed lines) 

The wing was a rigid rectangular-planform plate 
with two degrees of freedom, i.e. pitching with 
respect to y-axis and heaving along z-axis.  The 
simplicity of the model works in favor of the 
optimization process discussed in the next 
section.  The bound vortex strengths bΓ  s were 
determined from the following equation.  wΓ s 
are known from previous time steps.   
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Once Γ s were determined, the pressure 
difference could be determined using unsteady 
Bernoulli equation as derived by Katz. Then, lift 
and induced drag can be calculated from the 
following equations.   
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When D is negative, it means the flapping is 
producing thrust.  Power was computed from 
the following equation 
 

)( θ��
pMhLP +−=  (9) 

 
where Mp is pitching moment about ea. 

Heaving and pitching are assumed to 
follow sinusoidal motions, i.e. 

 
tAh ωcos=  (10) 

  
)cos( φωθ +Θ= t  (11) 

 
Fig. 2 shows different flapping modes with 
respect to the phase angle φ . 
 

2
πφ =

2
πφ −=

U

U

2
πφ =

2
πφ −=

U

U

 

U

0=φ

U

πφ ±=

U

0=φ

U

πφ ±=  
Fig. 2 Side view of the flapping motion with respect to 

phase angles 

4 Optimization Procedure 
In this section, optimization procedures 

employed in this research are briefly described.   

4.1 Genetic Algorithms 
Floating Point Genetic Algorithm was 

employed to find maximum efficiency (i.e. 
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CT/CP) with respect to design variables such as 
flapping frequency, phase angle between 
heaving and pitching, and pitching axis location.  
By floating point, it is meant that the genes are 
not expressed in terms of binary codes but as 
decimal base real valued variables.  GAs search 
the solution space of a function through the use 
of simulated evolution, i.e. the survival of the 
fittest strategy [4].  The basic idea is as follows.  
First, populate the solution space with 
individuals with different values assigned to 
their genes (or variables), which are elements of 
chromosomes (or vectors).  Thus, for example, 
if we want to maximize y as in the following 
equation 
 

),,( 321 xxxfy =  (12) 
 

x1, x2, and x3 can be thought of as genes 
whereas a row vector [x1, x2, x3] as a 
chromosome or individual.  A population 
consists of numerous instances of this vector. 
These vectors are evaluated with fitness 
function (12) Then, better chance of survival is 
given to the more fit individual (i.e. larger y) 
from the population and pass the characteristics 
of the fit individual to the next generation (or 
search the state-space neighborhood of these 
individuals) through an operation called cross 
over (usually, two new individuals are created 
out of two parents, but not necessarily).  
Mutation is employed to avoid premature 
convergence.  Successive application of the 
process enables us to find the optimal solution. 
In the current study, decimal base floating-point 
representation of genes was used  

In this research, Normalized Geometric 
Ranking method [4] was employed in the 
process of selecting mates, and Arithmetic 
Cross Over method [4] was employed in the 
reproduction process.   

4.2 Hybrid GA-SQP 
A hybrid of GA and SQP was tried out.  

SQP is a very standard gradient-based 
optimization method that closely mimics 
Newton’s method in constrained optimization 
[7].  In the hybrid algorithms, SQP is nested 

inside GA. Each chromosome in the population 
is optimized using SQP and then mated and 
reproduced using GA.  The SQP iterations were 
not necessarily carried out until convergence.  
Rather, it was stopped after fixed number of 
iteration, which was set to 40 function 
evaluations in this research.  This helped in 
maintaining the diversity of the population.  Fig. 
3 shows the flow of the optimization procedure.  
The SQP worked as a subroutine to the fitness 
function evaluation, i.e. SQP took the 
chromosome as the initial condition and locally 
improved to return a modified chromosome.  
Thus, the population was shifted along its local 
gradient before the selection of mates took place.  
 

Define: 
Parameter

Cost Function
Cost

Create population

Evaluate Cost or Fitness

Select mate

Test convergence

Mutate

Reproduce
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SQP
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Reproduce

Stop
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Fig. 3 Flow chart for Hybrid GA-SQP 

4.3 Function Approximation (Interpolation) 
In order to save computational time, Radial 

Basis Function was employed to model the 
mapping between the design variables and the 
flapping efficiency.  Radial Basis Function is a 
form of neural network, which employs gauss 
distribution function in the hidden layer and 
linear transfer function in the output layer.  The 
weight matrix in the hidden layer corresponds to 
the location of center of the gauss distribution.  
The weight matrix in the output layer 
corresponds to the magnitude (height) of the 
gauss distribution.  The spread or sigma is 
usually predetermined as a constant.  A 
significant advantage of RBF modeling over 
other neural network is that its weight matrices 
are determined very quickly.   

Instead of computing aerodynamic forces 
for every change in the design variables, RBF 
was trained with a set of data obtained by 
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calculating the aerodynamic forces with respect 
to the design variables.  Once the RBF was 
trained, it was used in the optimization 
procedure to obtain a solution.   

5 Results 
Numerical computation of thrust and 

efficiency was performed based on the simple 
model described previously.  The following 
values were used in the calculation unless 
specified otherwise.   
  
ea = 0.25 
h = Chord length: 0.05m 
S = 0.075 m2 
AR = 3 
U = 1 m/s 
ρ = 1 kg/m3 
 
A desktop computer with 866 MHz Intel® 
Pentium® III processor and Matlab® was used 
to produce the numerical results.  

Fig. 4 and Fig.5 show the average thrust 
and average efficiency with respect to two 
design variables.  Fig. 4 shows the thrust at 
various flapping frequencies and phase 
differences (here, denoted as phi1).  Fig. 5 
shows the flapping efficiency with respect to the 
flapping frequency and phase difference 
between heaving and pitching.  Efficiency is 
defined as the ratio between thrust coefficient 
and power coefficient, i.e. CT/CP.   

Fig. 6 is a carpet plot version of Fig. 5 and 
Fig. 7 is the RBF reconstruction of Fig. 6. Five 
uniformly spaced data was taken along each 
axis.  Therefore total of 25 combinations of 
phase difference and flapping frequency were 
used to train the RBF.  Using this RBF model, 
GA was employed to find the peak, i.e. the 
maximum of the efficiency.  Table 1 compares 
two methods of optimization.  One is the 
method just described and the other is the 
benchmark where aerodynamic forces were 
calculated every time the fitness function 
(efficiency in this case) was called.  As can be 
seen, there was a substantial reduction in 
computational time. However, in higher 
dimension, i.e. larger number of design 

variables, such advantage could be offset by 
growing  number of calculation needed to 
construct the approximated evaluation function 
(or fitness function).  Table 2 shows such a case.  
Note also that the function approximation 
introduced errors that affected the optimum 
values as one can observe in the discrepancy in 
the solutions given by the two methods.  

 Table 3 shows a typical output of two 
optimization procedures, namely hybrid GA-
SQP and GA. GA-SQP almost always gave a 
better solution than GA with higher value of 
efficiency.  This is due to the superior search 
capability of GA-SQP, which exploits the global 
search of GA and the gradient based local 
search of GA.  Comparison with SQP was not 
enlisted because it was highly sensitive to the 
initial guess of the solution.  With a good guess, 
SQP is highly efficient and it converged to the 
solution in about 10% of the time required for 
GA.  With SQP, a random pick of the initial 
solution almost always gave a totally different 
solution from that found by GA or GA-SQP 

In Table 2, and 3 flapping frequency had a 
range of 10 to 100 Hz, heaving amplitude of 0 
to 15 cm, pitching amplitude of 0 to pi/2 rad.   
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Fig. 7 Carpet Plot of efficiency w.r.t. phase difference 
between heaving and pitching and flapping frequency.  

This is the RBF approximation of Fig. 6 

 
 

optimization using RBF direct optimization  
elapsed time = 36 sec. elapsed time = 377 sec. 
solution: freq.=10Hz, 
phase=-0.111 

solution: freq.=10Hz,  
phase= -0.0644 

flapping efficiency= 
0.685 

flapping 
efficiency=0.686 

Table 1 Comparison between GA on RBF and GA on 
original function at higher dimension (i.e. 4 independent 
variables) with number of population = 100, number of 

generation = 15 thrust =0.5 N, and CLmax=inf.   

 
GA on RBF 
approximation 

GA on original fitness 
function 

elapsed time = 5202 sec. elapsed time = 981 sec. 
solution: freq.=31.8 Hz, 
heave=10.9 cm, pitch=0 
rad. elastic axis 
location=85% chord 

solution: freq.=16.6 Hz,  
heave=12.8 cm, pitch=0 
rad. elastic axis 
location=leading edge 

flapping efficiency= 0.28 flapping efficiency=0.31 

Table 2 Comparison between GA on RBF and GA on 
original function at higher dimension (i.e. 4 independent 
variables) with number of population = 300, number of 

generation = 15 thrust =0.5 N, and CLmax=3.0 

 
GA-SQP GA alone 
elapsed time=8796 s elapsed time=610 s 
solution: freq.=70.3 Hz, 
phase diff=-0.0519 rad. 
heave=3.58 cm, 
pitch=0.714 rad. 

solution: freq.= 65.1 Hz, 
phase diff=0.11 rad. 
heave=4.19 cm, 
pitch=0.506 rad. 

flapping 
efficiency=0.500 

flapping 
efficiency=0.223 

Table 3 Comparison between GA-SQP and GA with 
number of population = 200, number of generation = 15 

thrust =0.5 N, and CLmax=3.0 

 

6 Conclusions 
Optimization of flapping motion was 

conducted using Floating Point GA.  A Neural 
Network (Radial Basis Function) was employed 
to model the mapping between the design 
variables and the flapping efficiency.  It was 
observed that substantial reduction in 
computational time could be achieved using the 
Neural Network modeling of fitness function in 
the optimization procedure.  However, in high 
dimensional search space, the time required to 
construct function approximation can offset the 
advantage of the fast optimization.  This is due 
to the exponential increase in sampling points.  
If we sample 10 values from each independent 
variable, n variables means 10n points to sample.  
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Further refinement in the construction of 
function approximation is necessary before it 
can be successfully applied to the optimization 
of flapping wings.   

Hybrid GA-SQP algorithms was applied 
and better solution was found compared to GA 
and it is a promising method for optimizing 
flapping wings.    

In this paper, only the coupling between 
heaving and pitching, and corresponding 
amplitudes were considered (i.e. 4 independent 
variables).  Convergent optimal solutions were 
obtained.  A more sophisticated model can be 
developed to optimize not only the flapping 
motion but also the planform shape, inertia and 
elastic properties.  To achieve this objective, 
further refinement in optimization procedure is 
necessary.  Particularly, with respect to 

1) Faster convergence in optimization, 
2) More efficient construction of function 

approximation. 
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