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ABSTRACT: The paper describes sequential and parallel 
methods of recursive data sorting that are applied to binary 
trees. Hardware circuits implementing these methods are 
based on the model of a hierarchical finite state machine, 
which provides support for recursion in hardware. It is 
shown that the considered technique allows the known 
optimization methods for conventional state machines to be 
applied directly. The described circuits have been 
implemented in commercial FPGAs and tested in numerous 
examples. Analysis and comparison of alternative and 
competitive techniques is also done in the paper. 

1 Introduction 
Sorting is an important problem of many high 
performance applications [1]. Here, we take advantage of 
specialized (reconfigurable) hardware and demonstrate 
benefits of recursive technique applied to data structures 
to be organized in a form of binary trees. The trees are 
based on links between sorted data items (tree nodes) 
through pointers and differ from table-based structures. It 
is known that recursive technique for binary tree based 
data structures gives numerous advantages [2,3]. This 
paper evaluates existing and suggests new FPGA-based 
digital circuits for recursive data sorting using the model 
of a hierarchical finite state machine (HFSM) [4]. 

The advantages and disadvantages of recursive 
techniques in software are well known [2]. It has been 
shown [3,5] that recursion can be implemented in 
hardware much more efficiently through parallelisation of 
algorithms and optimization of recursive calls/returns. 

A significant advantage of tree-based data structures is 
the support for the following two important features: 1) it 
is not necessary to rebuild the tree in order to insert new 
data items; and 2) the number of data items to be sorted 
might be unknown.  This is because the tree to be built for 
any number of data items that have already been 
processed is a part of the tree for new data items and, as a 
result, any resorting can be done easier than for non-
pointer based data structures. Thus, the pointer-based data 
structures (such as trees) are better for priority buffers 
(queues) and similar devices. 

Detailed comparison of recursive and iterative 
processing of binary trees is done in [3,6], where the 
advantages of recursion were demonstrated that are: 
clarity of the algorithm; the ease of modifications and 
improvements (indeed any modification of a recursive 

module does not change the remainder of the algorithmic 
specification), better formalization (through reusable 
models and the relevant design templates and 
specification methods). The results of experiments 
presented in [3,6] show that for binary tree based data 
processing the used recursive technique permits to 
construct circuits with better performance and smaller 
hardware resources. This paper concentrates on further 
improvements of circuits implementing recursive sorting 
algorithms applying both algorithmic and architectural 
optimization techniques. The challenges in optimization 
are capability to use cheap microelectronic devices to 
design configurable high-performance sorters adaptable to 
generally unknown number of input data items, such as 
that are needed for priority-driven buffering. 

The remainder of this paper is organized in five 
sections. Section 2 describes methods for processing 
binary trees that are essential for recursive sorting 
algorithms. Section 3 suggests improvements in hardware 
architectures for the considered methods. Section 4 
presents optimization techniques. Section 5 analyzes 
experimental results, compares known and proposed 
implementations, and suggests further improvements. The 
conclusion is given in Section 6. 

2 Recursive Processing of Binary Trees 
The use of binary trees for sorting data in hardware 
circuits is considered in [3,5] and it is based on the 
following technique. Suppose each node of the tree 
contains three fields: a value (e.g. an integer), a pointer to 
the left child node (LA), and a pointer to the right child 
node (RA). The nodes are maintained in such a way that 
for any node the left sub-tree only contains values, which 
are less than the value of that node and the right sub-tree 
contains only values that are greater. Repeated values are 
taken into account in a counter associated with each node. 
Such a tree can be easily built and traversed recursively.  

An example of a binary tree is presented in Figure 1.a 
in form of a graph and in Figure 1.b in form of a linked 
list that is kept in memory. For each node in Figure 1.a 
the value and the relevant address in memory are shown. 
The first column of Figure 1.b specifies memory location, 
where the node (the list item) is stored. The other columns 
keep left (LA) and right (RA) addresses according to the 
mentioned above format. Since the root is always stored 
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at zero address, zero code can be safely used to indicate 
the absence of a node. 

The known methods [3] permit to construct a binary 
tree from incoming data items and to output the sorted 
data from the tree. The first improvement is achieved 
through the use of dual-port memories and algorithmic 
modifications. Suppose the currently processed node is 
saved in a buffer register. Dual-port memory permits 
simultaneous access to the left and to the right child nodes 
through the LA and RA. Analysis of both child nodes and 
their further descendants allows a larger fragment of the 
binary tree to be processed within the same time slot.  

Let us assume that the tree in Figure 1.a is stored in a 
dual-port memory as it is shown in Figure 2. Suppose the 
fragment of the tree enclosed in a dashed circle is 
currently being processed (see the contents of the buffer 
register in Figure 2). Each output word selected by the 
addresses A and B of the dual port memory keeps the 
same data as the buffer register (i.e. Data+LA+RA). 
Therefore, at each recursive step up to three nodes, 
enclosed in Figure 2 by a dashed circle, can be processed 
within the same time slot. Thus, descendants of child 
nodes can be analyzed to reduce the number of recursive 
calls/returns during the traversal procedure compared to 
the known method. Indeed, if the left child node does not 
have child nodes then its value can be sent to the output, 
followed by the value of the currently processed node (in 
case of ascending sorting). Thus, there is no need to call 
the algorithm to process the left child node. The same 
applies to the right child node. 

 

 
Figure 1. An example of a binary tree in form of a graph 

(a) and linked list (b) that is stored in a memory 
 
Another potential improvement in the performance 

can be achieved with the introduction of parallelism that 
is not supported by the known methods. One way is to 
traverse sub-trees of the root node in parallel. However, 
there is one significant limitation. Although the sub-trees 
are processed in parallel, the results cannot be output in 
parallel. If the tree is completely unbalanced, one sorter 
unit would need significantly more time for data 
processing than the other. This may completely nullify the 
advantage of parallel processing compared to its 
sequential counterpart. 

Such dependency is most certainly undesirable. It can 
be eliminated with distribution of the incoming data 
between N>1 parallel HFSM-based circuits. Each sorter 
unit traverses its own independent tree, while the results 
are mapped from the circuits to a sorted sequence. 

 
Figure 2. An example of a binary tree, stored in a 

dual-port memory 
 

3 Hardware Implementation 
Figure 3 depicts the proposed top-level architecture of a 
circuit for data sorting. 
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Figure 3. Top-level structure of the circuit for data sorting 
  

The core of the data sorter is composed of a HFSM 
and a datapath. For sequential data sorting one instance of 
the data sorter is created. For parallel data sorting N>1 
instances are generated. 

Two different HFSM models were examined. The first 
model is very similar to [3] and it has the following 
distinctive features. The global HFSM state (GS) is 
defined by the active module and the state in the active 
module. As a result, the states in different modules can be 
assigned the same labels (i.e. the same codes). There are 
two stack memories for storing codes of modules and 
states.  In case of hierarchical call, the GS (codes of the 
current module and the current state) is pushed into the 
stacks. When a module is terminated, the HFSM performs 
a hierarchical return (the GS is restored from the stacks). 
We will call this model HFSM with explicit modules. 
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The second model (HFSM with implicit modules) 
behaves similarly to a conventional finite state machine 
(FSM). It has a state register and a single stack. In this 
case each state has to be assigned a different label (code). 
The stack is needed just to know which state has to be the 
target of the transition when a called module is 
terminated. The width of a stack entry can be also 
minimized, as the number of return states is limited. 
When a state code is pushed into the stack, it can be 
encoded with a smaller code. Similarly, during 
hierarchical return the content of the stack is decoded 
before being placed into the state register. 

In any module all the necessary state transitions are 
executed through a register, much like it is done in a 
conventional FSM. Suppose that a new module Z has to 
be called in state aj. In this case the following operations 
are executed at the same time: 1) the next state of the 
current module is saved in the stack; 2) the stack pointer 
is incremented; and 3) the transition from aj to the first 
state of Z is performed in the state register. When the 
called module Z is terminated, the stack pointer is 
decremented and the state from the stack has to be 
selected for the next state transition.  

There exist two modes of returns. In the first mode 
there are no conditional transitions from the state like aj. 
Thus, we can explicitly save in the stack the target state 
for transition after return from the called module. In the 
second (more complicated) mode there are conditional 
transitions from the states where we have to call other 
modules and conditions for such transitions can be 
influenced by the called modules. In this case the method 
based on the use of a special return flag (described in [3] 
with all the necessary details) can be applied directly. 
Ordinary transitions are executed in the register similarly 
to conventional FSMs. 

A major advantage of the second model is that it is 
directly applicable to all known optimization techniques 
that have been proposed for conventional FSMs. 

4 Optimization Technique 
In the last decade, probabilistic approaches have received 
a lot of attention as viable techniques for analyzing 
complex digital systems. As a rule, the control part in the 
high-level representation of a digital system is considered 
to be a FSM. Given the FSM description and the input 
probabilities, the probabilistic behaviour of the FSM can 
be studied regarding to its transition structure as a Markov 
chain. The input probability distribution can be obtained 
by simulating the FSM at a higher level of abstraction in 
the context of its environment or by direct knowledge 
from the designer [7]. By labelling each outgoing edge of 
each state with the probability for the FSM to make that 
particular transition, a finite state model, that matches the 
definition of a discrete parameter Markov chain, can be 
obtained. Analyzing the behaviour of such Markov chain 
allows the reachability analysis of the FSM to be 
performed. Using steady state probabilities, which are 
received as the result of such analysis, it is possible to 

build different kinds of quantitative estimations of FSM’s 
stochastic behaviour. These stochastic estimations can 
then be successfully applied to solving various problems 
in the field of low-power logic synthesis. 

In a high-level specification, states of the FSM are 
represented with variables in symbolic form. As current 
digital circuits employ bi-stable storage elements, which 
can hold one of only two possible values, transformation 
of these abstract variables to physical implementation 
requires binary encoding. In other words, each symbolic 
variable should be replaced with a binary vector. The 
resultant circuit is dependent on the selected encoding, 
which may affect area, performance, testability and power 
consumption among others. 

The hardware implementation of the FSM generally 
consists of a register, where binary state codes are held, 
and combinational logic, which computes the next state 
and outputs. Both parts serve as power dissipation 
sources, whereas power is consumed during charging and 
discharging of load capacitances. The dynamic power 
dissipation in the combinational part of the circuit is very 
difficult to estimate, even after the state encoding is 
determined [8]. Therefore, reduction of switching activity 
in the state register was chosen as the primary 
optimization goal. Based on the stochastic model of FSM, 
the state assignment is obtained by minimizing the 
Hamming distance (number of bits by which two codes 
differ) between adjacent states with higher transition 
probability. 

The encoding for the second HFSM model was 
obtained with a special CAD tool called Stochastic FSM 
Encoder [9]. To estimate the impact of the encoding on 
power consumption, Xilinx ISE 11 was used for carrying 
out FPGA design flow with Spartan-3E family FPGA 
being set as the target device. Power consumption 
estimation was received using XPower Analyzer tool. The 
default settings for the switching rate of inputs were used. 
The frequency of clock signal was set to 50MHz. Only 
the dynamic power component was considered, as it has 
been the target of optimization. 

5 Experimental Results 
Circuits that implement methods of section 2 and 

possess architectures of section 3 were described in 
VHDL. The synthesis and implementation of these 
circuits were done in Xilinx ISE 11 for FPGA 
Spartan3E-1200E-FG320 of Xilinx available on the 
prototyping board NEXYS2 from Digilent.  

A random-number generator produces items of data 
with a length of 14 bits (i.e. values in an interval between 
0 and 16383). These data are sorted by the following 
methods that were implemented and tested using two 
models of HFSM briefly characterized in section 3: 
1. Known sequential method that was described in [3]; 
2. Sequential method described in section 2 and based 

on the use of dual-port memories;  
3. Parallel method described in section 2 and based on 

simultaneous processing of N trees. 
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For each method the maximum number n was 
determined, where 2n is the maximum number of data that 
can be sorted in a single FPGA Spartan3E-1200E-FG320. 
Table 1 presents number n together with number of slices 
(S), block RAMs (B) and the maximum attainable clock 
frequency Fmax (here HFSM(explicit)/HFSM(implicit) 
indicates the model with explicit/implicit modules). 

As can be seen from Table 1 the main restriction that 
limits the number of data items is the size of available 
embedded Block RAMs (B). Thus, the number of data 
items can be significantly increased if we replace the 
cheap Spartan-3E FPGA with a more advanced FPGA 
such as that are available from Virtex-5/6 families. We 
have used the Spartan-3E because one of the paper 
objectives is the low cost of data sorters. 
 
Table 1. Implementation results for the methods 1-3 

Method n HFSM(explicit) HFSM(implicit) 
S Fmax B S Fmax B 

1 12 2415 100 13 1175 107 13 
1 13 4407 100 27 1965 103 27 
2 12 2609 77 20 1146 65 20 

3 (N=2) 12 2812 75 20 - - - 
3 (N=4) 12 3343 73 20 - - - 

 
Table 2 presents the results of sorting by different 

methods characterized in section 2. The number of data 
items is approximately 212 as it is suitable for all methods. 

 
Table 2. The results of experiments for the methods 1-3 

Number 
of data 
items  

Number of clock cycles required for sorting 
Method 

1 
Method 

2 
Method 3 

(N=2) 
Method 3 

(N=4) 
4019 16075 11242 5622 4047 
3985 15939 11175 5553 4013 
3945 15779 10964 5541 3969 
3969 15875 11168 5531 4001 
3979 15915 11043 5587 4013 
3963 15851 11087 5540 3989 
4010 16039 11095 5622 4037 
3977 15907 11110 5553 4013 
4048 16191 11235 5706 4072 
3988 15951 11028 5555 4014 
 
Our results demonstrate that the known method [3] 

allows more data items to be sorted on a single FPGA. 
This is because this method requires less number of 
memory blocks. However, the performance of the known 
method is the worst (see Table 2). The average number of 
clock cycles per data item is 4. The known method 
exhibits the same performance if the number of data items 
is increased to 213. 

The sequential method based on the use of dual port 
memories provides better result with the average number 
of clock cycles of 2.8 per data item.  

Parallel methods give the best performance. 
Processing of 2 independent binary trees improves 

performance in approximately 1.4 clock cycles per data 
item (i.e. it is nearly proportional to the square root of N). 
The same tendency has taken place for N=4. Increasing 
the number of parallel sorters from 2 to 4 decreases the 
time of sorting to almost 1 clock cycle per data item. 
However, the relevant circuits require more FPGA 
resources (see Table 1).  

The model of HFSM with implicit modules requires 
less FPGA resources and permits the optimization 
methods of section 4 to be applied. Experiments with 
these methods have shown the decreasing of power 
consumption in about 5%.   

6 Conclusions 
The paper suggests new hardware-oriented sequential and 
parallel implementations of recursive sorting algorithms. 
It clearly demonstrates the advantages of the proposed 
innovations based on prototyping in FPGA and abundant 
experiments. The results of the paper are not limited to 
just recursive sorting. They have a wide scope and can be 
applied effectively to numerous systems that implement 
recursive algorithms over tree-like structures. 
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