
Optimization of FPGA-based Circuits for Recursive Data Sorting

D. Mihhailov1, V. Sklyarov2, I. Skliarova2, A. Sudnitson1

1Department of Computer Engineering, TUT, Raja 15, 12618 Tallinn, Estonia, E-mail: alsu@cc.ttu.ee

2DETI/IEETA, University of Aveiro, Portugal, E-mails: skl@ua.pt, iouliia@ua.pt

ABSTRACT: The paper describes sequential and parallel
methods of recursive data sorting that are applied to binary
trees. Hardware circuits implementing these methods are
based on the model of a hierarchical finite state machine,
which provides support for recursion in hardware. It is
shown that the considered technique allows the known
optimization methods for conventional state machines to be
applied directly. The described circuits have been
implemented in commercial FPGAs and tested in numerous
examples. Analysis and comparison of alternative and
competitive techniques is also done in the paper.

1 Introduction
Sorting is an important problem of many high
performance applications [1]. Here, we take advantage of
specialized (reconfigurable) hardware and demonstrate
benefits of recursive technique applied to data structures
to be organized in a form of binary trees. The trees are
based on links between sorted data items (tree nodes)
through pointers and differ from table-based structures. It
is known that recursive technique for binary tree based
data structures gives numerous advantages [2,3]. This
paper evaluates existing and suggests new FPGA-based
digital circuits for recursive data sorting using the model
of a hierarchical finite state machine (HFSM) [4].

The advantages and disadvantages of recursive
techniques in software are well known [2]. It has been
shown [3,5] that recursion can be implemented in
hardware much more efficiently through parallelisation of
algorithms and optimization of recursive calls/returns.

A significant advantage of tree-based data structures is
the support for the following two important features: 1) it
is not necessary to rebuild the tree in order to insert new
data items; and 2) the number of data items to be sorted
might be unknown. This is because the tree to be built for
any number of data items that have already been
processed is a part of the tree for new data items and, as a
result, any resorting can be done easier than for non-
pointer based data structures. Thus, the pointer-based data
structures (such as trees) are better for priority buffers
(queues) and similar devices.

Detailed comparison of recursive and iterative
processing of binary trees is done in [3,6], where the
advantages of recursion were demonstrated that are:
clarity of the algorithm; the ease of modifications and
improvements (indeed any modification of a recursive

module does not change the remainder of the algorithmic
specification), better formalization (through reusable
models and the relevant design templates and
specification methods). The results of experiments
presented in [3,6] show that for binary tree based data
processing the used recursive technique permits to
construct circuits with better performance and smaller
hardware resources. This paper concentrates on further
improvements of circuits implementing recursive sorting
algorithms applying both algorithmic and architectural
optimization techniques. The challenges in optimization
are capability to use cheap microelectronic devices to
design configurable high-performance sorters adaptable to
generally unknown number of input data items, such as
that are needed for priority-driven buffering.

The remainder of this paper is organized in five
sections. Section 2 describes methods for processing
binary trees that are essential for recursive sorting
algorithms. Section 3 suggests improvements in hardware
architectures for the considered methods. Section 4
presents optimization techniques. Section 5 analyzes
experimental results, compares known and proposed
implementations, and suggests further improvements. The
conclusion is given in Section 6.

2 Recursive Processing of Binary Trees
The use of binary trees for sorting data in hardware
circuits is considered in [3,5] and it is based on the
following technique. Suppose each node of the tree
contains three fields: a value (e.g. an integer), a pointer to
the left child node (LA), and a pointer to the right child
node (RA). The nodes are maintained in such a way that
for any node the left sub-tree only contains values, which
are less than the value of that node and the right sub-tree
contains only values that are greater. Repeated values are
taken into account in a counter associated with each node.
Such a tree can be easily built and traversed recursively.

An example of a binary tree is presented in Figure 1.a
in form of a graph and in Figure 1.b in form of a linked
list that is kept in memory. For each node in Figure 1.a
the value and the relevant address in memory are shown.
The first column of Figure 1.b specifies memory location,
where the node (the list item) is stored. The other columns
keep left (LA) and right (RA) addresses according to the
mentioned above format. Since the root is always stored

129

2010 12th Biennial Baltic Electronics Conference (BEC2010)
 Tallinn, Estonia, October 4-6, 2010

978-1-4244-7358-8/10/$26.00 ©2010 IEEE

at zero address, zero code can be safely used to indicate
the absence of a node.

The known methods [3] permit to construct a binary
tree from incoming data items and to output the sorted
data from the tree. The first improvement is achieved
through the use of dual-port memories and algorithmic
modifications. Suppose the currently processed node is
saved in a buffer register. Dual-port memory permits
simultaneous access to the left and to the right child nodes
through the LA and RA. Analysis of both child nodes and
their further descendants allows a larger fragment of the
binary tree to be processed within the same time slot.

Let us assume that the tree in Figure 1.a is stored in a
dual-port memory as it is shown in Figure 2. Suppose the
fragment of the tree enclosed in a dashed circle is
currently being processed (see the contents of the buffer
register in Figure 2). Each output word selected by the
addresses A and B of the dual port memory keeps the
same data as the buffer register (i.e. Data+LA+RA).
Therefore, at each recursive step up to three nodes,
enclosed in Figure 2 by a dashed circle, can be processed
within the same time slot. Thus, descendants of child
nodes can be analyzed to reduce the number of recursive
calls/returns during the traversal procedure compared to
the known method. Indeed, if the left child node does not
have child nodes then its value can be sent to the output,
followed by the value of the currently processed node (in
case of ascending sorting). Thus, there is no need to call
the algorithm to process the left child node. The same
applies to the right child node.

Figure 1. An example of a binary tree in form of a graph

(a) and linked list (b) that is stored in a memory

Another potential improvement in the performance

can be achieved with the introduction of parallelism that
is not supported by the known methods. One way is to
traverse sub-trees of the root node in parallel. However,
there is one significant limitation. Although the sub-trees
are processed in parallel, the results cannot be output in
parallel. If the tree is completely unbalanced, one sorter
unit would need significantly more time for data
processing than the other. This may completely nullify the
advantage of parallel processing compared to its
sequential counterpart.

Such dependency is most certainly undesirable. It can
be eliminated with distribution of the incoming data
between N>1 parallel HFSM-based circuits. Each sorter
unit traverses its own independent tree, while the results
are mapped from the circuits to a sorted sequence.

Figure 2. An example of a binary tree, stored in a

dual-port memory

3 Hardware Implementation
Figure 3 depicts the proposed top-level architecture of a
circuit for data sorting.

Data Sorter

Core of the data sorter: single (for
sequential sorting) or multiple (for
parallel sorting) instances of HFSM-
based control unit and datapath

HFSM
Datapath and
Blocks of RAM

Supplementary circuits
for input and output

In
pu

t (
un

so
rte

d)
 d

at
a

O
ut

pu
t (

so
rte

d)
 d

at
a

Figure 3. Top-level structure of the circuit for data sorting

The core of the data sorter is composed of a HFSM
and a datapath. For sequential data sorting one instance of
the data sorter is created. For parallel data sorting N>1
instances are generated.

Two different HFSM models were examined. The first
model is very similar to [3] and it has the following
distinctive features. The global HFSM state (GS) is
defined by the active module and the state in the active
module. As a result, the states in different modules can be
assigned the same labels (i.e. the same codes). There are
two stack memories for storing codes of modules and
states. In case of hierarchical call, the GS (codes of the
current module and the current state) is pushed into the
stacks. When a module is terminated, the HFSM performs
a hierarchical return (the GS is restored from the stacks).
We will call this model HFSM with explicit modules.

Data LA RA#
19 2 1 0
22 3 4 1
17 5 0 2
20 0 6 3
35 7 0 4
11 9 8 5
21 0 0 6
31 0 0 7
15 0 0 8
7 0 0 9

17

19

22

11

7 15

20 35

21 31

20 0 6 35 7 0

A B

22 3 4

Dual-port
RAM

Port A Port B

Buffer RG

17

19

22

11

7 15

20 35

21 31

a) b) 0

2 1

5

9 8

3 4

6 7

130

The second model (HFSM with implicit modules)
behaves similarly to a conventional finite state machine
(FSM). It has a state register and a single stack. In this
case each state has to be assigned a different label (code).
The stack is needed just to know which state has to be the
target of the transition when a called module is
terminated. The width of a stack entry can be also
minimized, as the number of return states is limited.
When a state code is pushed into the stack, it can be
encoded with a smaller code. Similarly, during
hierarchical return the content of the stack is decoded
before being placed into the state register.

In any module all the necessary state transitions are
executed through a register, much like it is done in a
conventional FSM. Suppose that a new module Z has to
be called in state aj. In this case the following operations
are executed at the same time: 1) the next state of the
current module is saved in the stack; 2) the stack pointer
is incremented; and 3) the transition from aj to the first
state of Z is performed in the state register. When the
called module Z is terminated, the stack pointer is
decremented and the state from the stack has to be
selected for the next state transition.

There exist two modes of returns. In the first mode
there are no conditional transitions from the state like aj.
Thus, we can explicitly save in the stack the target state
for transition after return from the called module. In the
second (more complicated) mode there are conditional
transitions from the states where we have to call other
modules and conditions for such transitions can be
influenced by the called modules. In this case the method
based on the use of a special return flag (described in [3]
with all the necessary details) can be applied directly.
Ordinary transitions are executed in the register similarly
to conventional FSMs.

A major advantage of the second model is that it is
directly applicable to all known optimization techniques
that have been proposed for conventional FSMs.

4 Optimization Technique
In the last decade, probabilistic approaches have received
a lot of attention as viable techniques for analyzing
complex digital systems. As a rule, the control part in the
high-level representation of a digital system is considered
to be a FSM. Given the FSM description and the input
probabilities, the probabilistic behaviour of the FSM can
be studied regarding to its transition structure as a Markov
chain. The input probability distribution can be obtained
by simulating the FSM at a higher level of abstraction in
the context of its environment or by direct knowledge
from the designer [7]. By labelling each outgoing edge of
each state with the probability for the FSM to make that
particular transition, a finite state model, that matches the
definition of a discrete parameter Markov chain, can be
obtained. Analyzing the behaviour of such Markov chain
allows the reachability analysis of the FSM to be
performed. Using steady state probabilities, which are
received as the result of such analysis, it is possible to

build different kinds of quantitative estimations of FSM’s
stochastic behaviour. These stochastic estimations can
then be successfully applied to solving various problems
in the field of low-power logic synthesis.

In a high-level specification, states of the FSM are
represented with variables in symbolic form. As current
digital circuits employ bi-stable storage elements, which
can hold one of only two possible values, transformation
of these abstract variables to physical implementation
requires binary encoding. In other words, each symbolic
variable should be replaced with a binary vector. The
resultant circuit is dependent on the selected encoding,
which may affect area, performance, testability and power
consumption among others.

The hardware implementation of the FSM generally
consists of a register, where binary state codes are held,
and combinational logic, which computes the next state
and outputs. Both parts serve as power dissipation
sources, whereas power is consumed during charging and
discharging of load capacitances. The dynamic power
dissipation in the combinational part of the circuit is very
difficult to estimate, even after the state encoding is
determined [8]. Therefore, reduction of switching activity
in the state register was chosen as the primary
optimization goal. Based on the stochastic model of FSM,
the state assignment is obtained by minimizing the
Hamming distance (number of bits by which two codes
differ) between adjacent states with higher transition
probability.

The encoding for the second HFSM model was
obtained with a special CAD tool called Stochastic FSM
Encoder [9]. To estimate the impact of the encoding on
power consumption, Xilinx ISE 11 was used for carrying
out FPGA design flow with Spartan-3E family FPGA
being set as the target device. Power consumption
estimation was received using XPower Analyzer tool. The
default settings for the switching rate of inputs were used.
The frequency of clock signal was set to 50MHz. Only
the dynamic power component was considered, as it has
been the target of optimization.

5 Experimental Results
Circuits that implement methods of section 2 and

possess architectures of section 3 were described in
VHDL. The synthesis and implementation of these
circuits were done in Xilinx ISE 11 for FPGA
Spartan3E-1200E-FG320 of Xilinx available on the
prototyping board NEXYS2 from Digilent.

A random-number generator produces items of data
with a length of 14 bits (i.e. values in an interval between
0 and 16383). These data are sorted by the following
methods that were implemented and tested using two
models of HFSM briefly characterized in section 3:
1. Known sequential method that was described in [3];
2. Sequential method described in section 2 and based

on the use of dual-port memories;
3. Parallel method described in section 2 and based on

simultaneous processing of N trees.

131

For each method the maximum number n was
determined, where 2n is the maximum number of data that
can be sorted in a single FPGA Spartan3E-1200E-FG320.
Table 1 presents number n together with number of slices
(S), block RAMs (B) and the maximum attainable clock
frequency Fmax (here HFSM(explicit)/HFSM(implicit)
indicates the model with explicit/implicit modules).

As can be seen from Table 1 the main restriction that
limits the number of data items is the size of available
embedded Block RAMs (B). Thus, the number of data
items can be significantly increased if we replace the
cheap Spartan-3E FPGA with a more advanced FPGA
such as that are available from Virtex-5/6 families. We
have used the Spartan-3E because one of the paper
objectives is the low cost of data sorters.

Table 1. Implementation results for the methods 1-3

Method n HFSM(explicit) HFSM(implicit)
S Fmax B S Fmax B

1 12 2415 100 13 1175 107 13
1 13 4407 100 27 1965 103 27
2 12 2609 77 20 1146 65 20

3 (N=2) 12 2812 75 20 - - -
3 (N=4) 12 3343 73 20 - - -

Table 2 presents the results of sorting by different

methods characterized in section 2. The number of data
items is approximately 212 as it is suitable for all methods.

Table 2. The results of experiments for the methods 1-3

Number
of data
items

Number of clock cycles required for sorting
Method

1
Method

2
Method 3

(N=2)
Method 3

(N=4)
4019 16075 11242 5622 4047
3985 15939 11175 5553 4013
3945 15779 10964 5541 3969
3969 15875 11168 5531 4001
3979 15915 11043 5587 4013
3963 15851 11087 5540 3989
4010 16039 11095 5622 4037
3977 15907 11110 5553 4013
4048 16191 11235 5706 4072
3988 15951 11028 5555 4014

Our results demonstrate that the known method [3]

allows more data items to be sorted on a single FPGA.
This is because this method requires less number of
memory blocks. However, the performance of the known
method is the worst (see Table 2). The average number of
clock cycles per data item is 4. The known method
exhibits the same performance if the number of data items
is increased to 213.

The sequential method based on the use of dual port
memories provides better result with the average number
of clock cycles of 2.8 per data item.

Parallel methods give the best performance.
Processing of 2 independent binary trees improves

performance in approximately 1.4 clock cycles per data
item (i.e. it is nearly proportional to the square root of N).
The same tendency has taken place for N=4. Increasing
the number of parallel sorters from 2 to 4 decreases the
time of sorting to almost 1 clock cycle per data item.
However, the relevant circuits require more FPGA
resources (see Table 1).

The model of HFSM with implicit modules requires
less FPGA resources and permits the optimization
methods of section 4 to be applied. Experiments with
these methods have shown the decreasing of power
consumption in about 5%.

6 Conclusions
The paper suggests new hardware-oriented sequential and
parallel implementations of recursive sorting algorithms.
It clearly demonstrates the advantages of the proposed
innovations based on prototyping in FPGA and abundant
experiments. The results of the paper are not limited to
just recursive sorting. They have a wide scope and can be
applied effectively to numerous systems that implement
recursive algorithms over tree-like structures.

Acknowledgment
This research was supported by the European Union
through the European Regional Development Fund.

References
[1] R.D. Chamberlain, N. Ganesan, “Sorting on

Architecturally Diverse Computer Systems”, Proc. of the
3d International Workshop on High-Performance
Reconfigurable Computing Technology and Applications,
Portland, 2009, pp. 39-46.

[2] F.M.Carrano, Data Abstraction and Problem Solving with
C++, The Benjamin/Cumming Publishing Company, Inc.,
2006.

[3] V. Sklyarov, “FPGA-based implementation of recursive
algorithms,” Microprocessors and Microsystems. Special
Issue on FPGAs: Applications and Designs, vol. 28/5-6,
pp. 197–211, 2004.

[4] V. Sklyarov, “Hierarchical Finite-State Machines and
their Use for Digital Control”, IEEE Transactions on
VLSI Systems, 1999, vol. 7, no. 2, pp. 222-228.

[5] S. Ninos, A. Dollas, “Modeling recursion data structures
for FPGA-based implementation”, Proc. 18th Int.
Conference FPL’08, Germany, 2008, pp. 11-16.

[6] V. Sklyarov, I. Skliarova, and B. Pimentel, FPGA-based
implementation and comparison of recursive and iterative
algorithms, Proceeding of FPL’2005, Tampere, Finland,
2005, pp. 235-240.

[7] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi,
"Markovian Analysis of Large Finite State Machines",
IEEE Trans. Computer-Aided Design, Vol. 15, pp.1479-
1493, 1996.

[8] W. N�th, R. Kolla, “Spanning Tree Based State Encoding
for Lower Power Dissipation”, Technical report, Dept. of
Computer Science, University of W�rzburg, 1998.

[9] Available at: http://www.pld.ttu.ee/applets/.

132

