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OPTIMIZATION OF GENERALIZED ORDER-LEVEL INVENTORY SYSTEM

UNDER FULLY PERMISSIBLE DELAY IN PAYMENT

Bappa Mondal1, Arindam Garai2,∗ and Tapan Kumar Roy1

Abstract. This article presents one generalized order-level inventory system with fully permissible
delay in payment in various trade-credit intervals. Review of existing literature finds few EOQ models
under simultaneous considerations of time-dependent generalized demand rate, time-dependent gener-
alized rate of deterioration and time-dependent generalized backordering under fully permissible delay
in payment. In those existing studies, the optimal inventory depletion time is independent of demand
over the entire cycle. Here, present article frames one generalized order-level inventory system with fully
permissible delay in payment across various trade-credit intervals. This finds that when the trade-credit
period is longer than the inventory depletion time to settle the account, the optimal inventory depletion
time is dependent of demand. Under this ambiance, one particular case having time-dependent ramp
type demand rate, two variables time-dependent Weibull distribution rate of deterioration and time-
dependent backordering rate with fully permissible delay in payment, finds that the optimal inventory
depletion time varies inversely over demand in that period. Moreover, the proposed model shrinks to
obtain many well-established EOQ models as the special cases to it. Next, a general algorithm deter-
mines the various optimal solutions corresponding to seven cases. The managerial insights extracted
from sensitivity analysis of parameters include the suggestion to halt the promotional activities so as
to foreshorten the demand in shortage period. Also, this analysis attests that the longer waiting period
of retailers should be counterbalanced with various promotional activities and anticipated benefits.
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1. Introduction

Inventory management is essential to any contemporary and complex organization. Properly managed inven-
tories pay back through many ways, including monetary profits and enduring relationships with customers. As
well, the interweave connections among these various purposes of businesses retain the splendiferous promi-
nence of inventory management. Whereas the classical Economic Order Quantity (EOQ) model by Harris [20]
and associated variants [69] are widespread, current business practices include highly fluctuating demand, per-
ishability and deterioration for seasonal products, shortage, trade-credit period and so on. Consequently, the
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relatively unpretentious conditions in classical inventory models fail to cope with recent business criteria in
numerous real-life based cases. One single major aspect to the decision-maker (DM) concerning the inventory
and production activities is to measure and to control the fluctuating demands [60], such as linear demand
[14, 31], stock-dependent demand [40], time-dependent demand [42] and price-dependent demand [12]. Over
the years, researchers studied several more varieties of consumption tendencies, like quadratic demand [25,26],
exponential demand [17], time and price-dependent demand [45] and stock and price-dependent demand [33]. In
addition, present-day business practices involve dealing with highly complex demand structures that comprise
the quality sensitive demand [38], backordered dependent demand [63], shortages and selling price-dependent
demand [37] and all that. Again, the quality and quantity of products with a short lifetime, like food items,
pharmaceuticals, chemicals and cut flowers deteriorate over time due to decay, obsolescence, perishability etc.
Deteriorating products engulf 50% of retail industry in North America and 30% of supermarket sales all over
the world [6]. The grocery stores in USA encounter more than 30 billion losses due to deterioration in each
year [15]. Accordingly, in order to tackle with the fluctuating demand and the deterioration of products, very
many enterprises have modified the pricing strategies in recent years. One more common factor of inventory
management models are the shortages of products. Owing to the prolonged waiting time for products, some
customers change their purchase plan and leave. Whereas this is reasonable due to highly competitive market
scenarios and today’s fast-paced life, many others are willing to be patient until the fulfillment of demand.
Below, one can find several well-established studies from existing research articles on inventory.

– Historically, Silver and Meal [60] first suggested a simple modification of EOQ model to consider varying
demand.

– Ghare and Schrader [17] were the first to consider consequences of deterioration of items in inventory model.
– Covert and Philip [10] derived an EOQ formula of inventory model for deteriorating items with two-

parameter Weibull distribution rate of deterioration under conditions of constant demand, instantaneous
delivery and without shortage. When the deterioration was minuscule, they could reduce the model to one
non-deteriorating EOQ model, and when the deterioration was exponential in nature, they could reduce
model to an existing model of Ghare and Schrader [17].

– Mandal and Pal [32] discussed deterministic and probabilistic demand situations in an order-level inventory
system of deteriorating items with ramp type demand rate. They presented several key managerial insights
through in-depth sensitivity analysis.

– Papachristos and Skouri [41] studied a continuous review inventory model over a finite-planning horizon
with deterministic varying demand and constant deterioration rate. They considered shortages that were
partially backordered and varied exponentially with time.

– In an EOQ model for items with Weibull distribution deterioration, ramp type demand rate and partial
backordering by Wu [70], the optimal solution was unique and independent of demand rate. In case of
exponential distribution deterioration, this model reduced to model of Mandal and Pal [32]. Also, the non-
linear Weibull distribution deterioration yielded more preferable optimal solution than constant or linear
case.

– Wu et al. [71] developed the necessary and sufficient conditions for existence and uniqueness of optimal
solution to an EOQ model for non-instantaneous deteriorating items with stock-dependent demand. Here,
they allowed shortages besides the variable and time-dependent backordering rate for next replenishment.
Moreover, they identified the best circumstance based on minimum total relevant cost per unit time.

– Skouri et al. [64] considered an inventory model with general ramp type demand rate, Weibull deterioration
rate and partial backordering to unsatisfied demand. Here, the replenishment policies of model depended on
shortages. Also, they considered ramp type demand rate up to stabilization time along with the backordering
rate as a non-increasing function of waiting time up to next replenishment.

– Sarkar et al. [53] developed an EOQ model for finite production rate and for deteriorating items with time-
dependent increasing demand. Here, they considered component cost and selling price at continuous rate of
time. Moreover, they optimized the number of orders over finite-planning horizon.
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– Sarkar et al. [51] energetically reviewed the Economic Production Quantity (EPQ) model with rework process
at a single-stage manufacturing system with planned backorders. They developed three different inventory
models corresponding to three different distribution density functions, viz. uniform, triangular, and beta.
Their analytical derivation could provide a closed-form solution to inventory models.

– Tayyab and Sarkar [67] presented an EPQ model with an imperfect multi-stage production system by
considering a random defective rate in a cleaner multi-stage lean manufacturing system. They observed that
continuous improvements in production process reliability could reduce the proportion of defective items by
performing various lean manufacturing techniques and thus this could enlist total productive maintenance
at the highest rank.

– Kim and Sarkar [27, 48] considered a complex multi-stage imperfect manufacturing process to clean the
production system and thereby investigated through a stochastic inventory model with budget constraint for
simultaneously optimizing number of shipments, replenishment interval, safety factor, backorder discounts,
quality factor and lead time as decision variables. Here, they presented two theorems and thereby analytically
obtained global optimum solution to this model.

– Pando et al. [39] analyzed an inventory model for deteriorating items with stock-dependent demand rate by
considering non-linear holding cost in both time and stock level with constant rate of deterioration per unit
time. They found that the optimal cycle time and optimal lot size were always greater than the optimal
values with minimum inventory cost per unit time.

– Qiu et al. [43] considered a real-world variant of Production Routing Problems (PRP) with perishable
inventory. They analyzed the optimal integrated decisions on deliverables and sold products with varying
manufacturing periods. Also, this article strengthened lot-sizing and lifted Miller–Tucker–Zemlin subtour
elimination constraints to PRP with perishable inventory.

– Sarkar [49] presented one analytical approach to manage defective items in a multi-stage production system.
Here, the author employed Lagrangian method to obtain the global minimum cost.

– Mahmodi [31] considered selling of substitutable and deteriorating products having price-dependent linear
demand. This article analytically showed the existence and uniqueness of nash equilibrium prices. Moreover,
it presented several interesting insights on pricing and inventory decisions of competing agents.

– San-Jose et al. [46] determined the lot size and the length of inventory cycle in order to maximize total profit
per unit time to one inventory model. This article allowed shortages in model and presented a sequential
optimization procedure to determine the optimal policy.

In addition, Sarkar et al. [54] studied EOQ models with variable setup cost and carbon emission cost. Moon
et al. [36] presented the min-max distribution-free model having service level constraints and variable lead time.
On the other hand, the trade-credit or delay in payment strategy facilitates the purchase of goods and services
without immediate payment. Sometimes, suppliers offer a certain delay in making payments to retailers so as
to insist on buying more items. The extensive review of existing literature finds much attentions on different
trade-credit policies in inventory models. Some notable contributions in this area of research are as follows:

– Historically, Goyal [19] first studied inventory models with fully permissible delay in payments to settle the
ordered amount. The numerical illustrations in this article showed how permissible delay in settling the
replenishment account could significantly decrease the economic replenishment interval and subsequently
the cost.

– Shinn et al. [59] extended models by Goyal [19]. They found that a retailer benefiting from offer by suppliers
for permissible delay in payments, could expect more profit arising due to the stimulated demand on lower
retail price.

– Jamal et al. [24] determined the optimal ordering policy for deteriorating items under permissible delay in
payment and allowable shortage. This model reduced to that with no shortage when the backorder cost was
extremely high. In case, delay in payment was longer than the period needed to deplete inventory in each
cycle, the order quantity varied inversely with permissible delay in payment.
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– Chang and Dye [5] used a varying deterioration rate and the condition of permissible delay in payments in
conjunction with EOQ model. In addition, the shortages within the model were neither completely backo-
rdered nor completely lost, as they assumed backordering rate to be inversely proportional to waiting time
of next replenishment.

– Min et al. [34] presented an EPQ model for deteriorating items with inventory level dependent demand and
permissible delay in payment. In this article, they deduced several existing optimal solutions as special cases
to that model.

– Sarkar [47] dealt with an EOQ model for finite replenishment rate with time-dependent demand and dete-
rioration. Here, he considered a trade-credit offer by suppliers for retailers, in order to buy more items with
different discount rates on purchasing costs. In this model, the retailers could earn more by selling their
products during the credit period.

– Taleizadeh and Nematollahi [65] investigated the effects of time value of money and inflation on optimal
ordering policy in inventory control system and thereby proposed an EOQ model to manage perishable items
over finite time horizon planning under delay in payment.

– Jaggi et al. [23] considered an EOQ model, where retailers could earn interest on revenue generated after
fulfilling the outstanding demand as soon as new consignment arrived in beginning of cycle. Here, they
simultaneously optimized the cycle length and stock-in period.

– Based on a sample of 3383 groups of public US firms from a novel database, Seifert et al. [55] found that their
available data were consistent with the causal relations and theoretical predictions of operations management
literature. Here, they found how long payment delays could be sub-optimal.

– Rajan and Uthayakumar [44] determined the optimal replenishment schedule of an EOQ inventory model
with promotional efforts and backordering under delay in payments. Here, they mathematically showed the
existence of unique optimal replenishment schedule and thereby determined the optimal solution through
an iterative algorithm.

– Pal [38] considered a production inventory system with allowable delay in payments. Here, the quality of
products depended on demand structures of markets. In case, manufacturers could not pay the due amount
to suppliers within credit period, the author deliberated two alternative approaches.

– Ghandehari and Dezhtaherian [16] presented an EOQ model for deteriorating items with partial backordering
and financial considerations. In order to minimize total cost of the inventory system, they considered partially
backordered shortages in the finite-planning horizon and then developed an exact algorithm.

In addition, Chu et al. [8] and Chung et al. [9] also extended the model of Goyal [19] for deteriorating
items. Many researchers like Li et al. and Taleizadeh et al. [29, 66] developed inventory model by considering
permissible delay in payment. Recently, Diabat et al., Jaggi et al. and Lashgari et al. [13, 22, 28] developed a
more general EOQ model with delay in payments, price-discount effect and different types of demand rate.
Researchers such as Hung [21] extended the inventory model of Skouri et al. [64] with ramp type demand rate
and Weibull deterioration rate to arbitrary demand rate and arbitrary deterioration rate. In addition, for case
of partial backorder, Hung [21] found how any attempt to tackle the targeted inventory models under ramp
type or any other types of demand rate became redundant for finite time horizon and subsequently determined
optimal policy in closed-form. This approach could dramatically simplify the solution procedure. Next, Lin [30]
considered general type demand rate, general type rate of deterioration yet a specific partial backordering and
then determined closed-form optimal solution. Das et al. [11] considered the defective item dependent stochastic
credit period in their inventory model. Here, the credit period offered by manufacturers depended on defective
ratio of items and the lead time demand followed normal distribution. However, in that article, the demand,
deterioration and backorder were not of general type. Also, Shi et al. [58] could determine the optimal ordering
policies for single deteriorating item with ramp type demand rate. Besides, Table 1 covers several other recent
and well-established articles in this area of research.

Along with all above existing studies that centered around various types of demand and deterioration rates,
the present article considers the general type demand and general type deterioration with general type partial
backorder along with various scenarios of fully permissible delay in payment. The aim of this article is to
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determine the closed-form optimal cost to proposed model. To the best of present knowledge, no existing
research article considers the delay in payment, which has turned out to be much beneficial to enterprises in
recent times, along with general type demand rate, general type deterioration rate and general type partial
backorder.

While considering all these factors into account, the major contributions to fill in existing research gaps are
as follows

– To formulate a closed-form EOQ model with general type demand rate, general type rate of deterioration
and general type partial backorder along with fully permissible delay in payment in various trade-credit
intervals.

– To present one particular case within proposed model by considering time-dependent ramp type demand
function, time-dependent Weibull distribution rate of deterioration and partial backorder under fully per-
missible delay in payment.

– To shorten the proposed model into various well-established EOQ models under specific considerations.
– To perform the sensitivity analysis to parameters of proposed model and subsequent presentation of key

managerial insights.

The organization of the rest of this article is as follows. Section 2 illustrates the problem definition, symbols with
descriptions and hypotheses to proposed model. Section 3 formulates the mathematical model of generalized
order-level inventory system with fully permissible delay in payment in various trade-credit intervals. Section 4
describes a particular form of proposed model and converts the proposed model to several existing models under
specific considerations. Next, Section 5 introduces one general algorithm to determine the optimal solution to
proposed model from highly non-linear relations. Then, Section 6 illustrates the proposed model numerically in
various trade-credit intervals. Section 7 performs sensitivity analysis of key parameters to various scenarios of
proposed model and thereby presents the key managerial insights. Besides, this section suggested several areas
of possible application to proposed model. Finally, a list of future scopes of research is in Section 8.

2. Problem definition, symbols and hypotheses

The problem definition, symbols with their descriptions and hypotheses to proposed deterministic inventory
replenishment model are as follows

2.1. Problem definition

The aim of this study is to formulate a generalized order-level inventory system with fully permissible delay
in payment in various trade-credit intervals. Accordingly, the present study deliberates on an inventory model
with time-dependent generalized demand rate, time-dependent generalized rate of deterioration, time-dependent
generalized backordering under consideration of fully permissible delay in payment. This article considers two
sub-cases that are based on settlement time of account, like Case 1. when credit period is shorter than or equal
to the inventory depletion time for settling account, and Case 2. when credit period is longer than the inventory
depletion time for settling account. Whereas many well-established articles find the optimal inventory depletion
time to inventory models to be independent of demand and thus unique at all times [30, 70]; present study
shows how the optimal inventory depletion time is independent of demand in Case 1, and this depends on
demand in Case 2. Evidently, this demonstration steps against the common belief that finds no need to divide
the entire period into several sub-intervals of time [21, 30]. Under this impression, a particular case with time-
dependent ramp type demand rate, two variables time-dependent Weibull distribution rate of deterioration
and backordering rate in consideration of fully permissible delay in payment results in the same inferences.
Moreover, one can deduce various existing EOQ models as the special cases to proposed mathematical model.
Evidently, the proposed generalized integrated inventory model has the potential to look right as well as viable
to numerous organizations.
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2.2. Symbols with descriptions

The symbols along with their descriptions to proposed model are as follows

Decision variables
t1 Inventory depletion time (year).

Parameters
C1 Inventory holding cost (HC) per unit item per unit time ($/unit item/year).
C2 Shortage Cost (SC) per unit item per unit time ($/unit item/year).
C3 Deterioration Cost (DC) of unit item ($/unit item).
C4 Opportunity cost due to Lost-Sales (LS) per unit item ($/unit item).
µ Time parameter to time-dependent ramp type demand rate function (year).
σ Pre-determined permissible period of delay in settling accounts with supplier (year).
c Unit purchase cost per unit item ($/unit item).
p Unit selling price per unit item ($/unit item).
A Replenishment cost ($/unit item).
T Fixed length of time of each ordering cycle (year).
I(t) Inventory level at time t over [0, T ] (units of item).
θ(t) Rate of deterioration to time-dependent on-hand inventory over [0, t1] (unit item).
D(t) Non-negative demand rate function (unit item/year).
Ip Percentage of interest to be paid per unit time by retailer ($/year).
Ie Percentage of interest to be earned per unit time by retailer ($/year).
S Initial on-hand inventory level (i.e., I(0) = S) (unit item).
Q Order quantity per cycle (unit item).
TAC Total average cost that consists of holding cost, deterioration cost, shortage cost,

lost-sales cost, interest paying and interest earned cost ($/unit item).

2.3. Hypotheses

The hypotheses to the proposed model are as follows

(1) This article allows shortages, which are partially backordered. Here, the backorder function λ(t) is decreasing
in t and the function tλ(t) is increasing in t under the boundary conditions:

λ(0) = 1, λ(T ) ≥ 0 and 0 ≤ λ(t) ≤ 1.

In addition, this articles presumes that the following relation holds at any time t over cycle [0, T ] so as to
ensure the existence of optimal solution to it (see for instance, [21,72])

λ(t) + tλ′(t) ≥ 0.

(2) This article assumes that retailers receive fully permissible delay in payment within the period [0, σ]. Again,
they earn interest at rate Ie in [σ, t1]. However, after fixed settlement period [0, σ], retailers fully pay back
the amount along with interests at rate Ip. Evidently, Ip > Ie (see for instance, [5, 19,22]).

(3) In real-life, the lead time can be constant [3], variable [52] and stochastic [27] in nature. However, for sake
of simplicity alone, this article considers the lead time to be zero (see for instance, [4, 24,47]).

(4) Replenishment rate is instantaneously infinite. However, its size is finite and constant all through the article
(see for instance, [4, 23,26]).

(5) The inventory deteriorates continuously in period [0, t1] at a rate θ(t) with 0 ≤ θ(t) ≤ 1 (see for instance,
[7, 26,58]).
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(6) This article presumes that the total HC and DC is higher than SC, LS plus IE within the optimal on-hand
inventory period [0, t∗1]. In other words, the following relationship is satisfied in period [0, t∗1]

C1e
∫ t∗

1

0
θ(x)dx

∫ t∗
1

0
e−
∫

t

0
θ(x)dxdt + C3

(

e
∫ t∗

1

0
θ(x)dx − 1

)

{(

C2(T − t∗1) − C4

)

λ(T − t∗1) + C4

}

+ pIeσ

> 1.

3. Formulation of mathematical model

This section formulates one mathematical model with generalized order-level inventory system and fully
permissible delay in payment in various trade-credit intervals. Whereas the restoration of initial inventory
occurs at t = 0, the inventory level gradually decreases due to demand D(t) and deterioration θ(t) up to time
t = t1. At time t = t1, the inventory level becomes zero. Here, shortage is allowed and is partially backordered
at predetermined rate λ(T − t) and occurs throughout the interval [t1, T ]. The next replenishment replaces the
total number of backordered items. Also, the backorder function λ(t) is decreasing function that satisfies the
boundary conditions, such as λ(0) = 1 and λ(T ) ≥ 0. By integrating all these deliberations, the authors present
an instantaneous inventory level I(t) in form of Boundary Value Problem (BVP) at any time t over cycle [0, T ]
as follows

dI(t)

dt
+ θ(t)I(t) = −D(t), if 0 ≤ t ≤ t1 (3.1)

and
dI(t)

dt
= −D(t)λ(T − t), if t1 ≤ t ≤ T (3.2)

with following boundary conditions

I(0) =

∫ t1

0

D(s)e
∫

s

0
θ(x)dxds, (3.3)

and I(t1) = 0. (3.4)

By solving above BVP (3.1)–(3.4), the time-dependent on-hand inventory level at any time t at different stocks
is as follows

I(t) =











e−
∫

t

0
θ(x)dx

∫ t1

t
D(s)e

∫
s

0
θ(x)dxds, ∀ 0 ≤ t ≤ t1,

−
∫ t

t1
D(s)λ(T − s)ds, ∀ t1 ≤ t ≤ T.

(3.5)

To any EOQ model, the order quantity per cycle [0, T ] is the sum of initial inventory (I(0)) and backordered

inventory in period [t1, T ]. Here, the equation (3.3) presents I(0) to be
∫ t1

0
D(s)e

∫
s

0
θ(x)dxds. Also, the equa-

tion (3.5) presents the time-dependent backordered inventory to be
∫ t

t1
D(s)λ(T − s)ds in period [t1, T ]. There-

fore, the order quantity per cycle [0, T ] is as follows

Q =

∫ t1

0

D(s)e
∫

s

0
θ(x)dxds +

∫ T

t1

D(s)λ(T − s)ds. (3.6)

Again, after placing the order, managers consider the cost to store ordered products. There has to be a place, a
store or a warehouse, which is either owned or rented. There are some costs associated with warehouse, even if
this is owned, like insurance cost, taxes, electricity cost, maintenance cost and all that. Consequently, the HC is
directly proportional to the quantity of items in inventory, as well as to the holding period. Here, equation (3.5)
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Figure 1. Graphical representation of inventory system across various trade-credit periods.

presents the time-dependent on-hand inventory level in period [0, t1] to be e−
∫

t

0
θ(x)dx

(

∫ t1

t
D(s)e

∫
s

0
θ(x)dxds

)

.

Therefore, by presuming C1 to be HC per unit time, the total HC per cycle [0, T ] is as follows

HC = C1

∫ t1

0

e−
∫

t

0
θ(x)dx

(

∫ t1

t

D(s)e
∫

s

0
θ(x)dxds

)

dt. (3.7)

In case, the demand from retailers is more than the production rate, the shortages arise. Shortages engrave
negative images of managers and thus directly influence the integrated profit of organizations. In Figure 1, one
can find shortages in period [t1, T ] to proposed EOQ model. Therefore, the associated SC can be obtained by

multiplying the unit SC (C2) by the total time-dependent backordered inventory (
∫ t

t1
D(s)λ(T − s)ds) per cycle

[0, T ] is as follows

SC = C2

∫ T

t1

∫ t

t1

D(s)λ(T − s)dsdt. (3.8)

Again, real-life businesses involve the items that are damaged, decayed, vaporized or affected by external factors
and thus fail to satisfy the demand. The associated DC in period [0, t1] is proportional to the number of
deteriorated items, which is the difference between initial inventory (I(0)) obtained from (3.3), and total time-
dependent demand (D(s)) in period [0, t1]. Therefore, by presuming C3 to be unit DC, the total DC per cycle
[0, T ] is as follows

DC = C3

∫ t1

0

D(s)(e
∫

s

0
θ(x)dx − 1)ds (3.9)

Next, the lost-sales are those selling opportunities that were lost and include the subsequent loss of intangible
goodwill. When an item is out of stock, suppliers don’t carry some particular brands, or any other reason comes
out; the suppliers loose the opportunity to sell. Besides, the cost of lost-sales includes the cost of sharing infor-
mation with retailers and all that. Therefore, the time-dependent LS at any time t is the difference between total
time-dependent demand D(t) in period [t1, T ] and total time-dependent backordered inventory

∫ t

t1
D(t)λ(T − s)

in period [t1, T ]. By presuming C4 to be unit LS cost, the total LS per cycle [0, T ] is as follows

LS = C4

∫ T

t1

[

1 − λ(T − t)
]

D(t)dt. (3.10)

Now, this article considers two cases, which are primarily based on fully permissible delay in payment as follows
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3.1. Payment before total inventory depletion time (0 ≤ σ ≤ t1)

The retailers receive fully permissible delay in payment within period [0, σ]. However, after the fixed settlement
period [0, σ], retailers fully pay back the money along with interest at rate Ip. Consequently, the total interest
payable to supplier by retailers per cycle [0, T ] is as follows

IP1 = cIp

∫ t1

σ

e−
∫

t

0
θ(s)ds

(
∫ t1

t

D(s)e
∫

s

0
θ(x)dxds

)

dt. (3.11)

In addition, retailers earn the interest at a rate Ie in period [0, σ]. Therefore, the total interest earned by retailer
per cycle [0, T ] is as follows

IE1 = pIe

∫ σ

0

tD(t)dt. (3.12)

Hence, the TAC per cycle [0, T ] is as follows

TAC(t1) =
1

T

[

A + C1HC + C2SC + C3DC + C4LS + cIpIP1 − pIeIE1

]

=
1

T

[

A + C1

∫ t1

0

e−
∫

t

0
θ(x)dx

(

∫ t1

t

D(s)e
∫

s

0
θ(x)dxds

)

dt + C2

∫ T

t1

∫ t

t1

D(s)λ(T − s)dsdt

+ C3

∫ t1

0

D(s)(e
∫

s

0
θ(x)dx − 1)ds + C4

∫ T

t1

[

1 − λ(T − t)
]

D(t)dt

+ cIp

∫ t1

σ

e−
∫

t

0
θ(s)ds

(
∫ t1

t

D(s)e
∫

s

0
θ(x)dxds

)

dt − pIe

∫ σ

0

tD(t)dt

]

. (3.13)

The first and second order differential quotients of TAC(t1) with respect to t1 are as follows

dTAC(t1)

dt1
=

D(t1)

T

[

C1e
∫ t1
0

θ(x)dx

∫ t1

0

e−
∫

t

0
θ(x)dxdt + C3

(

e
∫ t1
0

θ(x)dx − 1

)

−

{(

C2(T − t1) − C4

)

× λ(T − t1) + C4

}

+ cIpe
∫ t1
0

θ(x)dx

∫ t1

σ

e−
∫

t

0
θ(x)dxdt

]

. (3.14)

Motivated by equation (3.14), these authors assume one auxiliary function, say f(t1), as follows

f(t1) = C1e
∫ t1
0

θ(x)dx

∫ t1

0

e−
∫

t

0
θ(x)dxdt + C3

(

e
∫ t1
0

θ(x)dx − 1

)

−

{(

C2(T − t1) − C4

)

λ(T − t1) + C4

}

+ cIpe
∫ t1
0

θ(x)dx

∫ t1

σ

e−
∫

t

0
θ(x)dxdt (3.15)

and

df(t1)

dt1
= C1

{

1 + θ(t1)e
∫ t1
0

θ(x)dx

∫ t1

0

e−
∫

t

0
θ(x)dxdt

}

+ C3θ(t1)e
∫ t1
0

θ(x)dx + C2

{

λ(T − t1) + (T − t1)

× λ′(T − t1)

}

+ C4

(

− λ′(T − t1)
)

+ cIp

{

1 + θ(t1)e
∫ t1
0

θ(x)dx

∫ t1

σ

e−
∫

t

0
θ(x)dxdt

}

. (3.16)

In order to determine optimal value t∗1 (∗: denotes optimality) to proposed model (3.13) in 0 ≤ t1 ≤ T , firstly,
hypothesis (3) yields following relation

λ′(T − t∗1) ≥ 0 and λ(T − t∗1) + (T − t∗1)λ
′(T − t∗1) ≥ 0. (3.17)
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Since d2TAC(t1)
dt2

1

= D(t1)
T

df(t1)
dt1

and thus all components of expression d2TAC(t1)
dt1

are positive, the expression

d2TAC(t1)
dt2

1

is positive in 0 ≤ t1 ≤ T . Also, t∗1 that minimizes TAC, satisfies the following relation

C1e
∫ t∗

1

0
θ(x)dx

∫ t∗
1

0

e−
∫

t

0
θ(x)dxdt + C3

(

e
∫ t∗

1

0
θ(x)dx − 1

)

−

{(

C2(T − t∗1) − C4

)

λ(T − t∗1) + C4

}

+ cIpe
∫ t∗

1

0
θ(x)dx

∫ t∗
1

σ

e−
∫

t

0
θ(x)dxdt = 0. (3.18)

3.2. Payment after total inventory depletion time (t1 ≤ σ ≤ T )

In this case, total interest payable in [0, T ] is nil i.e., IP2 = 0. Also, retailer has accumulated fund in various
ways, like by selling items, by earning interest in positive inventory period [0, t1] or by investing cash in period
[t1, σ] after exhausting inventory at time t1. So, total interest earned in [0, T ] is as follows

IE2 = pIe

(
∫ t1

0

tD(t)dt + (σ − t1)

∫ t1

0

D(t)dt

)

. (3.19)

Analogous to previous case, the TAC per cycle [0, T ] is as follows

TAC(t1) =
1

T

[

A + C1HC + C2SC + C3DC + C4LS − pIeIE2

]

=
1

T

[

A + C1

∫ t1

0

e−
∫

t

0
θ(x)dx

(

∫ t1

t

D(s)e
∫

s

0
θ(x)dxds

)

dt + C3

∫ t1

0

D(s)(e
∫

s

0
θ(x)dx − 1)ds

+C2

∫ T

t1

∫ t

t1

D(s)λ(T − s)dsdt + C4

∫ T

t1

[

1 − λ(T − t)
]

D(t)dt − pIe

{
∫ t1

0

tD(t)dt

+(σ − t1)

∫ t1

0

D(t)dt

}

]

. (3.20)

Hence, this article determines the values of t∗1 and corresponding TAC∗ (see Appendix A) from following relation

D(t∗1)

[

C1e
∫ t∗

1

0
θ(x)dx

∫ t∗
1

0

e−
∫

t

0
θ(x)dxdt + C3

(

e
∫ t∗

1

0
θ(x)dx − 1

)

−

{(

C2(T − t∗1) − C4

)

λ(T − t∗1) + C4

}

−pIeσ

]

+ pIe

∫ t∗
1

0

D(t)dt = 0. (3.21)

Therefore, to proposed EOQ model under consideration of delay in payment, the optimal inventory depletion
time is dependent on demand for longer credit period than inventory depletion time of settling the account.

4. Specific considerations of proposed model

4.1. One particular case across various trade-credit periods

In order to synchronize the outcomes of proposed model in Section 3 with recent focuses of enterprises, this
section presents one particular case.

Whereas the reviews of existing literature find the EOQ models under various considerations like ramp type
demand rate function, Weibull distribution rate of deterioration and partial backorder; to the best of present
knowledge, there is not a single study to simultaneously consider all these components under fully permissible
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delay in payment. Here, this sub-section considers all those specific considerations, and thereby reduces the
proposed model.

Here, the time-dependent demand function with ramp type demand rate is as follows [32]

D(t) = a + b[t − (t − µ)H(t − µ)], where a, b > 0 and H(t − µ) =

{

1 if t ≥ µ,

0 if t < µ.
(4.1)

Also, time-dependent Weibull distribution rate of deterioration is defined as θ(t) = αβtβ−1; α, β, t > 0. In case,
β < 1, the deterioration is decreasing in t. In case, β > 1, the deterioration is increasing in t. θ(t) is constant at
β = 1 [70].

When all demands in period [t1, T ] are backordered with a backorder rate defined as 1
1+δ(T−t) , also by

considering δ as non-negative backordering parameter, the time-dependent ramp type demand function increases
linearly up to the turning point µ and becomes constant afterwards within the replenishment time. Consequently,
it seems rational to sub-divide the time interval in Case 3.1 into two sub-intervals. Accordingly, the time-
dependent on-hand inventory level of different stocks at any time t is as follows [64]

I(t) =































e−αtβ
[

∫ µ

t
(a + bs)eαsβ

ds +
∫ t1

µ
(a + bµ)eαsβ

ds
]

if 0 ≤ t ≤ µ,

e−αtβ ∫ t1

t
(a + bµ)eαsβ

ds if µ ≤ t ≤ t1.

−
∫ t

t1

(a+bµ)
1+δ(T−s)ds if t1 ≤ t ≤ T.

(4.2)

Analogous to equation (3.3), the initial inventory can be obtained from equation (4.2) by setting t = 0 as follows

S =

∫ µ

0

(a + bs)eαsβ

ds +

∫ t1

µ

(a + bµ)eαsβ

ds. (4.3)

Besides, equation (4.2) presents the time-dependent backordered inventory to be
∫ t

t1

(a+bµ)
1+δ(T−s)ds in period [t1, T ].

Therefore, the order quantity Q per cycle [0, T ], analogous to equation (3.6) is as follows

Q =

∫ µ

0

(a + bs)eαsβ

ds +

∫ t1

µ

(a + bµ)eαsβ

ds +

∫ T

t1

(a + bµ)

1 + δ(T − s)
ds. (4.4)

Analogous to equation (3.7), equation (4.2) presents the time-dependent on-hand inventory level in period [0, µ]

to be e−αtβ
[

∫ µ

t
(a + bs)eαsβ

ds +
∫ t1

µ
(a + bµ)eαsβ

ds
]

, and the time-dependent on-hand inventory level in period

[µ, t1] to be e−αtβ ∫ t1

t
(a + bµ)eαsβ

ds. Therefore, by presuming C1 to be unit HC, the total HC per cycle [0, T ]
is as follows

HC = C1

{

∫ µ

0

e−αtβ

(

∫ µ

t

(a+ bs)eαsβ

ds+

∫ t1

µ

(a+ bµ)eαsβ

ds

)

dt+

∫ t1

µ

e−αtβ
(

∫ t1

t

(a+ bµ)eαsβ

ds
)

dt

}

. (4.5)

Again, analogous to equation (3.8), by presuming C2 to be unit SC, the total SC per cycle [0, T ] is as follows

SC = C2(a + bµ)

∫ T

t1

(T − t)

1 + δ(T − t)
dt. (4.6)

Also, analogous to equation (3.9), by presuming C3 to be unit DC, the total DC per cycle [0, T ] is as follows

DC = C3

{(

∫ µ

0

(a + bs)eαsβ

ds +

∫ t1

µ

(a + bµ)eαsβ

ds

)

−
(

(a + bµ)t1 −
b

2
µ2
)

}

. (4.7)
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Next, analogous to equation (3.10), by presuming C4 to be unit LS, the total LS per cycle [0, T ] is as follows

LS = C4δ(a + bµ)

∫ T

t1

(T − t)

1 + δ(T − t)
dt. (4.8)

Next, this article deliberates across various sub-intervals based on fully permissible delay in payment as follows

4.1.1. Trade-credit period lies within variable demand structure (0 ≤ σ ≤ µ)

In this sub-interval, the proposed model allows fully permissible delay in payment up to period σ. However,
after the fixed settlement period [0, σ], the retailer fully pays back the amount along with interest at a rate Ip.
So, analogous to equation (3.11), the IP per cycle [0, T ] from equation (4.2) is as follows

IP1.1 = cIp

{

∫ µ

σ

e−αtβ

(

∫ µ

t

(a+bs)eαsβ

ds+

∫ t1

µ

(a+bµ)eαsβ

ds

)

dt+

∫ t1

µ

e−αtβ

(

∫ t1

t

(a+bµ)eαsβ

ds

)

dt

}

. (4.9)

And, analogous to equation (3.12), the IE per cycle [0, T ] is as follows

IE1.1 = pIe

∫ σ

0

t(a + bt)dt. (4.10)

Hence, the TAC per cycle [0, T ] is as follows

TAC(t1) =
1

T

[

A + C1

{
∫ µ

0

e−αtβ
(

∫ µ

t

(a + bs)eαsβ

ds +

∫ t1

µ

(a + bµ)eαsβ

ds
)

dt

+

∫ t1

µ

e−αtβ
(

∫ t1

t

(a + bµ)eαsβ

ds
)

dt

}

+ (C2 + C4δ)(a + bµ)

∫ T

t1

T − t

1 + δ(T − t)
dt

+C3

{
∫ µ

0

(a + bt)eαtβ

dt +

∫ t1

µ

(a + bµ)eαtβ

dt − (a + bµ)t1 +
b

2
µ2

}

+cIp

[
∫ µ

σ

e−αtβ

{
∫ µ

t

(a + bs)eαsβ

ds +

∫ t1

µ

(a + bµ)eαsβ

ds

}

dt

+

∫ t1

µ

e−αtβ

(
∫ t1

t

(a + bµ)eαsβ

ds

)

dt

]

− pIe

∫ σ

0

t(a + bt)dt

]

. (4.11)

Next, this article replicates all intermediate equations from (3.14) to (3.18) and then finds that the duly
formulated expression of TAC is highly non-linear in t1. Therefore, TAC is minimum, when the following
equation in t1 holds (see Appendix B)

C1e
αt∗

β

1

∫ t∗
1

0

e−αtβ

dt + C3

(

eαt∗
β

1 − 1
)

−
(C2 + C4δ)(T − t∗1)

1 + δ(T − t∗1)
+ cIpe

αt∗
β

1

∫ t∗
1

σ

e−αtβ

dt = 0. (4.12)

Here, Figure 2a echoes above inference graphically that the function TAC is convex in 0 ≤ σ ≤ µ. The
equation (4.12) yields t∗1 so as to get the minimum value of TAC.

4.1.2. Trade-credit period lies during constant demand structure (µ ≤ σ ≤ t1)

Analogous to equation (3.11), the IP per cycle [0, T ] from equation (4.2) as follows

IP1.2 = cIp

∫ t1

σ

e−αtβ
(

∫ t1

t

(a + bµ)eαsβ

ds
)

dt. (4.13)
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And, analogous to equation (3.12), the IE per cycle [0, T ] is as follows

IE1.2 = pIe

∫ µ

0

t(a + bt)dt +

∫ σ

µ

t(a + bµ)dt. (4.14)

Hence, the TAC per cycle [0, T ] is as follows

TAC(t1) =
1

T

[

A + C1

{
∫ µ

0

e−αtβ
(

∫ µ

t

(a + bs)eαsβ

ds +

∫ t1

µ

(a + bµ)eαsβ

ds
)

dt

+

∫ t1

µ

e−αtβ
(

∫ t1

t

(a + bµ)eαsβ

ds
)

dt

}

+ (C2 + C4δ)(a + bµ)

∫ T

t1

T − t

1 + δ(T − t)
dt

+C3

{
∫ µ

0

(a + bt)eαtβ

dt +

∫ t1

µ

(a + bµ)eαtβ

dt − (a + bµ)t1 +
b

2
µ2

}

+cIp

{
∫ t1

σ

e−αtβ
(

∫ t1

t

(a + bµ)eαsβ

ds
)

dt

}

− pIe

{
∫ µ

0

t(a + bt)dt +

∫ σ

µ

t(a + bµ)dt

}

]

. (4.15)

Next, analogous to Case 3.1, the intermediate equations are from (3.14) to (3.18). Here, the corresponding
duly formulated expression of TAC is highly non-linear in t1. Whenever the following equation in t1 holds, the
minimum value of TAC is as follows (see Appendix C)

C1e
αt∗

β

1

∫ t∗
1

0

e−αtβ

dt + C3

(

eαt
∗β
1 − 1

)

−
(C2 + C4δ)(T − t∗1)

1 + δ(T − t∗1)
+ cIpe

αt∗
β

1

∫ t∗
1

σ

e−αtβ

dt = 0. (4.16)

Also, Figure 2c echoes above inference graphically that the function TAC is convex in µ ≤ σ ≤ t1. Here, the
equation (4.16) yields t∗1 so as to obtain minimum value of TAC.

4.1.3. Trade-credit period lies after total inventory depletion time (t1 ≤ σ ≤ T )

Analogous to Case 3.2, retailer has accumulated the fund in various ways. So, total interest payable in [0, T ]
is nil, i.e. IP2 = 0, and total interest earned in per cycle [0, T ] is as follows

IE2 = pIe

[

∫ µ

0

t(a + bt)dt +

∫ t1

µ

t(a + bµ)dt + (σ − t1)

{
∫ µ

0

(a + bt)dt +

∫ t1

µ

(a + bµ)dt

}

]

= pIe

{

(a + bµ)(σt1 −
t21
2

) +
bµ2

2
(t1 − σ −

µ

3
)
}

. (4.17)

So, the TAC per cycle [0, T ] is as follows

TAC(t1) =
1

T

[

A + C1

{
∫ µ

0

e−αtβ
(

∫ µ

t

(a + bt)eαtβ

dt +

∫ t1

µ

(a + bµ)eαtβ

dt
)

dt

+

∫ t1

µ

e−αtβ
(

∫ t1

t

(a + bµ)eαtβ

dt
)

dt

}

+ (C2 + C4δ)(a + bµ)

∫ T

t1

T − t

1 + δ(T − t)
dt

+C3

{
∫ µ

0

(a + bt)eαtβ

dt +

∫ t1

µ

(a + bµ)eαtβ

dt − (a + bµ)t1 +
b

2
µ2

}

−pIe

{

(a + bµ)(σt1 −
t21
2

) +
bµ2

2
(t1 − σ −

µ

3
)

}

]

. (4.18)



OPTIMIZATION OF INVENTORY SYSTEM UNDER DELAY IN PAYMENT S209

Figure 2. Graphical illustrations of TAC versus t1 and σ in various trade-credit periods. (a)
TAC versus t1 and σ in trade-credit period 0 ≤ σ ≤ µ. (b) TAC versus t1 and σ in trade-credit
period t1 ≤ σ ≤ T . (c) TAC versus t1 and σ in trade-credit period µ ≤ σ ≤ t1.

Analogous to previous case, the highly non-linear equation in inventory depletion time t1, which in turn offers
the minimum value of TAC is as follows (see Appendix D)

(a + bµ)

{

C1e
αt∗

β

1

∫ t∗
1

0

e−αtβ

dt + C3

(

eαt∗
β

1 − 1
)

−
(C2 + C4δ)(T − t∗1)

1 + δ(T − t∗1)
− pIe(σ − t∗1)

}

− pIe

b

2
µ2 = 0. (4.19)

Above equation (4.19) yields optimal inventory depletion time t∗1 that minimizes value of TAC. Moreover,
Figure 2b echoes above inference graphically that the function TAC is convex in t1 ≤ σ ≤ T .

4.2. Some special cases

The proposed generalized order-level inventory system with fully permissible delay in payment turns to several
existing and well-established EOQ models under various specific considerations as follows

– In case of quadratic demand, i.e. D(t) = a+bt+ct2, a > 0, b 6= 0, c 6= 0; time-dependent Weibull distribution
deterioration, i.e. θ(t) = αβtβ−1, 0 < α < 1, and β > 0; fully backordering shortages i.e. λ(T − t) = 1; no
permissible delay in payment, i.e. σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0; the proposed model
reduces to model of Kavitha Priya and Senbagam [25].

– In case of selling price dependent time-dependent demand, i.e. D(t) = λ0e
−λ1t+µ0e

−µ1(s0−s1t); deterioration
is not allowed, i.e. θ(t) = 0; shortages are partially backordered of constant fraction (1− k), i.e. λ(T − t) =
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(1−k), 0 ≤ k ≤ 1; no permissible delay in payment, i.e. σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0;
the proposed model reduces to model of Mukhopadhyay and Goswami [37].

– In case of quadratic demand, i.e. D(t) = a + bt + ct2, a > 0, b 6= 0, c 6= 0; time-dependent deterioration, i.e.
θ(t) = θ(t); no shortages is allowed i.e. λ(T − t) = 0; the proposed model reduces to model of Singh and
Pattanayak [61].

– In case of quadratic demand, i.e. D(t) = a+bt+ct2, a > 0, b 6= 0, c 6= 0; constant deterioration, i.e. θ(t) = θ;
no shortages is allowed i.e. λ(T − t) = 0; the proposed model reduces to model of Khanra et al. [26].

– In case of no permissible delay in payment, i.e. σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0; the
proposed model reduces to model of Hung [21].

– In case of generalized time-dependent ramp type demand rate, i.e. D(t) =

{

f(t) if t < µ

f(µ) if t ≥ µ.
; Weibull

distribution rate of deterioration, i.e. θ(t) = abtb−1; no permissible delay in payment, i.e. σ = 0 and no
trade-credit policy, i.e. Ip = 0, Ie = 0; the proposed model reduces to model of Skouri et al. [64].

– In case of modified time-dependent ramp type demand rate, i.e. D(t) = Ae[t−(t−µ)H(t−µ)]; three variables
time-dependent Weibull distribution rate of deterioration, i.e. θ(t) = αβ(t − γ)β−1; fully backordering, i.e.
λ(T − t) = 1; no permissible delay in payment, i.e. σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0; the
proposed model reduces to model of Giri et al. [18].

– In case of time-dependent ramp type demand rate, i.e. D(t) = D0[t−(t−µ)H(t−µ)], D0 > 0; time-dependent
Weibull distribution rate of deterioration, i.e. θ(t) = αβtβ−1, 0 < α < 1, β > 0; partial backordering, i.e.
λ(T−t) = 1

1+δ(T−t) ; no permissible delay in payment, i.e. σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0;

the proposed model reduces to model of Wu [70].
– In case of time-dependent ramp type demand rate, i.e. D(t) = D0[t−(t−µ)H(t−µ)], D0 > 0; time-dependent

Weibull distribution rate of deterioration, i.e. θ(t) = αβtβ−1, 0 < α < 1, β > 0; fully backordering, i.e.
λ(T − t) = 1; no permissible delay in payment, i.e. σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0; the
proposed model reduces to model of Wu [73].

– In case of time-dependent ramp type demand rate, i.e. D(t) = D0[t − (t − µ)H(t − µ)], D0 > 0; constant
deterioration rate, i.e. θ(t) = θ; fully backordering, i.e. λ(T − t) = 1; no permissible delay in payment, i.e.
σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0; the proposed model reduces to model of Mandal and
Pal [32].

– In case of constant demand, i.e. D(t) = D; deterioration is not allowed, i.e. θ(t) = 0; shortage is not allowed
i.e. λ(T − t) = 0; no permissible delay in payment, i.e. σ = 0 and no trade-credit policy, i.e. Ip = 0, Ie = 0;
the proposed model reduces to traditional EOQ model.

5. General algorithm

The highly non-linear structure of relations, like (4.12), (4.16) and (4.19) fails to explicitly return the optimal
inventory depletion time (t∗1), especially in numerical studies. However, software like MATLAB, MATHEMAT-
ICA etc. can numerically determine the value of t∗1, S∗, Q∗ and subsequently TAC∗ through computer program-
ming. Hence, this section presents one general algorithm that is a modification of the algorithm presented by
Goyal [19]. Various steps of proposed algorithm that numerically optimizes the proposed generalized order-level
inventory system with fully permissible delay in payment, are as follows

Step 1: Input all the parameters within the proposed model. Here, three sub-cases can arise as follows

if σ < µ, go to Step 2; elseif σ > µ, go to Step 3; elseif σ = µ, go to Step 4.

Step 2: Determine t∗1 from equation (4.12).
If σ < t∗1, find the optimal TAC∗ from equation (4.11);
elseif, σ > t∗1, firstly, determine t∗1 from equation (4.19) and thereby obtain the optimal TAC∗ from
equation (4.18);



OPTIMIZATION OF INVENTORY SYSTEM UNDER DELAY IN PAYMENT S211

Table 2. Values of different parameters to be used in proposed model.

Parameters Values Parameters Values

C1 $0.9\unit item\year µ 0.25\year
C2 $4\unit item\year c $6\unit item
C3 $8\unit item p $10\unit item
C4 $5\unit item T 1 year
a 500\unit item\year α 0.06
b 0.05\unit item\year β 2

elseif, σ = t∗1, firstly determine t∗1 from equation (4.12) and find corresponding TAC∗ from equa-
tion (4.11), and then determine t∗1 from equation (4.19) and find corresponding TAC∗ from equa-
tion (4.18). Finally, the optimal value of TAC is defined as the minimum value between those two
values of TAC∗.
Go to Step 5.

Step 3: Determine t∗1 from equation (4.16).
If σ < t∗1, find optimal TAC∗ from equation (4.15);
elseif, σ > t∗1, firstly, determine t∗1 from equation (4.19) and thereby obtain the optimal TAC∗ from
equation (4.18);
elseif, σ = t∗1, firstly determine t∗1 from equation (4.16) and find corresponding TAC∗ from equa-
tion (4.15), and then determine t∗1 from equation (4.19) and find corresponding TAC∗ from equa-
tion (4.18). Finally, the optimal value of TAC is defined as the minimum value between those two
values of TAC∗.
Go to Step 5.

Step 4: Determine t∗1 from equation (4.12) and find corresponding TAC∗ from equation (4.11). Also, determine
t∗1 from equation (4.16) and find corresponding TAC∗ from equation (4.15). Finally, the optimal value
of TAC is defined as the minimum value between those two values of TAC∗.
Go to Step 5.

Step 5: Compute initial inventory (S∗) and optimal order quantity (Q∗) at t∗1.

The algorithm is thus complete.

6. Numerical applications

The inspiration behind the data for numerical illustration to proposed EOQ model is primarily from the
article of Chakraborty et al. [4]. Here, the input parameters from [4] are in Table 2.

In addition, the proposed inventory model considers the characteristics, like Ie : 0.08% per year, Ip : 0.10%
per year [56].
Also, the value of replacement cost (A) is $100 per unit item and backordering parameter (δ) is 0.56 [70].

Since various scenarios can arise based on different sets of values of σ, this article considers each of those and
follows the steps of general algorithm as presented in Section 5. All these Scenarios along with corresponding
optimal values of TAC, S and Q are in Table 3.

Below, optimal solutions under various scenarios to proposed EOQ model are compared with the articles
from which numerical data are taken. The optimal values to proposed EOQ model are sometimes closer to
the results of [4]. These authors observe that in each scenario to proposed model, the optimal values to Q are
much desirable than that of [4]. Moreover, when the optimal inventory depletion time is higher than 0.8, the
optimal values to TAC to present article are more and more preferable than that of [4]. The consideration of
rate of inflation and fuzzy environment seems to illustrate more desirable optimal TAC in several cases to [4].
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Table 3. Optimal solutions to proposed model in various trade-credit periods.

Sl. No. Scenarios σ (Year) t∗1 (Year) Interim TAC ($) TAC∗($) S∗ (Unit item) Q∗ (Unit item)

1. σ < µ

1.1 σ < t∗1 0.20 0.77 396.04 396.04 392.11 498.16
1.2 σ > t∗1 0.96 0.84 168.67 168.67 424.19 502.41

1.3 σ = t∗1 0.25
0.82 214.08

214.08 417.26 501.55
0.82 214.08

2. σ > µ

2.1 σ < t∗1 0.40 0.79 342.68 342.68 400.36 499.32
2.2 σ > t∗1 0.96 0.84 168.67 168.67 424.19 502.41

2.3 σ = t∗1 0.82
0.82 214.08

214.08 417.26 501.55
0.82 214.08

3. σ = µ 3.1 σ < t∗1
0.20 0.78 391.57

383.15 394.18 498.45
0.40 0.78 383.15

As well, these authors wish to employ various imprecise environments to solve the proposed EOQ model in
future studies.

Again, both, present article and [56] find the deterioration and holding cost to negatively influence the optimal
TAC. The variations of optimal solutions in these two articles are due to different input values to parameters.
This is to note that the much different values to input parameters in [70] than that of present study prevent
the comparison between these two articles.

7. Sensitivity analysis

7.1. Vulnerability of key parameters

Modifications of system parameters within present study can alter the value of t∗1 and thereby can change the
optimal on-hand inventory level (S∗), optimal order quantity (Q∗) and optimal TAC (TAC∗). So, these authors
perform the sensitivity analysis of parameters by changing values of parameters by −50%, −20%, 20% and
50%, by taking one parameter at a time and keeping the remaining parameters at original levels. This sensitivity
analysis is based on the major Scenarios, such as (1.1), (2.1) and (2.2), in succession.

7.1.1. Corresponding to particular Case 4.1.1

The Scenario 1.1 numerically illustrates the particular Sub-case 4.1.1. Corresponding to this sub-case, the
vulnerabilities of various parameters are in Table 4. Here, TAC∗ is highly sensitive respect to changes in values
of C1 and a. This is moderately sensitive respect to changes in values of C2, C3, C4, α, β, σ and Ip. Besides,
value of TAC∗ is slightly sensitive respect to changes in parameters, such as δ, µ, b and Ie.

Again, whereas both t∗1 and S∗ are moderately sensitive respect to changes in values of C1, C2, C4, δ and Ip,
both are slightly sensitive respect to changes in C3, α, β and σ. However, the parameters, like µ, a, b and Ie

make hardly any impact on value of t∗1 and those parameters, except a, slightly control value of S∗. Analogously,
all these parameters slightly influence the value of Q∗, with the exception of a, one highly sensitive parameter
for S∗. Besides, Figures 3–6. graphically illustrate above findings.

7.1.2. Corresponding to particular Case 4.1.2

The results in Table 5 corresponds to Scenario 2.1, which is a study of particular Sub-case 4.1.2. These results
yield that values of TAC∗ are highly sensitive respect to changes in values of parameters like C1, a and σ and
they are moderately sensitive respect to changes in values of parameters like C2, C3, C4 α, β, δ and Ie. In
addition, values of TAC∗ are slightly sensitive respect to changes in values of parameters µ, b and Ip.

On the other hand, whereas both t∗1 and S∗ are moderately sensitive respect to changes in values of parameters
like C1, C2 and C4. However, values of t∗1 are lowly sensitive and values of S∗ are moderately sensitive respect
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Table 4. Sensitivity analysis of parameters to proposed model in trade-credit period [0, µ].

Parameter % change % change of t∗
1

% change of S∗ % change of Q∗ % change of TAC∗

C1

50 −5.71 −5.84 −0.69 16.27

20 −2.34 −2.40 −0.28 6.74

−20 2.43 2.49 0.27 −7.07

−50 6.22 6.38 0.68 −18.36

C2

50 5.44 5.58 0.60 4.84

20 2.45 2.51 0.28 2.17

−20 −2.94 −3.01 −0.35 −2.59

−50 −8.62 −8.80 −1.07 −7.58

C3

50 −2.35 −2.41 −0.28 4.58

20 −0.96 −0.99 −0.11 1.87

−20 0.99 1.02 0.11 −1.93

−50 2.56 2.62 0.29 −4.93

C4

50 4.03 4.14 0.45 3.58

20 1.76 1.80 0.20 1.56

−20 −1.99 −2.04 −0.23 −1.76

−50 −5.55 −5.67 −0.67 −4.89

α

50 −2.59 −2.09 0.14 4.90

20 −1.06 −0.85 0.06 2.01

−20 1.10 0.87 −0.07 −2.06

−50 2.81 2.22 −0.20 −5.27

β

50 1.14 0.65 −0.27 −4.19

20 0.49 0.26 −0.14 −2.01

−20 −0.55 −0.23 0.19 2.71

−50 −1.50 −0.41 0.70 8.15

δ

50 3.01 3.08 −0.14 2.97

20 1.29 1.32 −0.07 1.28

−20 −1.44 −1.47 0.10 −1.43

−50 −3.93 −4.02 0.33 −3.92

σ

50 1.03 1.06 0.12 −6.59

20 0.41 0.42 0.05 −2.59

−20 −0.41 −0.42 −0.05 2.55

−50 −1.04 −1.06 −0.12 6.28

µ

50 0.00 −0.23 12E−5 11E−5

20 0.00 −0.12 47E−6 48E−6

−20 0.00 −0.04 −47E−6 −48E−6

−50 0.00 −0.01 −12E−5 −11E−5

a

50 0.00 49.99 49.99 37.37

20 0.00 19.99 20.00 14.95

−20 0.00 −19.99 −20.00 −14.95

−50 0.00 −49.99 −49.99 −37.37

b

50 0.00 45E−5 41E−5 47E−5

20 0.00 15E−5 11E-5 12E−5

−20 0.00 −11E−5 −12E−5 −10E−5

−50 0.00 −41E−5 −45E−5 −47E−5

Ie

50 0.00 0.00 64E-4 −1.01

20 0.00 0.00 40E−5 −0.40

−20 0.00 0.00 −42E−5 0.41

−50 0.00 0.00 −66E−4 1.01

Ip

50 −2.85 −5.84 −0.34 6.08

20 −1.16 −2.40 −0.14 2.49

−20 1.19 2.49 0.14 −2.57

−50 3.03 6.38 0.34 −6.59
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to changes in values of parameter Ip. Here, the changes in values of parameters like C3, α, β, δ and σ make
very low impact on values of t∗1 and S∗. Moreover, values of parameters such as µ, a, b and Ie make hardly any
impact on values of t∗1. Besides, values of parameters like µ and b slightly control and values of a particularly
controls the values of S∗. Analogously, all these parameters, except the highly sensitive parameter a, slightly
influence values of Q∗. Besides, Figures 3–6. graphically illustrate the findings.

7.1.3. Corresponding to particular Case 4.1.3

Corresponding to Scenario 2.2, the results are in Table 6. In this study of particular Sub-case 4.1.3, the
values of TAC∗ are highly sensitive respect to changes in values of parameters C1, C3, α, β, Ie, a and σ and
these are moderately sensitive respect to changes in values of parameters C2, C4 and δ. Nevertheless, values
of TAC∗ are slightly sensitive respect to changes in values of parameters µ and b. Again, whereas both of t∗1
and S∗ are moderately sensitive respect to changes in values of parameters C1, C2 and σ, these are slightly
sensitive respect to changes in parameters C3, C4, α, β, δ, µ, a, b and Ie. Similarly, all these parameters,
except the highly sensitive parameter a, slightly influences value of Q∗. Hence, from the numerical findings this
article concludes that when the credit period is greater than the inventory depletion time for settling account,
the optimal inventory depletion time varies inversely over demand. Indeed, the converse is not true i.e. when
the credit period is less than inventory depletion time the optimal inventory depletion time is independent of
demand. Also, the permissible period of delay in settling account is inversely proportional to Ie and Ip. Besides,
Figures 3–6 illustrate these graphically.
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Figure 3. Effect of changes of parameter C1 on values of TAC∗ and S∗.
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Figure 4. Effect of changes of parameter α on values of TAC∗ and S∗.
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Figure 5. Effect of changes of parameter β on values of TAC∗ and S∗.
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Figure 6. Effect of changes of parameter σ on values of TAC∗ and S∗.

7.2. Managerial insights

The managerial insights extracted from above sensitivity analysis of parameters are as follows is sub-section
leads to insights beyond the results of this investigation and focuses on managerial guidelines to assist the DM
across industries as follows

Insight 1. This analysis shows that the optimal inventory depletion time is independent of demand in time-
dependent on-hand inventory period. And, this optimal inventory depletion time decreases under
higher demand in shortage period. However, the higher demand rapidly increases the optimal TAC
at any time. So, in shortage period, the managers should plan to halt the promotional activities so
as to foreshorten the demand.

Insight 2. The present analysis finds that whereas the higher HC increases the optimal TAC, this decreases the
optimal initial inventory at any time. However, this can hardly influence the order quantity at any
time. Analytic results of DC are analogous in nature. Therefore, when any of these costs increases,
the managers should reduce the initial inventory. Besides, they should promote longer waiting period
without reducing the next replenishment period.
In both cases, the resulting longer waiting period for fresh arrivals of retailers can be counterbalanced
with promotional activities and anticipated benefits, like the updated design, slower deterioration,
technologically advanced, environment-friendly raw materials and all that.

Insight 3. To proposed EOQ model, the longer the period of permissible delay in payment, the greater the
improvement to optimal TAC. So, the retailers should accept a supplier’s offer that has longer period
of permissible delay.
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Table 5. Sensitivity analysis of parameters of proposed model in trade-credit period [µ, t1].

Parameter % change % change of t∗
1

% change of S∗ % change of Q∗ % change of TAC∗

C1

50 −5.65 −5.78 −0.67 19.60
20 −2.32 −2.38 −0.27 8.12
−20 2.40 2.46 0.27 −8.52
−50 6.14 6.31 0.65 −22.09

C2

50 4.94 5.07 0.53 4.86

20 2.22 2.28 0.25 2.20
−20 −2.66 −2.72 −0.31 −2.60
−50 −7.81 −7.98 −0.95 −7.60

C3

50 −2.37 −2.43 −0.27 5.63
20 −0.97 −0.99 −0.11 2.30
−20 1.01 1.03 0.11 −2.37
−50 2.58 2.65 0.29 −6.07

C4

50 3.66 3.76 0.40 3.59
20 1.59 1.64 0.18 1.56
−20 −1.81 −1.85 −0.21 −1.77
−50 −5.03 −5.15 −0.59 −4.91

α

50 −2.59 −2.07 0.17 5.98
20 −1.06 −0.84 0.08 2.44
−20 1.10 0.86 −0.09 −2.52
−50 2.81 2.19 −0.24 −6.43

β

50 1.06 0.56 −0.29 −4.97
20 0.45 0.22 −0.15 −2.38

−20 −0.50 −0.18 0.21 3.20
−50 −1.37 −0.29 0.74 9.73

δ

50 2.79 2.86 −0.11 3.02
20 1.19 1.23 −0.06 1.30
−20 −1.33 −1.37 0.08 −1.45
−50 −3.65 −3.74 0.27 −3.99

σ

50 1.97 2.02 0.22 −16.96
20 0.79 0.81 0.09 −6.62

−20 −0.80 −0.82 −0.09 6.40
−50 −2.01 −2.06 −0.23 15.57

µ

50 0.00 −0.23 11E−4 71E−4

20 0.00 −0.12 47E−5 36E−5
−20 0.00 −0.04 −47E−5 −34E−5
−50 0.00 −0.01 −10E−4 −71E−4

a

50 0.00 49.99 49.99 35.41
20 0.00 19.99 20.00 14.16
−20 0.00 −19.99 −19.99 −14.16
−50 0.00 −49.99 −49.99 −35.41

b

50 0.00 11E−2 11E−4 10E−4
20 0.00 47E−5 47E−5 47E−5
−20 0.00 −47E−5 −47E−5 −47E−5
−50 0.00 −11E−4 −11E−4 −10E−4

Ie

50 0.00 0.00 65E−4 −4.67
20 0.00 0.00 47E−5 −1.87
−20 0.00 0.00 −47E−5 1.87

−50 0.00 0.00 −67E−4 4.67

Ip

50 −1.86 −5.78 −0.21 3.25
20 −0.76 −2.38 −0.09 1.33

−20 0.77 2.46 0.09 −1.37
−50 1.99 6.31 0.22 −3.51
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Table 6. Sensitivity analysis of parameters of proposed model in trade-credit period [t1, T ].

Parameter % change % change of t∗
1

% change of S∗ % change of Q∗ % change of TAC∗

C1

50 −5.35 −5.49 −0.60 44.78
20 −2.19 −2.25 −0.24 18.51
−20 2.26 2.33 0.23 −19.37
−50 5.78 5.96 0.57 −50.13

C2

50 3.53 3.64 0.36 6.15

20 1.58 1.63 0.16 2.75
−20 −1.88 −1.94 −0.20 −3.2679
−50 −5.49 −5.63 −0.62 −9.50

C3

50 −2.37 −2.43 −0.26 13.56
20 −0.97 −0.99 −0.11 5.54
−20 1.00 1.03 0.10 −5.71
−50 2.57 2.65 0.26 −14.60

C4

50 2.61 2.69 0.27 4.55
20 1.14 1.17 0.12 1.98
−20 −1.28 −1.32 −0.14 −2.23
−50 −3.55 −3.65 −0.39 −6.15

α

50 −2.58 −1.99 0.27 14.40
20 −1.05 −0.81 0.12 5.88
−20 1.09 0.82 −0.13 −6.05
−50 2.78 2.09 −0.36 −15.45

β

50 0.81 0.31 −0.36 −10.91
20 0.35 0.10 −0.18 −5.19

−20 −0.38 −0.05 0.24 6.89
−50 −1.00 0.08 0.83 20.85

δ

50 2.12 2.18 −0.04 3.97
20 0.91 0.94 −0.02 1.71
−20 −1.01 −1.04 0.04 −1.91
−50 −2.78 −2.85 0.14 −5.24

σ

50 5.41 5.57 0.53 −97.81
20 2.19 2.25 0.22 −38.51

−20 −2.22 −2.28 −0.24 37.67
−50 −5.63 −5.77 −0.63 92.56

µ

50 44E−6 85E−5 97E−5 60E−5

20 15E−6 49E−5 49E−5 27E−5
−20 −12E−6 −42E−5 −35E−5 −35E−5
−50 −26E−6 −17E−4 −95E−5 −67E−5

a

50 −11E−6 49.99 49.99 20.36
20 −56E−7 19.99 19.99 8.14
−20 46E−7 −19.99 −19.99 −8.14
−50 35E−6 −49.99 −49.99 −20.36

b

50 17E−6 11E−4 12E−4 54E−5
20 71E−7 49E−5 51E−5 29E−5
−20 −71E−7 −68E−5 −44E−5 −20E−5
−50 −17E−6 −11E−4 −10E−4 −54E−5

Ie

50 0.68 0.69 0.07 −53.78
20 0.28 0.29 0.03 −21.50
−20 −0.29 −0.29 −0.03 21.49

−50 −0.75 −0.77 −0.08 53.69

Ip

50 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00

−20 0.00 0.00 0.00 0.00
−50 0.00 0.00 0.00 0.00
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Insight 4. In time-dependent on-hand inventory period, the retailers have to pay interest on goods. So, they
tend to order lesser quantity of goods. However, the proposed model contradicts that perception.
This model recommends to reduce the initial inventory while keeping the order quantity at around
same level in this period.

Insight 5. In shortage period, the retailers tend to order larger quantity of goods due to anticipated demand
from retailers. However, this analysis suggests that the retailers should place the order for around
same quantity of goods so as to rapidly decrease the optimal TAC.

Above insights present win-win situations to both suppliers and retailers to any EOQ model under time-
dependent ramp type demand rate, time-dependent Weibull distribution rate of deterioration and permissible
delay in payment.

7.3. Areas of application to proposed model

The proposed model is potentially applicable to the average inventory managers, who order the items from
suppliers and sell to customers in supermarkets (e.g., Wal-Mart and Carrefour). Also, this model is applicable to
businesses that handle the perishable products (e.g., fruits, vegetables, pharmacies etc.); the electronic compo-
nents (e.g., transistors, silicon-controlled rectifiers, capacitors etc.); the household items (e.g., air conditioners,
refrigerators, mixer etc.) and all that.

8. Conclusions

This article presented a closed-form EOQ model with the general type demand rate, general type rate of
deterioration, general type partial backorder along with fully permissible delay in payment across various trade-
credit intervals. The review of existing and well-established articles found the optimal inventory depletion time
to be independent of the demand over entire cycle. However, under the hypotheses presented in Section 3.2,
this article studied two sub-cases that were based on the settlement time of account. The Case 3.2 in Section 3
found that when the trade-credit period was longer than or equal to the inventory depletion time to settle the
account, optimal inventory depletion time varied over demand.

Under this ambiance, this article examined one particular case within proposed EOQ model. Here, Section 4
considered the time-dependent ramp type demand rate function, time-dependent Weibull distribution rate of
deterioration and partial backorder under fully permissible delay in payment. Analogous to general Case 3.2,
Case 4.1.3 in Section 4.1 found that when the trade-credit period had crossed the inventory depletion time to
settle the account under the consideration of delay in payment; the optimal inventory depletion time varied
inversely over demand. In addition, the proposed EOQ model shrank to various existing and well-established
EOQ models under fully permissible delay in payment and some other specific considerations. Next, this article
modified the algorithm of Goyal [61] in Section 5 in order to determine the optimal inventory depletion time
(t∗1) and thereby optimal on-hand inventory level (S∗), optimal order quantity (Q∗) and optimal TAC (TAC∗).
Numerically, the proposed EOQ model was solved corresponding to three major scenarios that were further
divided into seven sub-cases.

The sensitivity analysis of key parameters in Section 7.1 yielded several managerial insights. This article
suggested the managers to halt the promotional activities so as to foreshorten the demand during shortages.
Moreover, this analysis found that the longer waiting period for fresh arrivals, which resulted into reduced TAC
of retailers should be counterbalanced through the advertisements and anticipated benefits.

The numerous complexities within the EOQ models remain beyond the full capture of one single model, even
after many years of in-depth researches. So, the scopes for future research based on present study are ample.
This article considered the lead time to be zero in order to simplify the process. However, the lead time can
be constant, discrete, negative exponential or stochastic in nature to real-life based EOQ models. Besides, the
ordering cost can have linear and non-linear relationships with lead time in future studies. Future researchers
can consider many other indices, like multi-item, retail inflation rate, perishability, quantity discount and all
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that in EOQ studies. And, last but not the least, one can extend the proposed model to different real-life based
imprecise environments, like stochastic environment, fuzzy environment, soft environment, rough environment,
neutrosophic environment and so on.

Appendix A.

Statement A.1. Deduce the optimality condition of TAC, where

TAC(t1) =
1

T

[

A + C1

∫ t1

0

e−
∫

t

0
θ(x)dx

(

∫ t1

t

D(s)e
∫

s

0
θ(x)dxds

)

dt + C3

∫ t1

0

D(s)(e
∫

s

0
θ(x)dx − 1)ds

+C2

∫ T

t1

∫ t

t1

D(s)λ(T − s)dsdt + C4

∫ T

t1

[

1 − λ(T − t)
]

D(t)dt − pIe

{
∫ t1

0

tD(t)dt

+(σ − t1)

∫ t1

0

D(t)dt

}

]

Proof. For the above expression of TAC, the first order differential quotient of TAC(t1) with respect to t1 is as
follows

dTAC(t1)

dt1
=

D(t1)

T

[

C1e
∫ t1
0

θ(x)dx

∫ t1

0

e−
∫

t

0
θ(x)dxdt + C3

(

e
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0

θ(x)dx − 1

)

−

{(

C2(T − t1) − C4

)

×λ(T − t1) + C4

}

− pIeσ

]

+
pIe

T

∫ t1

0

D(t)dt

Here, the necessary condition of optimality for TAC, which is a function of single variable, yields the critical
points from the equation (3.21). Now, the second order differential quotient of TAC(t1) with respect to t1 is as
follows

d2TAC(t1)

dt21
=

D′(t1)

T
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0
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0
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}
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− β′(T − t1)
)

+ pIe

]

The sufficient condition for existence of minimum value of TAC(t1),
d2TAC(t1)

dt2
1

is positive and satisfied whenever

following relation holds at the critical point t1 = t∗1

C1e
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1
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1

0
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Hence the result. �
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Appendix B.

Statement B.1. Deduce the optimality condition of TAC, where

TAC(t1) =
1

T
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]

.

Proof. For the above expression of TAC, the first order differential quotient of TAC(t1) with respect to t1 is as
follows

dTAC(t1)

dt1
=
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T

[
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]

.

The necessary condition for optimality of TAC, which is function of single variable only, yields the critical points
from the equation (4.12).

Next, the auxiliary function of dTAC(t1)
dt1

is denoted by f(t1), where
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Then, the first order differential quotient of f(t1) with respect to t1 is as follows
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.

So, one can deduce the following relation d2TAC(t1)
dt2

1

= (a+bµ)
T

df(t1)
dt1

, all of whose terms are positive in 0 ≤ t1 ≤ T .

Thus, d2TAC(t1)
dt1

is positive in 0 ≤ t1 ≤ T , subject to following relation at the critical point t1 = t∗1
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Hence the result. �
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Appendix C.

Statement C.1. Deduce the optimality condition of TAC, where

TAC(t1) =
1
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.

Proof. Analogous to Appendix B, the critical points from the equation (4.16) presents the optimality condition
for TAC in µ < σ < t∗1 as follows
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Appendix D.

Statement D.1. Deduce the optimality condition of TAC, where

TAC(t1) =
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Proof. For the above expression of TAC, the first order differential quotient of TAC(t1) with respect to t1 is as
follows
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One can deduce the critical points, in which TAC is optimal from the equation (4.19). Next, second order
differential quotient of TAC(t1) with respect to t1 is as follows
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Since all terms of above expression are positive in 0 ≤ t1 ≤ T , and d2TAC(t1)
dt2

1

is the sum of all these terms, the

expression d2TAC(t1)
dt2

1

is positive in 0 ≤ t1 ≤ T , subject to following relation at the critical point t1 = t∗1
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Hence the result. �
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