
Research Article

Optimization of High-Dimensional Functions through
Hypercube Evaluation

Rahib H. Abiyev1 and Mustafa Tunay2

1Applied Arti�cial Intelligence Research Centre, Near East University, P.O. Box 670, Le�osa, Northern Cyprus, Mersin 10, Turkey
2Computer and Instructional Technologies Education, Eastern Mediterranean University, Famagusta, Northern Cyprus,
Mersin 10, Turkey

Correspondence should be addressed to Rahib H. Abiyev; rahib.abiyev@neu.edu.tr

Received 26 September 2014; Revised 7 February 2015; Accepted 10 February 2015

Academic Editor: Piotr Franaszczuk

Copyright © 2015 R. H. Abiyev and M. Tunay. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A novel learning algorithm for solving global numerical optimization problems is proposed. 	e proposed learning algorithm
is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube
optimization (HO) algorithm.	eHO algorithm comprises the initialization and evaluation process, displacement-shrink process,
and searching space process.	e initialization and evaluation process initializes initial solution and evaluates the solutions in given
hypercube. 	e displacement-shrink process determines displacement and evaluates objective functions using new points, and
the search area process determines next hypercube using certain rules and evaluates the new solutions. 	e algorithms for these
processes have been designed and presented in the paper. 	e designed HO algorithm is tested on speci
c benchmark functions.
	e simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions.
	e comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for
optimization of both low and high dimensional functions.

1. Introduction

One of the basic problems of numerical optimization tech-
niques is the computing globally optimal solutions of high-
dimensional functions. 	e aim of optimization is the
nd-
ing of optimum values of the objective function through
learning the parameters of the function given in the de
ned
domains. 	e learning algorithms are basically divided into
two categories. 	e algorithms based on derivatives of the
cost functions (or objective functions) are called derivative
based learning algorithms, and the algorithms that do not
use the derivatives of the cost functions are called derivative
free learning. Recently various learning techniques have been
applied to obtain the solution of di�erent optimization prob-
lems. However, derivative based learning techniques do not
fare well for
nding global optimal solutions of the nonlinear
problems having many local optimal solutions. Derivative
free learning techniques and evolutionary computing are
e�ective optimization techniques that can be used to solve

“local minima” problem and
nd global optimum of the
problem.

In the literatures, various learning algorithms have been
applied to
nd global optimal solution. Monte-Carlo method
[1], Vegas algorithm [2], and Cat algorithm [3] are extensively
used for solution of di�erent optimization problems. Some
of more used algorithms are genetic algorithms (GA) [4,
5], evolution strategies [6], di�erential evolution (DE) [7],
particle swarm optimization [8], and other nonevolutionary
methods such as simulated annealing [9], tabu search [10],
ant-colony optimization (ACO) [11], and arti
cial bee colony
algorithm [12].	e integration of themethodswith computa-
tional intelligence techniques is widely used to solve di�erent
practical problems of engineering and science [13–18].

Recently number of researches has been done on global
optimization, but there are still not many powerful tech-
niques for optimization of dense high-dimensional problems.
	is is because the global optimization of high-dimensional
functions is computationally expensive, cost involved. 	ese

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2015, Article ID 967320, 11 pages
http://dx.doi.org/10.1155/2015/967320

2 Computational Intelligence and Neuroscience

problems are characterized by many parameters, and many
iterations and arithmetic operations are needed for evalua-
tions of these functions. In practical applications, evaluation
of the function is o�en very expensive and large number of
function evaluations might not be very feasible [19].

Some learning algorithms have been designed for global
optimization of high-dimensional functions. Reference [20]
uses new variant of di�erential evolution (DE), named
DECC-I and DECC-II for high-dimensional optimization
(up to 1000 dimensions). 	e algorithms use several novel
strategies that focus on problem decomposition and sub-
components cooperation. An improved di�erential evolution
algorithm [21], self-adaptive di�erential evaluation algorithm
[22], di�erential ant-stigmergy [23], particle swarm opti-
mization [24, 25], modi
ed multiscale particle swarm opti-
mization [26], surrogate-assisted evolutionary programming
[27], and group search optimizer (GSO) inspired by animal
behavior [28] are designed and applied for global optimiza-
tion of high-dimensional functions. As shown the designed
algorithms are basically modi
cation, improvement, and
adaptation of existing evolutionary algorithms in particularly
DE, PSO, and GA. Using these methods the researchers try
to obtain reasonable results for optimization functions. In
spite of some success, these techniques are still not verymuch
suitable for high-dimensional global optimization problems
[19]. 	e proposed algorithms are more suitable for low-
dimensional problems.	e dimension that was used in above
research papers was maximum 100 and some of them 1000.
In this paper, the novel method that solves high-dimensional
global optimization problems having sizes of 1000, 5000,
and 10000 is proposed. 	e proposed novel method is called
hypercube optimization (HO) algorithm. 	e HO algorithm
is based on designing hypercube, selecting the best elements
and applied them to multivariate systems for optimization
of the objective function. 	is algorithm approaches optimal
points using the best elements determined during learning.

	e paper is organized as follows. Section 2 presents the
hypercube optimization algorithm proposed. 	e processes
used in the algorithm are described. Section 3 describes the
test functions used in simulations. Section 4 includes appli-
cation of the algorithm on test functions. Section 5 presents
comparative results of HO algarithm with some existing
methods. Finally, in Section 6 conclusions are presented.

2. Hypercube Optimization Algorithm

	e HO algorithm is an evolutionary algorithm that takes
inspiration from the behaviour of a dove discovering new
areas for food in natural life. In such behaviour a �ying dove
searches for new locations of food. 	e dove �ies down in a
unique way and marks the area that may have food.	e dove
�ies up again and it chooses the previously marked areas and
changes and shrinks the sizes of the search area. In a search
process, the dove is not limited to a single area.	e dove picks
new search area according to the density of food (domain for
the objective function). 	e dove stops �ying and keeps in
mind the area which has food. A�er eating the food, the dove
is looking for a new search area.	e dove jumps or �ies down

Yes

No

Initialization

and evaluation

Terminating

condition?

Searching space

process

Display all

optimal solutions

Start

End

B

A

C

Displacement-shrink

process

Figure 1: Flowchart of the hypercube optimization algorithm. Here
A is initialization and evaluation, B is displacement-shrink, and C is
searching space processes.

another area branch to
nd a new area. 	e dove does not �y
to another area when it gets to an area that has the most food.

In the paper, the hypercube is used to describe the
search area. Inside the search area, the value of an objective
function is evaluated according to the quantity and density
of food. Next, the functional distances between each of two
solutions are determined.	is distance helps the algorithm to
determine the next new search area. 	is is performed using
the displacement-shrink process.

	e hypercube optimization algorithm is a derivative-
free learning method based on evaluation of set of points
randomly distributed in an �-dimensional hypercube. A�er
evaluation the point shi�s and contracts according to the
average between previous best points in order to determine
new best points inside the hypercube. 	e contraction is
greater when the movement is smaller to accelerate the
convergence. 	is operation will be reported as an optimal
solution at the end of the iterations.

	eHO algorithm is an intense stochastic search method
based on hypercube (HC) evaluation. 	e general structure
regarding the visualization of the �owchart of the hypercube
optimization algorithm is illustrated in Figure 1. As shown
from the
gure, the HO algorithm includes three basic
processes.

Step A (initialization and evaluation process).	e algorithm
begins with the generation of a hypercube and initializa-
tion of matrices and variables within the hypercube. Here

Computational Intelligence and Neuroscience 3

the hypercube is represented by the center and size (radii).
	e new points with uniform distribution are randomly
generated within the hypercube. It proceeds to the through
main loop, by which convergence to the global minimum is
sought, and it
nishes when any of the termination criteria is
ful
lled.

Step B (displacement-shrink process). 	e displacement-
shrink process is deployed to
nd the new best point. 	is
is implemented by computing the average of the current best
point and the previous best one. 	e average between both
values is taken as a conservative measure to avoid excessive
�uctuations in the search.

Step C (searching space process).	e searching space process
controls the movements of � solutions according to the
de
ned interval (commonly [0, 0.1]). 	e searching space
process initializes a new hypercube and repeats the whole
process.

	e initialization and evaluation process, displacement-
shrink process, and searching space process are repeated in
each learning iteration.While speci
c termination conditions
are satis
ed the whole processes are continued to execute.

At each iteration, the newly generated hypercube changes
and shrinks its sizes until the optimum points are located.
Unlike other methods, like particle swarm optimization, the
points in the hypercube optimization algorithm do not move
according to a speci
c rule nor does themethod record them,
except for the best points. 	is permits a rapid selection of a
new best zone and an intense search in it.	us, the hypercube
optimization algorithmdoes not perform any local search but
rather it is always global. 	is behavior allows the algorithm
to move rapidly to globally best points, as it does not waste
time in local searches.

Following in the next subsections the descriptions of each
step are presented in detail.

2.1. Hypotheses and Representation of Solution. As in all real-
valued single-objective unconstrained optimization algo-
rithms, we try to
nd theminimum (or equivalently themax-
imum) of a scalar objective function �(�) and represent the
free parameters as a vector or point � = (�1, �2, �3, . . . , ��),
where � is the dimension of the problem. 	erefore, � is a
mappingR� → R. We assume the following hypotheses.

(i) � is available only as a black box; that is, we have
no knowledge or possibility of control of its interior
functions. We access � only via input-output.

(ii) � has a continuous domain inside the bounds; that is,
every point inside the bounds has a mapping by �.

(iii) � is well-behaved in the domain, at least numeri-
cally; that is, it is continuous and presents certain
smoothness. 	is constrains overly noisy functions,
where there is no spatial correlation. But implicit is
also the assumption of some noisiness, whereby
nite
di�erences in the neighborhood of a point are not
similar to the derivatives of the noiseless function.

Table 1: Initial points.

Symbol De
nition� Dimension of hypercube� radii of HC�� Center of 1st HC (zone)� = �0 Take initial point as 1st HC

LB, UB
Lower and upper bounds of
rst HC
(zone)� Number of points in each HC� � × � points, solutions	 � × 1 points, values of functions	best Best value of objective function

Create matrices:�(� ×�)	(� × 1)	best: best value of objective function

(iv) 	e number of searching points (�) is enough for
correctly sampling�’s domain (related to the previous
point). 	erefore, � is directly related to the dimen-
sion of the problem (�) and �’s smoothness.

2.2. Initialization and Evaluation Process. Initialization and
evaluation is the
rst block of hypercube optimization algo-
rithm. 	e starting conditions are

(1) initial (and global) boundaries for all points: these
boundaries are the sides of the hypercube;

(2) initialization of solutions inside the hypercube and
an initial random choice of a best point �0 (if not
available, the central point of the initial hypercube
will be taken) in the given set.

Initial points of the hypercube optimization algorithm
are presented in Table 1. At the starting stage the data radii
and centre of the HC are generated randomly and these
parameters are used to initialize the
rst HC.	en uniformly
distributed � searching points are generated inside the
hypercube. Using these points, the values of the objective
function are determined. Here the concept is to have an
approximate knowledge about the location of the lowest val-
ues of �. 	is initial sampling has to be su�ciently dense so
as to probe all the possible zones of higher and lower values;
otherwise, the algorithm can take the zone sought (global
optimum) as a simply better one (local optimum). As pointed
out above, this density (and hence the number of points �)
is a function of the dimension � and the smoothness of the
function. 	e problems with higher dimension will require
higher�.

	e hypercube optimization algorithm begins with the
initialization of matrices and variables; it proceeds to the
main loop, by which convergence to the global minimum is
sought, and it
nishes when any of the termination criteria
is ful
lled. 	e details regarding the visualization of the
�owchart initialization and evaluation of the HO algorithm

4 Computational Intelligence and Neuroscience

A

Yes

Derive uniformly distributed

Choose next center of HC as the mean between

B

C

Stop condition?

Up to present?
No

Iterations

End

Start

Display all

optimal solutions

Compute the values of F = f(X)

random Xnew points inside the HC

Using Xnew points �nd minimum
(best) value of functions Fbest , and

corresponding Xbest points

center of last HC and best Xbest points

Create next HC, derive X matrix

Figure 2: Flowchart of the initialization and evaluation process.
Here B is displacement-shrink process and C is searching space
process.

are illustrated in Figure 2. A�er the start block, initial point�0 is generated as the centre of the
rst hypercube (HC).
	e initial value of the radii of the
rst HC is determined
according to the change interval of the test (objective)
functions. Next using the value of centre �0 the dimension
of the hypercube is derived according to formula (1). A�er
creating the hypercube, the � matrix is generated within
this hypercube. 	e size of � is de
ned by (� × �). � is
a number of generated points. We need to comment that in
future iterations (
 = 2, 3, . . .) the hypercube is created using
the values of�matrix.

We have illustrated this process as follows with initial
points to create them with default values.

(1) Dimension of hypercube is

� = length (�0) . (1)

(2) Row vectors with lower and upper boundaries of HC
are

LB = min (� bounds) ,
UB = max (� bounds) . (2)

(3) Dimensions of�-dimensional HC’s are

 = UB − LB. (3)

(4) Central values are

�� = (LB + UB)2 . (4)

(5) Vector with radii of HC is

�0 = 2 ,
� = �0. (5)

According to �matrix, the row vector with lower and upper
boundaries of the hypercube (2) is determined. Using these
boundaries, obtained from the
rst hypercube (zone), the
radii (4) and the centre (5) points of the next hypercube
are determined. � matrix, de
ned as � searching points,
is applied to determine the values of the test function, that
is, 	(�(�)) matrix, as pointed out above in Table 1. In the
next step using the HC, the new uniformly random points
are derived. 	e number of points is de
ned according to
the dimension of the HC. 	ese points form the new �new

matrix. 	is matrix is used to evaluate the test functions. As
a result of evaluation, the best (minimum) value of function	best and the corresponding �best points are determined. By
“best” we mean the vector that corresponds to the best
tness
(e.g., the lowest objective function value for a minimization
problem) in the entire population at
th iteration. 	e �best

point is improved (updated) using local search; that is,�new
best =�best + �Δ	. Here 0 ≤ � ≤ 1, 	 is the objective function.

	e improvement is continued until Δ	 becomes acceptably
small value less than a preset value (tol). 	e derived best
points are used to determine the centre and the radii of the
next hypercube. 	is operation is realized by calculating the
mean of the center of the last HC (�last centre) and the previous
best (�best) points; that is, (�last centre + �best)/2. 	is process
is called “displacement.” As shown the created second HC is
derived from the previous HC and the sizes of the second
HC will be less than the sizes of the previous one. In future
operations, the last-secondHCwill be used to create the next-
third hypercube.

In summary, we can unify the evaluation and learning
processes as follows. When the new hypercube is initialized,
the function is evaluated at new points, randomly (with
uniform distribution) chosen from inside of the hypercube.
	e new minimum is determined and compared with the
last minimum. If the new minimum is worse (greater) than
the previous one, then a new iteration will be started. If
the same value is repeated several consecutive times then

Computational Intelligence and Neuroscience 5

the algorithm ends, and the best minimum is considered as
the global minimum.

A�er the above given initialization and evaluation pro-
cesses the implementation of displacement-shrink process
and searching space process is performed.	e whole process
is repeated until speci
c termination conditions are satis
ed.

2.3. Displacement and Shrink Process. 	e center of the next
hypercube will be just the average between the current best
point and the previous one; that is, (�last centre + �best)/2.
	e average between both values is taken as a conservative
measure to avoid excessive �uctuations in the search and
to prevent moving suddenly to a neighboring zone where
a lower value was found, but which perhaps is just a local
minimum. 	e radii of the new hypercube are determined
as �new = �old ∗ �. Here � is a factor of convergence which is
de
ned in the next section (see (10)).

In addition to moving, the hypercube has to contract
in order to re
ne the search and to converge to a unique
and certain—assumed global—minimum.	is contraction is
controlled by the movement of the average of best values. For
large displacements, there is no contraction, as we interpret
that the global minimum is still very uncertain. For small or
null displacements, the hypercube will shrink, as we interpret
this to mean that we are closer to the global minimum: the
contraction is greater for smaller movements. 	is derives
the fast convergence of the method, while it prohibits getting
stuck at undesired (local) minima.

	e details regarding the visualization of the �owchart
of the displacement-shrink process of the hypercube opti-
mization algorithm is illustrated in Figure 3. At
rst, the
minimum of value of 	best is compared with the new value
of 	mean corresponding to the point mean = (�last centre +�best)/2 determined as pointed out in the previous section. If	mean value is less than 	best value then, in given iteration, �
displacement (or�movement) is computed and normalized
twice:
rst each element of� is divided by the corresponding
initial range (and thus the displacement is transformed into a
unity-sided hypercube) and then that quantity is normalized
again, dividing it by the diagonal of hypercube √�. 	ese
operations are illustrated as follows:

(1) normalized�� (previous� for minimum):

�� = (� − ��) , (6)

(2) normalized�min (current� for minimum):

�min � = (�min − ��) , (7)

(3) normalized distance (should be bounded by 0 and
sqrt of�):

�� = sum ((�� − �min �)2)0.5 , (8)

No

Yes

Yes

No

No

Yes

No

No

Iterations

Yes

Update/display all

optimal solution

A

Stop condition?
Up to present?

C

Yes

for 30 consec. times?

Start

End

Initialization and

evaluation

Display and save all

optimal solutions

Norm. distance (Xmovements) = 0

Fbest > Fmean

Calc. Xmovements

Change in F < tolF for

30 consec. times?

for 30 consec. times?

Norm. distance < tolX

Test Fbest > Fmean

Figure 3: Flowchart of the displacement-shrink process. Here A
is initialization and evaluation process and C is searching space
process.

(4) renormalized distance (should be bounded by 0–0.1):

��� = ��√�. (9)

In the result of these operations, �� points are shrunk
(become smaller) to the centre point ��. 	ese points are
used to evaluate the test functions again. In the next blocks
the hypercube continues moving and shrinking until one of
the following conditions are not met.

6 Computational Intelligence and Neuroscience

(i) 	e change in consecutive 	best values is smaller than
a preset value (tol), for a preset consecutive number
of times. 	is is also interpreted as convergence in 	
space.

(ii) 	e same or worse 	 value is found consecutively
a preset number of times. 	is is interpreted as
nonconvergence in 	 space.

(iii) 	e change in best � value (renormalized distance)
is smaller than a preset value (tol�), for a preset
consecutive number of times. 	is is interpreted
as convergence in R

� space. 	e whole process is
repeated until speci
c termination conditions are
satis
ed.

(iv) 	e maximum number of iterations is reached: of
course, in this case convergence is not guaranteed,
as possibly lower values could be found with more
iteration.

Each condition is tested for thirty consecutive times. If
these conditions are not satis
ed then the searching space
process will be initialized.

We need to notice that the movement of � will not be
performed if the 	mean value will be larger than 	best value. In
such case, the searching space process will be initialized.

2.4. Searching Space Process. 	e searching space process
initializes new center and size (radii) in order to create new
hypercube. 	e objective function is evaluated at new points
which are randomly chosen from the hypercube and having
uniform distribution. 	e searching space process controls
the movements of � according to the interval de
ned, in
particularly for �movements < 0.1. 	e value of �movement

is determined by ���. 	e �owchart of the searching space
process of the HO algorithm is illustrated in Figure 4.

If the movement of� satis
es the condition then a factor
of convergence � is calculated and updated at each iteration:

� = 1 − 0.2�−3��� , (10)

where ��� is computed by (9) and describes the normalized
distance moved by the average of last two best values of �.
Next the update of solutionswill be performed.	e size (in all
the dimensions) of the hypercube is reduced by multiplying
by this factor. 	us, the hypercube reduces or maintains
its size for nontrivial movements and shrinks otherwise.
	e whole process is repeated until speci
c termination
conditions are satis
ed.

3. Test Functions

	e proposed hypercube optimization algorithm is tested on

ve continues test functions which are widely used in the lit-
eratures: Ackley path function, Rastrigin function, Rosenbrock
function, Griewank function, and Sphere function [19–23].
	e test functions are more applicable for the experimental
evaluations ofmethods used in global optimization problems.
	e designed algorithm is implemented in MATLAB.

No

No

Yes

Iterations

Yes

B

Stop Condition?

Up to present?
Display all optimal

solutions

Initialization and

evaluation

End

Start

Save and update all

optimal solutions

A

S = 1 − 0.2e−3d��

Xmovements < 0.1

Figure 4: Flowchart of the searching space process. Here A is
initialization and evaluation process and B is displacement-shrink
process.

3.1. Ackley Path Function. Ackley path function is continuous,
scalable, and nonseparable and is an extensively multimodal
test function.

	is test function is formulated as follows:

�1 (�) = −20 exp(−0.2√ 1
�∑
�=1

��2)
− exp(1

�∑
�=1

cos (2���)) + 20 + �,
(11)

where is a number of dimensions and �� = (�1, �2, . . . , ��)
is dimensional row vector.	e test area is usually evaluated
in the interval of −32 ≤ �� ≤ 32,
 = (1, . . . ,). Global
minimum �(�) = 0 is obtainable for �� = (0, 0).
3.2. Rastrigin Function. Rastrigin function is continuous,
scalable, and separable and is highly multimodal global
optimization function.

	is test function is formulated as follows:

�2 (�) = 10 + �∑
�=1

(��2 − 10 cos (2���)) , (12)

where is a number of dimensions and �� = (�1, �2, . . . , ��)
is dimensional row vector.	e test area is usually evaluated
in the interval of −5.12 ≤ �� ≤ 5.12,
 = (1, . . . ,). Global
minimum �(�) = 0 is obtainable for �� = (0, 0).

Computational Intelligence and Neuroscience 7

3.3. Rosenbrock Valley Function. Rosenbrock’s valley function
is known as the second function ofDe Jong.	is test function is
continuous, scalable, naturally nonseparable, nonconvex, and
unimodal.

	is test function is formulated as follows:

�3 (�) = �−1∑
�=1

[100 (��+1 − (��)2)2 + (�� − 1)2] , (13)

where D ≥ 2 is a number of dimensions and �� =(�1, �2, . . . , ��) is dimensional row vector. 	e test area
is usually evaluated in the interval of −2.048 ≤ �� ≤ 2.048,
 = (1, . . . ,). Global minimum �(�) = 0 is obtainable for�� = (1, 1).
3.4. Sphere Function. 	e simplest benchmark function is
spheremodelwhich is also calledDe Jong’s function 1.	is test
model is continuous, unimodal, and appearance of convex.

	is test function is formulated as follows:

�4 (�) = �∑
�=1

��2, (14)

where is a number of dimensions and �� = (�1, �2, . . . , ��)
is a dimensional row vector. 	e test area is usually evaluated
in the interval of −5.12 ≤ �� ≤ 5.12,
 = (1, . . . ,). Global
minimum �(�) = 0 is obtainable for �� = (0, 0).
3.5. Griewank Function. Griewank function is continuous,
scalable, nonseparable, and multimodal test function.

	is test function is formulated as follows:

�5 (�) = 14000
�∑
�=1

��2 − �∏
�=1

cos(��√
) + 1, (15)

where is a number of dimensions and �� = (�1, �2, . . . , ��)
is a dimensional row vector. 	e test area is usually evaluated
in the interval of −600 ≤ �� ≤ 600,
 = (1, . . . ,). Global
minimum �(�) = 0 is obtainable for �� = (0, 0).
4. Simulation Studies

	e performance of the hypercube optimization algorithm
is tested on the
ve benchmark functions given above. 	e
benchmark functions �1 ÷ �5 are evaluated by considering
the cases in which the problem dimensions are set as 1000,
5000, or even 10000 dimensions. At
rst the dimension is set
as 1000. 	e population size is also set to 100, 1000, or even
10000. We have summarized the best average
tness (e.g., the
lowest objective function value) and the average number of
the test function evaluations over successful 30 runs. For each
evaluation, the learning of the algorithm is continued 5000
iterations. 	e hypercube optimization algorithm has global
minimum that was obtained with much well convergence
process for these test functions.

No optimization algorithm guarantees convergence for
any function, but it is a good practice to test theHOalgorithm
for several benchmark functions and tune the parameters.

102

100

10−2

10−4

10−6

10−8
0 1000 2000 3000 4000 5000 6000

Iterations

O
b

je
ct

iv
e

fu
n

ct
io

n

Ackley function

Figure 5: 	e convergence graphic for the Ackley function with
dimension of 5000 and population of 100.

	erefore, we have tested the hypercube optimization
algorithmon a set of benchmark functions, and the algorithm
has yielded improved results, sometimes reaching the better
solution faster than well-established algorithms. 	e details
regarding the visualization of the test function results are
given below.

In the next step, the test functions are evaluated for the
cases in which the problem dimensions of �1 ÷ �5 are set to
5000 or even 10000 dimensions. 	e population size is set
to 100. 	e convergence graphics have also been obtained
and averaged through evaluations over successful 30 runs.
	e details of results regarding the visualization of the test
function are given as follows.

4.1. Ackley Path Function. �e Ackley path function is an
extensively used multimodal test function. Figure 5 ilustrates
the convergence graphic of HO algorithm for 5000 dimen-
sions. 	e population size of the HO algorithm is almost
insensitive to the dimension of the problems. 	e minimum
of Ackley test function was obtained as 2.76� − 07.

Figure 6 depicts the convergence graphic of the HO algo-
rithm for the Ackley test function having 10000 dimensions.
	e minimum value of the function was obtained as 1.16� −06.
4.2. Rastrigin Function. 	e Rastrigin function is a typical
nonlinear multimodal function. 	is test function is a fairly
di�cult problem for evolutinary algorithms due to the high
number of dimensions and large number of local minima.

Figure 7 depicts the convergence graphic of HO algo-
rithm for the Rastrigin test function having 5000 dimensions.
	eminimumwas obtained as 7.13� − 10. 	e HO algorithm
can
nd near-optimal solutions with much well convergence
with high dimension for this test function.

8 Computational Intelligence and Neuroscience

102

100

10−2

10−4

10−6
0 1000 2000 3000 4000 5000 6000

Iterations

O
b

je
ct

iv
e

fu
n

ct
io

n

Ackley function

Figure 6: 	e convergence graphic for the Ackley function with
dimension of 10000 and population of 100.

100

0 1000 2000 3000 4000 5000 6000

Iterations

O
b

je
ct

iv
e

fu
n

ct
io

n

105

10−5

10−10

Rastrigin function

Figure 7: 	e convergence graphic for the Rastrigin function with
dimension of 5000 and population of 100.

Figure 8. It depicts the convergence graphic for the test
function having 10000 dimensions. 	e minimum value of
function was obtained as 2.99� − 09.
4.3. Rosenbrock Function. 	eRosenbrock function is a typical
naturally nonseparable, nonconvex, and unimodal. 	is test
function is also a fairly hard problem for evolutionary
algorithms.

Figure 9 depicts the convergence graphic for the Rosen-
brock test function having 5000 dimensions. 	e minimum
value of function was obtained as 1.15� − 08. 	e HO
algorithm can
nd optimal or near-optimal solutions with
muchwell convergence.	is fact indicates thatHOalgorithm
is almost insensitive to the dimension of the problems.

0 1000 2000 3000 4000 5000 6000

Iterations

100

O
b

je
ct

iv
e

fu
n

ct
io

n

105

10−5

10−10

1010
Rastrigin function

Figure 8: 	e convergence graphic for the Rastrigin function with
dimension of 10000 and population of 100.

100

O
b

je
ct

iv
e

fu
n

ct
io

n

105

10−5

10−10

1010

0 1000 2000 3000 4000 5000 6000

Iterations

Rosenbrock function

Figure 9: 	e convergence graphic for the Rosenbrock function
having dimension of 5000 and population of 100.

Figure 10 depicts the convergence graphic for the Rosen-
brock function having 10000 dimensions.	eminimumvalue
of function was obtained as 3.38� − 08.
4.4. Sphere Function. 	e Sphere function is a typical uni-
modal test function. Figure 11 depicts convergence graphic
of HO algorithm for the Sphere test function having 5000
dimensions. 	e minimum value of test function using HO
algorithm was obtained as 4.64� − 020.

In Figure 12, the convergence graphic of hypercube opti-
mization algorithm for the Sphere test function having 10000
dimensions is given. 	e minimum value was obtained as2.40� − 016 with much well convergence. 	is test function

Computational Intelligence and Neuroscience 9

100

O
b

je
ct

iv
e

fu
n

ct
io

n

105

10−5

10−10

1010

0 1000 2000 3000 4000 5000 6000

Iterations

Rosenbrock function

Figure 10: 	e convergence graphic for the Rosenbrock function
having dimension of 10000 and population of 100.

O
b

je
ct

iv
e

fu
n

ct
io

n

0 1000 2000 3000 4000 5000 6000

Iterations

100

10−5

10−10

10−20

105

10−15

Sphere function

Figure 11: 	e convergence graphic for the Sphere function having
5000 dimensions and 100 populations.

is a fairly easy problem for
nding the total optimum and in
the fast convergence.

4.5. Griewank Function. 	e Griewank function is also a
typical nonlinear multimodal function. 	is test function
is tested using many multiobjective evolutionary algorithms
[23].

Figure 13 depicts the convergence graphic for the
Griewank test function having 5000 dimensions. 	e
minimum value of function was obtained as 3.34� − 013.

In Figure 14, the minimum value of test function using
HO algorithm was obtained as 1.11� − 016 for 10000 dimen-
sions. 	e HO algorithm can
nd optimal or near-optimal

O
b

je
ct

iv
e

fu
n

ct
io

n

100

10−5

10−10

0 1000 2000 3000 4000 5000 6000

Iterations

10−20

105

10−15

Sphere function

Figure 12: 	e convergence graphic for the Sphere function having
10000 dimensions and 100 populations.

O
b

je
ct

iv
e

fu
n

ct
io

n

100

10−5

10−10

105

10−15

1010

0 1000 2000 3000 4000 5000 6000

Iterations

Griewank function

Figure 13: 	e convergence graphic for the Griewank function
having dimension of 5000 and population of 100.

solutions with much well convergence with high dimension
for this test function.

5. Comparison

	e hypercube optimization algorithm has yielded in general
quite better results, sometimes reaching the better solution
faster than well-established algorithms. 	e usage of mul-
tiobjective evolutionary algorithms allows us to
nd global
optimal solutions and avoid local optimum problem.

	e simulation results of HO algorithm that was obtained
with test functions with di�erent dimensions and averaged
over 30 runs are given in Table 2. Using the table we can see

10 Computational Intelligence and Neuroscience
O

b
je

ct
iv

e
fu

n
ct

io
n 100

10−10

1010

0 1000 2000 3000 4000 5000 6000

Iterations

10−20

Griewank function

Figure 14: 	e convergence graphic for the Griewank function
having dimension of 10000 and population of 100.

Table 2: Results of the mean best functions values averaged over 30
runs obtained by HO algorithm.

Function Population Dimension 	e best Iterations

�1 100 1000� 5.01� − 012 5000

1000 1000� 2.46� − 013 5000

10000 1000� 5.12� − 012 5000

�2 100 1000� 1.83� − 010 5000

1000 1000� 4.54� − 011 5000

10000 1000� 3.63� − 011 5000

�3 100 1000� 5.68� − 017 5000

1000 1000� 8.16� − 017 5000

10000 1000� 2.06� − 017 5000

�4 100 1000� 1.56� − 059 5000

1000 1000� 5.86� − 059 5000

10000 1000� 1.12� − 072 5000

�5 100 1000� 2.22� − 015 5000

1000 1000� 6.32� − 015 5000

10000 1000� 5.44� − 015 5000

that by increasing learning iterations from 1000 to 5000, the
performance of HOA is increased for functions�1, �2, �3, and�4 as 2.46� − 013, 4.54� − 011, 8.16� − 017, 6.32� − 015, and5.86� − 059 correspondingly.

	is chapter presents comparison of the performances of
the hypercube optimization algorithm, with the two popular
global optimization approaches, namely, genetic algorithm
(GA) and particle swarm optimization (PSO) acting on
above given four benchmark functions, namely, Ackley path
function, Rastrigin function, Rosenbrock function, and Sphere
function. 	ese test functions are evaluated by considering
the cases in which the problem dimensions of �1, �2, �3, and�4 are set as = 1000 for the 1000 iterations. 	e proposed
algorithm is tested by using above given test functions and
the main unknown parameters are determined.	e values of

Table 3: Comparison of the results.

Function HO algorithm GA PSO Iterations�1 1.07� − 003 7.87 9.02 1000�2 6.07� − 004 1.07� + 04 1.40� + 04 1000�3 5.13� − 002 1.12� + 03 6.58� + 06 1000�4 1.16� − 008 3.45� + 03 5.50� + 03 1000

main parameters for GA and PSO used in this chapter can be
found in detail in [19, 29].

In Table 3, comparison of all the three algorithms for test
functions of 1000 dimensions is provided.

All the algorithms were tested for 1000 dimensions.
As evident from the results presented in Table 3, the HO
algorithm obtains better results (re�ected in the average

tness) than other techniques.	e comparative results of the
algorithms demonstrate that the performance of HO algo-
rithm improves upon other well-known global optimization
techniques: GA and PSO.

6. Conclusion

	is paper proposes the hypercube optimization algorithm
to solve multivariate systems for global optimization. 	e
designed algorithm is based on a hypercube evaluation
driven by convergence. 	e use of stochastic search method
approach allows it to speed up the learning of the system
and, respectively, to decrease training time of the system
with a faster convergence. 	e simulations have been carried
out using benchmarking functions, such as Ackley function,
Rastrigin function, Rosenbrock function, Sphere function, and
Griewank function. 	e computational results have demon-
strated that the performance of the system have considerably
increased in optimization problems for solving a set of global
optimization problems with large numbers of populations.
	e population size of the HO algorithm is almost sensitive
to the dimension of the problems for these test functions.
	e comparative results of HOA, GA, and PSO algorithms
demonstrate that the performance of HO algorithm is an
improvement upon other two global optimization tech-
niques.

Conflict of Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

References

[1] G. S. Fishman,Monte Carlo: Concepts, Algorithms, and Applica-
tions, Springer, New York, NY, USA, 1995.

[2] G. P. Lepage, “A new algorithm for adaptive multidimensional
integration,” Journal of Computational Physics, vol. 27, no. 2, pp.
192–203, 1978.

[3] D. J. Weiss and G. G. Kingsbury, “Application of computerized
adaptive testing to educational problems,” Journal of Educa-
tional Measurement, vol. 21, pp. 361–375, 1984.

Computational Intelligence and Neuroscience 11

[4] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley Publishing, 1989.

[5] J. H. Holland, Adaptation in Natural and Arti�cial Systems,
University of Michigan Press, Ann Arbor, Mich, USA, 1975.

[6] K. Deb, A. Anand, and D. Joshi, “A computationally e�cient
evolutionary algorithm for real-parameter optimization,” Evo-
lutionary Computation, vol. 10, no. 4, pp. 371–395, 2002.

[7] R. Storn and K. Price, “Di�erential evolution—a simple and
e�cient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[8] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, IEEE, Perth, Australia, Decem-
ber 1995.

[9] S. Kirkpatrick, J. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[10] F. Glover and M. Laguna, Tabu Search, Kluwer Academic
Publishers, Boston, Mass, USA, 1997.

[11] M. Dorigo, Optimization, learning and natural algorithms
[Ph.D. thesis], Politecnico di Milano, Milano, Italy, 1992.

[12] D. Karaboga, “Arti
cial bee colony algorithm,” Scholarpedia,
vol. 5, no. 3, article 6915, 2010.

[13] R. H. Abiyev and M. Menekay, “Fuzzy portfolio selection using
genetic algorithm,” So Computing, vol. 11, no. 12, pp. 1157–1163,
2007.

[14] R. H. Abiyev, “Fuzzy wavelet neural network for prediction of
electricity consumption,” Arti�cial Intelligence for Engineering
Design, Analysis and Manufacturing: AIEDAM, vol. 23, no. 2,
pp. 109–118, 2009.

[15] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei,
“A hybrid genetic algorithm formultidepot and periodic vehicle
routing problems,” Operations Research, vol. 60, no. 3, pp. 611–
624, 2012.

[16] X. Yang, C.-B. Hu, K.-X. Peng, and C.-N. Tong, “Load dis-
tribution of evolutionary algorithm for complex-process opti-
mization based on di�erential evolutionary strategy in hot
rolling process,” Mathematical Problems in Engineering, vol.
2013, Article ID 675381, 8 pages, 2013.

[17] L. Zhang, M. Zhang, W. Yang, and D. Dong, “Golden ratio
genetic algorithm based approach for modelling and analysis
of the capacity expansion of urban road tra�c network,”
Computational Intelligence and Neuroscience, vol. 2015, Article
ID 512715, 9 pages, 2015.

[18] J.-T. Tsai, J.-H. Chou, and W.-H. Ho, “Improved quantum-
inspired evolutionary algorithm for engineering design opti-
mization,” Mathematical Problems in Engineering, vol. 2012,
Article ID 836597, 27 pages, 2012.

[19] C. Grosan and A. Abraham, “A novel global optimization tech-
nique for high dimensional functions,” International Journal of
Intelligent Systems, vol. 24, no. 4, pp. 421–440, 2009.

[20] Z. Yang, K. Tang, and X. Yao, “Di�erential evolution for high-
dimensional function optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’07), pp. 3523–
3530, IEEE, Singapore, September 2007.

[21] X. You, “Di�erential evolutionwith a newmutation operator for
solving high dimensional continuous optimization problems,”
Journal of Computational Information Systems, vol. 6, no. 9, pp.
3033–3039, 2010.

[22] J. Brest, A. Zamuda, B. Bošković, M. S. Maučec, and V. Žumer,
“High-dimensional real-parameter optimization using self-
adaptive di�erential evolution algorithm with population size
reduction,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’08), pp. 2032–2039, Hong Kong, June 2008.

[23] P. Korosec and J. Silc, “High-dimensional real-parameter opti-
mization using the di�erential ant-stigmergy algorithm,” Inter-
national Journal of Intelligent Computing and Cybernetics, vol. 2,
no. 1, pp. 34–51, 2009.

[24] J. J. Jamian, M. N. Abdullah, H. Mokhlis, M. W. Mustafa, and
A. H. Bakar, “Global particle swarm optimization for high
dimension numerical functions analysis,” Journal of Applied
Mathematics, vol. 2014, Article ID 329193, 14 pages, 2014.

[25] T. Hendtlass, “Particle swarm optimisation and high dimen-
sional problem spaces,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ’09), pp. 1988–1994, May 2009.

[26] I. Hamid, A. El-Bastawesy, I. Adel, M. Abdel-Salam, and
M. Alaa El-La�y, “A modi
ed multi-scale particle swarm
optimization for high dimensional systems,” in Proceedings of
the 1st Taibah University International Conference on Comput-
ing and Information Technology (ICCIT ’12), Al-Madinah Al-
Munawwarah, Saudi Arabia, 2012.

[27] R. G. Regis, “Evolutionary programming for high-dimensional
constrained expensive black-box optimization using radial
basis functions,” IEEE Transactions on Evolutionary Computa-
tion, vol. 18, no. 3, pp. 326–347, 2014.

[28] S.He,Q.H.Wu, and J. R. Saunders, “Group search optimizer: an
optimization algorithm inspired by animal searching behavior,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 5,
pp. 973–990, 2009.

[29] A.-R. Hedar andM. Fukushima, “Tabu search directed by direct
search methods for nonlinear global optimization,” European
Journal of Operational Research, vol. 170, no. 2, pp. 329–349,
2006.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

