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ABSTRACT The pipeline system on the outside of aero-engine needs to work in resonance environment in 
some cases, therefore, it is necessary to reduce the vibration amplitude of pipeline systems to improve the 
reliability in the dynamic design stage. In this paper, a single pipeline system with multi-hoop supports was 
taken as the object and a method based on genetic algorithm to realize the layout of hoops and effectively 
reduce the resonance amplitude of pipeline system was proposed. Considering that the system belongs to 
the statically indeterminate structure, a new semi-analytical model was developed, that is, the pipeline is 
modeled under free boundary conditions firstly, and then the hoop is introduced into the pipeline system in 
the form of spring-damping structure. Meanwhile, in the process of modeling, to improve the analysis 
accuracy of the model, the non-uniform distribution springs were used to simulate the support stiffness of 
hoops, and the uniformly distributed dampers were used to simulate the support damping of hoops. Taking 
the position of the hoop as the design variable, the optimization model of the hoop layout with minimizing 
the maximum vibration amplitude of pipeline systems as the optimization objective was established, 
furthermore the optimization solution process of the hoop layout based on genetic algorithm was given. 
Finally, a case study was carried out to verify the rationality of the proposed semi-analytical model and the 
optimal hoop support positions were obtained by the proposed optimization model and method. 

INDEX TERMS Genetic algorithm, hoop layouts, optimization of reducing the vibration amplitude, 
pipeline system with multi-hoop supports, semi-analytical method.

I. INTRODUCTION 

The pipeline system on the outside of aero-engine is an 
important system which undertakes the task of transporting 
hydraulic medium such as fuel oil, lubricating oil, etc. It is 
usually fixed on the aero-engine casing by special hoops, so 
the vibration generated by the aero-engine rotor will be 
transmitted to the pipeline through the casing. When a 
certain order frequency of the pipeline system is consistent 
with the working frequency of aero-engine rotor, the 
resonance will occur and the vibration of the pipeline will 
be extremely severe and the vibration amplitude will be 
increased. The excessive vibration amplitude may lead to 
serious mechanical failures, such as pipe cracks, hoop 

looseness and fracture, which will seriously affect flight 
safety and even lead to catastrophic accidents. In order to 
avoid flight accidents caused by such mechanical failures, it 
is usually necessary to reduce the vibration amplitude of the 
pipeline system. Generally, the vibration amplitude of the 
pipeline is reduced by avoiding the frequency of the 
excitation source and then avoiding the resonance of the 
system. However, due to some reasons, the pipeline system 
has to work in the resonance environment sometimes, so it 
is necessary to reduce the vibration amplitude as much as 
possible in this condition. Fig.1 is a pipeline system with 
multi-hoop supports. It can be seen that a hoop is consists 
of metal belt and metal rubber and metal rubber is a kind of 
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homogeneous elastic porous material, which is made of 
metal wire and can provide damping for the pipeline system 
[1]. The hoop is mainly used to fix the pipeline and provide 
support stiffness and damping for the pipeline system. 
Therefore, the stiffness and vibration mode of the pipeline 

system can be changed by adjusting the position of the 
hoop, and then the vibration amplitude of pipeline can be 
changed, i.e. the vibration amplitude of the pipeline can be 
reduced by optimizing the position of the hoop. 
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FIGURE 1. The schematic diagram of pipeline system. 
 

In order to effectively complete the optimization 
research, a reasonable dynamic model needs to be created 
to analyze the vibration characteristics of pipeline system 
firstly. The aero-engine rotor will produce periodic exciting 
force during working, so many pipeline systems fixed on 
the outside of aero-engine casing are mainly forced 
vibration. At present, there are few dynamic models based 
on the pipeline system on the outside of aero-engine, but 
there are many researches on the dynamic modeling of 
pipeline system for other industrial fields. Modeling 
methods of pipeline system can be divided into transfer 
matrix method, finite element method, semi-analytical 
method or analytical method, etc. In order to investigate 
multi-span fluid-conveying pipe with multiple complex 
supports, a hybrid analytical method was developed in the 
study of Liu et al. [2], in fact, this method belongs to 
transfer matrix method. Liu and Li [3] also studied the 
dynamics of pipeline with multi-span boundary conditions. 
Koo and Park [4] used transfer matrix method to analyze 
the vibration of pipeline system with periodic supports. Li 
et al. [5] developed a user-defined pipe element and 
analyzed the vibration of the pipeline systems. Sadeghi and 
Karimidona [6] used an FEM-state space approach to study 
the dynamic behavior of the pipeline conveying fluid. Gao 
et al. [7-9] used spring element to simulate the boundary 
supports and developed the pipeline system conveying fluid 
by finite element method. Chai et al. [10] developed a 
dynamic modeling approach of the curved pipeline system 
with clamps and investigated the nonlinear vibration.  

Because of less degrees of freedom and simple 
calculation formulas, the analytical or semi-analytical 
method has also been applied to the vibration analysis of 
the pipeline system. In order to study the influence of gas 
pressure on the pipeline, Tian et al. [11] established a 
pipeline model with different diameters by semi-analytical 

method. Païdoussis [12-17] made prominent contributions 
in the field of pipeline conveying fluid. In their studies, 
based on Euler-Bernoulli beam theory or Timoshenko beam 
theory, models of pipeline conveying fluid with different 
boundary conditions were created and the influence of fluid 
on the pipelines was analyzed. Jijun et al. [18] developed a 
model of pipeline conveying fluid with clamped-clamped 
boundary and analyzed the dynamic response by 
generalized integral transform technique. Huang et al. [19] 
used eliminated element-Galerkin method to study the 
pipeline conveying fluid with different supports. Li and 
Yang [20] adopted He’s variational iteration method to 
analyze the vibration of pipeline conveying fluid with 
various boundary conditions. Liang et al. [21] used Laplace 
transform and differential quadrature method to analyzed 
pipeline conveying fluid. Zhang [22] applied the method of 
multiple scales and the Galerkin’s procedure to analyze the 
dynamics of cantilevered pipe. Liang et al. [23] used the 
Hamilton principle to investigate the vibration of spinning 
pipes conveying fluid. Although a large number of scholars 
use semi-analytical or analytical methods to complete the 
modeling of pipeline system under various boundary 
conditions, these boundary conditions are some classical 
boundary conditions, such as cantilever pipeline, fixed 
support at both ends, etc. The pipeline system with multi-
hoop supports belongs to the statically indeterminate 
structure, and it’s a challenge to conduct its modeling 
process. 

In order to better simulate the real vibration 
characteristic of the pipeline system, it is necessary to deal 
with the boundary condition of the pipeline system 
reasonably. As mentioned above, the pipeline system is 
generally fixed by hoops, which is generally treated as 
elastic boundary conditions. Most scholars usually use 
spring-damping structure to simulate the elastic boundary 
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conditions, i.e. a translational spring, a torsional spring and 
a damper are used to simulate the elastic support in one 
direction. However, it may not achieve satisfactory 
accuracy to simulate the hoop support with this method, 
which is mainly because the hoop has a certain width and 
the area supported by the hoop is a small section of pipeline 
instead of a point. The hoop is usually fixed on the aero-
engine casing by bolts, so the stiffness of the hoop is 
affected by the bolt preload. Zhang et al. [24] found that it 
is unreasonable to set the spring stiffness affected by bolt 
preload to the same value for a specific structure. In 
addition, considering the influence of bolt preload, the 
damping effect with large bolt preload may be smaller than 
that with small bolt preload. Based on these situations, this 
paper will use non-uniform distribution spring stiffness 
value and uniform distribution damping value to simulate 
the support effect of the hoop. 

In order to improve the dynamic performance of the 
pipeline system, some scholars studied the optimization of 
hoop layouts. By using the genetic algorithms to optimize 
the hoop locations, the noise in pipeline systems was 
reduced in the study of Kwong and Edge [25]. Similarly, 
Herrmann et al. [26] optimized the mounting position of the 
break pipe to reduce the sound of the pipeline systems. 
Tang et al. [27] adopted Sequential Quadratic Programming 
to optimize the hoops of the hydraulic pipeline systems and 
reduced the vibration of pipeline under random excitation. 
With smoothness and natural frequency taken into account, 
non-dominated sorting genetic algorithm-II was used to 
optimize the pipe layouts [28]. To reduce the size of 
optimization problem, sensitivity analysis method was used 
in the studies [29, 30] to find out the clamp position those 
which have little effect on optimization target and the result 
shows that the method can improve the efficiency of 
optimization. Li et al. [31] took the maximum impedance 
value as the optimization objective and obtained the 
optimal position of the clamp. Liu et al. [32] obtained the 
optimal hoop positions of pipeline system by optimization 
of avoiding vibration. For the optimization of hoop layouts, 
most scholars took reducing noise, increasing impedance 
and avoiding resonance frequency, etc. as optimization 
objectives to improve the dynamic performance of pipeline 
system. To the authors' knowledge, there are few relevant 
researches about the optimization of hoop layouts which 
only aims at reducing the resonance amplitude of the 
pipeline system. 

In this paper, based on the optimization of hoop 
layouts for aero-engine pipeline as the background, a single 
pipeline system with multi-hoop supports is taken as the 
research object. The dynamic model and the optimization 
model of reducing vibration amplitude of the pipeline 
system are established. The hoop positions are taken as the 
design variable, and then the optimal hoop positions which 
can minimize the resonance amplitude of the pipeline 
system are obtained by using genetic algorithm. This paper 

is organized as follows. In Section 2, a new semi-analytical 
model was developed, that is, the pipeline is modeled under 
free boundary conditions firstly, and then the hoop is 
introduced into the pipeline system in the form of spring-
damping structure. In Section 3, under the assumption that 
the pipeline system is in the resonance environment, an 
optimization model of hoop layouts with minimizing the 
maximum vibration amplitude of pipeline system as the 
optimization objective was established. In Section 4, the 
genetic algorithm was used to solve the optimization model. 
On the basis of a brief description of the genetic algorithm, 
the process of applying the genetic algorithm to optimize 
hoop layouts of pipeline system was described emphatically. 
In Section 5, a single pipeline system with three hoop 
supports was chosen as the research object, and the semi-
analytical modeling method is used to model, and then the 
genetic algorithm is used to optimize hoop positions. The 
conclusions are listed in Section 6. 

II. SEMI-ANALYTICAL MODELING OF THE PIPELINE 
SYSTEM WITH MULTI-HOOP SUPPORTS 

Here, the Euler-Bernoulli beam theory and Lagrange 
equation are used to complete the semi-analytical modeling 
of the pipeline system with multi-hoop supports. Due to the 
pipeline system with multi-hoop supports belongs to 
statically indeterminate structure, as is shown in Fig. 2, the 
classical beam modeling method is not suitable for this 
study. Therefore, the pipeline and hoops are modeled 
separately. Firstly, the dynamic model of the pipeline under 
free boundary condition is carried out, and then the hoops 
are introduced into pipeline system in the form of spring 
and damper for dynamic modeling. The relevant modeling 
process is briefly described in the following. 
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FIGURE 2. The pipeline system with multi-hoop supports. 

 

A. THE PIPELINE MODELING UNDER FREE BOUNDARY 

CONDITIONS 

As shown in Fig. 3, a three-dimensional rectangular 
coordinate system is established for the analysis of pipeline 
dynamics. A pipeline with free boundary conditions is 
considered and the length of pipe body is l, the outer 
diameter and inner diameter are D and d respectively. Only 
the transverse displacement w of the pipeline is considered 
here, i.e. the displacement can be along y or z direction.  
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FIGURE 3. Pipeline with free boundary conditions. 
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In an arbitrary straight pipeline model, the transverse 

displacement of pipeline at any time and position can be 
expressed as 

1
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  is the angular frequency of free vibration of the pipeline; 
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j

x  is a series of characteristic polynomials, which can 

be obtained by Gram-Schmidt orthogonalization， and 

specific solving steps [33] are shown as follows, 
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Eq. (2) is normalized as 
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A series of characteristic orthogonal polynomials 
satisfying Eq. (5) can be obtained by Eqs. (2) - (4) 
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The first term 1( )x  of the characteristic orthogonal 
polynomial needs to satisfy the initial boundary conditions. 
For this paper, the boundary conditions that need to be 
satisfied are free boundary conditions at both ends. 

Based on above displacement assumptions, the 
potential energy and kinetic energy of the pipeline under 
free boundary conditions can be obtained from Euler-
Bernoulli beam theory, which can be described as 
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where E  is elastic modulus, I  represents the moment of 
inertia of the cross-section of pipeline,   is the density of 
pipeline, and A represents the cross-sectional area of 
pipeline. 

B. THE SUPPORT SIMULATION OF THE HOOP 
It can be seen from Fig. 1 that hoops can fix pipeline 

by encircling, and will provide support stiffness and 
damping effect on it. In order to simplify the modeling, 
many scholars use spring and damper to simulate the 
support stiffness and damping. 

In order to obtain the response of the pipeline system 
with multi-hoop supports, it is necessary to simplify the 
model reasonably to make the simplified result close to the 
real value. It can be seen from Fig. 1 that each hoop has a 
certain width, and it is unreasonable to simulate the support 
area with only one translational spring, one torsional spring 
and one translational damper. Therefore, the spring and 
damper with certain distribution forms are proposed to 
simulate support stiffness and damping effect of hoops. 
Referring to Fig. 4, a torsional spring, a translational spring 
and a translational damper are defined to form a spring-
damping structure, and a hoop support area is simulated 
with m spring-damping structures. For the convenience of 
research, the width of m spring-damping structures is 
usually set to be the same as the width of hoop, i.e. the 
distance between the first spring-damping structure and the 
m-th spring-damping structure in red dotted line box. In the 
semi-analytical modeling, the position coordinates are 
established along x-axis direction shown in Fig. 1. The 

spring-damping structure is set at position p

  to represent 

the corresponding constraint area of the hoop, where 
superscript ( =1,2,..., N ) of p  represents the number of 

the hoop in pipeline system, and subscript ( =1,2,...,m ) of 

p  represents the number of spring-damping structures. 
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FIGURE 4. The simplified diagram of hoop-pipeline system. 

 

As can be seen clearly from the enlarged view in Fig. 
1, the hoop fixes pipeline by bolt connection, so the 
phenomenon of uneven bolt preload will occur. As 
mentioned above, m spring-damping structures are used to 
simulate the supporting effect of the hoop on pipeline. 

Considering the uneven force in the hoop support area due 
to uneven preload of bolts, it is unreasonable to set the 
stiffness value of the translational spring or the torsional 
spring to be same. In order to simulate the force situation of 
the hoop support area, it is assumed that the spring stiffness 
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value of the hoop support area is set according to a 
distribution of a half-sinusoidal. Considering that the 
number of springs m may be odd or even, different 
distribution figures of the spring stiffness value are drawn 
for different situations. Fig. 5 (a) and (b) represent the 
distribution mode when m is odd and even respectively. 
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FIGURE 5. The distribution figure of the spring stiffness value 

 
The damping effect in the hoop support area is 

produced by the metal rubber in hoops, and the damping 
effect of metal rubber may be relatively weak at the place 
where the force is large, thus it is different with the spring 
stiffness. For the convenience and simplification, the 
damping effect of the hoop is simulated by the uniformly 
distributed damping value.  

According to the above distribution of the spring and 
damping, the formula of each spring stiffness and damping 
in the corresponding hoop support area can be written as 
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where θ
p

K

  is the stiffness value of  -th torsional spring in 

 -th hoop, v

p
K


  is the stiffness value of  -th translational 

spring in  -th hoop, 
p

c

  is the damping value of  -th 

damper in  -th damper.  

The stiffness value of the hoop is dispersive, and the 
stiffness value obtained by static test may be quite different 
from that of the hoop in real pipeline system [34]. In this 
study, the corresponding stiffness and damping values can 
be obtained by inverse identification method [35-36]. 
According to Eq. (8), only one translational stiffness value, 
one torsional stiffness value and one damping value need to 
be identified. The specific identification procedure is shown 
in Fig. 6. 
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FIGURE 6. The procedure of the stiffness and the damping identification. 
Firstly, the resonance frequency obtained by the semi-

analytical model need be matched with that obtained by 
sweep frequency test (named as matching calculation 1). 
After the maximum number of iterations is satisfied, the 

obtained stiffness value is gotten and input into the semi-
analytical model to calculate vibration response, and then 
the response value gotten by semi-analytical model is 
matched with that gotten by the frequency sweep test 
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(named as matching calculation 2). Based on this, the 
damping value is obtained after the maximum number of 
iterations is met. In this paper, the genetic algorithm is used 
to identify the stiffness and damping. In order to obtain 
more accurate identification value, several kinds of hoop 
layout schemes can be analyzed and tested at the same time. 
The objective function in matching calculation 1 can be 
described as 

1

1 1

1

f f f 1
1

min  [ ( )] /
n

i i

i

e e e n
=

= −               (9) 

where 
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The objective function in match calculation 2 can be 
described as 
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Parameters need to be set in the process of stiffness 
and damping identification based on genetic algorithm. 
First of all, it is necessary to set the maximum number of 
iterations, the population size, that is, the number of 
individuals in each generation where individuals refer to the 
translational spring stiffness, the torsional spring stiffness 
and the damping), binary digits, the crossover probability, 
and the mutation probability. Then, iterative calculation is 
performed. When the maximum number of iterations 
achieve the set value, the stiffness value of the translational 
spring and torsional springs and the damping value of 
damper can be obtained. Because the genetic algorithm is 
also used in the subsequent optimization of hoop layouts, 
the detailed description of the algorithm is shown in Section 
4. 

C. THE MODELING OF THE PIPELINE SYSTEM WITH 

MULTI HOOP SUPPORTS 

The energy analysis of the pipeline with free boundary 
conditions has been presented in previous section, the 
energy generated by the spring-damping structure need to 

be considered further. The energy s

p
U


  generated by a 

translational spring and a torsional spring at position p

  

can be expressed as 
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Then, the energy sU  generated by translational and 

torsional springs at all locations can be written as 
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 produced by the damper at position 
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  can be expressed as 
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                 (13) 

Similarly, the energy C  generated by dampers at all 
locations can be written as   

N m
p

C C



 

=                              (14) 

In general, the pipeline system fixed on the engine 
casing is mainly affected by the working frequency of the 
aero-engine rotor, which is under base excitation and 
belongs to the forced vibration. In order to solve the 
response of the pipeline system, the work W  done by the 
base excitation need to be calculated in addition to the 
above energy. The expression of work done by the base 
excitation is 

0
( , )d

l

W gA w x t x=                       (15) 

Finally, the Lagrange equation can be written based on 
the above equations 

( ) ( ) ( ) ( )

1,2,...,

r r r r

J J C W

a t a t a t a t

r n

    − + =   
 =( )

       (16) 

where sJ T U U= − − . 

Furthermore, the dynamic equation of the pipeline 
system can be obtained by simplifying Eq. (16) 

2
s( i ) + + − =K K C M a F               (17) 

where K  is the stiffness matrix of pipeline, sK  represents 

the stiffness matrix superimposed by translational springs 
and torsional springs, C  is the damping matrix of pipeline, 

M  is the mass matrix of the pipeline, T
1 2[ , ,..., ]

n
F F F=F  

is the column vector of the exciting force, 
T

1 2=[ , ,..., ]
n

a a aa is the coefficient vector not including time 

t , and   is the arbitrary excitation angular frequency. 
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The characteristic equation used to solve natural 
frequencies of pipeline system can be obtained by omitting 
damping and exciting force terms and can be expressed as 

2
s| | 0 1,2,..., n + − = =K K M ，           (18) 

According to Eq.(18), the  -th order natural angular 
frequency of pipeline system can be obtained, and the  -th 
order natural frequency of pipeline system can be written as 

( =1,2,..., )
2π

f n



= . 

According to Eq. (17), the frequency domain response 
of any position of the pipeline can be gotten and written as 

2
s

( )
i

u
X x

 
=

+ + −
Fφ

K K C M
              (19) 

where 1 2( )=[ ( ), ( ),..., ( )]u u u n ux x x x  φ  represents the row 

vector.  
It should be noted that the above derivation mainly 

focuses on the radial movement of single pipeline, such as y 

or z direction in Fig. 3, and does not consider the coupling 
of two directions. In addition, it is assumed that the 

damping in pipeline system is completely provided by 
hoops. 

III. THE OPTIMIZATION MODEL FOR THE HOOP 
LAYOUT OF PIPELINE SYSTEM 

In order to achieve the goal of effectively reducing the 
vibration amplitude of pipeline system by optimizing the 
hoop position, and it is necessary to create a reasonable 
optimization model. Fig. 7 shows the essential factors to be 
considered in creating the optimization model, including 
hoop positions, response measuring points and optimization 
objectives. The position of hoops is the design variable, the 
specific value is calculated with the left end as coordinate 
origin, and the section line area in the figure shows the 
allowed movable range of the hoop. The response 
measuring point is on pipeline, and the response is different 
when different measuring points are selected for a chosen 
resonance state. The optimization objective describes the 
specific requirements for reducing the vibration amplitude 
of pipeline system. 

1l 2l

Response of the pipeline 
system

Hoop 
position

measuring 
point

Objective 
function

N
lj

l

low
1l

up
1l

up
2l

low
2l

low
jl

up
jl

up
Nl

low
Nl

maxR

1x 2x
ux

FIGURE 7. Schematic diagram of hoop position and objective function. 
 

A. SPECIFIC OPTIMIZATION MODEL 

In aero-engines, due to the limited outer space of the 
casing, positions and quantity of hoops that can be installed 
are limited, so the adjustable range for natural frequencies 
of pipeline system is limited. Maybe there is a specific 
situation, no matter how to adjust the position of the hoop, 
the pipeline system will be in the resonance frequency 
range, which will result in excessive vibration amplitude. In 
order to reduce the damage caused by resonance for the 
pipeline as much as possible, it is necessary to take the 
response of the pipeline system as the optimization 
objective and the position of the hoop as the design variable 
to reduce the vibration amplitude of the pipeline. Because 
the change of hoop position will change the measuring 
point position of the maximum response value, it is 
unreasonable to take minimizing the response value of a 
fixed measuring point as the optimization objective. The 

change of hoop position will change the position of the 
maximum response value point, it is unreasonable to take 
minimizing the response value of a fixed measuring point 
as the optimization objective. Based on the background that 
a certain order of pipeline system works in the resonance 
frequency range, an optimization model is established and 
the optimization objective is set as minimizing the 
maximum response of pipeline system. The detailed 
optimization model can be described as 

max 1 2

low up

min   ( , ,...., ,..., , )

s.t.      ( 1,2,..., )

j N u

j j j

R l l l l x

l l l j N  =
        (20) 

where maxR is the maximum response value of pipeline 

system, j
l  is the position of j-th hoop, low

j
l  is the lower 

limit of the position of j-th hoop, up
j

l  is the upper limit of 
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the position of j-th hoop, 
u

x is the position of the measuring 

point for the maximum response of pipeline system.  

B. SOLUTION OF THE MAXIMUM RESPONSE VALUE 

FOR PIPELINE SYSTEM 

During the optimization calculation process, the 
position of the hoop is always changing. As mentioned 
above, because the change of hoop position will lead to the 
change of the maximum response position, the maximum 
response value and the position of measuring point should 
be accurately obtained in each iteration calculation to 
ensure reasonable optimization result. The following 
describes the method for obtaining the maximum response 
of the piping system during the optimization process. 

In the optimization process, the minimum movement 
accuracy of the hoop is set as  , and the movement 
accuracy of the measuring point is also set as  . In the 
optimization process, the minimum movement accuracy of 
the hoop and the measuring point are both set as  . 

Therefore, there are 1
l


+  response measuring points on 

the pipeline, and the position of each response measuring 

point can be expressed as ( 0,1,..., )
u

l
x u


= . The process of 

solving the maximum response is described in Fig. 8: 
Firstly, set the starting frequency _ startf , ending 

frequency _ endf  and frequency interval _ tf ; At the 

beginning, frequency = _ startf f  is input to execute the 

main loop and the measuring point position 0=
u

x x  is input 

to execute the nested loop, and then the response value is 
calculated according to Eq. (19) and the calculation result is 

recorded; When 
l

u


 , the nested loop will continue to be 

executed; When 
l

u


 , the nested loop will be ended, and 

then the maximum response value is calculated and the 
result is recorded at this time; When _ endf f , the main 

loop will continue to be executed; When _ endf f , the 

main loop will end, and then the maximum response value 
of the pipeline system will be obtained. 

f=f_start
Input measuring 

point xu

Calculate the result 
according to Eq. (19)

Record the result

u>l/δ

The maximum response 
value of the pipeline system 

is obtained

f>f_end
Record the maximum 

response at this frequency

u=u+1

f=f+f_t

Input frequency 
f

u=0

ω=2πf 

Y

Y

N

N

FIGURE 8. Solution flow of maximum response value for pipeline system. 
 

IV. SOLUTION BASED ON GENETIC ALGORITHM 

 

A. GENETIC ALGORITHM 

 
Inspired by the biological genetic phenomenon in 

nature, Holland and his colleagues developed the theory 
and method of genetic algorithm [37]. In genetic algorithm, 
the binary codes are used to describe decision variable and 
a chromosome is composed of multiple binary codes. At the 
beginning, a random binary code with a certain length is 
used to represent the chromosome, that is, the genetic 
information of an individual. Then, two chromosomes and 
random crossover positions were selected according to the 

crossover probability, and the corresponding binary codes 
on the two chromosomes were exchanged to generate two 
new individuals. Similarly, the chromosome and random 
position are selected according to the mutation probability, 
and the binary code of the position is reversed to generate a 
new individual.  

Genetic algorithm (GA) is an algorithm that simulates 
the genetic phenomena in nature. It has the advantages of 
parallel search, highly efficient search and global search. 
Genetic algorithm takes fitness function value transformed 
from objective function value as search information, which 
is suitable for solving objective function which cannot be 
derived in practical application. These advantages make 
genetic algorithm become a common optimization 
algorithm in engineering. 
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B. OPTIMIZATION OF HOOP LAYOUT 

In Section 3, an optimization model was proposed to 
minimize the maximum response of pipeline system. The 
following will describe the optimization process of the 
hoop layout based on genetic algorithm. 

In genetic algorithm, the population is composed of 
multiple individuals, and each individual is composed of e 
decision variables. These e decision variables can be 
written as 1 2[ , ,..., ]

e
X X X=X  and expressed by the 

symbol ( 1,2,..., )bX b e= . Decision variables can be 

regarded as the phenotypes of individuals, and each 
individual has its own genetic information (chromosomes). 
In the optimization of hoop layouts, the positions of N 
hoops represent N decision variables. These N decision 
variables can be written as vector 1 2[ , ,..., ]Nl l l=l  or 

marked as ( 1,2,..., )
j

l j N= , and the N positions represent 

an individual. The binary codes corresponding to N hoop 
positions represent chromosomes. The relationship among 
hoop position, individual, population, chromosome and 
gene is illustrated in Fig. 9. 

Population Individual ChromesomeBiological terms

Terms for optimization 
of hoop layouts

Position of N 
Hoops

Binary code of 
hoop position

Gene

Binary 
code

FIGURE 9. Relationship between biological terms and optimization of hoop layouts. 
 
In genetic algorithm, the meanings of the terms of 

different optimization problems are diverse. Here, 
individual, chromosome and gene are defined as follows: 
Individual: Position of N hoops. 
Chromosome: A string of binary codes corresponding to the 
positions of N hoops. 
Gene: Binary codes. 

The optimization procedure of hoop layout is shown in 
Fig. 10 

Initialize the population

Calculate the fitness 
value

Mutation operation

Generation gap

Crossover operation

Optimal hoop 
positions

G0>G

 

FIGURE 10. Procedure of hoop layout optimization. 
 

1) Initialization: Initialize the population and set the 
generation counter G0=0. Set the maximum number of 
iterations is G.  

2) Individual evaluation: Calculate the fitness value 
according to the objective function. 

3) Generation gap: According to a certain probability, 
select the excellent individual. 

4) Crossover operation: For the selected individuals, a 
part of chromosomes between individuals are 
exchanged to generate new individuals according to a 
certain probability. 

5) Mutation operation: For the selected individuals, some 
genes on the individuals are selected to change 
according to a certain probability to generate new 
individuals. 

6) Termination conditions: After the above steps, if G0≤G, 
the program will continue to run from step 2; if G0>G, 
the optimal individual value, that is, the optimal hoop 
position, will be output. 

V. CASE STUDY 

A. DESCRIPTION OF THE PROBLEM 

In this paper, a single pipeline system supported by 
three hoops is chosen to display the semi-analytical method 
of pipeline system modeling and the optimization method 
of hoop layouts, and only the y-direction vibration shown in 
Fig. 3 is considered here. The geometric parameters and 
material parameters of the pipeline are shown in Tab. 1 
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TABLE 1. The geometric parameters and material parameters of the pipeline 

Length of the pipeline l/mm Outer diameter 
D/mm 

Inner diameter 
d/mm 

Elastic modulus E/Pa Density 
ρ/kg/m3 

Poisson's ratio 

500 8 6.4 1.99x1011 7850 0.3 

The structure and shape of these three hoops are 
identical, and the width of each hoop is 14mm. Therefore, 
the coordinate of the left side of hoops is chosen to express 
the position of each hoop. Firstly, four schemes of hoop 
layouts are selected randomly and the specific positions of 
the hoop are shown in Tab.2 and Fig. 11. The pipeline is 
fixed on the fixture by hoops and bolts, and the preload is  
8 N m . 

 
 
 

 

TABLE 2. Scheme of hoop layouts (m) 

scheme Hoop 1 Hoop 2 Hoop 3 
Measuring 

point 

1 0.025 0.150 0.400 0.325 

2 0.030 0.160 0.430 0.400 

3 0.049 0.251 0.426 0.325 

4 0.103 0.250 0.450 0.225 
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point

 
(a) Scheme 1 
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z
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(b) Scheme 2 
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(c) Scheme 3 

x
z
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0.250
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Measuring 

point

 
(d) Scheme 4 

FIGURE 11. Scheme of hoop layouts 
 

The purpose of this paper is to reduce the vibration 
amplitude of the pipeline system, so it is necessary to carry 
out sweep frequency test to obtain the response of pipeline 

system at the measuring point. The sweep frequency test 
system is shown in Fig. 12. 

Laser 
vibrometer

Pipeline 
system

Vibration 
shaker

Feedback 
signal

Pneumatic 
controller

LMS SCADAS 
mobile front end

Vibration 
controller

Vibration 
control module 

LMS Test.Lab 
mobile 

workstation

x

y

z

FIGURE 12. The sweep frequency test system 
 
The yellow box in Fig. 12 shows the pipeline system. 

In the specific experiment, the pipeline system is placed 
according to the hoop layout scheme shown in Fig. 11, and 

the laser vibrometer is used to measure the vibration in y 
direction. The process of the experiment is described in Fig. 
13. 
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FIGURE 13. The process of the experiment 

 

At the beginning of the experiment, the sinusoidal 
excitation signal is input into the vibration control module, 
and the excitation amplitude is set as 0.1g. The excitation 
signal is generated in the vibration controller and 
transmitted to the vibration shaker by the pneumatic 
controller, thus driving the pipeline system to do 
reciprocating motion in y direction, and forcing the pipeline 
to produce vibration in y direction. Then the vibration 

signal measured by laser in y direction is collected by LMS 
SCADAS mobile front end and transmitted to the LMS Test. 
Lab mobile workstation. Finally, the resonance responses of 
four kinds of hoop layout schemes can be obtained, and 
these response data are mainly used for verifying the model. 
The results of the first order resonance frequency and 
resonance response are shown in Tab. 3 and Fig. 14.  
 

TABLE 3. Experimental results of the pipeline system      

Hoop layout scheme Scheme1 Scheme2 Scheme3 Scheme4 

First order resonance frequency (Hz) 513.75 489 784 463 

First order resonance response (m/s) 0.143620 0.144579 0.041368 0.012742 
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(b) Scheme 2 
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(d) Scheme 4 

FIGURE 14. Sweep frequency test results of the pipeline system 
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B.  SOLUTION FOR VIBRATION RESPONSE OF THE 

PIPELINE SYSTEM 

After verification, the required accuracy can be 
achieved when the number of polynomials is set as 20. The 
more spring-damping structures this system possesses, the 
closer to the actual constraint state of the hoop for the 
pipeline, but too many spring-damping structures will lead 
to the decrease of calculation efficiency. Therefore, this 
paper sets m = 15, that is, fifteen translational springs, 
fifteen torsional springs and fifteen dampers are used to 
simulate a hoop support. The distribution form shown in 
Fig. 5 (a) is adopted to describe the distribution of spring 
stiffness value here. In the process of modeling, the left end 
of the pipeline is taken as the coordinate origin, and the 
specific positions of three hoops in each scheme are 
determined according to the above four hoop layout 
schemes. When the position of the hoop is determined, the 
position of each spring-damping structure is also 
determined. The equation of kinetic energy and potential 
energy of pipeline in free vibration state can be obtained by 
Eqs. (1) - (7), and then equations of translational spring, 
torsional spring and damping in each hoop can be obtained 
according to Eq. (8). According to Eqs. (11) - (14), the 
energy equations of spring and damping at this position are 
obtained. Finally, according to Eq. (15), the equation of 
excitation force is obtained and Lagrange equation is 
constructed, thus the Eq. (19) used to solve vibration 
response is obtained. Although the expression of the 
response can be obtained by the above steps, the stiffness 
value and damping value need to be determined by the 

inverse identification method. Firstly, the parameters are set. 
Specifically, the maximum number of iterations is 100, the 
number of individuals is 80, the number of binary codes is 
100, the crossover probability is 0.7, and the mutation 
probability is 0.01. Then, according to Eq. (9), the objective 
function used to identify supporting stiffness is constructed, 
and the weight coefficient of each item is 1. Finally, the 
stiffness identification is carried out several times and the 
result of each identification is consistent. The translational 

spring stiffness 5
v 6.2133 10 N/mK =   and the torsional 

spring stiffness θ 145.2N m/radK =  . The natural frequency 

of pipeline system can be obtained by taking the 
translational stiffness and torsional stiffness values obtained 
from the inverse identification into the model and omitting 
the damping term. Because the damping does not affect the 
resonance frequency when calculating the semi-analytical 
model, the natural frequency can be considered as the 
resonant frequency. Similarly, the objective function used 
to identify supporting damping is constructed according to 
Eq. (10), and the weight coefficients are 0.05, 0.05, 0.7 and 
0.2 respectively. Then, the damping identification is also 
carried out several times and the result of each 
identification is consistent. The damping value is 

=1.932N m/sc  . Because of the velocity response 

measured in the experiment, it needs to be transformed into 
displacement response. The comparison between the results 
of semi-analytical model and experimental results are 
shown in Table 4 and Fig. 15. 

TABLE 4. The comparison between the results of semi-analytical model and experiment 

Schemes of 
hoop layouts 

Resonance frequency Resonance response 

Experiment Hz Semi-analytic Hz Difference% Experiment Hz Semi-analytic Hz Difference% 

1 513.75 513.01 0.144 4.449 3.734 16.071 
2 489 488.45 0.112 4.706 4.144 11.942 
3 784 783.97 0.004 0.8398 0.5444 35.175 
4 463 460.95 0.443 0.4380 0.5918 35.114 
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(d) Scheme 4 

FIGURE 15. The comparison between the results of semi-analytical model and experiment 
 
The maximum difference of resonance frequency is 

0.443% and the maximum difference of resonance response 
is 35.175% by comparing four different hoop layout 
schemes, and the results objectively illustrate the rationality 
of semi-analytical modeling in this paper. 

C. OPTIMIZATION OF HOOP LAYOUTS 

In this paper, the objective is to minimize the maximum 
vibration response of pipeline system, the stiffness value 
and damping value obtained by inverse identification 
method in Section 4.2 are input into the semi analytical 
model, and the positions of the hoop are set as variables to 
facilitate the call of genetic algorithm, the length of binary 
code is 50, the generation gap is 0.95, the crossover 
probability is 0.7, the mutation probability is 0.01, the 
iteration counter is set as 0, and the objective function is 

max 1 2 3( , , , )
u

R l l l x , the variable range of three hoops is 

shown in Tab. 5. 

TABLE 5. The variable range of hoops (m) 

Variable range Hoop 1 Hoop 2 Hoop 3 

Lower limit 0.020 0.120 0.420 

Upper limit 0.080 0.180 0.480 

 The movement accuracy of the hoop and measuring 
point are both set as 1 mm, so there are 501 measuring 
points. In order to obtain the maximum response value of 
pipeline system, the range of first order frequency 1f  is set 

as 10Hz, that is, 1_start= 5Hzf f − , 1_ end= 5Hzf f + , and 

the frequency interval is set as _ t=0.01Hzf , then, 

1f according to the method proposed in Section 3.2, the 

maximum vibration response value of pipeline system can 
be obtained.  

After several optimization tests and according to the 
above settings, the convergence results can be obtained, and 
each optimization calculation time is less than 65 seconds. 
One of the optimization results is chosen as an example, 
and the optimization results are shown in Fig. 16. 
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FIGURE 16. Optimization results of the pipeline system response 

 
It can be seen from Fig. 16 that convergence results 

have been obtained in the 28th generation. At this time, the 
maximum response value of the pipeline system is 

55.081 10 m− , and the position of measuring point is 
0.311m, and the position of the hoop is shown in Fig. 17. 
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(a) Individual optimization (b) Changes of hoop position 

FIGURE 17. Changes of hoop position 
 

The grey circle in Figure 17(a) represents an 
individual in the genetic algorithm. It can be seen from 
figure 17(a) that the individual finally converges to the red 
circle, which is the optimal position of the individual, that 
is, the optimal position of three hoops, and the values are 

1 0.072ml = , 2 0.180ml = ,and 3 0.420ml = . Fig. 17(b) 
shows the change of each hoop position. Corresponding to 
Fig. 16, the optimal position has been obtained in the 28th 
generation. In the subsequent iteration, the fluctuation of 
hoop position is caused by genetic algorithm itself. In order 
to verify the reliability of optimization results, two groups 
of hoop layout schemes are randomly selected to compare 
with the optimization results. The comparison results of the 
selected hoop layout scheme and the optimal position are 
shown in Tab. 6. It can be seen from the results in Tab. 6 
that the results of schemes 1 and 2 are larger than those of 
the optimal position, which verifies the reliability of the 
optimization results in this paper. 

 

TABLE 6. Validation of optimization results (m) 

Hoop 

layout 

scheme 

Hoop 

1 

Hoop 

2 

Hoop 

3 

Measuring 

point 

Resonance 

response 

Scheme 1 0.058 0.139 0.470 0.315 4.6626x10-4 

Scheme 2 0.069 0.146 0.426 0 1.3305 x10-4 

Optimal 

position 
0.072 0.180 0.420 0.311 0.5081 x10-4 

VI. CONCLUSION 

It is crucial to reduce the vibration amplitude of the 
aero-engine pipeline system in dynamic design stage. This 
paper takes the pipeline system with multi-hoop supports as 
the object, and proposes a method based on genetic 
algorithm to optimize the layout of hoops to reduce the 
vibration amplitude effectively. Some important 
conclusions are listed as follows: 

(1) This paper proposes to model the pipeline and the 
hoop separately to solve the problem of statically 

indeterminate pipeline modeling supported by 
multiple hoops. The specific process of modeling 
is to model the pipeline under free boundary 
conditions first, and then introduce the hoop into 
pipeline system in the form of spring-damping 
structures. During the process of modeling, the 
influence of hoop width and bolt preload band on 
the stiffness of pipeline system are considered, a 
non-uniform distribution spring (specifically half 
period of sinusoidal function) is proposed to 
simulate the support stiffness of the hoop, and the 
uniformly distributed damper is used to simulate 
the damping provided by the hoop. The example 
shows that the difference of resonance frequency 
obtained by analysis is less than 0.443% 
compared with the experiment value, and the 
resonance response difference obtained by 
analysis is less than 35.175%, which proves that 
this modeling method can effectively simulate the 
dynamic characteristics of pipeline system.  

(2) The high pressure and low pressure rotors in aero-
engine are main reasons for the vibration of 
pipeline system attached to the casing, and in 
some cases, the pipeline system inevitably works 
in resonance environment. In this paper, 
minimizing the maximum response of pipeline 
system is taken as the optimization objective, and 
the hoop position is taken as the design variable. 
Through optimization, the vibration amplitude of 
the pipeline is reduced, which has a certain 
guiding role for the hoop layout. 

(3) Genetic algorithm is a high efficient intelligent 
optimization algorithm, which can effectively 
solve the optimization problem in engineering. 
The optimization problem of the hoop layout 
described in this paper can also be well solved. 
The individual in the genetic algorithm 
corresponding to the optimization model 
represents the position of each hoop. The example 
calculation shows that this algorithm has high 
convergence speed and calculation efficiency. 
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Thus the optimal supporting position of the hoop 
which can effectively reduce the vibration 
amplitude can be quickly found. 
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