
Optimization of Landmark Selection for Cortical Surface Registration

Anand Joshi

Signal and Image Processing Institute,

University of Southern California,

Los Angeles 90089, USA

ajoshi@sipi.usc.edu

David Shattuck

Laboratory of Neuro Imaging,

University of California, Los Angeles,

Los Angeles 90095, USA

shattuck@loni.ucla.edu

Dimitrios Pantazis

Signal and Image Processing Institute,

University of Southern California,

Los Angeles 90089, USA

pantazis@sipi.usc.edu

Quanzheng Li

Signal and Image Processing Institute,

University of Southern California,

Los Angeles 90089, USA

quanzhel@sipi.usc.edu

Hanna Damasio

Dornsife Neuroscience Imaging Center

University of Southern California

Los Angeles, CA 90089, USA

hdamasio@college.usc.edu

Richard Leahy

Signal and Image Processing Institute,

University of Southern California,

Los Angeles 90089, USA

leahy@sipi.usc.edu

Abstract

Manually labeled landmark sets are often required as in-

puts for landmark-based image registration. Identifying an

optimal subset of landmarks from a training dataset may be

useful in reducing the labor intensive task of manual label-

ing. In this paper, we present a new problem and a method

to solve it: given a set of N landmarks, find the k(< N)
best landmarks such that aligning these k landmarks that
produce the best overall alignment of allN landmarks. The
resulting procedure allows us to select a reduced number of

landmarks to be labeled as a part of the registration proce-

dure. We apply this methodology to the problem of register-

ing cerebral cortical surfaces extracted from MRI data. We

use manually traced sulcal curves as landmarks in perform-

ing inter-subject registration of these surfaces. To minimize

the error metric, we analyze the correlation structure of the

sulcal errors in the landmark points by modeling them as

a multivariate Gaussian process. Selection of the optimal

subset of sulcal curves is performed by computing the error

variance for the subset of unconstrained landmarks condi-

tioned on the constrained set. We show that the registration

error predicted by our method closely matches the actual

registration error. The method determines optimal curve

subsets of any given size with minimal registration error.

1. Introduction

Registration of images consists of computing a transfor-

mation between two acquisitions, or equivalently, determin-

ing the point-to-point correspondence between the images

[1, 2]. Registration algorithms are usually based either on

aligning features extracted from the image or on the opti-

mization of a similarity measure of the image intensities [3].

Landmarks are typically points or curves that are either la-

beled manually or extracted automatically from the image

data [2, 4, 5, 6, 7]. Manual demarcation of landmarks can

be a labor-intensive task, and therefore the set of landmarks

to be labeled should be optimized. The locations of land-

marks in the images imposes a correlation in them which

can be used to reduce the size of the landmark set. In this

paper, we explore the problem: given a set of N candidate
landmark points, what is the best subset of k landmarks,
from

(

N

k

)

possible choices of such subsets? We discuss this

problem as applied to the problem of sulcal set optimization

for registration of cerebral cortices of human brains.

The cerebral cortex, or simply the cortex of the brain

plays a key role in memory, attention, perceptual awareness,

thought and language. The human cerebral cortex is 2 − 4
mm thick and thus for many applications it can be modeled
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as a surface rather than a volume. A sulcus is a depression

or fissure in the cortex and is closely related to the function

of the brain. Cortical surface registration has important ap-

plications in cross-sectional and longitudinal neuroanatomi-

cal studies, for example mapping and analyzing progression

of disorders such as Alzheimer’s disease [8] and studying

growth patterns in developing human brains [9, 10]. There

are two main categories of methods that align the cortex

from a subject to an atlas: manual landmark based meth-

ods [11] and automatic methods based on alignment of ge-

ometric features [12, 13] or surface indices [14]. The main

advantage of automatic methods is that there is no manual

input required for performing the alignment. However they

may be less reliable in the sense that they do not incorporate

higher level knowledge of sulcal anatomy. Certain sulcal

and gyral patterns are hard to identify automatically based

on local geometric features, therefore expert delineation of

such landmarks can be useful for accurate registration. The

objective of landmark based manual registration methods

is to minimize the misalignment error in the sulcal curves.

Moreover, they allow the users to mark additional structures

in certain areas of interest in order to achieve more control

for accurate alignment in those regions. A disadvantage of

the manual approaches is that the individual tracers need to

be trained, and even then inter-rater variability introduces

some uncertainty into the procedure. Additionally, for large

scale studies, manual procedures may be infeasible unless

we minimize the number of sulcal curves required in the

manual tracing protocol. It is this latter issue that we ad-

dress here.

We begin with a large set of sulcal curves that have been

identified by the neuroanatomist on our team as candidate

landmarks for cortical registration. Our objective is to select

an optimal subset from this set such that, for a given number

of curves, the sulcal registration error is minimized when

computed over all sulci. One straightforward approach is to

actually perform registration of the sulcal curves for a set of

training images using all possible subsets and then measure

the error in the remaining unconstrained sulcal curves. The

difficulty with this approach is that there are a huge number

of combinations possible. In our case we have 27 candidate
curves. Supposing we want to define a protocol that uses 10
curves, the number of combinations to be tested is

(

27

10

)

≈
8.4 million. If the error is to be estimated by performing
pairwise registrations of 20 brains, i.e.

(

20

2

)

registrations,

then the total number of registrations required is
(

20

2

)(

27

10

)

≈
1.6 billion. This is a prohibitively large number.

Instead of performing actual brain registrations with

multiple subsets of constrained sulci, we perform only pair-

wise unconstrained registrations using the elastic energy

minimization procedure described in [11]. The resulting

maps produce reasonable correspondences so that we can

model the measured sulcal registration errors using a mul-

tivariate Gaussian distribution. Using conditional proba-

bilities, we then analytically predict the registration error

that would result if we constrained a subset of the curves to

match using hand-labeled sulci. These errors can be rapidly

computed using conditional covariances, and as we show

below, lead to reasonably accurate estimates of the true er-

rors that result when constraining the curves. For a fixed

number of constrained curves, we estimate the errors for

all possible subsets of that size and select the one with the

smallest predicted error. We investigate the prediction accu-

racy of our model by doing actual registrations using the op-

timal sulcal constraint set. No searching strategy is required

in our method, because for a particular subset of curves, our

method gives an analytical expression for the registration

error. This expression can be easily calculated for all possi-

ble subsets eliminating the need for a search.

2. Surface Registration Method

A class of surface registration based methods use an in-

termediate parameter space, either a square [8, 11] or a

sphere [15], on which the sulcal landmarks or shape based

features are aligned. In this paper, we use the flat-mapping

surface registration method described in [11], however the

same framework is readily adaptable to other surface reg-

istration methods [16, 17]. The details of the flat mapping

based method are outlined in [11, 18].

Flat mapping based registration methods, combined with

the highly variable cortical anatomy, introduce inherent cor-

relation patterns in the locations of unconstrained sulci. In

our maps to the unit square we map the corpus callosum to

the edges of the unit square causing uneven deformations in

different cortical regions, with the temporal lobe mapping

to a much smaller area than the medial cortex for instance.

Furthermore, minimizing elastic energy deforms the corti-

cal anatomy in a smooth fashion so that one would expect to

see significant correlations between sulcal errors in neigh-

boring sulci. Our method takes advantage of this correlation

structure to create a multivariate Gaussian model of sulcal

registration errors when no curves are constrained. We then

predict these errors when some sulci are constrained using

conditional probabilities.

2.1. Sulcal Curves, Flat Mapping and Alignment

We used the BrainSuite software [19] to interactively
trace the N = 27 candidate sulci depicted in Fig. 1 on both
hemispheres of each of the 12 brains used in this study. The
surface based registration method we used here performs
simultaneous parameterization and registration of the man-
ually traced sulcal landmarks. In order to generate such a
flat map with prealigned sulcal curves, we model the corti-
cal surface as an elastic sheet and solve the associated linear
elastic equilibrium equation using the finite element method
(FEM). Let φ = [φ1, φ2] be the two coordinates assigned to
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1) central sulcus (CS) 15) sup. temporal, lower branch (not shown)

2) precentral sulcus (preCS) 16) inferior temporal sulcus (ITS)

3) superior frontal sulcus (SFS) 17) collateral sulcus (colS)

4) inferior frontal sulcus (IFS) 18) transverse temporal sulcus (TTS)

5) ascending branch of sylvian fissure (abSF) 19) circular sulcus (circS)

6 horizontal branch of sylvian fissure (hbSF) 20) postcentral sulcus (postCS)

7) lateral orbital sulcus (latOcS) 21) intraparietal sulcus (IPS)

8) frontomarginal sulcus (not shown) 22) parieto occipital sulcus (OcPS)

9) Cingulate sulcus (CingS) 23) subparietal sulcus (subPS)

10) paracentral sulcus (paraCS) 24) calcarine sulcus (CalcS)

11) supra orbital sulcus (supraOS) 25) transverse occipital sulcus (not shown)

12) olfactory or medial orbital sulcus (OlfS) 26) lateral occipital sulcus (latOcs)

13) sylvian fissure terminal split (SF) 27) anterior occipital sulcus (antOcS)

14) sup. temporal with upper branch (STS)

Figure 1. The complete set of candidate sulcal curves from which we select an optimal subset for constrained cortical registration

every point on a given cortical surface such that the coordi-
nates φ satisfy the linear elastic equilibrium equation with
Dirichlet boundary conditions on the boundary of each cor-
tical hemisphere, represented by the corpus callosum. We
constrain the corpus callosum to lie on the boundary of the
unit square mapped as a uniform speed curve. The elastic
strain energy E(φ) is given by:

E(φ) =

Z

S

µ

2
Tr (((Dφ)T + Dφ)2) + λTr (Dφ)2dS, (1)

whereDφ is the covariant derivative of the coordinate vec-
tor field φ. Let φB1

and φB2
denote the 2D coordinates

to be assigned to corresponding hemispheres of two brains
denoted by B1 and B2 respectively. We then define the La-
grangian cost function C(φB1

, φB2
) as

C(φB1
, φB2

) = E(φB1
)+E(φB2

)+σ
2

X

k∈C

(φB1
(xk) − φB2

(yk))2,

(2)

where φB1
(xk) and φB2

(yk) denote the coordinates as-
signed to the sulcal landmarks xk ∈ B1, yk ∈ B2 and

σ2 is a Lagrange multiplier. The landmarks correspond to

uniformly sampled points along each sulcal curve. We re-

fer the reader to [11, 18] for implementation details. We

use σ2 = 0 for unconstrained registration, which is used
for estimation of the covariance of the sulcal registration

errors, as described later. We then analytically predict the

errors when some sulci are constrained, without doing ac-

tual constrained registrations, using conditional densities as

described below. To test the accuracy of our predictions,

we perform registrations with σ2 = 10 and C the set of
constrained sulci, a subset of the 27 available curves. This

method results in a bijective map of each brain hemisphere

to unit squares such that the constrained sulci match in the

flat space (Fig. 2a). The point correspondence from one
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cortical surface hemisphere to the other is then obtained us-

ing the coordinate system of the common mapping to the

unit square.

2.2. Registration Error

For every pair of registered hemispheres, we map the

traced curves of one brain to the other, which is arbitrar-

ily defined as a target. The registration used is either un-

constrained for error prediction, or constrained for valida-

tion. We parameterize each sulcal curve n over s ∈ [0, 1]
and then compute the point-to-point average error en =
means{en(s)}, as illustrated in Fig. 2, where en(s) is the
registration error in 3D coordinates for location s on the
nth curve. For symmetry, we repeat the procedure by inter-

changing subject and target brains.

The alignment error in a sulcus causes a registration error

in the surrounding cortical area. Therefore, isolated sulci

will have more impact on registration, since their misregis-

tration will affect large cortical regions. To compensate for

this effect, we parcellate the cortex into N = 27 regions by
assigning each cortical point to the nearest sulcal curve (Fig

2b). The parcellation was performed for allM = 24 avail-
able brain hemispheres. We then defined a weight function

for the nth sulcus to be wn = 1

M

∑M

i=1
Ai

n/Ai, where Ai
n

is the surface area of the nth parcellated region in the ith

brain, andAi is the total surface area of the ith hemisphere.

Finally, the surface registration error metric was defined

as

ER = E

(

∑

n

wn(ex
n)2 + wn(ey

n)2 + wn(ez
n)2

)

, (3)

where ex
n, ey

n and ez
n represents the x, y, and z components

of en, and E(· · · ) is the expectation operator. Alternatively,
the errors could be calculated with respect to surface ge-

ometry rather than in 3D. While calculating errors based

on geodesic distances is an interesting possibility, they are

very difficult to model statistically because geodesics do not

form a vector space. When the geodesic errors are small,

they could be approximated by errors in 3D, as is done in

this paper. Below, we substitute Ex
n =

√
wnex

n in order to

simplify subsequent analysis. The objective of the surface

registration procedure is to minimize this registration error

ER.

3. Probabilistic Model of the Sulcal Errors

We model the sulcal errors Ex
1 , ..., Ex

N as jointly Gaus-
sian random variables, since these errors are drawn from a
large population of brain pairs. We describe computations
for the x component of the error; similar computations are
performed for y and z. The distribution model of Ex

j for

j ∈ {1, ..., N} is:

fEx(Ex
1 , ..., E

x
N) =

1

(2π)N/2|Σx|1/2
exp

„

−
1

2
E

xT (Σx)−1
E

x

«

(4)

where Σx denotes the covariance matrix of Ex. Therefore, the

registration error can be expressed as:

E
x
R = E{

N
X

i=1

(Ex
i )2} = Tr (Σx) (5)

We now want to predict the registration error when some

of the sulci are explicitly constrained to register. We par-

tition the curves into two sets: sulci F which are free and
sulciN which are constrained so that {1...N} = F ∪C. We
assume that the registration algorithm is well behaved in a

sense that it does not create unnatural deformations on the

unconstrained sulci when a subset of them are constrained.

In other words, if we constrain some sulci to register, the

distribution of the remaining ones would be the same as

if the constrained ones matched simply by chance, condi-

tioned on the constrained sulci having zero error. There-

fore, we model the registration errors in unconstrained sulci

as the conditional distribution of the original joint Gaussian

density. The probability density of a jointly Gaussian vec-

tor, conditioned on some of its elements being zero, is also

jointly Gaussian. Therefore, the registration error Exc
R after

matching the sulci from C can be obtained using the condi-
tional expectation:

Exc
R = E

(

∑

i∈F

Ex2

i |Ex
j = 0∀j ∈ C

)

= Tr (Σx
C) (6)

where Σx
C is the conditional covariance matrix of the error

terms corresponding to free sulci. By rearranging sulci so

that free sulci precede the constrained ones, we can partition

the covariance matrix as:

Σx =

(

Σx
ff Σx

fc

Σx
cf Σx

cc

)

. (7)

where Σx
ff and Σx

cc are the error covariances for free sulci

and constrained sulci respectively, and Σx
fc and Σx

cf are the

cross-covariances.

The conditional covariance is given by:

Σx
C = Σx

ff − Σx
fc(Σ

x
cc)

−1Σx
cf . (8)

which is the Schur complement of Σx
cc in Σx [20]. The

estimated registration error Exc
R after constraining a subset

of sulci is then:

Exc
R = Tr (Σx

C). (9)
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Figure 2. (a) Registration of two cortical surfaces based on the flat mapping method; (b) Parcellation of the cortex into regions surrounding

the traced sulci; (c) Registration error for two corresponding sulci.

This formula allows us to estimate the x component of

the registration error for a particular combination of con-

strained sulci and free sulci. The total registration error is

evaluated by adding the x,y, and z components.

Ec
R = Tr (Σx

C) + Tr (Σy
C
) + Tr (Σz

C). (10)

We use this formula to estimate the total registration errors

for all
(

N
Nc

)

combinations of sulcal subsets, where Nc is

the number of constrained sulci, and choose the subset that

minimizes this error.

4. Results

A total of 12 brains, or equivalently 24 hemispheres,

were delineated by trained raters. Our tracings, consisting

of 27 candidate sulci per hemisphere (Fig. 1), were verified

and corrected whenever necessary by one of the authors, an

expert neuroanatomist. We performed unconstrained map-

pings for all 24 hemispheres by directly minimizing Eq. 1
for each hemisphere separately, instead of doing pairwise

registrations using Eq. 2 with σ = 0, since the optimization
in 2 becomes separable in the unconstrained case σ = 0.
Using the flat maps of the 24 hemispheres we computed
pairwise registration errors Ex

n, E
y
n, and Ez

n for all possible

combinations of left and right hemispheres as described in

Sec. 2.2. The resulting sample covariances are shown in

Fig. 3.

By applying Eq. 10 to all subsets of a given number

of constrained curves, we identified the subset that mini-

mizes the registration error. The optimal subsets of curves

are given in Fig. 3 for numbers of constrained sulci from 1

to 27. We also calculated the sulcal registration errors for

each of these optimal subsets by doing actual registrations.

Comparing estimated and actual registration errors, also in

Fig. 3, we see that the predicted values are close to those

obtained when actually constraining the curves.

We performed a Lilliefors test which rejected the null

hypothesis of normality for the errors Ex
n, E

y
n, and Ez

n for

many sulci. This was not surprising because the finite size

of brains, and therefore the registration error, is bounded.

Consequently, a small deviation from normality was ex-

pected. However, the distributions were unimodal and the

predicted errors of our model are in accordance with the ac-

tual ones, which indicates that our assumptions are in the

sense of achieving the desired minimum error behavior.

To further test our method, we manually selected the set

of 6 sulci with indices (3,12,24,1,9,21) to be constrained,

which seemed a reasonable a priori selection based on sul-

cal extent and spatial distribution around the cortex. The

algorithm predicted an error of 67.72mm2 and the actual

error was 64.19mm2. The optimal set (3,14,16,17,21,24)

found by our method had predicted an error of 36.77mm2

and the actual error was 34.46mm2, which is significantly

better than our manually selected subset. We anticipate that

in general the curves selected by our method should be su-

perior to those selected on an intuitive basis, since various

confounding effects due to elastic flat mapping as well as

correlations in errors are accounted for in the algorithm.

703



Figure 3. Sample covariance matrices for the x, y, and z components of the error represented as color coded images.

Figure 4. Each row gives the indices of the optimal subset of sulci that minimize the registration error against all other combinations with

equal number of constrained curves. The two right columns show that the estimated (est.) error is close to the calculated (act.) error when

actual registrations with the same constrained curves are performed.

5. Discussion

We have described a general procedure for selecting sub-

sets of sulcal landmarks for use in constrained cortical reg-

istration. The procedure can be used to reduce the time re-

quired for manual labeling of sulci in group studies of cor-

tical anatomy and function.

Notice that the central sulcus is not selected for proto-

cols with a small number of curves (less than 6). This is

probably because the sulci that are most stable and consis-

tent among brains, such as the central sulcus, may tend to

align well even without explicitly aligning them. Therefore

they may not improve the registration error significantly to

justify their inclusion in the tracing protocol. Furthermore,

short sulci neighboring other candidate curves are not pre-
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ferred by the algorithm. For example, the paracentral sul-

cus, which is close to the cingulate sulcus, and the subpari-

etal sulcus, which is close to the cingulate and the parieto-

occipital sulcus are not preferred by the method. The algo-

rithm tends to prefer long and variable sulci which are spa-

tially distributed over different regions of the brain. This is

consistent with intuition since the curves selected this way

will help in overall brain registration.

Finally, we note that the methodology presented here

readily extends to other landmark based registration meth-

ods in which the goal is to select an optimal subset of given

size. This can greatly reduce the manual landmark labeling

time for large scale studies. It can possibly be applied to

other areas of computer vision [21, 22, 23, 24] for aiding

optimal landmark selection.
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