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Optimization of mutual synchronization between a pair of limit-cycle oscillators with weak symmetric

coupling is considered in the framework of the phase-reduction theory. By generalizing our previous study [S.

Shirasaka, N. Watanabe, Y. Kawamura, and H. Nakao, Optimizing stability of mutual synchronization between a

pair of limit-cycle oscillators with weak cross coupling, Phys. Rev. E 96, 012223 (2017)] on the optimization of

cross-diffusion coupling matrices between the oscillators, we consider optimization of mutual coupling signals

to maximize the linear stability of the synchronized state, which are functionals of the past time sequences of the

oscillator states. For the case of linear coupling, optimization of the delay time and linear filtering of coupling

signals are considered. For the case of nonlinear coupling, general drive-response coupling is considered and

the optimal response and driving functions are derived. The theoretical results are illustrated by numerical

simulations.

DOI: 10.1103/PhysRevE.100.042205

I. INTRODUCTION

Synchronization of rhythmic dynamical elements exhibit-

ing periodic oscillations is widely observed in the real

world [1–3]. Collective oscillations arising from the mutual

synchronization of dynamical elements often play important

functional roles, such as the synchronized secretion of insulin

from pancreatic beta cells [1,4] and synchronized oscillation

of power generators [3,5,6]. Clarifying the mechanisms of

collective synchronization and devising efficient methods of

mutual synchronization are thus both fundamentally and prac-

tically important.

The stable periodic dynamics of rhythmic elements are

often modeled as limit-cycle oscillators [1–3,7]. When mu-

tual interactions between limit-cycle oscillators are weak,

synchronization dynamics of the oscillators can be analyzed

using the phase-reduction theory [1,8–12]. In this approach,

nonlinear multidimensional dynamics of an oscillator is re-

duced to a simple approximate phase equation, characterized

by the natural frequency and phase sensitivity of the oscillator.

The phase-reduction theory facilitates systematic and detailed

analysis of synchronization dynamics. It has been used to

explain nontrivial synchronization dynamics of coupled oscil-

lators, such as the collective synchronization transition of an

ensemble of coupled oscillators [1,8–12]. Generalization of

the method for nonconventional limit-cycling systems, such

as time-delayed oscillators [13,14], hybrid oscillators [15,16],

collectively oscillating networks [17], and rhythmic spa-

tiotemporal patterns [18,19], has also been discussed.

*Author to whom all correspondence should be addressed:

kato.y.bg@m.titech.ac.jp

Recently, the phase-reduction theory has been applied for

the control and optimization of synchronization dynamics in

oscillatory systems. For example, Moehlis et al. [20], Harada

et al. [21], Dasanayake and Li [22], Zlotnik et al. [23–25],

Pikovsky [26], Tanaka et al. [27–29], Wilson et al. [30],

Pyragas et al. [31], and Monga et al. [32,33] have used

the phase-reduction theory (as well as the phase-amplitude

reduction theory) to derive optimal driving signals for the

stable entrainment of nonlinear oscillators in various physical

situations.

In a similar spirit, in our previous study [34], we considered

a problem of improving the linear stability of synchronized

state between a pair of limit-cycle oscillators by optimizing

a cross-diffusion coupling matrix between the oscillators,

where different components of the oscillators are allowed to

interact. We also considered a pair of mutually interacting

reaction-diffusion systems exhibiting rhythmic spatiotempo-

ral patterns, and we derived optimal spatial filters for stable

mutual synchronization [35].

In this study, we consider this problem in a more general

setting, whereby the oscillators can interact not only by their

present states but also through the time sequences of their

past states. We first consider linear coupling with time delay

or temporal filtering, and we derive the optimal delay time

or linear filter. We then consider general nonlinear coupling

with a mutual drive-response configuration, and we derive

the optimal response function and driving function for stable

synchronization. We argue that, although we consider general

coupling that can depend on the past time sequences of the

oscillators, the optimal mutual coupling can be obtained as a

function of the present phase values of the oscillators in the

framework of the phase-reduction approximation. The results

are illustrated by numerical simulations using Stuart-Landau

and FitzHugh-Nagumo oscillators as examples.
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This paper is organized as follows. In Sec. II, we introduce

a general model of coupled limit-cycle oscillators and reduce

it to coupled phase equations. In Sec. III, we consider the

case with linear coupling and derive the optimal time delay

and optimal linear filter for coupling signals. In Sec. IV, we

consider nonlinear coupling of the drive-response type and

derive the optimal response function and driving function. In

Sec. V, a summary is provided.

II. MODEL

A. Pair of weakly coupled oscillators

In this study, we consider a pair of weakly and symmetri-

cally coupled limit-cycle oscillators with identical properties,

where the oscillators can mutually interact not only through

their present states but also through their past time sequences.

We assume that the oscillators are generally described by the

following set of functional differential equations:

Ẋ 1(t ) = F(X 1(t )) + ǫĤ
{

X
(t )
1 (·), X

(t )
2 (·)

}

,

Ẋ 2(t ) = F(X 2(t )) + ǫĤ
{

X
(t )
2 (·), X

(t )
1 (·)

}

, (1)

where X 1,2 ∈ R
N are N-dimensional state vectors of the oscil-

lators 1 and 2 at time t , F : R
N → R

N is a sufficiently smooth

vector field representing the dynamics of individual oscilla-

tors, and ǫĤ represents weak mutual coupling between the

oscillators. Here, Ĥ : C × C → R
N (C is a function space of

the time sequences of length L) is a sufficiently smooth func-

tional of two vector functions, i.e., the past time sequences

of X 1,2(t ), and 0 < ǫ ≪ 1 is a small parameter representing

the smallness of the mutual coupling. We assume that each

isolated oscillator, Ẋ = F(X ), has an exponentially stable

limit cycle X̃ 0(t ) = X̃ 0(t + T ) of period T and frequency

ω = 2π/T , and the deviation of the oscillator state from this

limit cycle remains small even if weak perturbations due to

the mutual coupling are applied.

We use the standard notation of functional differential

equations [36] to represent the time sequences of X 1,2 in

the coupling functional Ĥ . Namely, the symbol X
(t )
i (·) ∈ C

(i = 1, 2) represents the time sequence of X i on the interval

[t − L, t], defined by

X
(t )
i (σ ) = X i(t + σ ) (−L � σ � 0), (2)

where the parameter σ runs from −L to 0. The length L � 0 of

the time sequences used for the coupling is arbitrary as long

as the assumption described later is satisfied. We abbreviate

these time sequences as X
(t )
i hereafter. In Eq. (1), the symbol

(·) indicates that Ĥ is a functional, which depends not only

on the values of X 1,2 at a particular time but generally on the

time sequences of X 1,2. We omit this symbol hereafter unless

necessary.

B. Phase reduction and averaging

For weakly coupled limit-cycle oscillators, we can em-

ploy the standard method of phase reduction [1,8–12]. Let

us consider a single isolated oscillator for the moment. We

can introduce a phase function �(X ) : R
N → [0, 2π ), which

maps the oscillator state to a phase value, such that it satisfies

F(X ) · ∇�(X ) = ω in the whole basin of the limit cycle.

Using this �(X ), the phase variable of the oscillator can

be defined as θ = �(X ), which constantly increases with

time as θ̇ = �̇(X ) = ω in the basin of the limit cycle (2π is

identified with 0). The oscillator state on the limit cycle can

be represented as a function of θ as X 0(θ ) = X̃ 0(t = θ/ω),

which is a 2π -periodic function of θ , X 0(θ ) = X 0(θ + 2π ).

Similar to Eq. (2), in order to represent a time sequence on the

limit cycle, we introduce a notation

X
(θ )
0 (σ ) = X 0(θ + ωσ ) (−L � σ � 0) (3)

and abbreviate this as X
(θ )
0 .

The linear response property of the oscillator phase to weak

perturbations is characterized by the phase sensitivity function

(PSF), defined by Z(θ ) = ∇�(X )|X=X 0(θ ) : [0, 2π ) → R
N .

That is, when the oscillator is weakly driven by a pertur-

bation p as Ẋ = F(X ) + ǫp, the phase θ of the oscillator

approximately obeys a reduced phase equation, θ̇ = ω +
ǫZ(θ ) · p, which is correct up to O(ǫ). The PSF can be

calculated as a 2π -periodic solution to an adjoint equation

ωdZ(θ )/dθ = −J†(X 0(θ ))Z(θ ) with a normalization condi-

tion Z(θ ) · dX 0(θ )/dθ = 1, where J (X ) : R
N → R

N×N is a

Jacobian matrix of F at X , and † denotes transpose. In the

numerical analysis, Z(θ ) can be calculated easily using the

backward time evolution of the adjoint equation as proposed

by Ermentrout [10].

Let us now consider a pair of weakly coupled oscillators

described by Eq. (1). We define the phase values of the oscil-

lators 1, 2 as θ1,2 = �(X 1,2). When the perturbation applied

to the oscillators is sufficiently weak and of O(ǫ), the state

vector of each oscillator can be approximated as X 1,2(t ) ≈
X 0(θ1,2(t )) as a function of the phase θ1,2(t ) within the error

of O(ǫ). More generally, we assume that the deviation of the

oscillator state from the limit cycle is small and of O(ǫ) in the

whole interval [t − L, t], i.e.,

X
(t )
1,2(σ ) = X

[θ1,2(t )]

0 (σ ) + O(ǫ) (−L � σ � 0). (4)

It then follows from the smoothness of Ĥ that

Ĥ
{

X
(t )
1 , X

(t )
2

}

= Ĥ
{

X
[θ1(t )]
0 , X

[θ2(t )]
0

}

+ O(ǫL). (5)

We assume hereafter that the length L satisfies L ≪ 1/ǫ, i.e.,

Ĥ{X (t )
1 , X

(t )
2 } ≈ Ĥ{X [θ1(t )]

0 , X
[θ2(t )]
0 } within the error of O(ǫ).

By the phase reduction, we obtain the following pair of

phase equations from Eq. (1):

θ̇1(t ) = ω + ǫZ(θ1(t )) · Ĥ
{

X
(t )
1 , X

(t )
2

}

,

θ̇2(t ) = ω + ǫZ(θ2(t )) · Ĥ
{

X
(t )
2 , X

(t )
1

}

, (6)

which are correct up to O(ǫ). Substituting Eq. (5) into Eq. (6)

and ignoring errors of O(ǫ2), we obtain a pair of reduced

phase equations,

θ̇1 = ω + ǫZ(θ1) · Ĥ
{

X
(θ1 )
0 , X

(θ2 )
0

}

,

θ̇2 = ω + ǫZ(θ2) · Ĥ
{

X
(θ2 )
0 , X

(θ1 )
0

}

, (7)

which are also correct up to O(ǫ). Thus, we can neglect the

deviations of the oscillator states from the limit cycle at the

lowest order approximation.

The coupling term in Eq. (7), Ĥ{X (θ1 )
0 , X

(θ2 )
0 }, is formally a

functional of the two time sequences X
(θ1 )
0 and X

(θ2 )
0 . However,
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these functions X
(θ1 )
0 and X

(θ2 )
0 are determined only by the two

phase values θ1 and θ2. Therefore, we can regard the coupling

term Ĥ{X (θ1 )
0 , X

(θ2 )
0 } as an ordinary function of θ1 and θ2,

defined by

H (θ1, θ2) = Ĥ
{

X
(θ1 )
0 , X

(θ2 )
0

}

, (8)

and we rewrite the phase equations as

θ̇1 = ω + ǫZ(θ1) · H (θ1, θ2),

θ̇2 = ω + ǫZ(θ2) · H (θ2, θ1). (9)

It should be stressed that, although we started from Eq. (1)

with general coupling functionals that depend on the past time

sequences of the oscillators, the coupled system reduces to a

pair of simple ordinary differential equations that depend only

on the present phase values θ1 and θ2 of the oscillators within

the phase-reduction approximation.

Once we have obtained Eq. (9), we can follow the standard

averaging procedure of the phase-reduction theory [8,9]. We

introduce slow phase variables φ1,2 = θ1,2 − ωt , rewrite the

equations as

φ̇1 = ǫZ(φ1 + ωt ) · H (φ1 + ωt, φ2 + ωt ),

φ̇2 = ǫZ(φ2 + ωt ) · H (φ2 + ωt, φ1 + ωt ), (10)

and average the small right-hand side of these equations over

one period of oscillation. This yields the following averaged

phase equations, which are correct up to O(ǫ):

θ̇1 = ω + ǫŴ(θ1 − θ2),

θ̇2 = ω + ǫŴ(θ2 − θ1), (11)

where Ŵ(φ) is the phase coupling function defined as

Ŵ(φ) =
1

2π

∫ 2π

0

Z(φ + ψ ) · H (φ + ψ,ψ )dψ

= 〈Z(φ + ψ ) · H (φ + ψ,ψ )〉ψ
= 〈Z(ψ ) · H (ψ,ψ − φ)〉ψ . (12)

Here, we have defined an average of a function f (ψ ) over one

period of oscillation as

〈 f (ψ )〉ψ =
1

2π

∫ 2π

0

f (ψ )dψ. (13)

C. Linear stability of the in-phase synchronized state

From the coupled phase equations (11), the dynamics of

the phase difference φ = θ1 − θ2 obeys

φ̇ = ǫ[Ŵ(φ) − Ŵ(−φ)], (14)

where the right-hand side is (twice) the antisymmetric part

of the phase coupling function Ŵ(φ). This equation always

has a fixed point at φ = 0 corresponding to the in-phase

synchronized state. In a small vicinity of φ = 0, the above

equation can be linearized as

φ̇ ≈ 2ǫŴ′(0)φ. (15)

The derivative of the phase coupling function is given by

Ŵ′(φ) = − 〈Z(ψ ) · H ′
2(ψ,ψ − φ)〉ψ , (16)

where

H ′
2(ψ1, ψ2) =

∂H (ψ1, ψ2)

∂ψ2

(17)

is the partial derivative of H with respect to the second argu-

ment. Thus, the linear stability of this state is characterized

by the exponent 2ǫŴ′(0), and a larger −Ŵ′(0) yields a higher

linear stability of the in-phase synchronized state.

In this study, we consider optimization of either the param-

eters or functions included in the mutual coupling term H so

that the linear stability

−Ŵ′(0) =〈Z(ψ ) · H ′
2(ψ,ψ )〉ψ (18)

of the in-phase synchronized state, φ = 0, is maximized under

appropriate constraints on the intensity of the mutual cou-

pling.

D. Examples of limit-cycle oscillators

The Stuart-Landau (SL) oscillator is used in the following

numerical examples. It is a normal form of the supercritical

Hopf bifurcation and is described by

X =
(

x

y

)

∈ R
2, (19)

F =
(

Fx

Fy

)

=
(

x − ay − (x2 + y2)(x − by)

ax + y − (x2 + y2)(bx + y)

)

, (20)

where the parameters are fixed at a = 2 and b = 1. This

oscillator has a stable limit cycle with a natural frequency

ω = a − b = 1 and period T = 2π , represented by

X 0(θ ) =
(

x0(θ )

y0(θ )

)

=
(

cos θ

sin θ

)

(0 � θ < 2π ). (21)

The phase function can be explicitly represented by

�(x, y) = arctan
y

x
−

b

2
ln(x2 + y2) (22)

on the whole xy-plane except (0, 0), and the PSF is given by

Z(θ ) =
(

Zx

Zy

)

=
(

− sin θ − b cos θ

cos θ − b sin θ

)

. (23)

As another example, we use the FitzHugh-Nagumo (FHN)

oscillator, described by

X =
(

x

y

)

∈ R
2, (24)

F =
(

Fx

Fy

)

=
(

x(x − c)(1 − x) − y

μ−1(x − dy)

)

, (25)

where the parameters are fixed at c = −0.1, d = 0.5, and μ =
100. As μ is large, this oscillator is a slow-fast system whose

x variable evolves much faster than the y variable, leading to

relaxation oscillations. With these parameters, the natural pe-

riod of the oscillation is T ≈ 126.7 and the natural frequency

is ω ≈ 0.0496. The limit cycle X 0(θ ) = (x0(θ ), y0(θ ))† and

phase function �(X ) cannot be obtained analytically for this

model, but the PSF Z(θ ) can be obtained by numerically solv-

ing the adjoint equation. Figure 1 shows the time sequences

of the limit-cycle orbit X 0(θ ) and PSF Z(θ ) for one period of

oscillation, 0 � θ < 2π .
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(a)

(b)

FIG. 1. Limit-cycle orbit and phase sensitivity function of the

FitzHugh-Nagumo oscillator. Time sequences of the x and y compo-

nents are plotted for one period of oscillation, 0 � θ < 2π . (a) Limit

cycle (x0(θ ), y0(θ )). (b) Phase sensitivity function (Zx (θ ), Zy(θ )).

III. LINEAR COUPLING

A. Linear coupling without self-coupling terms

In this section, we consider the case in which the oscillators

are linearly coupled, i.e., the coupling functional can be ex-

pressed as Ĥ{X (t )
1 , X

(t )
2 } = Ĝ{X (t )

2 } + Î{X (t )
1 }, where Ĝ{X (t )}

and Î{X (t )} are linear functionals of X (t ). The oscillators obey

Ẋ 1(t ) = F(X 1(t )) + ǫ
[

Ĝ
{

X
(t )
2

}

+ Î
{

X
(t )
1

}]

,

Ẋ 2(t ) = F(X 2(t )) + ǫ
[

Ĝ
{

X
(t )
1

}

+ Î
{

X
(t )
2

}]

, (26)

where Ĝ{X (t )
2,1} and Î{X (t )

1,2} in each equation represent the

effects of the coupling from the other oscillator and the

self-coupling with itself, respectively. For example, when

Î{X (t )} = −Ĝ{X (t )}, we obtain diffusive coupling that de-

pends on the state difference between the oscillators. In partic-

ular, when Î{X (t )} = 0, we obtain coupled oscillators without

the self-coupling terms,

Ẋ 1(t ) = F(X 1(t )) + ǫĜ
{

X
(t )
2

}

,

Ẋ 2(t ) = F(X 2(t )) + ǫĜ
{

X
(t )
1

}

. (27)

In Appendix A, it is shown that the above two models with

and without the self-coupling term Î{X (t )
1,2} are equivalent

within the phase-reduction approximation in the sense that

both models have the in-phase synchronized state with the

same linear stability as a solution. We thus analyze Eq. (27) in

the following subsections.

As typical coupling schemes, we analyze a simple time-

delayed coupling, where each oscillator is driven by the past

state of the other oscillator with a fixed time delay, and a more

general coupling via linear filtering, where each oscillator is

driven by a linearly filtered signal of the past time sequences

of the other oscillator.

B. Time-delayed coupling

First, we consider a simple time-delayed coupling, where

each oscillator is driven by the past state of the other oscillator.

The model is given by

Ẋ 1 = F(X 1) + ǫ
√

PKX 2(t − τ ),

Ẋ 2 = F(X 2) + ǫ
√

PKX 1(t − τ ), (28)

where 0 < ǫ ≪ 1 is a small parameter representing the

strength of the interaction, P > 0 is a real constant that con-

trols the norm of the coupling signal, K ∈ R
N×N is a constant

matrix specifying which components of the oscillator states

X 1,2(t ) are coupled, and τ (0 � τ � L) is a time delay. In

our previous study [34], we considered optimization of the

matrix K for the case in which the two oscillators are nearly

identical and coupled without time delay. Here, we consider

two oscillators with identical properties, fix the matrix K

constant, and vary the time delay τ to improve the linear

stability of the in-phase synchronized state.

In this case, the coupling functionals are given by

Ĥ
{

X
(t )
1 , X

(t )
2

}

=
√

PKX 2(t − τ ),

Ĥ
{

X
(t )
2 , X

(t )
1

}

=
√

PKX 1(t − τ ), (29)

which can be expressed as functions of θ1 and θ2 as

H (θ1, θ2) =
√

PKX 0(θ2 − ωτ ),

H (θ2, θ1) =
√

PKX 0(θ1 − ωτ ), (30)

after phase reduction. The phase coupling function is

Ŵ(φ) = 〈Z(ψ ) · H (ψ,ψ − φ)〉ψ

= 〈Z(ψ ) ·
√

PKX 0(ψ − φ − ωτ )〉ψ , (31)

and the linear stability is characterized by

−Ŵ′(0) = 〈Z(ψ ) · H ′
2(ψ,ψ )〉ψ

= 〈Z(ψ ) ·
√

PKX ′
0(ψ − ωτ )〉ψ , (32)

where X ′
0(θ ) = dX 0(θ )/dθ .

The maximum stability is attained only when τ satisfies

∂

∂τ
{−Ŵ′(0)} = −ω〈Z(ψ ) ·

√
PKX ′′

0 (ψ − ωτ )〉ψ = 0, (33)

where X ′′
0 (θ ) = d2X 0(θ )/dθ2. We denote the value of τ satis-

fying the above equation as τ ∗, i.e.,

〈Z(ψ ) ·
√

PKX ′′
0 (ψ − ωτ ∗)〉ψ = 0. (34)

By partial integration using the 2π -periodicity of Z(θ ) and

X 0(θ ), this can also be expressed as

〈Z′(ψ ) ·
√

PKX ′
0(ψ − ωτ ∗)〉ψ = 0, (35)

which has the form of a cross-correlation function between

Z′(θ ) and
√

PKX ′
0(θ ). Because both of these functions are

2π -periodic with zero-mean, the left-hand side of Eq. (35) is

also 2π -periodic with zero mean. Thus, there are at least two

values of τ satisfying the above equation, as long as Z′(θ ) and√
PKX ′

0(θ ) are nonconstant functions (which holds generally

for ordinary limit cycles). By choosing an appropriate value

of τ ∗, the maximum stability is given by

−Ŵ′(0) =
√

P〈Z(ψ ) · KX ′
0(ψ − ωτ ∗)〉2

ψ . (36)
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C. Coupling via linear filtering

Generalizing the time-delayed coupling, we consider a

case in which the past time sequences of both oscillator states

are linearly filtered and used as driving signals for the other

oscillators. The model is given by

Ẋ 1 = F(X 1) + ǫ

∫ L

0

h(τ )KX 2(t − τ )dτ,

Ẋ 2 = F(X 2) + ǫ

∫ L

0

h(τ )KX 1(t − τ )dτ, (37)

where h(τ ) : [0, L] → R is a real scalar function representing

a linear filter, which transforms the sequence of the oscillator

state to a coupling signal, and K ∈ R
N×N is a constant matrix

specifying which components of X are coupled. We optimize

the linear filter h(τ ) for a given coupling matrix K under a

constraint specified below.

The coupling functionals are given by

Ĥ
{

X
(t )
1 , X

(t )
2

}

=
∫ L

0

h(τ )KX 2(t − τ )dτ,

Ĥ
{

X
(t )
2 , X

(t )
1

}

=
∫ L

0

h(τ )KX 1(t − τ )dτ, (38)

which simplify to ordinary functions

H (θ1, θ2) =
∫ L

0

h(τ )KX 0(θ2 − ωτ )dτ,

H (θ2, θ1) =
∫ L

0

h(τ )KX 0(θ1 − ωτ )dτ, (39)

after phase reduction. The phase coupling function is given by

Ŵ(φ) =
〈

Z(φ + ψ ) ·
∫ L

0

h(τ )KX 0(ψ − ωτ )dτ

〉

ψ

=
〈∫ L

0

Z(ψ ) · h(τ )KX 0(ψ − ωτ − φ)dτ

〉

ψ

(40)

and the linear stability of the in-phase synchronized state is

characterized by

−Ŵ′(0) =
〈∫ L

0

Z(ψ ) · h(τ )KX ′
0(ψ − ωτ )dτ

〉

ψ

. (41)

We constrain the L2-norm ‖h(τ )‖ =
√

∫ L

0
h(τ )2dτ of the

linear filter, h(τ ), as ‖h(τ )‖2 = Q, where Q > 0 controls the

overall coupling intensity, and we seek the optimal h(τ ) that

maximizes the linear stability, −Ŵ′(0). That is, we consider an

optimization problem:

maximize − Ŵ′(0) subject to ‖h(τ )‖2 = Q. (42)

To this end, we define an objective functional as

S{h, λ} = − Ŵ′(0) + λ[‖h(ψ )‖2 − Q]

=
〈∫ L

0

Z(ψ ) · h(τ )KX ′
0(−ωτ + ψ )dτ

〉

ψ

+ λ

(∫ L

0

h(τ )2dτ − Q

)

, (43)

where λ is a Lagrange multiplier. From the extremum condi-

tion of S, the functional derivative of S with respect to h(τ )

should satisfy

δS

δh(τ )
= 〈Z(ψ ) · KX ′

0(−ωτ + ψ )〉ψ + 2λh(τ ) = 0 (44)

and the partial derivative of S by λ should satisfy

∂S

∂λ
=

∫ L

0

h(τ )2dτ − Q = 0. (45)

Thus, the optimal linear filter h(τ ) is given by

h(τ ) = −
1

2λ
〈Z(ψ ) · KX ′

0(ψ − ωτ )〉ψ . (46)

The Lagrange multiplier λ is determined from the constraint

‖h(τ )‖2 = Q, i.e.,

1

4λ2

∫ L

0

〈Z(ψ ) · KX ′
0(ψ − ωτ )〉2

ψdτ = Q (47)

as

λ = −

√

1

4Q

∫ L

0

〈Z(ψ ) · KX ′
0(ψ − ωτ )〉2

ψdτ , (48)

where the negative sign should be chosen for the in-phase

synchronized state to be linearly stable, −Ŵ′(0) > 0. The

maximum linear stability with the optimized h(τ ) is

−Ŵ′(0) =

√

Q

∫ L

0

〈Z(ψ ) · KX ′
0(ψ − ωτ )〉2

ψdτ . (49)

D. Numerical examples

1. Setup

We use the SL and FHN oscillators in the following nu-

merical illustrations. In the following examples, we assume

that the length L of the time sequence is equal to the period

T of the oscillation, L = T , that is, we use a whole period of

the time sequence of the oscillation for the coupling. For both

models, the coupling matrix is assumed to be

K =
(

1 0

0 0

)

. (50)

We compare the optimized cases with the nonoptimized case,

i.e.,

Ẋ 1 = F(X 1) + ǫ
√

PKX 2(t ),

Ẋ 2 = F(X 2) + ǫ
√

PKX 1(t ), (51)

where ǫ is a small parameter that determines the coupling

strength, and P controls the norm of the coupling signal.

2. Time-delayed coupling

In this case, the mean square of the coupling term over one

period of oscillation is the same irrespective of the time delay,

that is,

〈|
√

PKX 0(ψ )|2〉ψ = 〈|
√

PKX 0(ψ − ωτ ∗)|2〉ψ . (52)

First, for the SL oscillator, we can analytically calculate

the optimal time delay. The linear stability of the in-phase
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no delay

optimal

optimal (DNS)

(a)

Δ

t

φ

t

optimal (phase)

no delay (DNS)

no delay (phase)

6

2

FIG. 2. Synchronization of two Stuart-Landau oscillators coupled with time delay. The results with the optimal time delay are compared

with those without time delay. (a) Evolution of the difference �x between x variables of the two oscillators. (b) Evolution of the phase

difference φ between the oscillators, where results of direct numerical simulations (DNSs) of the original model are compared with those of

the reduced phase model.

synchronized state, Eq. (32), is given by

−Ŵ′(0) =
√

P〈Zx(ψ )x′
0(ψ − ωτ )〉ψ

=
√

P

2
[cos(ωτ ) − b sin(ωτ )]. (53)

The optimal time delay τ = τ ∗ is determined from Eq. (33),

or equivalently from

〈Zx(ψ )x′′
0 (ψ − ωτ )〉ψ =

b cos(ωτ ) + sin(ωτ )

2
= 0. (54)

For the parameter values b = 1 and ω = 1, this equation

is satisfied when τ = 3π/4 or τ = 7π/4 (0 � τ < L = T ).

Substituting this into Eq. (53), we find that τ ∗ = 7π/4 should

be chosen, and the maximum linear stability is given by

−Ŵ′(0) =
√

P/
√

2. For the case with no time delay, the linear

stability is −Ŵ′(0) =
√

P/2. Thus, by appropriately choosing

the time delay, the linear stability improves by a factor of
√

2

in this case.

Figure 2 shows synchronization of two SL oscillators for

the cases with the optimal time delay and without time delay,

where ǫ = 0.02, P = 1, and the initial phase difference is

φ(0) = π/4. In Fig. 2(a), the difference �x between the x

variables of the two oscillators, obtained by direct numerical

simulations of the coupled SL oscillators, is plotted as a

function of t . It can be seen that the in-phase synchronized

state is established faster in the optimized case because of

the higher linear stability. Figure 2(b) shows the convergence

of the phase difference φ to 0. It can be seen that the results

of the reduced phase equation agree well with those of direct

numerical simulations.

Figure 3 shows the results for two FHN oscillators, where

ǫ = 0.003, P = 1, and the initial phase difference is φ = π/4.

Figure 3(a) plots the linear stability −Ŵ′(0) and its derivative

−∂Ŵ′(0)/∂τ as functions of the time delay τ , where there

are two extrema of −Ŵ′(0). We choose the larger extremum,

which is attained at the optimal time delay τ ∗ ≈ 117.6. The

antisymmetric part of the phase coupling function, Ŵ(φ) −
Ŵ(−φ), is shown in Fig. 3(b) for the cases with the optimal

delay and without delay.

It can be seen that the stability of the in-phase synchronized

state φ = 0 is improved, as indicated by the straight lines in

Fig. 3(b), where −Ŵ′(0) ≈ 0.654 with the optimized time de-

lay and −Ŵ′(0) ≈ 0.221 without the time delay. The evolution

of the difference �x between the x variables of the oscillators

is plotted as a function of t in Fig. 3(c). The phase differences

φ converging toward 0, obtained from the phase equation and

direct numerical simulations of the original model, are shown

in Fig. 3(d). It can be seen that the convergence to the in-phase

synchronization is faster with the optimized time delay, and

the results of the reduced phase equation agree well with

direct numerical simulations.

3. Coupling via linear filtering

We again assume that the coupling matrix K is given by

Eq. (50), and we compare the results for the optimized case

with linear filtering with those for the nonfiltered case given

by Eq. (51). We choose the parameter Q that constrains the

norm of the linear filter such that the squared average of the

coupling term over one period of oscillation becomes equal to

that in the nonfiltered case given by Eq. (51), i.e.,
〈

∣

∣

∣

∣

∫ L

0

h(τ )KX 0(ψ − ωτ )dτ

∣

∣

∣

∣

2
〉

ψ

= 〈|
√

PKX 0(ψ )|2〉ψ .

(55)

For the SL oscillators, the optimal filter h(τ ), Eq. (46), is

explicitly calculated as

h(τ ) =

√

Qω

π (1 + b2)
[cos(ωτ ) − b sin(ωτ )]. (56)

The optimal phase coupling function, Eq. (40), and optimized

linear stability, Eq. (49), are expressed as

Ŵ(φ) = −
1

2

√

π (1 + b2)Q

ω
sin φ (57)

and

−Ŵ′(0) =
1

2

√

π (1 + b2)Q

ω
, (58)

respectively. We take Q = ωP/π so that Eq. (55) is satisfied.

The linear stability is then −Ŵ′(0) =
√

(1 + b2)P/2 when the

optimized linear filter is used and −Ŵ′(0) =
√

P/2 when no
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(a) (b)
no delay
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(c)
no delay

optimal

(d)
no delay(phase)

no delay(DNS)

optimal(phase)

optimal(DNS)

FIG. 3. Synchronization of two FitzHugh-Nagumo oscillators coupled with time delay. In (b)–(d), the results with the optimal time delay

are compared with those without time delay. (a) Linear stability −Ŵ′(0) and its derivative −∂Ŵ′(0)/∂τ vs time delay τ . The crosses indicate

the values of τ where −∂Ŵ′(0)/∂τ = 0. (b) Antisymmetric part of the phase coupling function, Ŵ(φ) − Ŵ(−φ). (c) Evolution of the difference

�x between x variables of the two oscillators. (d) Evolution of the phase difference φ between the oscillators. Results of DNSs of the original

model are compared with those of the phase model.

filtering of the oscillator state is performed. Thus, the linear

stability is improved by a factor of
√

2 when b = 1.

It is important to note that, in the SL oscillator case,

X 0(ψ ), Z(ψ ), and hence the linear filter h(τ ) contain only the

fundamental frequency, i.e., they are purely sinusoidal. Thus,

the linear filtering can only shift the phase of the coupling

signal and gives the same result as the previous case with the

simple time delay. It is also interesting to note that the stability

cannot be improved (it is already optimal without filtering)

when the parameter b, which characterizes nonisochronicity

of the limit cycle, is zero.

Figure 4 shows the synchronization of two SL oscillators,

with and without linear filtering, where ǫ = 0.02, P = 1, and

the initial phase difference is φ = π/4. Figure 4(a) shows the

evolution of the difference �x between the x variables of the

oscillators, and Fig. 4(b) shows the convergence of the phase

difference φ to 0. We can see that the in-phase synchronized

state is established faster in the optimized case, and the results

of the reduced phase model and direct numerical simulations

agree well.

For the FHN oscillators, the optimal linear filter can be

calculated from the time sequences of the limit-cycle solution

no filter (phase)

no filter (DNS)

optimal (phase)

optimal (DNS)

(a)

Δ

t

(b)

φ

t

6

2

no filter

optimal

FIG. 4. Synchronization of two Stuart-Landau oscillators coupled with linear filtering. The results with the optimal filtering are compared

with those without filtering. (a) Evolution of the difference �x in the x variables between the oscillators. (b) Evolution of the phase difference

φ between the oscillators. Results of DNSs of the original model are compared with those of the phase model.
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(a) (b)
no filter

optimal

(c)
no filter

optimal

(d)
no filter(phase)

no filter(DNS)

optimal(phase)

optimal(DNS)

FIG. 5. Synchronization of two FitzHugh-Nagumo oscillators coupled with linear filtering. In (b)–(d), the results with the optimal filtering

are compared with those without filtering. (a) Optimal linear filter h(τ ). (b) Antisymmetric part of the phase coupling function Ŵ(φ) − Ŵ(−φ).

(c) Evolution of the difference �x in the x variables between the oscillators. (d) Evolution of the phase difference φ between the oscillators.

Results of DNSs of the original model are compared with those of the phase model.

and PSF obtained numerically. Figure 5 shows the synchro-

nization of two coupled FHN oscillators, with and without

linear filtering, where ǫ = 0.003, P = 1, Q ≈ 0.0522, and the

initial phase difference is φ = π/4. Figure 5(a) shows the op-

timal filter, (b) shows the antisymmetric part Ŵ(φ) − Ŵ(−φ)

of the phase coupling function Ŵ(φ), (c) shows the evolution

of the difference �x between the x variables of the oscillators,

and (d) shows the convergence of the phase difference φ

toward 0. The linear stability is given by −Ŵ′(0) ≈ 0.844 for

the case with the optimal filter and by −Ŵ′(0) ≈ 0.221 for

the case without filtering, as shown by the straight lines in

Fig. 5(b). The in-phase synchronized state is established faster

in the optimized case, and the results of the reduced phase

model and direct numerical simulations agree well. Because

the FHN oscillator has the higher harmonic components in

X 0(ψ ) and Z(ψ ), the optimal filter h(τ ) can exploit these

components, and hence the improvement in the linear stability

is larger than that for the case with simple delay.

IV. NONLINEAR COUPLING

A. Mutual drive-response coupling

In this section, we consider the case in which the oscillators

interact through nonlinear coupling functionals, and we seek

the optimal forms of the coupling functional. It should be

noted here that the functional form of Ĥ{X (t )
1 , X

(t )
2 }, which

depends on both time sequences of the oscillators, cannot be

determined in the present problem of optimizing the linear

stability −Ŵ′(0) of the in-phase synchronized state. Because

−Ŵ′(0) is evaluated only in the completely in-phase syn-

chronized state of the two oscillators, i.e., only when X
(t )
1 =

X
(t )
2 = X

[θ (t )]
0 [see Eqs. (8) and (18)], no information for the

case with X
(t )
1 �= X

(t )
2 can be attained from −Ŵ′(0).

We thus assume that the coupling is of a drive-response

type, i.e., it can be written as a product of a response matrix

of the driven oscillator and a driving function that transforms

the signal from the other oscillator as

Ĥ
{

X
(t )
1 , X

(t )
2

}

= Â
{

X
(t )
1

}

Ĝ
{

X
(t )
2

}

, (59)

where the matrix Â : C → R
N×N is a functional of the time

sequence of each oscillator representing its response proper-

ties, and Ĝ : C → R
N is a functional that transforms the time

sequence of the other oscillator to a driving signal. The model

is given by

Ẋ 1(t ) = F(X 1(t )) + ǫÂ
{

X
(t )
1

}

Ĝ
{

X
(t )
2

}

,

Ẋ 2(t ) = F(X 2(t )) + ǫÂ
{

X
(t )
2

}

Ĝ
{

X
(t )
1

}

. (60)

Similar to the previous case of linear coupling, we may also

include self-coupling terms of the form ǫÎ{X (t )
1,2} to the model

as

Ẋ 1(t ) = F(X 1(t )) + ǫ
(

Â
{

X
(t )
1

}

Ĝ
{

X
(t )
2

}

+ Î
{

X
(t )
1

})

,

Ẋ 2(t ) = F(X 2(t )) + ǫ
(

Â
{

X
(t )
2

}

Ĝ
{

X
(t )
1

}

+ Î
{

X
(t )
2

})

. (61)

For example, when Î{X (t )} = −Â{X (t )}Ĝ{X (t )}, we obtain

(nonlinear) diffusive coupling. As explained in Appendix A,
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inclusion of such self-coupling terms does not alter the results,

and the linear stability remains the same in the framework of

the phase-reduction theory. We thus analyze Eq. (60) in the

following subsections.

The coupling functionals in this case are given by

Ĥ
{

X
(t )
1 , X

(t )
2

}

= Â
{

X
(t )
1

}

Ĝ
{

X
(t )
2

}

,

Ĥ
{

X
(t )
2 , X

(t )
1

}

= Â
{

X
(t )
2

}

Ĝ
{

X
(t )
1

}

, (62)

and, as argued in Sec. II B, at the lowest-order phase reduc-

tion, these functionals can be expressed as ordinary functions

of the phase θ1 and θ2 as

H (θ1, θ2) = A(θ1)G(θ2),

H (θ2, θ1) = A(θ2)G(θ1), (63)

where we introduced ordinary 2π -periodic functions A and

G of θ1 and θ2. Using these functions, the phase coupling

function is given by

Ŵ(φ) = 〈Z(ψ ) · A(ψ )G(ψ − φ)〉ψ , (64)

and the linear stability is characterized by

−Ŵ′(0) = 〈Z(ψ ) · A(ψ )G′(ψ )〉ψ
= 〈A†(ψ )Z(ψ ) · G′(ψ )〉ψ

= −
〈

d

dψ
[A†(ψ )Z(ψ )] · G(ψ )

〉

ψ

, (65)

where the last expression is obtained by partial integration

using 2π -periodicity of A(ψ ), Z(ψ ), and G(ψ ).

Therefore, although we started from Eq. (60) with a gen-

eral drive-response coupling that depends on the past time

sequences of the oscillators, the linear stability can be repre-

sented only by the present phase values of the oscillators at the

lowest-order phase reduction. In the following subsections,

we consider the optimization of the response matrix A(ψ )

or the driving function G(ψ ), represented as functions of the

phase ψ .

B. Optimal response matrix

As for the first case, we optimize the response matrix

A(ψ ) as a function of the phase ψ , assuming that the driving

functional Ĝ is given. We introduce a constraint that the

squared Frobenius norm of A(ψ ) averaged over one period

of oscillation is fixed as 〈‖A(ψ )‖2〉
ψ

= P, and we consider

an optimization problem:

maximize − Ŵ′(0) subject to 〈‖A(ψ )‖2〉ψ = P, (66)

where ‖A‖ =
√

∑

i, j A2
i j represents the Frobenius norm of the

matrix A = (Ai j ). By defining an objective functional,

S{A, λ} = −Ŵ′(0) + λ(〈‖A(ψ )‖2〉ψ − P)

= 〈Z(ψ ) · A(ψ )G′(ψ )〉ψ + λ(〈‖A(ψ )‖2〉ψ − P),

(67)

where λ is a Lagrange multiplier, and by taking the functional

derivative with respect to each component, Ai j , of A, we

obtain the extremum condition. In this case,

δS

δAi j (ψ )
=

1

2π
Zi(ψ )G′

j (ψ ) +
λ

π
Ai j (ψ ) = 0, (68)

and we obtain

Ai j (ψ ) = −
1

2λ
Zi(ψ )G′

j (ψ ), (69)

i.e.,

A(ψ ) = −
1

2λ
Z(ψ )G′(ψ )†, (70)

and the Lagrange multiplier is determined from the constraint,

〈‖A(ψ )‖2〉ψ =
1

4λ2
〈‖Z(ψ )G′(ψ )†‖2〉ψ = P (71)

as

λ = −
√

1

4P
〈‖Z(ψ )G′(ψ )†‖2〉ψ , (72)

where the negative sign is chosen so that −Ŵ′(0) > 0. The

maximum stability of the in-phase synchronized state is

−Ŵ′(0) =
√

P〈‖Z(ψ )G′(ψ )†‖2〉ψ . (73)

C. Optimal driving function

We can also seek the function G(ψ ) that provides the

optimal driving signal as a function of the phase ψ , assum-

ing that the response matrix Â is given. We constrain the

squared average of G(ψ ) over one period of oscillation as

〈|G(ψ )|2〉
ψ

= P, and we maximize the linear stability of the

in-phase state:

maximize − Ŵ′(0) subject to 〈|G(ψ )|2〉ψ = P. (74)

We define an objective functional,

S{G, λ} = − Ŵ′(0) + λ(〈|G(ψ )|2〉ψ − P)

= −
〈

d

dψ
[A†(ψ )Z(ψ )] · G(ψ )

〉

ψ

+ λ(〈|G(ψ )|2〉ψ − P), (75)

where λ is a Lagrange multiplier. From the extremum condi-

tion for S, we obtain

δS

δG(ψ )
= −

1

2π

d

dψ
[A†(ψ )Z(ψ )] +

λ

π
G(ψ ) = 0 (76)

and the constraint on G. The optimal driving function is given

by

G(ψ ) =
1

2λ

d

dψ
[A†(ψ )Z(ψ )], (77)

where the Lagrange multiplier λ should be chosen to satisfy

the norm constraint,

1

4λ2

〈

∣

∣

∣

∣

d

dψ
[A†(ψ )Z(ψ )]

∣

∣

∣

∣

2
〉

ψ

= P. (78)
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FIG. 6. Synchronization of Stuart-Landau oscillators with the optimal response matrix. (a) Evolution of the difference �x between the x

variables of the oscillators. (b) Evolution of the phase difference φ between the oscillators. DNSs of the original model vs the reduced model.

This yields

λ = −

√

√

√

√

1

4P

〈

∣

∣

∣

∣

d

dψ
[A†(ψ )Z(ψ )]

∣

∣

∣

∣

2
〉

ψ

, (79)

where the negative sign is taken to satisfy Ŵ′(0) < 0. The

maximum stability is

−Ŵ′(0) =

√

√

√

√P

〈

∣

∣

∣

∣

d

dψ
[A†(ψ )Z(ψ )]

∣

∣

∣

∣

2
〉

ψ

. (80)

D. Numerical examples

1. Optimal response matrix

As an example, we assume that the driving functional

Ĝ{X (t )} is simply given by Ĝ{X (t )} = X (t ), and we seek the

optimal response matrix A(ψ ) satisfying 〈‖A(ψ )‖2〉
ψ

= P.

For comparison, we also consider an identity response matrix,

AI = diag(
√

P/2,
√

P/2), normalized to satisfy 〈‖AI‖2〉
ψ

=
P. Note that both the x and y components are coupled, in

contrast to the previous section where only the x component

is coupled.

For the SL oscillator, the optimal response matrix can be

analytically expressed as

A(ψ ) =
√

P

1 + b2

(

sin ψ (b cos ψ + sin ψ ) − cos ψ (b cos ψ + sin ψ )

sin ψ (b sin ψ − cos ψ ) cos ψ (cos ψ − b sin ψ )

)

, (81)

and the phase coupling function is given by Ŵ(φ) =
−

√

(1 + b2)P sin φ, which gives the optimal linear stability

−Ŵ′(0) =
√

(1 + b2)P. In contrast, for the identity matrix

AI , the phase coupling function is Ŵ(φ) = −
√

P/2(b cos φ +
sin φ) and the linear stability is −Ŵ′(0) =

√
P/

√
2. Thus, the

linear stability is improved by a factor of
√

2(1 + b2).

Figure 6 shows synchronization of two SL oscillators for

the cases with the optimal response matrix A(ψ ) and with the

identity matrix AI (ψ ), where b = 1, ǫ = 0.01, P = 2, and the

initial phase difference is φ = π/4. Figure 6(a) shows the evo-

lution of the difference �x in the x variables between the two

oscillators, and Fig. 6(b) shows the convergence of the phase

difference φ to 0. The in-phase synchronized state is more

quickly established in the optimized case, and the results of

the reduced phase model and direct numerical simulations

agree well.

For the FHN oscillator, the optimal response matrix can

be calculated numerically. Figure 7 compares the synchro-

nization dynamics of two coupled FHN oscillators with the

optimal and identity response matrices, where ǫ = 0.0002,

P = 2, and the initial phase difference is φ = π/4. Figure 7(a)

shows four components of the optimal response matrix A(ψ )

for 0 � ψ < 2π . It is notable that the magnitude of A21(ψ )

is much larger than the other components, indicating that

driving the y component of each oscillator by using the x

component of the other oscillator is efficient in synchronizing

the oscillators in this case. Figure 7(b) plots the antisymmetric

part of the phase coupling functions for the optimal and

identity response matrices, which shows that a much higher

stability is attained in the optimized case [−Ŵ′(0) ≈ 10.1 for

the optimized response matrix and −Ŵ′(0) ≈ 0.999 for the

identity response matrix].

Figure 7(c) shows the time evolution of the difference

�x between the two oscillators, and Fig. 7(d) shows the

convergence of the phase difference φ to 0. To use the optimal

response matrix, instantaneous phase values of the oscillators

are necessary. In the direct numerical simulations shown here,

we approximately evaluated the phase value by linearly inter-

polating two consecutive crossings times of the oscillator state

at an appropriate Poincaré section, and this value was used to

generate the driving signal. It can be seen from the figures that

the in-phase synchronized state is established much faster in

the optimized case, and the results of the reduced phase model

and direct numerical simulations agree well.
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(a) (b)
identity

optimal

(c)
identity

optimal (d) identity(phase)

identity(DNS)

optimal(phase)

optimal(DNS)

FIG. 7. Synchronization of FitzHugh-Nagumo oscillators with the optimal response matrix. In (b)–(d), the results with the optimal response

matrix are compared with those with the identity response matrix. (a) Four components of the optimal response matrix A(ψ ). (b) Antisymmetric

part of the phase coupling function, Ŵ(φ) − Ŵ(−φ). (c) Evolution of the difference �x between the x variables of the oscillators. (d) Evolution

of the phase difference φ between the oscillators. DNSs of the original model vs the reduced model.

2. Optimal driving function

For the numerical simulations, we assume that Â{X (t )} is

simply given by an identity matrix, diag(1, 1). The optimal

driving function G(ψ ) is then simply given as G(ψ ) ∝ Z′(ψ )

from Eq. (77), with the norm constraint 〈|G(ψ )|2〉ψ = P. For

the SL oscillator, the optimal driving function is explicitly

given by

G(ψ ) =
√

P

1 + b2

(

cos ψ − b sin ψ

b cos ψ + sin ψ

)

. (82)

Figure 8 shows synchronization of two SL oscillators coupled

through the optimal driving function, and coupled without

transformation of the oscillator state, i.e., Ĝ{X (t )} = X (t ),

where b = 1, ǫ = 0.01, and P = 1, and the initial phase

difference is φ = π/4. Figure 8(a) shows the evolution of the

difference �x between the x variables of the two oscillators,

and Fig. 8(b) shows the convergence of the phase difference φ

to 0. It is confirmed that the linear stability of the in-phase

synchronized state is improved in the optimized case, and

the results of the reduced phase model and direct numerical

simulations agree well.

For the FHN oscillator, the norm of X 0(ψ ) is

〈|X 0(ψ )|2〉ψ ≈ 0.221, and we fix the norm P of G(ψ ) to

this value. The optimal driving function can be calculated

(a)

Δ

t

(b)

φ

t

no transform

no transform(DNS)

optimal (phase)

optimal (DNS)

no transform(phase)

optimal 

FIG. 8. Synchronization of Stuart-Landau oscillators coupled with the optimal driving function. (a) Evolution of the difference �x between

the x variables of the oscillators. (b) Evolution of the phase difference φ between the oscillators. DNSs of the original model vs the reduced

model.
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(a) (b)
no transform

optimal

(c)
no transform

optimal (d) no transform(phase)

no transform(DNS)

optimal(phase)

optimal(DNS)

FIG. 9. Synchronization of FitzHugh-Nagumo oscillators coupled with the optimal driving function. In (b)–(d), the results with the optimal

driving function are compared with those without transformation. (a) Optimal driving function G(ψ ) = (G1(ψ ), G2(ψ ))†. (b) Antisymmetric

part of the phase coupling function, Ŵ(φ) − Ŵ(−φ). (c) Evolution of the difference �x between the x variables of the oscillators. (d) Evolution

of the phase difference φ. DNSs of the original model vs the reduced model.

from X 0(ψ ) and Z(ψ ) obtained numerically. Figure 9 shows

synchronization of two FHN oscillators coupled with the

optimal driving function, as well as a comparison with

the nontransformed case, where ǫ = 0.0002, P ≈ 0.221,

and the initial phase difference is φ = π/4. Figure 9(a)

shows the optimal driving function G(ψ ) for 0 � ψ < 2π ,

which is proportional to the derivative Z′(ψ ). Figure 9(b)

plots the antisymmetric part of the phase coupling function

for the optimal driving function G(ψ ) with and without

transformation, respectively, indicating a much higher linear

stability in the optimized case [−Ŵ′(0) ≈ 12.8 with the

optimized driving function and −Ŵ′(0) ≈ 0.999 without

optimization].

Figure 9(c) shows a plot of the evolution of the difference

�x between x variables of the oscillators, and Fig. 9(d) shows

the convergence of the phase difference φ to 0. Similar to the

previous case with the optimal response matrix, instantaneous

phase values of the oscillators are approximately evaluated by

linear interpolation and used to generate the optimal driving

signal in the direct numerical simulations. We can confirm that

the in-phase synchronized state is established much faster in

the optimized case, and the results of the reduced phase model

and direct numerical simulations agree well.

V. DISCUSSION

We have shown that by optimizing the mutual coupling

between coupled oscillators, the linear stability of the in-phase

synchronized state can be improved, and faster convergence

to the synchronization can be achieved. We have shown that,

even if we start from a system of coupled oscillators with

general coupling functionals that depend on the past time

sequences of the oscillators, the system can be approximately

reduced to a pair of simple ordinary differential equations that

depend only on the present phase values of the oscillators

within the phase-reduction theory, and the optimal coupling

function between the oscillators can be obtained as a function

of the phase values. Though we have considered only the

simplest cases in which two oscillators with identical proper-

ties are symmetrically coupled without noise, the theory can

also be extended to include heterogeneity of the oscillators or

noise.

The linear coupling with time delay or linear filtering

can be realized without measuring the phase values of the

oscillator once the correlation functions of the PSF and

the limit-cycle orbit (or their derivatives) are obtained. The

nonlinear coupling requires the measurement of the phase

values of the oscillators, but it can further improve the linear

stability of the synchronized state. We have shown that a

simple approximate evaluation of the phase values by a linear

interpolation gives reasonable results even though it may yield

a somewhat incorrect evaluation of the true phase values.

It is interesting to compare the present analysis for stable

synchronization between the two oscillators with the opti-

mization of driving signals for injection locking of a single

oscillator, which has been analyzed by Zlotnik et al. [24] and

others (briefly explained in Appendix B for a simple case). In

Sec. IV C, we have obtained the optimal driving function. In
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particular, when A(ψ ) = K, where K is a constant matrix, the

optimal driving signal is

G(ψ ) =
1

2λ
K†Z′(ψ ) (83)

and the maximum stability is

−Ŵ′(0) =
√

P〈|K†Z′(ψ )|2〉ψ . (84)

This result coincides with the optimal injection signal for sta-

ble synchronization of a single oscillator, obtained by Zlotnik

et al. [24]. Thus, the optimal coupling between the oscillators

is realized by measuring the present phase ψ of the other

oscillator and applying a driving signal that is proportional

to K†Z′(ψ ) to the oscillator.

It is also interesting to note that we have obtained sim-

ilar expressions for the maximum stability in all examples,

−Ŵ′(0) =
√

P〈 · · · 〉2
ψ , where · · · depends on the quantity to

be optimized. This is because we are essentially maximizing

the inner product of the PSF with the derivative of the driving

signal under a mean-square constraint on the parameters or

functions included in the driving signal in all cases.

The linear coupling schemes in Sec. III would be easy

to realize experimentally. The nonlinear coupling schemes in

Sec. IV require an evaluation of the phase values from the

oscillators, but they can yield an even higher linear stability.

These methods may be useful when higher stability of the

in-phase synchronized state between oscillators is desirable in

technical applications. It would also be interesting to study

interactions between rhythmic elements, e.g., in biological

systems from the viewpoint of synchronization efficiency.

ACKNOWLEDGMENTS

This work is financially supported by Japan Society for the

Promotion of Science KAKENHI Grants No. JP16K13847,

No. JP17H03279, No. 18K03471, No. JP18H03287, and No.

18H06478, and JST CREST Grant No. JPMJCR1913.

APPENDIX A: MODELS WITH SELF COUPLING

We show here that the inclusion of self-coupling terms in

the model does not alter the linear stability of the in-phase

synchronized state under the phase-reduction approximation.

Suppose that we have additional self-coupling terms in the

model as

Ẋ 1 = F(X 1) + ǫ
[

Ĥ
{

X
(t )
1 , X

(t )
2

}

+ Î
{

X
(t )
1

}]

,

Ẋ 2 = F(X 2) + ǫ
[

Ĥ
{

X
(t )
2 , X

(t )
1

}

+ Î
{

X
(t )
2

}]

, (A1)

where Î{X (t )} is a functional representing self-coupling. A

typical example is coupled oscillators with linear diffusive

coupling,

Ẋ 1 =F(X 1) + ǫ(X 2 − X 1),

Ẋ 2 =F(X 2) + ǫ(X 1 − X 2), (A2)

where we may take Ĥ{X (t )
1 , X

(t )
2 } = X 2(t ) and Î{X (t )

1 } =
−X 1(t ). By phase reduction, we obtain the phase equations

θ̇1 = ω + ǫZ(θ1) · [H (θ1, θ2) + I(θ1)],

θ̇2 = ω + ǫZ(θ2) · [H (θ2, θ1) + I(θ2)], (A3)

and the phase coupling function

Ŵ̃(φ) = 〈Z(ψ ) · [H (ψ,ψ − φ) + I(ψ )]〉ψ
= Ŵ(φ) + 〈Z(ψ ) · I(ψ )〉ψ , (A4)

where Ŵ(φ) is the phase coupling function for the case without

the self-coupling term, and the second term is a constant.

Thus, this model also has the in-phase synchronized state as a

fixed point, and its linear stability is equal to the case without

the self-coupling term,

−ǫŴ′(0) = −ǫŴ̃′(0). (A5)

APPENDIX B: OPTIMAL SIGNAL FOR INJECTION

LOCKING

In this Appendix, we briefly review the result of Zlotnik

et al. [24] on the optimal driving signal for injection locking

for a simple case. We consider a limit-cycle oscillator driven

by a periodic driving signal whose period is the same as the

natural period T of the oscillator,

Ẋ = F(X ) + ǫK f (t ), f (t ) = f (t + T ), (B1)

where X is the oscillator state, F(X ) represents its dynamics,

and ǫK f (t ) is a weak periodic driving signal, where ǫ is a

small positive parameter, and a constant matrix K ∈ R
N×N

represents which components of X are driven by f (t ).

By phase reduction, we obtain a phase equation

θ̇ = ω + Z(θ ) · K f (t ) (B2)

for the oscillator phase θ , where Z(θ ) is the PSF. Defining

θ − ωt = φ and averaging over one oscillation period yields

φ̇ = Ŵ(φ). (B3)

The phase coupling function Ŵ(ψ ) is expressed as

Ŵ(φ) =
1

2π

∫ 2π

0

Z(φ + ψ ) · K f (ψ/ω)dψ

=
1

2π

∫ 2π

0

Z(φ + ψ ) · K f̃ (ψ )dψ

= 〈Z(φ + ψ ) · K f̃ (ψ )〉ψ , (B4)

where we have defined f̃ (ψ ) = f (ψ/ω).

By choosing the origin of the phase of the periodic signal

so that Ŵ(0) = 0 holds, the oscillator synchronizes with the

periodic signal at φ = 0, and the linear stability of this syn-

chronized state is given by

Ŵ′(0) = 〈Z′(ψ ) · K f̃ (ψ )〉ψ
= 〈K†Z′(ψ ) · f̃ (ψ )〉ψ . (B5)

We constrain the one-period average of f̃ (ψ ) as

〈| f̃ (ψ )|2〉ψ = P, (B6)

and we consider an objective function

S{ f̃ , λ} = −Ŵ′(0) + λ(〈| f̃ (ψ )|2〉ψ − P)

= −〈K†Z′(ψ ) · f̃ (ψ )〉ψ + λ(〈| f̃ (ψ )|2〉ψ − P), (B7)
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where λ is a Lagrange multiplier. Extremum conditions are

given by

δS

δ f̃ (ψ )
= −

1

2π
K†Z′(ψ ) +

λ

π
f̃ (ψ ) = 0, (B8)

∂S

∂λ
= 〈| f̃ (ψ )|2〉ψ − P = 0. (B9)

The optimal driving signal is given by

f̃ (ψ ) =
1

2λ
K†Z′(ψ ) (B10)

and the constraint is

1

4λ2
〈|K†Z′(ψ )|2〉ψ = P, (B11)

which yields

λ = −
√

1

4P
〈|K†Z′(ψ )|2〉ψ , (B12)

where the negative sign should be taken in order that Ŵ′(0) <

0. Thus, the optimal driving signal is given by

f̃ (ψ ) = −
√

P

〈|K†Z′(ψ )|2〉ψ
K†Z′(ψ ) (B13)

and the maximum linear stability is given by

−Ŵ′(0) = −〈K†Z′(ψ ) · f̃ (ψ )〉ψ =
√

P〈|K†Z′(ψ )|2〉ψ .

(B14)
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