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Abstract: Reducing carbon emission and raising efficient production are the important goals of
modern enterprise production process. The same product can be produced by a variety of equipment,
and the carbon emissions and processing time of different equipment vary greatly. Choosing suitable
production equipment is an important method for manufacturing enterprises to achieve the efficient
emission reduction of production process. However, the traditional production equipment selection
mode only gives qualitative results, and it is difficult to provide effective advice for enterprises
to choose suitable equipment under the needs of carbon neutrality. To solve this problem, this
paper systematically analyzes carbon emission and the time of the turning production process, and
a unified calculation model for carbon emission and efficient production of multi-type processing
equipment is established. The important point of the article is to research the diversity among between
carbon emissions and efficiency levels of the same product produced by different devices. The carbon
emissions and efficiency levels of different kinds of equipment can be calculated by the BAS algorithm.
By turning a shaft part as an example, the results show that this method can calculate the optimal
value of carbon emissions and efficiency of the same product produced by different equipment and
can provide suggestions for enterprises to select appropriate equipment for low-carbon and efficient
production. This paper provides a reference for further research on the quantitative calculation model
for the selection of high-efficiency and low-carbon production equipment.

Keywords: production process; equipment selection; low carbon; highly efficient; BAS

1. Introduction

The rapid development of manufacturing industry has consumed a lot of resources
and caused great damage to the environment [1,2]. Under the background of climate
warming, how to reduce carbon emissions in the production field has become the focus
of the development of manufacturing industry. Modern manufacturing industry needs to
develop in a green and sustainable direction [3]. As the main source of energy consumption
and carbon emission in manufacturing process, the use of production equipment has been
widely concerned. Production equipment optimization selection is one of the effective
ways to promote green manufacturing [4]. There are many kinds of production equipment,
and a product can often be realized by different equipment, such as in the processing of
surface processing equipment, including lathes, milling machines, and so on. Different
equipment has a different impact on the processing quality, production energy consump-
tion, production environment, equipment utilization rate, carbon emissions, and so on. On
the basis of existing equipment resources, optimizing the selection of machine tool equip-
ment is an important means to achieve efficient emission reduction production process in
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manufacturing industry, and an effective way to transform the traditional manufacturing
mode to green manufacturing [5–8]. Therefore, it is very valuable to study the method of
production equipment optimization selection.

Production equipment is the basic processing equipment in mechanical manufacturing
industry. The variety, performance, and parameters of production equipment determine
the carbon emission and efficient of the process. The optimal selection of equipment is a
multi-objective and multi-scheme evaluation decision problem which has been studied by
many scholars. At present, the analytic hierarchy process (AHP), fuzzy comprehensive eval-
uation method, and so on, have been well-applied in some fields. Li et al. [9] established a
multi-criteria mixed decision model to comprehensively evaluate machine tool equipment
resources. The experimental results verified the feasibility and effectiveness of the multi-
criteria mixed decision model. Zhou et al. [10] proposed an equipment selection method
based on the combination of fuzzy analytic hierarchy Process (FAHP) and entropy weight
ideal point method and took resource consumption and environmental impact into com-
prehensive consideration. The method was verified by camshaft machining. Yan et al. [11]
proposed a method of machine tool equipment selection based on the combination of ana-
lytic hierarchy process (AHP) and grey correlation method and verified the method through
machine tool selection for gear machining. Zheng et al. [12] proposed the model algorithm
of FAHP and fuzzy comprehensive evaluation (FCA) based on triangular fuzzy number for
machine tool equipment optimization. Combined with the case of machine tool equipment
optimization for blade milling in an aviation manufacturing enterprise, the feasibility and
effectiveness of the method was verified. Yan et al. [13] applied Reference Ideal Method
(RIM) to solve the optimization and evaluation model of intelligent production equipment.
The optimization of machine tool equipment in an aviation enterprise was taken as an
example to verify. Zhang et al. [14] made use of fuzzy mathematics theory, established a
theoretical model of machine tool optimization selection according to geometric features
of parts, machine tool parameters, and other factors, and realized reasonable automatic
selection of machine tools with computer-aided process planning (CAPP). Liu et al. [15]
proposed an efficient machine tool selection method based on energy efficiency evaluation,
which calculated energy efficiency by modeling the features of each alternative machine tool
and parts to be processed. Zanuto et al. [16] evaluated the whole life cycle of different pro-
cessing technologies to determine the equipment with the least impact on the environment.
Nguyen et al. [17] proposed a hybrid method for fuzzy multi-attribute decision making
in machine tool evaluation. Comparison with other methods shows the effectiveness of
this method. Karmiris et al. [18] processed 60CrMoV18-5 Steel by electric discharge (EDM)
and used Taguchi experimental design for parameter control to compare the machining
performance and surface quality. Based on grey relation analysis, multi-objective opti-
mization of evaluation index number was carried out. Benardos et al. [19] quantified the
performance (training and generalization) of a neural network based on genetic algorithms
and their complexity, which are applied to practical engineering problems. Danil et al. [20]
analyzed the application trends, advantages and disadvantages of resource conservation,
optimization and cooling in economical sustainable manufacturing. Karkalos et al. [21]
conducted mechanical machining experiments of Ti-6Al-4V using abrasive water jet under
different process conditions and carried out sustainability analysis with the help of grey
relation analysis (GRA). Kuntoglu et al. [22] analyzed cutting parameters of AISI 5140 steel
using a response surface method to obtain minimum vibration and surface roughness.

In the production process, a product can be produced by a variety of devices. How
to rationally and reasonably choose the production equipment that meets the processing
requirements is very important. Experts have put forward many methods to solve the
problem of production equipment selection. However, in most studies, qualitative analysis
was used to solve the evaluation model. Although qualitative analysis can simplify the
calculation, there is a disconnect between the consistency of the constructed judgment
matrix and the consistency of the actual situation. In this paper, a method is proposed to
quantitatively compare the carbon emission levels and efficiency of various equipment,
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which can quantify the carbon emission values and processing time of different equipment
under given conditions. The equipment selection model of multi-equipment unified carbon
emission and efficient production was established. With minimum carbon emission and
minimum processing time as optimization objectives, BAS, a recently proposed algorithm
with good computational speed, was used to solve the problem. Compared with other
qualitative methods of equipment selection, this paper innovatively proposes a qualitative
evaluation method of processing efficiency and carbon emission of equipment production,
which can accurately analyze equipment data. The BAS algorithm was used to solve the
problem with higher accuracy. The method was verified by turning a shaft part as an
example, which provides reference for the selection of production equipment in enterprises,
helps enterprises to achieve low carbon and efficient production mode, and contributes to
the government’s emission reduction policy.

This paper presents a quantitative analysis and selecting method for low-carbon
and highly efficient processing equipment. The first chapter introduces the literature
about the selection and evaluation of production equipment for the production process
and puts forward the existing problems in the current research. Then, the analysis and
evaluation of processing time and carbon emission level in the process of processing a
product with different equipment were put forward. In Section 2, a unified calculation
model for processing time and carbon emission of various equipment was established.
Section 3 introduces and improves the BAS algorithm. Three algorithms, BAS, PSO, and
GA, were compared and analyzed. In Section 4, the processing characteristics of a product
using different equipment were analyzed through case analysis. Three algorithms, BAS,
PSO, and GA, were used to optimize the processing time and carbon emission level of
different processing equipment, and the results were analyzed. Section 5 is the conclusion
of the paper.

2. Materials and Methods

Production equipment selection is the key to the planning of green manufacturing
process elements, mainly through a variety of optional production equipment scheme
comparative analysis, evaluation, and decisions to obtain the optimal production equip-
ment scheme, so that the overall performance of the parts processing process is the best,
especially the performance of resource consumption and environmental impact. With
growing concern about global warming, many researchers have focused on manufacturing
activities that consume a lot of energy and emit carbon into the atmosphere. Low-carbon
manufacturing, which aims to reduce carbon intensity, is becoming a hot topic.

In the selection of machining parameters, it is often encountered to make multiple
objective functions in a given area to achieve the best optimization problem, which is called
the multi-objective optimization method. In the production process of equipment, the
selection of process parameters has an important impact on the processing efficiency, the
total cost of processing, the quality of the workpiece, and the amount of carbon dioxide
emitted to the environment. The selection of appropriate cutting parameters is of great
significance to the government, enterprises, and users [23–25]. The important point of the
article is to research the diversity between carbon emissions and efficiency levels of the
same product produced by different device. The following calculation takes processing
time and carbon emission as the objectives.

2.1. Time Function

The working hours of a working procedure include cutting time, tool change time, and
working procedure auxiliary time. The quantity of the shortest machining time can achieve
the highest production efficiency. The mathematical model of processing time function can
be expressed as [26]:

TP = tm + tct
tm

T
+ tot (1)
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tm =
Lw∆

n f asp
=

πdoLw∆
1000vc f asp

(2)

The Taylor generalized tool durability calculation formula is

T =
CT

vx
c f yaz

sp
(3)

where, tm is the working procedure cutting time, tct is the time used for a tool change, tot is
other auxiliary time in addition to the tool change, T is the tool life, Lw is the machining
length, ∆ is the machining allowance, n is the spindle speed, d0 is the workpiece diameter,
vc is the cutting speed, f is the feed, asp is the cutting depth, CT is the constant related to
the cutting conditions, x, y, z are the tool life coefficient. Following that, the processing time
function is

TP =
πd0Lw∆

1000vc f asp
+

tctπd0Lw∆vx−1
c f y−1az−1

sp

1000CT
+ tot (4)

2.2. Carbon Emission Function

The sources of carbon emissions in the production and processing of machine tools
mainly include five parts: raw material consumption Cm, electric energy consumption
in production and processing Ce, tool wear Ct, cutting fluid loss of machine tools Cc,
and the disposal of processing waste materials Cs [27–29]. Figure 1 shows the carbon
emission composition of manufacturing process. Raw material consumption (i.e., material
resource utilization) is determined to a large extent by the process design stage, and
the post-treatment of waste generated during the process is generally carried out after
the completion of the process. Therefore, the processing process has limited efforts to
optimize the carbon emission Cm caused by raw material consumption and the carbon
emission Cs from waste disposal. Therefore, the carbon emissions generated by cutting
production are [23,24]:

C = Ce + Ct + Cc (5)
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(1) Carbon emissions from electric energy consumption

In the process of machining, it needs to consume a lot of electric energy. The carbon
emissions generated by electricity consumption can be expressed as

Ce = FeEe (6)

where, Fe, Ee are carbon emission factor and power consumption of electric energy respec-
tively. Electric energy carbon emission factor Fe has a close relationship with the structure
of the power grid, and different power grids have different carbon emission factors. In this
paper, the average emission factor of several major power grids in China was used as the
carbon emission factor of electric energy, Fe = 0.674 7 kgCO2/kg [23].

(2) Carbon emissions from tool wear

In cutting production, direct CO2 emissions from tool wear are less, but mostly indirect
CO2 emissions, that is, CO2 emissions from tool production, are evenly distributed in
the actual cutting process. Therefore, the tool CO2 emission calculation is based on the
calculation method, which is converted into the production process according to the
processing time within the tool service time.

Ct =
tm

Tt
FtWt (7)

Ft, Wt represent the carbon emission factor and tool quality of the tool, respectively.
To determine the carbon emission factor of the tool, it is necessary to know the energy
consumption of the tool preparation process. For the energy consumption of the tool
preparation process, only the tool manufacturing process is considered in the calculation in
this paper, and the carbon emission factor of the tool is 29.6 kgCO2/kg [18].

Tool life Tt refers to the cutting time experienced by a new tool until it is retired, which
may include multiple instances of regrinding (represented by N), so tool life is equal to the
product of tool life and (N+1).

Tt = (N + 1)T (8)

Tt, N, T are the tool life, grinding tool number, and tool durability, respectively.

(3) Carbon emissions from cutting fluid consumption

CO2 emissions from cutting fluid consumption are mainly composed of two compo-
nents: CO2 emissions from the manufacture of mineral oils Co and CO2 emissions from the
disposal of waste fluid after the use of cutting fluid Cw. The replacement time of cutting
fluid in production is relatively long. According to the specific conditions in actual pro-
duction, the CO2 emissions generated by cutting fluid consumption should be converted
into the same time as the CO2 emissions from turning tools, that is, the carbon emissions
generated by cutting fluid consumption is

Cc =
Tp

Tc
(Co + Cw) (9)

Co = Fo(CC + AC) (10)

Cw = Fw[(CC + AC)/δ] (11)

where, Fo and Fw are the carbon emission factor of mineral oil and the carbon emission factor
of cutting fluid waste treatment, respectively. Cc, Ac are, respectively, the initial amount
and additional amount of cutting fluid. δ, Tc are, respectively, cutting fluid concentration
and replacement cycle.

The carbon emission factor of cutting fluid consumption is mainly composed of
two types: one is the carbon emission factor of pure mineral oil production and processing
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Fo, and the other is the carbon emission factor of waste disposal of cutting fluid Fw. The
carbon emission factor of pure mineral oil production can be expressed as

Fo = EEoECo ×
44
12

(12)

where EEo, ECo are the internal energy value of mineral oil (GJ/L) and carbon content of
mineral oil (kgC/GL), respectively. The contained energy value of mineral oil is between
41,868 and 42,705 kJ/kg. In this paper, 42,287 kJ/kg and CO2 emission factor 20 kgC/GJ
were selected for optimization. At room temperature, the density of mineral oil is generally
between 0.86 and 0.98 g/cm3, and 0.92 was adopted in this paper. Based on the above
parameters, it can be seen that the CO2 emission factor of mineral oil is 285 kgCO2/L [24].
As for the carbon emission factor Fw, the main component of waste cutting fluid is water.
To facilitate calculation, the carbon emission factor of waste cutting fluid treatment can be
replaced by carbon emission factor of waste cutting fluid treatment. The carbon emission
factor of wastewater treatment is 0.2 kgCO2/L [30].

2.3. Constraints

In the production process, the selection of process parameters is mainly limited by the
machine tool stiffness, the limited range of machine tool cutting parameters, the machine
tool power, and the workpiece surface quality requirements.

(1) Power constraints of machine tools

In metal cutting production, the cutting power cannot exceed the maximum power of
the machine tool spindle motor Pmax, that is

Fcvc

1000η
≤ Pmax (13)

η is machine tool efficiency.

(2) Cutting force constraints

In metal cutting production, the cutting force generated cannot be greater than the
rated cutting force of the machine tool, that is

Fc ≤ Fmax (14)

(3) Constraints on spindle speed

πd0nmin

1000
≤ v ≤ πd0nmax

1000
(15)

(4) Feed constraint

fmin ≤ f ≤ fmax (16)

(5) Workpiece processing quality constraints

In the process of processing, the machining quality of the workpiece should be guar-
anteed, and the surface roughness should meet the processing requirements.

Ra ≤ Rmax (17)

Rmax is the maximum surface roughness.

3. Beetle Antennae Search Algorithm

BAS is a new intelligent optimization algorithm for the biological performance of
beetles, which was proposed in 2017. Its development was inspired by the foraging
principle of beetles [31,32]. The bionic search principle of the algorithm is that beetles search
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for food according to the intensity of the smell given off. As a single search algorithm, the
beetle antennae search algorithm has the advantages of simple principle, few parameters,
and less computation [33–37]. It has great advantages when dealing with low-dimensional
optimization targets. In the early stage, beetles do not need to know the specific location
of food, but search for the intensity of food smell through two tentacles [38,39]. If the
intensity of food smell received by the left whiskers is greater than that received by the
right whiskers, the beetle will move to the left for some distance and make the next food
hunt [40–43]. The cycle continues until the beetles find the most flavorful spot to finish
their foraging. Different from other heuristic algorithms with a large population, the BAS
algorithm only needs one beetle, so its calculation amount will be greatly reduced, making
the search speed faster. According to this foraging principle of beetles, the beetle antennae
search algorithm can be obtained, as shown in Figure 2. Figure 3 shows the algorithm
pseudocode. The specific steps are as follows:

(1) Suppose that the beetle forages in an n-dimensional space, its center of mass is set
as zx the left whisker of the beetle is al, the right whisker is ar, the initial distance
between the two whiskers is d0, and the coefficient between the distance between
the two whiskers and the first step length step of the beetle is c. The most important
thing to pay attention to is that the initial distance between the two whiskers d0 and
the setting value of the first step size step0 of the beetle should be fully considered to
skip out of the local optimal value and ensure the normal optimization of the beetle
in the later stage.

(2) Since the head orientation of the beetle each time it forages is random, let us say the

head orientation of the beetle is
→
b ,

→
b =

rand(n, 1)
||rand(n, 1)|| (18)

where, rand( n, 1) represents the randomly generated n dimension vector.

(3) According to the beetle head orientation established above, the coordinates of the left
and right whiskers of the beetle can be represented

al = zxt −
→
b × dt (19)

ar = zxt +
→
b × dt (20)

where, zxt is the position of the centroid corresponding to the t-th foraging of the beetle, dt

is the distance between the two whiskers corresponding to the t-th foraging of the beetle,
its value will decrease with the increase of foraging times. The attenuation coefficient is
eta_bc, that is dt = eta_bc× dt−1, usually the value of eta_bc ranges from 1 to 0.95.

(4) Fit values f itnessl and f itnessr are obtained by using the coordinates of the left and
right whiskers of the beetle, and the difference between the two values was used to
influence the position of the centroid of the next beetle,

zxt = zxt−1 + stept ×
→
b × sign( f itnessr− f itnessl) (21)

where, sign is the symbolic function, stept is the t time foraging step, and its value is related
to the distance between the two whiskers.

stept = c× dt (22)

(5) Determine whether the above process can find the optimal value of the function or reach
the number of iterations. If the above conditions are not met, the above steps (2)–(4)
should be repeated until the established conditions are met and the loop is terminated.
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Figure 3. BAS algorithm pseudocode.

In this paper, the optimization objectives were to minimize the processing time and
carbon emission. The process of BAS combined with the calculation model is as follows:

Step 1: Code. In the algorithm, the selection of equipment, cutting tool, and process
ordering need to be reasonably reflected in the zero-piece coding method. The encoding
mechanism is as follows: each individual in the population has three substrings, namely
sequential Si, device Mi, and tool Ti, whose length is equal to the number of steps of part i.
The sequential substring Si represents the sequence of operations for machining parts in
a continuous list, which takes into account the constraints of processing precedence. The
device substring Mi consists of the device number that has been assigned to each operation.
The j-th bit on the substring represents the device used to complete step j. The meaning of
tool substring is similar to that of equipment substring.

Step 2: Parameter settings include space dimension, distance between left and right
whiskers, initial step size, iteration number, etc.

Step 3. Initialize the position of the longicorn with random direction and construct
random vector of the beetle.

Step 4. Calculate the fitness value.
Step 5: Compare the signal size of the left and right whiskers of the longicorn to

determine the next direction of movement of the longicorn.
Step 6: Update the position of the beetles.
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Step 7: Check whether the termination condition is met. If yes, output results. If no,
go to Step 4.

Step 8: Output the optimal solution and end the algorithm.
The algorithm runs on the MATLAB 2016 b, the dimension n is 2, the initial step size

of the beetle step is 0.3, the distance between the two whiskers of the beetle d is 5, and the
number of iterations is 300.

In order to verify the optimization performance of BAS algorithm proposed in this
paper, the BAS algorithm was compared with the PSO algorithm and the GA algorithm,

respectively. The test function is f (x) =
n
∑

i=1
xi

2,−100 ≤ xi ≤ 100 [44]. Based on the

parameter settings of the above standard functions, the search individual was set to 50, the
maximum number of iterations was set to 1000, and each test function was run 30 times
to generate statistical results. The results are shown in Table 1. The results obtained by
BAS are more accurate and the running time is shorter. Different from PSO algorithm,
BAS algorithm is a single search algorithm, with simple principle, fewer parameters, less
computation, and other advantages. It can also be seen from the results that the convergence
speed of BAS algorithm is faster and the optimization accuracy is higher. Therefore, the
BAS algorithm was chosen as the solution method of the model in this paper.

Table 1. Test algorithm optimization results.

Algorithm Mean Value Mean Square Error Mean Running Time

BAS 0 1.1589 × 10−5 0.4597
PSO 0 2.1857 × 10−6 0.5153
GA 0.0037 1.8954 × 10−3 2.3324

4. Case Study
4.1. Experimental Conditions

The workpiece is a shaft with a length of 180 mm and a diameter of 100 mm. The parts
diagram is shown in Figure 4. The material is 45# carbon steel. There are two kinds of
lathes in the workshop, and their parameters are shown in Table 2. The parameters of the
tools used in this optimization are shown in Table 3
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Table 2. Machine parameters.

Lathe nmin/(r/min) nmax/(r/min) fmin/(mm/r) fmax/(mm/r) Fmax/N Pmax/kW η

M1 100 1400 0.1 2.5 1700 8.0 0.85
M2 80 1400 0.1 3.5 9000 15 0.8

Table 3. Parameters of tool.

Tool Material Main Cutting
Edge Angle (◦) Rake Angle (◦) Inclination

Angle (◦) Tip Arc Radius rθ (mm)

K1 Hard metal alloy 75◦ 10◦ −5◦ 1
K2 Hard metal alloy 45◦ 20◦ 5◦ 0.8

Tool life and cutting force coefficient are shown in Table 4.

Table 4. Tool life and cutting force coefficient.

x y z CFf KFf xFf yFf nFf

5 1.75 0.75 2880 1 1 0.5 −0.4

The relevant parameters of the calculation model are shown in Tables 5 and 6.

Table 5. Calculation of correlation coefficient 1.

One Knife
Change Time tct/min

Auxiliary Time
tot/min

Cutting
Replacement

CycleTc /Month
Total Tool Wt/g

Initial Cutting
Oil Cc/L

Additional Cutting
Oil Quantity Ac/L

Minimum
No−LOAD

Power Pu0/kW

0.5 0.8 2 15 8.5 4.5 40.6

Table 6. Calculation of correlation coefficient 2.

Cutting Fluid
Concentration δ

Number of
Grinding N

Number of
Grinding w1

Carbon Emission
Weight Number w2

Spindle Speed
Coefficient A1

Spindle Speed
Coefficient A2

0.05 1 0.5 0.5 0.227 −0.667 × 10−6

Table 7 shows the carbon emission factors of related attributes [23,45].

Table 7. Carbon emission factor table of related attributes.

Serial Number Attribute Carbon Emission Factor/(kgCO2/kWh)

1 electricity 0.6747
2 steel 5.926
3 aluminum 12.807
4 cast iron 4.445
5 cutting fluid 2.87
6 cutter 29.6

4.2. Optimization Results

The parameters of the beetle antennae search algorithm are set as follows: dimension
n is 3, number of beetles is 35, coefficient c between the distance between the two whiskers
and the step size is 5, the initial step size of each beetle step is 0.3, and the maximum number
of iterations MAXGEN is 100. The iterative process of M1 and M2 processing time is shown
in Figures 5 and 6, respectively. As can be seen from the figure, with the increase of the
number of iterations, the processing time gradually decreases until it becomes stable, and
the processing time of products using M1 is obviously less than that of M2. The iterative
process of carbon emission of M1 and M2 is shown in Figures 7 and 8, respectively. As
can be seen from the Figures 7 and 8, with the number of iterations increases, the carbon
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emission generated by processing gradually decreases until it becomes stable. The carbon
emission of products processed by M1 is obviously less than that of M2.
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4.3. Optimization Result Analysis

The optimization results of processing the same product with different equipment are
shown in Table 8. As can be seen from the table, the processing time of machine tool M1 is
258, the processing time of machine tool M2 is 263 when processing the above workpiece,
and the processing time of M2 is 1.02 times that of M1. The carbon emission of machine
tool M1 is 190, the carbon emission of machine tool M2 is 191 when processing the above
workpiece, and the carbon emission of machine tool M2 is 1.005 times that of machine tool
M1. The processing time and carbon emission of machine tool M1 are reduced compared
with that of machine tool M2, so M1 was chosen to process this product. Although there is
a small gap between the processing time and carbon emission of a product by using M1
and M2, the use of M1 can save more time and reduce carbon emission for enterprises in
mass production.

Table 8. Comparison of different equipment optimization results.

Lathe Processing Time Carbon Emission

M1 258 190
M2 263 191

4.4. Comparison of Previous Literatures

In order to achieve efficient and low-carbon production, many scholars studied the
optimization of equipment selection in literature [8–16], proposed some optimization meth-
ods, and effectively achieved the goal. However, there are some deviations between the
theoretical data and the actual data in the traditional equipment selection method for quali-
tative analysis of evaluation indicators, and the reliability of the data is uneven. Compared
with the literature [19,21], the calculation method and the process goal have differences.
Therefore, this paper established an efficient and low-carbon production equipment selec-
tion model, which was solved by BAS, which can calculate the time and carbon emissions
of the different production equipment. In this paper, three algorithms, BAS, PSO, and GA,
were used to solve the problem of equipment selection for processing the workpiece in the
above cases. The results are shown in Table 9. Among the two kinds of processing and
turning equipment M1 and M2, the optimization results of the three algorithms show that
the processing time and carbon emission of M1 are less. The optimized processing time
of BAS algorithm is 258, which is 0.01% lower than PSO algorithm and 0.05% lower than
the GA algorithm. The carbon emission after BAS algorithm optimization is 190, which
is 0.03% lower than PSO algorithm and 0.06% lower than GA algorithm. BAS optimized
processing time and least carbon emissions. The optimal equipment scheme was obtained
by using the beetle antennae search algorithm. The algorithm has low complexity, a strong
searching ability, and less computation.

Table 9. Comparison of algorithm optimization results.

Algorithm Lathe Processing Time Carbon Emission

BAS M1 258 190
M2 263 191

PSO
M1 260 195
M2 268 201

GA M1 271 202
M2 275 210
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5. Conclusions

The selection of production equipment is an indispensable step in machining. Many
factors should be considered comprehensively when selecting machine tool equipment so
as to make a reasonable choice. This paper put forward a low-carbon and high production
equipment selection method which can help producers to quantify the carbon emissions
and efficiency levels of different equipment.

1. Systematically analyze the carbon emission and time of the production process and
establish the calculation model of the carbon emission and time of the same product
produced by different equipment.

2. Use the BAS to solve the model and get the best equipment scheme. The comparison of
algorithm optimization results showed BAS is simple and has stronger search ability.

3. By turning a shaft part as an example, the effectiveness of the proposed method is proved.

The results show that this method can analyze and evaluate the processing time
and carbon emission level of the same product produced by multiple equipment. It can
provide suggestions for enterprises to choose high efficiency and low carbon production
equipment. However, this paper only analyzes the processing time and carbon emission
of parts processing. In the future, more process objectives and alternative devices will be
considered, and the main challenge is that algorithms and devices continue to improve,
and new problems will arise.
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