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Abstract—Unmanned air vehicles (UAVs) can provide impor-
tant communication advantages to ground-based wireless ad hoc
networks. In this paper, the location and movement of UAVs
are optimized to improve the connectivity of a wireless network.
Four types of network connectivity are quantified: global mes-
sage connectivity, worst-case connectivity, network bisection con-
nectivity, and k-connectivity. The problems of UAV deployment
and movement are formulated to improve the different types of
connectivity. Both problems are NP -hard. For the deployment
case, some heuristic adaptive schemes are proposed to yield simple
but effective solutions. In addition, a closed-form solution for
the two-node one-UAV case is provided. For k-connectivity, we
propose an algorithm that improves connectivity using Delaunay
triangulation. To optimize the UAV movement, an algorithm that
tracks changes in the network topology is constructed. The simu-
lation results show that by only deploying a single UAV, the global
message network connectivity and the worst-case network connec-
tivity can be improved by up to 109% and 60%, respectively. The
network bisection connectivity and the k-connectivity can also be
significantly improved.

Index Terms—Ad hoc network, network connectivity,
unmanned air vehicle (UAV).

I. INTRODUCTION

UNMANNED air vehicles (UAVs) are playing increasingly

prominent roles in the nation’s defense programs and

strategy. While drones have been employed in military ap-

plications for many years, technological advances in micro-

controllers, sensors, and batteries have dramatically increased

their utility and versatility. Traditionally, emphasis has been

placed on relatively large platforms such as Global Hawk and

Predator, but increasing attention has recently been focused on

small “mini-UAVs” (MUAVs) that offer advantages in flexibil-

ity and cost [1]–[3]. An example of an experimental MUAV

built and tested at Brigham Young University is depicted in

Fig. 1. Because of their small size, they are difficult for others to

detect and track, and they are able to more easily avoid threats

in the environment they fly through. As a result, they can fly

at much lower altitudes, on the order of tens or hundreds of

feet, and collect much more precise “localized” data. They are
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Fig. 1. Miniature UAV built and flown at Brigham Young University.

significantly cheaper and easier to fly, easily carried, and can

often be launched by an individual in any kind of terrain without

a runway or special launching device.

Due to their mobility and elevation, UAVs equipped with

communication capabilities can provide important advantages

to ground-based ad hoc networks. Their use in routing, medium

access control, and scheduling applications has been detailed in

[4]–[7]. These studies have primarily been heuristic and have

focused on simulations to qualitatively assess the benefits of

UAV-assisted networks. In this paper, we take a mathematical

approach to positioning and flying a UAV over a wireless

ad hoc network to optimize the network’s connectivity for

better quality of service (QoS) and coverage. We assume a

single UAV flying over a connected network with estimates of

the positions and velocities of the network nodes. The UAV

itself acts as a node in the network and can generate, receive,

or forward data packets to other nodes to improve network

connectivity.

Network connectivity has recently been widely studied, par-

ticularly in the context of mobile ad hoc networks (MANETs).

In [8], it is shown that the introduction of a sparse network of

base stations can significantly help in increasing the network

connectivity. In [9], the authors determine the critical power

that a node in the network needs to transmit to ensure that

the network is connected with probability 1, as the number of

nodes in the network goes to infinity. Miller [10] calculates

the probability that two nodes are connected by a two-hop

path rather than a direct connection. In [11], the authors study

how large the transmitting range must be to ensure that the

network is connected with high probability. In [12], it is shown

that in a network with K randomly placed nodes, if each
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node is connected to less than 0.074 log K neighbors, then the

network is asymptotically disconnected with probability 1 as K
increases; if each node is connected to more than 5.1774 log K
neighbors, then the network is asymptotically connected with

probability approaching 1 as K increases. In [13], the authors

study how to deploy as few additional nodes as possible so that

the augmented network is connected. Khuller [14] studies the

Connectivity Augmentation problem and determines a set of

edges of minimum weight to be inserted so that the resulting

graph is k-connected. In [15] and [16], analytical expressions

that enable the determination of the required range that creates,

for a given node density, an almost surely k-connected network

are derived.

In this paper, we quantify four types of network connectivity

for the UAV-assisted MANET problem. First, global message

connectivity is defined as the highest possible probability of

successfully propagating one message to all nodes in the

network. This connectivity measure represents how well a

command can be delivered to all nodes. Second, worst-case

connectivity is defined to partially measure how close a network

is to being divided. Third, we define network bisection connec-

tivity, which quantifies the cost of dividing the network. Finally,

k-connectivity is defined to quantify how many nodes must

fail before the network becomes disconnected. The first two

types of connectivity are based on the theory of spanning

trees, the third type is based on spectrum graph theory, and

the fourth type is based on the max-flow min-cut theorem and

Menger’s theorem [17], [18]. Using these four definitions, we

formulate the UAV deployment and movement problems, both

of which are shown to be NP -hard. To solve the deployment

problem, we first analytically study a two-node one-UAV case.

Then, we develop a simple and heuristic algorithm with two

types of initialization for optimally governing the UAV’s po-

sition. Moreover, for k-connectivity, we propose an algorithm

for improving connectivity using Delaunay triangulation (DT).

Finally, we discuss two algorithms for determining how to

adjust the velocity and direction of the UAV to optimize con-

nectivity as the network topology changes. Simulation results

demonstrate that the addition of one UAV can improve the

global message connectivity and the worst-case connectivity

by up to 109% and 60%, respectively. We also study the

improvement in network bisection connectivity and show that

k-connectivity can be improved by almost 1. Some preliminary

results were presented earlier in [19].

This paper is organized as follows. In Section II, we describe

the model for the system we consider, and in Section III, we

present mathematical formulations of the connectivity defini-

tions used as our performance metrics. Section IV addresses the

UAV deployment problem by first finding an optimal solution

to the two-node one-UAV case and then deriving simpler but

effective heuristic solutions. Finally, we formulate the UAV

movement problem. Simulation results are given in Section V,

followed by conclusions in Section VI.

II. UAV-ASSISTED NETWORK MODEL

We assume a single UAV flying over a wireless MANET

that is able to securely obtain or estimate the locations and

velocities of the randomly distributed mobile nodes in the

network. In particular, we assume the UAV to possess the

following information:

1) locations of all nodes (xi, yi) from which the dis-

tance between any two nodes is calculated to be Dij =
√

|xi − xj |2 + |yi − yj |2;

2) estimates of the mobile nodes’ speed and direction based

on the knowledge of their locations at different times

Si =
dxi

dt
+ z

dyi

dt
(1)

where z =
√
−1. Here, the real and imaginary values

represent the x and y coordinates, respectively.

Suppose that there are K mobile nodes plus one UAV de-

noted as node 0 in the MANET. The wireless channel response

between any two nodes is denoted by Gij , i �= j. Suppose that

node i transmits with power Pi and observes noise of average

power σ2
i when operating as a receiver. In military applications,

the bandwidth is sufficient. As a result, different users and

UAVs use different frequencies. Therefore, we assume that

interference is trivial. The received signal-to-noise ratio (SNR)

Γij for the signal transmitted by the ith node and received by

the jth node is thus

Γij =
PiGij

σ2
j

. (2)

Using the Rayleigh model, the channel gain can be ex-

pressed as

Gij =
Cij |hij |2
(Dij)α

(3)

where Cij is a constant that takes into account the antenna gains

and any propagation obstructions (shadowing), hij accounts for

multipath fading, Dij is the distance between node i and node

j, and α is the propagation loss factor.

Maintaining a minimal level of link quality requires an ac-

ceptably small packet loss, which in turn requires a sufficiently

high received SNR. Suppose that the SNR threshold needed to

obtain minimal link quality is γ. If we assume that the channel

has fast Rayleigh fading (hij is complex Gaussian with zero

mean and unit variance), then using (2) and (3), we calculate

the probability of a successful transmission between node i and

node j as

P ij
r (Γij ≥ γ) = exp

(

−
σ2

j γ(Dij)
α

CijPi

)

. (4)

Note that in the preceding expression, we have integrated out

the fast Rayleigh fading, and therefore, the probability of a

successful transmission should be interpreted in an average

sense over multiple fading events. Because the transmission

power is bounded, we will say that two nodes are connected if

the probability defined in (4) is greater than or equal to some

threshold δ. Based on this definition, we construct a graph

G(K,A) to describe the connectivity of the network, where

the matrix A is constructed as

[A]ij =

{

1, if P ij
r ≥ δ

0, otherwise.
(5)
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We assume that the links are symmetric between all nodes,

or, in other words, P ij
r = P ji

r , so that the resulting graph is

undirected.

If every node in the network can reach any other node

by either direct connection or routing via other nodes, then

we say that the network is connected in the sense of (5). In

this paper, we assume that the network is connected to begin

with and concentrate on how to improve connectivity as the

network evolves. This goal requires that there be some way

of quantifying how well connected a given network is beyond

the simple definition given in (5). The development of such

connectivity measures is the goal of the following section.

III. NETWORK CONNECTIVITY DEFINITIONS

In this section, we present four definitions of numerical

network connectivity for the UAV-assisted network model:

global message connectivity, worst-case connectivity, network

bisection connectivity, and k-connectivity. The first two types

of connectivity are based on the theory of spanning trees, the

third type is based on spectrum graph theory, and the fourth

type is based on the max-flow min-cut theorem and Menger’s

theorem [17], [18]. After defining these connectivity measures,

in the next section, we show how they may be optimized

through intelligent positioning of a UAV relay.

A. Global Message and Worst-Case Connectivity

In many applications, such as those involving military

MANETs, it is important to keep all nodes in the network

connected. For example, in battlefield scenarios, it is essential

to propagate commands to all of the distributed soldiers and

vehicles. A natural question in such cases is how to select which

links are used to efficiently distribute information throughout

the entire network such that all the nodes are connected and the

overall network connectivity is maximized. The concept of a

minimal spanning tree (MST) from graph theory provides an

answer to this question.

Definition 1: A spanning tree for a given graph is a subgraph

that is itself a tree and connects all the vertices of the graph

together. A single graph can have many different spanning trees.

A weight can be assigned to each graph edge that represents the

“distance” between the two corresponding vertices, and the cost

of a given spanning tree can be computed by summing all the

weights of its edges. An MST or minimum weight spanning

tree is then a spanning tree with cost that is less than or equal to

the cost of every other spanning tree. The MST of a given graph

may not be unique [17], [18].

For our application, to quantify each link’s connectivity, we

define the weight for each link as a function of the probability

of a successful transmission, i.e.,

Wij = − log P ij
r (6)

where the minus sign is added to make the weight positive.

Suppose node i tries to communicate with node j via node l.
Because of the logarithmic form of the weights, the sum Wil +
Wlj will correspond to the weight associated with transmission

Fig. 2. Example of an MST, Steiner point, and Steiner tree.

between node i and node j, which has a probability of success

given by P il
r P lj

r . The smaller the weight, the higher the prob-

ability of a successful transmission and, as a result, the greater

the connectivity.

One example of a MANET and its MST is shown in Fig. 2.

First note that, without considering the Steiner point, which we

will discuss later, there are a total of ten nodes in the network.

The possible connections between various pairs of nodes are

marked with different weights, which correspond to the cost of

transmission between them. Together, the bold links represent

the MST that connects all of the nodes. To find the MST

solution, a variety of polynomial-time algorithms are available,

such as those proposed by Prim, Kruskal, or Chazelle [17], [18].

MSTs are widely used in wired networks to minimize trans-

mission costs. Because of the broadcast nature of wireless

communications, the transmissions of one node can be heard

by many others. In [20], a pruning MST is proposed to yield

energy-efficient broadcast and multicast trees. In our paper,

however, we are interested in improving the connectivity and

not in how to construct the spanning tree. The approaches

discussed in the rest of this paper can be employed for any tree,

like those in [20]. In what follows, we will let the matrix A′

represent the MST, where [A′]ij = 1 if the link from node i to

node j is part of the MST, and [A′]ij = 0, otherwise.

We define the global message connectivity to be the prob-

ability that a message can successfully be transmitted to all

nodes via the MST. Suppose that the MST has already been

constructed with the weights defined in (6). Since the sum of the

weights in the MST corresponds to the overall probability that

a message is successfully transmitted via this MST, the global

message (gm) connectivity may be computed as1

Ugm =

K
∑

i=1

K
∑

j=1

[A′]ijWij . (7)

The smaller Ugm is, the more likely it is that a message will be

able to be delivered to all nodes in the network.

1Note that this claim is valid when the goal is to maximize the probability of
a successful broadcast transmission and energy is not considered. If an energy
constraint is necessary, then alternative techniques are required (cf., [20]).
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Next, we define the worst-case connectivity as the lowest

probability of a successful transmission for any of the links on

the MST. This type of connectivity represents how “close” a

network is to being divided in two. Computing this connectivity

measure is equivalent to simply finding the weight of the worst-

case MST edge as

Uwc = max Wij (8)

over [A′]ij = 1 ∀i, j. Again, it is desirable that Uwc be as small

as possible.

B. Network Bisection Connectivity

In this section, we define another type of network con-

nectivity (which is referred to as bisection connectivity) that

describes the likelihood that the network could be divided

into two groups. As we subsequently show, network bisection

connectivity is based on the eigenvalues of the graph’s modified

Laplacian matrix. In this case, we use a different definition for

the weight of the link between node i and node j: wij = P ij
r .

Note that in this definition, the weights do not correspond

to “distance” as before; here, a large value (near unity) for

wij indicates two nodes that are strongly connected. Before

discussing how to quantify this type of connectivity, we provide

the following two definitions.

Definition 2: The modified Laplacian matrix L(G(K,A)) of

the graph G(K,A) is a positive semidefinite K × K symmetric

matrix with one row and column for each node defined by

[L]ij =

⎧

⎨

⎩

∑K
k=1 wik, if i = j

−wij , if i �= j and ∃ edge (i, j)
0, otherwise

(9)

for i, j = 1, . . . , K.

Definition 3: The Fiedler value and the Fiedler vector are

the eigenvalue and the eigenvector, respectively, corresponding

to the second smallest eigenvalue of the modified Laplacian

matrix L of a graph G(K,A). Note that the modified Laplacian

matrix is positive semidefinite, the smallest eigenvalue of L

is always zero, and the corresponding eigenvector is given by

1/
√

K, which is a vector whose entries are all equal to 1/
√

K.

The basic idea for bisection connectivity comes from the

minimum cut tree (MCT) problem [23], which is widely used

for clustering. In an MCT, the graph or network is divided/cut

into two parts by minimizing a normalized sum of weights on

some cut, where cut is defined as a set of edges that are removed

to divide the network into two disconnected subnetworks. One

way of quantifying the cost of separating the network is referred

to as expansion. Let a given graph G be divided into two

subnetworks (Ξ, Ξ̄). The expansion of this cut is defined to be

ψ(Ξ) =

∑

i∈Ξ,j∈Ξ̄ wij

min
{

|Ξ|, |Ξ̄|
} (10)

where |Ξ| and |Ξ̄| are the number of nodes in the separated

graphs.

Based on the preceding discussion, we define the network

bisection connectivity as the minimum expansion over all

possible network cuts. Network bisection connectivity is more

general than worst-case connectivity, since it identifies the set

of nodes that are most weakly connected to the network, rather

than just the weakest link of the spanning tree. Given two

disconnected subnetworks Ξ and Ξ̄, let qi ∈ {1,−1} indicate

whether the ith node is grouped into Ξ or Ξ̄, respectively.

It is easy to show that min{|Ξ|, |Ξ̄|} = (1/2)(K − |
∑

i qi|).
Assigning wij = P ij

r , the numerator of (10) can be written as

∑

i∈Ξ,j∈Ξ̄

wij =
1

8

K
∑

i=1

K
∑

j=1

(qi − qj)
2P ij

r

where the factor of 8 comes from the fact that (qi − qj)
2 = 4

if i ∈ Ξ, j ∈ Ξ̄, and the fact that the double sum counts each

link between Ξ and Ξ̄ twice. Putting these expressions together,

the network bisection connectivity can be expressed as the

following minimization over all possible network cuts:

Unb = − min
qi∈{−1,1}

∑

i,j(qi − qj)
2P ij

r

4 (K − |∑i qi|)
. (11)

The presence of the minus sign is to make the definition of Unb

consistent with Ugm and Uwc, where reducing the value of the

connectivity measure is considered desirable. In this case, we

want the “cost” of dividing the network in two (the expansion)

to be as large as possible or the negative cost to be as small as

possible.

The search in (11) over the set of integer indices {qi} is NP -

hard [23]. To reduce the complexity, we relax the integer con-

straint on the entries of the vector q = [q1, . . . , qK ] and assume

that q has real-valued entries subject to the norm constraint

qT q = K. We further define ǫ to be the difference between

the sizes of two separated sets (ǫ =
∑

i qi = ||Ξ| − |Ξ̄||) and

introduce the following relaxed version of (11) as our measure

of network bisection connectivity:

Ûnb = − min
q∈RK

qT Lq

2(K − ǫ)

s.t. qT q =K, |qT 1| ≤ ǫ. (12)

To obtain the solution to (12), we first prove the following

theorem and its corollary.

Theorem 1: Let B ∈ R
K×K be a symmetric nonnegative

definite matrix with eigenvalues Λ1 < Λ2 ≤ · · · ≤ ΛK and cor-

responding eigenvectors v1,v2, . . . ,vK with norm 1. Then, for

a fixed 0 ≤ β < 1, the following problem:

min xT Bx

s.t. xT x = 1,
∣

∣xT v1

∣

∣ ≤ β (13)

has the solution

x = βv1 +
√

1 − β2v2. (14)

Proof: Write the eigen-decomposition of the matrix B as

B = XΣXT , where Σ = diag(Λi), and the eigenvectors form
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the columns of the matrix X with XT X = I. Define z = XT x.

The problem in (13) can be written as

min zT Σz =

K
∑

i=1

Λiz
2
i

s.t. zT z = 1,
∣

∣zT XT v1

∣

∣ = Λ1 ≤ β. (15)

Since Λ1 < Λ2 ≤ · · · ≤ ΛK , and z2
i ≥ 0, the optimal solution

is z1 = β, z2 =
√

1 − β2, and zi = 0 ∀i > 2. Therefore, the

optimal solution for x is given by (14). �

Corollary 1: With fixed ǫ, the problem in (12) is solved by

the following vector:

q =
ǫ

K
1 +

√

K − ǫ2

K
w2 (16)

where w2 is the Fiedler vector of the modified Laplacian matrix

in (9). The problem in (12) has the following solution:

Ûnb = −λ2

2
(17)

where λ2 is the Fiedler value of the modified Laplacian

matrix in (9).

Proof: The modified Laplacian matrix in (9) is symmetric

positive semidefinite with smallest eigenvalue 0 and corre-

sponding eigenvector 1/
√

K. Letting q =
√

Kx and ǫ = Kβ,

we have the solution in (16). Substituting q in (12) and letting

λi = Λi ∀i, we have

Ûnb = −
ǫ2

K2 λ1 + K2−ǫ2

K
λ2

2(K − ǫ)
= −λ2(K + ǫ)

2K
. (18)

The minimum is obtained when ǫ = 0. �

The solution in (17) for the relaxed network bisection con-

nectivity is a lower bound to the real bisection connectivity in

(11). If λ2 can be increased (or equivalently, −λ2 decreased),

then the worst-case bisection connectivity is improved. As

mentioned earlier, solving the problem in (11) is NP -hard. In

the next section, we will develop algorithms to reduce (17) with

polynomial-time complexity.

C. k-Connectivity

In some situations where network robustness is a key issue, it

may be desired to guarantee network connectivity in the event

that some subsets of the network nodes are disabled. This is the

idea behind k-connectivity, as subsequently defined.

Definition 4: A graph G with edge set V (G) is said to

be k-connected if G \ Y is connected for all Y ⊆ V (G) with

|Y | < k. Here, G \ Y is the graph that results when the nodes

in Y are removed from the graph G. In other words, a graph is

k-connected if it remains connected when fewer than k vertices

are deleted from the graph.

If a graph G is k-connected, and k < |V (G)|, then k ≤
∆(G), where ∆(G) is the minimum degree of any vertex v ∈
V (G). This fact is clear since deleting all neighbors of a vertex

of minimum degree will disconnect that vertex from the rest of

the graph. Menger’s theorem [17], [18], which is a special case

of the max-cut min-flow theorem, states how to calculate k for

k-connectivity.

Theorem 2—(Menger’s Theorem): Let G be a finite undi-

rected graph, and let i and j be two nonadjacent vertices. Then,

the size of the minimum vertex cut for i and j (the minimum

number of vertices whose removal disconnects i and j) is equal

to the maximum number of pair-wise vertex-independent paths

from i to j. In other words, if G is k-connected, then there are

at least k pairwise disjoint paths from i to j.

The utility function for k-connectivity is simply defined to be

Ukc = −k (19)

where k represents the maximal value for which the graph

is k-connected, and where the minus sign is added since we

desire smaller values for Ukc, which is consistent with the other

definitions of connectivity. Note that Ukc is not related to the

link weights. To place a new node in the network to improve

Ukc, one must locate it such that it connects as many nodes as

possible and improves the minimum number of links that nodes

have to connect to the rest of network.

IV. UAV DEPLOYMENT/MOVEMENT: ANALYSIS

AND ALGORITHMS

Based on the connectivity definitions formulated in the pre-

vious section, we investigate how to optimally deploy a single

UAV to improve the network connectivity. We first analyze the

two-node one-UAV case in detail. Then, we propose multinode

algorithms for UAV deployment and movement. Finally, we

discuss some implementation issues.

Recall that the UAV is denoted as node 0 with location

(x0, y0). The UAV deployment problem we consider can be

formulated as minimizing one of the network connectivity

definitions in (7), (8), (11), or (19) with respect to the UAV’s

location, i.e.,

min
(x0,y0)

Uss (20)

where the superscript ss is chosen to indicate which of the

connectivity definitions is optimized. For the case of global

message connectivity, the problem in (20) is equivalent to the

well-known Steiner point problem from graph theory [17], [18].

A Steiner point refers to a node added to the network in such a

way that the weight or cost of the network’s MST is minimized.

The Steiner point problem, as well as (20) implemented with

the other connectivity definitions, is known to be NP -hard

[17], [18]. To find approximate solutions with only polynomial

complexity, we first analyze the two-node one-UAV case and

then propose heuristic approaches in the following sections.

A. Performance Analysis for the Two-Node One-UAV Case

Suppose two nodes are uniformly distributed within a circle

of radius R, as shown in Fig. 3. Denote the distance between the

two nodes by d, so that 0 ≤ d ≤ 2R. Suppose node 1 is located

at a distance r from the center. Using standard geometric

probability theory [21], it is possible to derive the probability

density function (pdf) of the distance between random nodes

as a function of d and r, as subsequently outlined. Define the
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Fig. 3. Two-node analysis.

indicator function I(r, d) ∈ {1, 2, 3} to represent the following

three possible scenarios, as depicted in Fig. 3.

1) I(r, d) = 1 when r + d ≤ R.

Because of the uniform distribution, we can calculate

the probability that the distance between two nodes is

greater than some value d as

Pr(d|I = 1, r) =
πR2 − πd2

πR2
= 1 − d2

R2
(21)

where the numerator is the size of the shaded area,

and the denominator is the size of the whole area in

Case 1 of Fig. 3.

2) I(r, d) = 2 when r + d > R and d − r < R.

In this case, there are some areas within a distance d
to node 1 where node 2 cannot be located, since it would

place node 2 outside the radius R. An example is shown

in Fig. 3. Thus, the probability that the distance between

the two nodes is greater than d is proportional to the area

of the disk with radius R minus the portion of the disk

with radius d that lies within the disk with radius R, i.e.,

Pr(d|I =2, r) = 1 − 1

πR2

{

d2 arccos

(

r2 + d2 − R2

2rd

)

+R2 arccos

(

r2+R2−d2

2rR

)

−Rr sin

[

arccos

(

r2+R2−d2

2rR

)]}

.

(22)

The value inside the bracket on the right-hand side of (22)

represents the area that is inside both the small circle with

radius d and the big circle with radius R, as shown in

Case 2 of Fig. 3.

3) I(r, d) = 3 when d − r ≥ R.

As shown in Case 3 of Fig. 3, for this case, there is no

possibility that the second node can be located within the

radius R, i.e.,

Pr(d|I = 3, r) = 0. (23)

The plot in the lower right corner of Fig. 3 illustrates the

relationship between d and r for the preceding three cases

and shows that the three cases exhaust all the possible

combinations of parameters. Taking the foregoing results

together, the cumulative distribution function (cdf) can be

calculated by

CDF (d) = 1 −
R

∫

0

Pr (d|I(d, r), r)
2πr

πR2
dr. (24)

The pdf, which we will denote by p(d), can be obtained

by differentiating the cdf function.

The probability that the two nodes can successfully commu-

nicate without the UAV relay can be calculated as

P 12
r =

2R
∫

0

exp

(

−σ2γ(d)α

CP

)

p(d)d(d) (25)

where, in this example, we assume symmetric channels C12 =
C21 = C, transmit power P1 = P2 = P , and interference σ2

1 =
σ2

2 = σ2. By the triangle inequality, it is clear that if a UAV is

to be added to the link, it must be located on the line between

node 1 and node 2. Assuming symmetry between all links, from

(4), we have

P 12
r = P 10

r P 02
r

= exp

(

−σ2γ [Dα
10 + (D12 − D10)

α]

CP

)

. (26)

By differentiating P 12
r with respect to D10, the optimal UAV

location is found to be at the midpoint between the two nodes

if α is no less than 2. With the UAV in this position, the

probability of “global” message connectivity is given by

P 12
r =

2R
∫

0

exp

(

−2σ2γ
(

d
2

)α

CP

)

p(d)d(d). (27)

The two-node one-UAV case represents a scenario where it is

critical to maintain a given link between two mobile nodes, and

the preceding analytical result quantifies how much a UAV can

improve the connectivity of the link. We set up a simulation to

test the analysis results. Two nodes are randomly and uniformly

located within a cell of radius R. The transmission power is

300 dBm, the noise power is σ2 = 10−7 dBm, the SNR require-

ment is given by γ = 10 dB, and the propagation loss factor

is α = 3. In Fig. 4, we show the global message connectivity

for different values of the radius R. We list the numerical and

analytical results for the no-UAV two-node case and one-UAV

two-node case, respectively. We see that the analysis exactly

matches the numerical results. The larger the cell size, the more

improvement a UAV relay can provide. At a cell radius of

1000 m, the improvement with one UAV is as much as 240%.

B. Optimal UAV Deployment

In this section, we consider the problem of UAV deployment

[determining (x0, y0)] to improve global message connectivity,
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Fig. 4. Two-node one-UAV analytical and numerical results for global mes-
sage connectivity.

worst-case connectivity, and network bisection connectivity.

While, for simplicity, we consider optimization of the UAV po-

sition in only two dimensions, it is straightforward to extend the

algorithms to the cases involving altitude as a third dimension.

In general, the problem is NP -hard, but we propose an adaptive

algorithm to find a local optimum with reasonable complexity.

Specifically, starting from any initialization point, we determine

how to change the UAV’s location in its neighborhood so that

a better MST can be obtained. For global message connectivity

and worst-case connectivity, the gradients for such a search can

be written as

g0 =
dU(x0, y0)

dx0
+ z

dU(x0, y0)

dy0
. (28)

A linear search algorithm [22] is utilized to reduce the com-

plexity of the gradient method. The stopping criteria is chosen

to be ‖g0‖2 ≤ ε, where ε is a small positive number, or where

the Karush–Kuhn–Tucker (KKT) condition holds [22], i.e., at

which the local optimum is achieved.

For network bisection connectivity, we direct the UAV to

a location that maximizes the Fiedler value of the modified

Laplacian matrix L in (9). The existence of the derivative of

the spectral radius is provided by the following theorem [24].

Theorem 3: Let λ be a simple eigenvalue of symmetric

matrix B with eigenvector v. Let B̃ = B + ∆B, where ∆B

is a small perturbation. Then, there exists a unique eigenvalue

λ̃ of matrix B̃ such that

λ̃ = λ +
vH∆Bv

vHv
+ O

(

‖∆B‖2
)

. (29)

Thus, the gradient of the Fiedler value is given by

g0 =
wH

2 [dL(x0, y0)]w2

wH
2 w2

+ z
wH

2 [dL(x0, y0)]w2

wH
2 w2

(30)

where w2 is the Fiedler vector.

The general optimization problem in (20) can have many lo-

cal minima, as shown in the following simple example. Suppose

there are only three nodes and one UAV in the network. The

three nodes are located on a line with coordinates (0, 0), (1, 0),

and (1.8, 0). Some simple calculations reveal that for global

message and worst-case connectivity, there are two optimal

locations for the UAV: (0.5, 0) and (1.4, 0). To overcome

the local optimum problem, we propose the following two

initialization methods.

1) Random Initialization: This approach generates a number

of seeds within the area of the MANET and lets the

gradient method find the local optima. The location with

the smallest value among all the local optima is selected

as the initialization. The advantage of this initialization

method is that the global optimum can be obtained with

a high probability when the density of the initialization

seeds is sufficiently high. The disadvantage is that the

computational complexity is high, particularly when the

number of nodes is large.

2) Heuristic Initialization: Suppose that the MST without

the UAV is constructed, and that the maximal link weight

occurs between node i and node j. The heuristic initial-

ization point for the UAV is at the midpoint of these two

nodes, i.e.,

x0
0 =

xi + xj

2
y0
0 =

yi + yj

2
. (31)

The rationale is to improve the worst-case link and make

the initial performance improvement as large as possible

before applying the gradient method.

3) Weighted Centroid Initialization: For this case, the UAV

is initialized to be at the weighted center of mass of the

network x0 =
∑K

i=1 αixi and y0 =
∑K

i=1 αiyi, where

the node weights are normalized to satisfy
∑K

i=1 αi = 1.

The preceding heuristic initialization is a special case of

this more general approach, where the two nodes with the

worst link are assigned weights of 1/2. Other possible

choices include uniform weighting over the entire net-

work (αi = (1/K)) or over some carefully chosen subset

(e.g., nodes that are weakly connected to the network),

weights that are inversely proportional to the degree of

each node, etc.

The overall algorithm for finding the best location to deploy

the UAV is summarized in Table I. This algorithm is applicable

to improving any of the three types of connectivity: global mes-

sage, worst case, and network bisection. The complexity of the

algorithm for each iteration is O(K2) due to the calculation of

the MST. Note that the complexities of the gradient calculation

and line search are independent of K. Since U at each iteration

of the algorithm is nonincreasing and the solution has a lower

bound, the algorithm always converges.

C. k-Connectivity Improvement Using DT

In this section, we study the UAV deployment problem for

k-connectivity. The gradient method is not applicable in this
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TABLE I
UAV DEPLOYMENT ALGORITHM FOR GLOBAL MESSAGE, WORST CASE, AND NETWORK BISECTION CONNECTIVITY OPTIMIZATION

Fig. 5. DT and UAV deployment.

case, since k-connectivity is integer valued and, hence, non-

differentiable. Instead, we propose a heuristic algorithm based

on DT [17], [18], which is defined below. Note that for our

application, a triangulation is defined as the subdivision of the

area covered by a network into nonoverlapping triangles, where

the vertices of the triangles are nodes in the network. One such

example is shown in Fig. 5.

Definition 5: A DT over a network of nodes has the property

that none of the triangles has a circumcircle that contains

a node.

There are certain situations where the DT does not exist or

is not unique, such as when three nodes exactly lie on a line,

or a group of four or more nodes exactly lie on a circle. We

ignore such scenarios in our application, since they will occur

with probability zero.2 Under this assumption, the DT can be

calculated by the divide-and-conquer algorithm [17], [18] with

O(K log K) complexity.

We propose a greedy algorithm to improve k-connectivity

based on DT. First, we identify all of the Delaunay triangles

2For the three-user case, there always exists a Delaunay triangle. However,
for any additional user, this user’s location has to be located exactly on the
circle shown in Fig. 5 to satisfy the Delaunay triangulation. This causes the
probability of zero.

that possess at least one node of the smallest degree among all

the nodes in the network. Then, we place a candidate UAV at

the circumcenter of each of these triangles, as shown in Fig. 5

(the blue triangle is the one whose circumcircle is drawn). The

circumcenter is the point that is equidistant to the vertices of the

Delaunay triangle. With very high probability, the UAV will be

able to connect with at least one of the nodes in the triangle and,

in many instances, with the other nodes that are part of or even

outside the triangle. As a result, we expect that the degree of

several nodes will typically be increased. Finally, we select the

candidate UAV location that provides the largest improvement

in k-connectivity. If there is a draw, then the UAV with more

links is selected. If there is still a draw, then one of the resulting

locations is selected at random. The complete algorithm for k-

connectivity improvement is found in Table II.

D. Optimal UAV Movement

In this section, we assume that the initial UAV deployment

has been made as previously described, i.e., (x0, y0) is known.

We try to determine the movement of the UAV so that the

best possible network connectivity is maintained as the network

topology changes. We assume that S0 is the speed and direction

of the UAV, as in (1). From (3), (4), and (6), the gradient for a

change in utility function can be written as

dU

dt
=

d

dt

(

U
(

D∗
ij

)

− U(Dij)
)

(32)

where D∗
ij = ‖xi + zyi + Sidt − xj − zyj − Sjdt‖2. The

UAV movement problem formulation is given by

max
S0

lim
dt→0

−dU

dt

s.t. v2
min ≤ ‖S0‖2 ≤ v2

max (33)

where vmin and vmax are the minimum and maximum speeds

of the UAV, respectively. Notice that zero speed means that the

UAV is hovering.

Since the UAV is airborne, we need to consider the issue

of speed constraints. If the gradient in (32) is small, then the

connected nodes are hardly moving, and hence, the UAV does

not change position. Under this condition, the UAV must fly
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TABLE II
k-CONNECTIVITY IMPROVEMENT ALGORITHM USING DT

TABLE III
ALGORITHM FOR OPTIMAL UAV MOVEMENT

in a small circle. When the gradient is large enough, the UAV

flies against the gradient direction with speed proportional to

the magnitude of the gradient. When the gradient is too large,

the UAV can only fly in the direction of the gradient with

its maximum speed vmax. The algorithm for calculating the

velocity of the UAV S0 is given in Table III, where µ is a

constant that can experimentally be determined.

We assume that within a short period of time dt, the network

topology does not significantly change. The movement of the

UAV will only affect the weights of the links connected to

it, and it only needs to monitor nearby nodes as it updates

its position. As such, the complexity and signaling overhead

is greatly reduced. The two algorithms in Tables I and III

can be implemented in turn. First, the deployment algorithm

is used to find the best location the UAV initially flies to.

Then, the movement algorithm keeps track of the mobility of

the distributed nodes, and small adjustments are made to the

UAV location. Periodically, the deployment algorithm can be

reapplied to see if a new global optimum has emerged. The

frequency with which the deployment algorithm is reapplied

depends on the degree of node mobility.

E. Challenges and Limitations

The most significant challenge to the algorithms previously

described is the requirement that some centralized locations

(the one that computes the optimal UAV position and velocity,

which is not necessarily the UAV itself) must possess or be

able to estimate the position and speed of all the network

nodes as well as the quality (in terms of successful transmis-

sion probabilities) of all the network links. Link quality is

constantly monitored, since it determines the modulation and

coding schemes that are employed. Since the physical network

topology changes relatively slowly, and since the UAV cannot

instantaneously relocate itself, it makes sense to only consider

the link quality averaged over several independent fades. All

things considered, the update rate for the UAV location can be

on the order of at least several seconds. If the network is not

too large, it is reasonable to assume that GPS (if available) and

link quality information could be shared among all nodes over

such an interval without significantly impacting the network

throughput given that the network is connected. In a network

with a very large number of nodes, it is unlikely that a single

UAV would be used to provide or improve connectivity. In such

cases, a more likely scenario would involve the UAV main-

taining connectivity with a selected set of nodes that provide

a backbone for network communications. In the absence of

GPS, other node or network-localization techniques have been

proposed [25] to obtain position information.

The preceding arguments apply to computational complexity

as well. While the speed and heading of the UAV relay are

adjusted on the order of every few seconds, this computation

only involves the relatively few nodes that are connected to

the UAV. The more complicated deployment algorithm, which

involves processing data from all network nodes, is done

even more infrequently, perhaps on the order of minutes. The

proposed gradient-based search technique is easily amenable

to adaptive implementation and can constantly be running in

the background, in between maneuvers, so that the solution is

immediately available at the time of redeployment.

There are a number of limitations to the connectivity defin-

itions and UAV deployment strategies previously outlined that

bear mentioning. First, we have not taken energy constraints

into account. Even if two nodes are equally well connected to

the network in terms of link quality, the network may benefit

most by providing relay coverage to one over the other if it has
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Fig. 6. Connectivity as a function of UAV location. (a) Global message connectivity, K = 6. (b) Worst-case connectivity, K = 6. (c) Network bisection
connectivity, K = 6. (d) k-connectivity, K = 6.

nearly depleted its available energy. However, it is not difficult

to envision extensions of the preceding work that modify the

edge weights to take both link quality and energy reserves into

account. Second, the links between the two UAVs are indeed

different. However, they experience independent fading, which

is identical to Rayleigh fading due to the same distance. As a

result, the statistics are similar, the symmetric links between

pairs of nodes are assumed, and the graph is unidirectional.

Networks composed of heterogeneous nodes or links with

asymmetric uplink and downlink capabilities will lead to a

directed graph. The link qualities of asymmetric graphs can

be obtained by practical measurement. Such cases are beyond

the scope of this paper but provide interesting avenues for

future research. Third, beyond the Rayleigh distribution used

in the system model, other models can also be employed in a

similar way. In practice, the distribution of the channels can

be collected and employed to the framework of this paper in a

straightforward way. Fourth, in practice, the global information

might be hard to obtain. In the proposed algorithms, the UAV

tries to improve the performance around the places where there

is a weakest link or on the boundary where the network is

divided. As a result, only the information about the nodes

around is necessary. Moreover, the UAV mostly serves for the

backbone of the network. This backbone may be composed

of a relatively few key communications nodes, and it is more

reasonable to assume that the position and channel condition for

these nodes could be known. Note that such global information

is only needed relatively infrequently on the order of minutes.

Consequently, the practical implementation can be simplified.

Finally, the preceding algorithms address the deployment and

motion of a single UAV. Obviously, improved network perfor-

mance can be achieved by deploying multiple airborne relays of

this type but at the expense of the need for a multidimensional

optimization. The techniques proposed in this paper could be

used to deploy multiple UAVs in a sequential manner, i.e.,

by treating the previously deployed UAVs as fixed network

nodes and accordingly optimizing the position of the next UAV,

but such an approach is clearly suboptimal in a global sense.

This is a problem that would also be a fruitful area of further

research.
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Fig. 7. UAV trajectories with different initializations. K = 10.

V. SIMULATIONS

To demonstrate the effectiveness of the proposed algorithms,

we use the following simulation study: A total of K nodes are

randomly located within a square region of 1000 × 1000 m. The

transmission power for each node is 300 dBm, the received in-

terference plus noise power is σ2 = 10−7 dBm, the SNR re-

quirement is given by γ = 10 dB, and the propagation loss

factor is α = 3. Without loss of generality, for the communica-

tion links between different mobile nodes, we assume Cij = C1

∀ i, j ∈ {1, 2, . . . , K}; for the communication link between the

UAV and the mobile nodes, Cij = C0, i or j = 0. For the

simulations conducted here, we assume that C0 = 2 and C1 = 1.

In Fig. 6(a), we show a snapshot of the global message

connectivity as a function of the UAV location (x0, y0). On the

Z-axis, we show the connectivity of the network without the

UAV as a star with a value of 0.3379. By deploying the UAV at

the best location (x∗
0, y

∗
0) = (330, 420), the connectivity prob-

ability is improved to 0.7452, as shown by a diamond on the

Z-axis. On the x–y plane, we show the MST with the nodes

denoted by crosses and the UAV denoted by a circle. We see

that in this case the UAV positions itself to improve multiple

links. Moreover, from the curve, we can see that there are many

local optima for (x0, y0). In Fig. 6(b), we show the worst-case

connectivity, where the UAV improves the worst link in the

network.

In Fig. 6(c), we show the Fiedler value λ2 as a function of the

UAV location. We can see that the nodes are divided into three

clusters. By placing the UAV at the best location (x∗
0, y

∗
0) =

(840, 730), the UAV can connect to all three clusters so that

the cost to divide the whole network increases. In Fig. 6(d),

we show k-connectivity as a function of UAV location.

Within a certain range of positions, the UAV can improve the

k-connectivity by one, since it can connect to all the other

nodes.

In Fig. 7, we show sample UAV trajectories for different

types of initialization using the global message connectivity as

the performance metric. For the case of random initialization,

the results are shown for five different initial seeds. While the

UAV converges to a common location in most cases, in gen-

eral, we see that different initializations lead to different local

optima. We also observe that the trajectories are not smooth

and that the UAV may change directions. This is because the

derivative of U is not continuous, which can easily be observed

from Fig. 6(a).

In the following examples, we illustrate the results of several

Monte Carlo simulations, where the results are obtained by

averaging over 500 different network realizations. In Fig. 8(a)

and (b), we show the global message and the worst-case con-

nectivity, respectively, for different numbers of nodes. For both

cases, we show the performance of no UAV and a single UAV

with both random and heuristic initializations. As a perfor-

mance benchmark, to ensure that we find the global optimum

for comparison purposes, the random initialization method was

implemented with 2500 different initialization points. We can

see that performance drops at first when the number of nodes

increases from a small number, since we assume a connected

network, and the probability that one of the network links will

cover a long distance initially increases. Since the network

dimensions are bounded, continuing to add nodes increases

the node density to the point that this probability begins to

decrease. We see that the addition of a single UAV improves

the connectivity of the network by 109% when the number of

nodes is 4. The degree of improvement shrinks as the number

of nodes increases, since a higher node density means that

most of the links already have good connection probabilities,

and the addition of the UAV only offers a slight improvement.

For worst-case connectivity, the UAV improves performance

by up to 60%. The heuristic initialization only has slightly

worse performance compared with the best of 2500 random

initializations, indicating that convergence to a local rather than

global optimum is not a significant problem in this case.

In Fig. 9(a) and (b), we show the network bisection con-

nectivity and the k-connectivity as functions of minimal link

success probability δ. Recall that the link from node i to node

j is connected if the probability of a successful transmission

satisfies Pij ≥ δ. When δ increases, both types of connectivity

are reduced, because there are fewer available connected links

between the nodes. When the number of nodes is large, the con-

nectivity is also improved since the average distance between

nodes is reduced. The numerical values of the network bisection

connectivity with and without the UAV are also shown. The

improvement is about 0.5–1 for the second largest eigenvalue

λ2, and consequently, the actual cost to cut the network in half

increases. For k-connectivity in Fig. 9(b), the UAV can improve

k by about 1 in all cases. However, multiple UAVs are required

in situations where the network has well-separated areas of

weak connectivity.

In Fig. 10, we show the average UAV speed and the prob-

ability that the UAV falls into a local optimum for global

message connectivity for a case where K = 5. In this example,

node mobility is governed by the random direction model.

All nodes move in arbitrary directions with speeds uniformly

distributed from zero to the maximum speed vmax = 30 m/s.

The direction is uniformly distributed from 0 to 2π. The UAV

updates its direction every 10 s, and the total time for each
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Fig. 8. Global message connectivity and worst-case connectivity versus number of nodes. (a) Global message connectivity. (b) Worst-case connectivity.

Fig. 9. Connectivity as a function of minimal link success probability. (a) Network bisection connectivity versus δ. (b) k-connectivity versus δ.

Fig. 10. UAV speed and probability of local optima versus mobility.

network simulation is 300 s. We can see that the average

speed of the UAV increases according to the nodes’ mobility.

The probability that the UAV falls into a local optimum also

increases with the speed of the mobile nodes. Clearly, in cases

of high mobility, the frequency with which one should use

the deployment algorithm in Table I will be higher. It is also

worth mentioning that the UAV movement for k-connectivity is

different than for the other connectivity definitions. From the

flat curve in Fig. 6(d), we see that the k value is relatively

stable if the nodes are moving. A reasonable approach in this

case would be that, after initialization, when the UAV detects

a reduction in k, it applies the algorithm in Table II to find a

better position to which to relocate.

VI. CONCLUSION

In this paper, we have studied how to utilize UAVs to improve

the network connectivity of a MANET. We defined four types
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of connectivity: global message, worst case, network bisection,

and k-connectivity. We formulated deployment and movement

problems for the UAV and developed adaptive algorithms to

provide a simple solution as well as good performance. We

provided a theoretical analysis for a simple two-node one-UAV

case and demonstrated that the addition of the UAV provided

an improvement in global message connectivity of 240%. For

general network setups, a UAV can improve the global mes-

sage connectivity and the worst-case connectivity by 109%

and 60%, respectively. We showed that network bisection and

k-connectivity are also improved by the addition of a UAV to

the network.
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