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ABSTRACT

Bus traffic between the graphics subsystem and memory can be-
come a bottleneck when rendering geometrically complex meshes.
In this paper, we investigate the use of vertex caching to transpar-
ently reduce geometry bandwidth. Use of an indexed triangle strip
representation permits application programs to animate the meshes
at video rates, and provides backward compatibility on legacy hard-
ware. The efficiency of vertex caching is maximized by reorder-
ing the faces in the mesh during a preprocess. We present two
reordering techniques, a fast greedy strip-growing algorithm and
a local optimization algorithm. The strip-growing algorithm per-
forms lookahead simulations of the cache to adapt strip lengths to
the cache capacity. The local optimization algorithm improves this
initial result by exploring a set of perturbations to the face ordering.
The resulting cache miss rates are comparable to the efficiency of
the earlier mesh buffer scheme described by Deering and Chow,
even though the vertex cache is not actively managed.

CR Categories: I.3.1 [Computer Graphics]: Hardware Architecture; I.3.3
[Computer Graphics]: Picture/Image Generation - Display algorithms;

Additional Keywords: geometry compression, triangle strips.

1 INTRODUCTION

Graphics performance in low-end computer systems has recently
experienced significant growth due to the integration of 3D graph-
ics functions into custom VLSI graphics processors. The graphics
subsystem now shares many similarities with the central processor.
Both consist of a massively integrated processing unit, a local mem-
ory cache, and a bus to main memory (see Figure 1). Reducing the
von Neumann bottleneck between the CPU and main memory has
been a fundamental problem in computer architecture. The graphics
subsystem now experiences a similar bottleneck.

In the traditional polygon-rendering pipeline, the graphics pro-
cessor must access two types of information from memory: (1) the
model geometry and (2) the raster images (e.g. texture map, bump
map, environment map) used in shading this geometry. The problem
of reducing texture image bandwidth has been studied recently [7].
In this paper, we address the problem of reducing geometry band-
width.

The model geometry is usually described as a mesh of triangle
faces sharing a common set of vertices (Figure 4a). On average,
each mesh vertex is shared by 6 adjacent triangles. Vertex data,
which may include position, normal, colors, and texture coordinates,

Web: http://research.microsoft.com/�hoppe/

bus

L2 cache

bus

v1
v2
v3
v4
v5
v6

vertex
array

1 2 3 4 3 5
6 -1 2 7 4 5
-1

indexed
triangle
strips

v7

texture
image

...

geometric
processing

rasterization

vertex
cache

texture
cache

CPU

system / video memory

graphics processor

texture
image

(e.g.
AGP)

L1 cache

Figure 1: System architecture.

requires on the order of 32 bytes, so it is desirable to minimize
the number of times this data must be read from memory. One
common technique for reducing the geometry bandwidth (by a factor
of almost 3) is to organize faces into triangle strips, so that two
vertices are re-used between successive faces [5, 12]. Implementing
such triangle strips requires a set of 3 vertex registers in the graphics
processor.

The use of a larger vertex register set has the potential to further
reduce geometry bandwidth by another factor of nearly 2. The key
is to reorder the faces within the triangle mesh so as to maximize
references to vertices already loaded in registers. Such an approach
was pioneered by Michael Deering [4], and further developed by
Mike Chow [3]. In their framework, the vertex data is quantized and
delta-encoded into a compressed geometry stream. This geometry
stream includes “push bits” to explicitly specify which vertices
should be loaded into a first-in-first-out (FIFO) mesh buffer. Deering
and Chow [3, 4] report excellent compression rates of 3–8 bytes per
triangle.

In this paper, our approach is to improve locality of vertex refer-
ences through a traditional application programming interface (API)
for meshes. We investigate the use of a vertex cache in the graphics
processor to transparently buffer data for recently referenced ver-
tices. During a preprocess, the faces of a mesh are reordered to
maximize references to vertices in the cache.

Because the traditional mesh API does not compress vertex data,
the bandwidth savings in transparent vertex caching are more modest
than those obtained by Deering and Chow. However, the framework
offers several practical benefits. Because the vertex data is stored
in native floating-point format, it can be efficiently modified from
frame to frame by the application to create dynamic models. For
instance, animated skinned meshes represent a significant portion
of geometric bandwidth in some recent computer games [2]. More-
over, an existing application program requires no modification since
it continues to use the same API. All that is necessary is to prepro-
cess its geometric models to appropriately reorder the mesh faces.
Finally, the approach provides backward compatibility since these
preprocessed models still render efficiently using the same API on
legacy hardware optimized for triangle strips.
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Figure 2: Memory organizations for representing meshes.

Mesh organization Memory size Transfer size

independent triangles 96m 96m
triangle strips 32bm 32bm
indexed triangles � 22m 102m
indexed triangle strips � (16 + 2b)m 34bm

Table 1: Memory and transfer requirements (in bytes).

We cast face reordering as a discrete optimization problem with
an explicit cost function corresponding to bus traffic. To approach
this problem, we first present a greedy strip-growing algorithm for
reordering the faces in a mesh to improve locality. It is inspired
by the method of Chow [3]. It differs in that it explicitly simulates
the behavior of the vertex cache through a lookahead procedure.
The cache miss rates resulting from this algorithm are comparable
to those reported by Chow, despite the fact that the mesh interface
lacks explicit cache management (e.g. “push bits”).

We also explore a local optimization scheme to further improve
the result of the greedy strip-growing algorithm. This optimization
scheme uses several operators to locally perturb the face ordering.
Although the optimization scheme is several orders of magnitude
slower, it is effective at further reducing vertex-cache miss rates by
several percent.

2 REPRESENTATIONS FOR MESHES

In this section we briefly review various memory organizations for
representing triangle meshes, and analyze the bus traffic necessary
for the graphics processor to render the meshes.

Let n denote the number of vertices in the mesh, and m the number
of triangle faces. Often, we use the approximation m � 2n. Vertex
data is assumed to require 32 bytes (3 words for position, 3 words
for normal, and 2 words for texture coordinates). Vertex data may
be more compact if the normal or texture coordinates are omitted.
However, to support multi-texturing, several graphics API’s now
allow specification of multiple texture coordinates per vertex, so
vertex data may also be larger. Some of the representations refer to
vertices through indices; each index is assumed to occupy 2 bytes.
Although this constrains the maximum mesh size to approximately
128K faces, more complex models are commonly represented as
collections of smaller, independent meshes. The mesh represen-
tations are illustrated in Figure 2, and a summary of the analysis
appears in Table 1.

2.1 Traditional representations

Independent triangles The mesh is organized as an array of
m faces, each containing data for its 3 face vertices, for a total of
m�3�32 � 96m bytes. Although this organization is seldom used in
memory, many graphics drivers convert other representations into
such a stream when sending the data to the graphics system.

Triangle strips The mesh faces are organized into sequences of
contiguous faces called strips. The first face in the strip is spec-
ified by three vertices, and each subsequent face uses one addi-
tional vertex. Some interfaces (e.g. IRIS GL) allow explicit control
over the direction of strip formation in generalized triangle strips.
More recent, memory-based representations define sequential tri-
angle strips, in which the direction of strip formation alternates
left/right [12]. The default strip direction can be overriden by du-
plicating a vertex in the data stream, for instance vertex 3 in Fig-
ures 2b,d,f. The overall size of the representation is 32bm bytes,
where b is a strip “bloat” factor to account for the costs of restarting
strips and overriding strip direction. Typically, 1�1 � b � 1�5 .
Evans et al. [5] and Xiang et al. [16] present techniques for gener-
ating good triangle strips, that is, minimizing b.

Indexed triangles The mesh is organized as an array of vertices,
and an array of faces where each face refers to its 3 vertices through
indices. The memory representation has size n�32 + m�3�2 � 22m
bytes. Although this representation is more concise than triangle
strips, the graphics processor must read more data from memory, a
total of m�3�(2 + 32) = 102m bytes.

Indexed triangle strips Again, the mesh consists of a vertex
array and faces that refer to these vertices through indices, but here
the faces are organized into strips. For example, such an interface
is implemented in Microsoft Direct3D by the DrawIndexedPrimi-

tiveVB(D3DPT TRIANGLESTRIP,...) function call. We assume that
a strip is restarted using a special vertex index “–1” (or alternatively
by duplicating 2 indices) as shown in Figure 2d,f. Memory use is
n�32 + m�b�2 � (16 + 2b)m bytes, and transfer size is 34bm bytes.
This will be the mesh API used in the remainder of the paper.

Edge-based representations Programs commonly use more
general pointer-based data structures (e.g. winged-edge, half-edge,
and quad-edge) to allow traversal and topological modification on
meshes. However, since many applications may find these opera-
tions unnecessary, it is preferable to use a simpler, leaner represen-
tation for the API.

2.2 Compressed instruction streams

The compression of triangle meshes has recently been an active area
of research. Taubin and Rossignac [14] record trees over both the
graph and the dual graph of a mesh to compress connectivity to
1–2 bits per triangle, and use a linear predictor to compress vertex
data to 5–10 bytes per triangle. Gumhold and Strasser [6] present a
fast scheme for encoding mesh connectivity in approximately 2 bits
per triangle. Touma and Gotsman [15] encode mesh connectivity
by recording the number of neighbors for each vertex, and use a
“parallelogram rule” for predicting vertex positions. Hoppe [9], Li
et al. [11], and Taubin et al. [13] describe compressed representa-
tions that permit progressive transmission of meshes.

While all of these schemes provide significant gains over tradi-
tional mesh representations, their decompression algorithms involve
data structures that do not easily map onto a graphics processor.
Therefore they are most appropriate for transmission and archival
purposes. Another limitation is that these schemes currently con-
sider only static geometry, and it would be infeasible to recompress
animated geometry changing at every frame.



Bar-Yehuda and Gotsman [1] investigate the use of a vertex stack
in reducing the data sent to the graphics system. They show that
a stack of size �(

p
n) is both necessary and sufficient to render an

arbitrary mesh without sending vertices multiple times.

Deering [4] designs a compression scheme specifically aimed at
hardware implementation. The scheme makes use of a 16-entry
FIFO mesh buffer. The mesh is represented as a stream of variable-
length instructions that load vertices into the buffer and use buffer
entries to form generalized triangle strips. Vertex data is quantized
and delta-encoded to exploit coherence between neighboring ver-
tices. Chow [3] describes several enhancements to this approach,
including a meshification algorithm and an adaptive quantization
technique. As with other compressed stream representations, the
scheme is limited to static geometry.

3 TRANSPARENT VERTEX CACHING

The transparent vertex caching framework uses the indexed triangle
strip memory organization described in Section 2.1. Thus, memory
size requirement is still approximately (16 + 2b)m bytes. However,
transfer bandwidth is reduced through the introduction of a vertex
cache of size k, as illustrated in Figure 1. Vertex caching reduces
transfer size to m �b �2 + m �r �32 = (r �32 + b �2)m bytes, where r
denotes the average cache miss rate, in misses per triangle. Since
each vertex must be loaded into the cache at least once and m�2n,
the miss rate r has a lower bound of 0�5 . The cache replacement
policy is chosen to be FIFO as discussed further in Section 7.

As the approach is most closely related to the previous scheme of
Deering and Chow, we review here the key differences. Recall the
main characteristics of their framework:

� The graphics system reads a linear stream of vertex data and
instructions. Vertex data may appear multiple times if it is re-
used after being dropped from the cache.

� Vertex data is quantized and delta-encoded.

� The API is a special streaming format.

� Geometry must be static, because (1) duplicated vertices would
require additional bookkeeping, (2) delta-encoding prevents ran-
dom access and modification, and (3) frame-rate re-compression
would be infeasible.

� Explicit bits manage allocation within the mesh buffer.

In contrast, with transparent vertex caching:

� The graphics system reads a stream of indices addressing a com-
mon array of vertices, so vertex data is not duplicated.

� Vertex data is in native uncompressed format.

� Since the API is a traditional mesh interface, applications can
experience speedup without modification, and rendering is still
efficient on legacy hardware.

� Geometry can be dynamic, since the application can freely mod-
ify the vertex array at video rates.

� Vertex caching is transparent and follows a strict FIFO policy.

4 FACE REORDERING PROBLEM

Maximizing the performance of the transparent vertex caching ar-
chitecture gives rise to the following problem: given a mesh, find
a sequence of indexed triangle strips that minimizes the amount of
data transferred over the bus. The sequence of triangle strips is
uniquely defined by a permutation F of the original sequence of

faces �F. Thus, the general optimization problem is

min
F�P(�F)

C(F)

function greedy reorder()
Sequence<Face> F=fg; // new face sequence
Face f =0;
loop

if (!f ) // restart process at some location
f =some unvisited face with few unvisited neighbors();
if (!f ) break; // all faces are visited

Queue<Face> Q; // possible locations for strip restarts
loop // form a strip

if (strip too long()) // using lookahead simulation
f =Q.next unvisited face(); // may be 0
break; // force a strip restart

f .mark visited()
F.add to end(f );
// Get counter-clockw. and clockwise faces continuing strip
(fccw,fclw) = f .next two adjacent unvisited faces();
if (fccw) // continue strip counter-clockwise

if (fclw) Q.push(fclw);
f =fccw;

else if (fclw) // continue strip clockwise
f =fclw;

else // cannot continue strip
f =Q.next unvisited face(); // may be 0
break; // force a strip restart

return F;

Figure 3: Pseudocode for the greedy strip-growing algorithm.

where P(�F) denotes all m! permutations of the faces, and the cost

C(F) = m

�
r(F)�32 + b(F)�2

�
(1)

corresponds to the number of bytes transferred over the bus. The
hardware model is that, for each face, the graphics processor re-
quests 3 vertices from the cache, in the order shown in Figure 2f.

For example, Figure 4 shows the costs for three different orderings
of the faces in a simple mesh. The ordering is illustrated using the
black line segments (for adjacent faces within a strip) and white line
segments (for strip restarts). Within each face, the colors at the three
corners indicate if the vertex was present in the cache of size k = 16.
As shown in Figure 4b, stripification algorithms may produce strips
that are too long, resulting in a cache miss rate of r � 1�0 , observed
visually as one red corner per triangle. In contrast, our reordering
techniques (Figures 4c-d) come closer to the optimal r = 0�5 , i.e.
one cache miss every other triangle.

Since r � 0�6 and b � 1�5, the vertex cache miss traffic (r �32)
is generally much more significant than the vertex index traffic
(b�2). Both our face reordering algorithms make some simplifying
approximations with respect to this second, less significant term.

5 GREEDY STRIP-GROWING TECHNIQUE

Our first approach to solving the face reordering problem is a simple
greedy technique. It is fast and can be used to seed the latter local
optimization technique with a good initial state. The basic strategy
is to incrementally grow a triangle strip, and to decide at each step
whether it is better to add the next face to the strip or to restart
the strip. This binary decision is made by performing a set of
lookahead simulations of the vertex-cache behavior. Pseudocode
for the algorithm in shown in Figure 3; we next present it in more
detail. The output of the algorithm is shown in Figure 4c.

The algorithm begins by marking all faces of the mesh as un-
visited. The first visited face is chosen to be one with the fewest
number of neighbors. From this face, the algorithm begins grow-
ing a strip. If there are two neighboring unvisited faces, it always
continues the strip in a counter-clockwise direction, but pushes the



(a) Original mesh (704 faces) (b) Traditional strips (r = 0�99; b = 1�29; C = 34�3)

(c) Greedy strip-growing (r = 0�62; b = 1�28; C = 22�3) (d) Local optimization (r = 0�60; b = 1�32; C = 21�7)

Figure 4: A comparison of the face orderings resulting from (b) a traditional stripification algorithm, (c) the greedy strip-growing algorithm,
and (d) the local optimization algorithm. The result of simulating a 16-entry FIFO vertex cache is shown using the corner colors (green=cache
hit; red=cache miss; blue=cache miss in (c) eliminated in (d)). Indicated results are: the average number r of cache misses per triangle, the
strip bloat factor b, and the overall bandwidth cost C in bytes per triangle.

other neighboring face onto a queue Q of possible locations for strip
restarts. If there are no neighboring unvisited faces, it cannot con-
tinue the strip and therefore restarts a new strip at the first unvisited
face in Q and then clears Q. If there are no unvisited face in Q (i.e.
the algorithm has painted itself into a corner), the process must be
restarted at a new location on the mesh. In selecting this new loca-
tion, the primary criterion is to favor unvisited faces with vertices
already in the cache. A secondary criterion is to select a face with
the fewest number of unvisited neighbors.

Because the algorithm described so far does not constrain the
lengths of strips, the strips could overflow the capacity of the
cache, thereby preventing re-use of vertices between successive
strips. Therefore, before adding each face, the algorithm performs a
lookahead simulation to decide if it should instead force the strip to
restart. Specifically, it performs a set of s simulations f0 � � � s�1g of
the strip-growing process over the next s faces. (The choice of s will
be given shortly.) Simulation number i � f0 � � � s�1g forces the
strip to restart after exactly i faces, and computes an associated cost
value C(i) equal to the average number of cache misses per visited

face. If among these simulations, the lowest cost value corresponds
to restarting the strip immediately, i.e.

�i � f1 � � � s�1g C(0) � C(i) �

the strip is forced to restart. Through experimentation, we have
found s = k + 5 to be a good choice for a FIFO cache.

Note that the local cost function C approximates only the first
term of the true bandwidth cost C of Equation 1. Although C
fails to account for vertex index traffic, the greedy algorithm does
implicitly attempt to minimize the number of strips, since restarts
are only allowed when all the strict inequalities above are satisfied.
Within each strip, the algorithm cannot afford to leave isolated faces
behind, so it has little choice over the direction of strip formation.

As an optimization, instead of computing all s cost values
fC(0) � � �C(s�1)g before visiting each face, the algorithm first com-
putes C(0) and then stops as soon as it finds another C(i) � C(0) .
Also, the first cost value computed after C(0) is C(imin) where imin

was the simulation returning the lowest cost value for the previ-
ously visited face. With this optimization, the number of lookahead
simulations per face is reduced from k + 5 = 21 to 2�9 on average.
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Figure 5: Perturbations to the face ordering.

6 LOCAL OPTIMIZATION TECHNIQUE

In this second technique, we start with the initial sequence of faces F
produced by the greedy algorithm, and attempt to improve it through
a set of ordering perturbations. For each candidate perturbation
P : F � F�, we compute the change in cost�C(P) = C(F�)�C(F)
and apply the perturbation if�C(P) � 0. In the next sections we de-
scribe the cost C(F) approximating the true cost C from Equation 1,
the types of reordering perturbations P : F � F�, the process of se-
lecting candidate perturbations, and several techniques that improve
efficiency and quality of results.

Cost metric The primary cost function is

C(F) = 32 � m � rk(F) + 6 � #strips(F) �

where m � rk(F) denotes the total number of cache misses for a cache
of size k, and #strips(F) is the number of triangle strips induced by
the face sequence F. This cost function is an approximation of the
true cost function C from Equation 1 in that it does not measure
the number of duplicated vertices necessary to override the default
direction for strip formation. In our opinion, this difference does
not significantly affect results.

Reordering perturbations As shown in Figure 5, we define
three types of perturbation (subsequence reflection, insertion of one
face, and insertion of two faces), each parametrized by two indices
1 � x� y � m into the sequence F. We chose these three types of
perturbation because they require only two parameters and yet have
enough freedom to find many reordering improvements. Let Pt

x�y

denote a perturbation of type t.

Selection of candidate perturbations Recall that each can-
didate perturbation Pt

x�y is parametrized by two face indices x and y.
To determine the index x, we simply visit all the faces in a random
order. For each visited face f , we find its index x in the current
ordering, i.e. Fx = f .

Having selected x, we form a set Y of indices of possible param-
eters y. We could let Y be the exhaustive set f1 � � �mg, but that
would be wasteful since most faces Fy would be nowhere near Fx

and thus unlikely to contribute to an improvement. We therefore
let Y contain the indices of faces either vertex-adjacent to Fx in the
mesh or adjacent to Fx in the current ordering (i.e. Fx�1 and Fx+1).

For each y � Y , we attempt all three types of perturbation, and
find the one returning the lowest cost:

min
y�t

C(P
t
x�y(F)) �

If �C(Pt
x�y) � 0, we are unable to find a beneficial operation, and

therefore proceed to the next x. Otherwise, Pt
x�y is beneficial and

could be applied at this point.

However, before committing Pt
x�y, we first see if we can find a

locally better perturbation. Specifically, we keep the index y and

determine the other index

z = argmin
z��Z

min
t

C(P
t
y�z� (F))

with the best perturbation from y, where the set Z is formed like Y .
If z = x then we have found a locally optimal perturbation, and we
apply it. Otherwise, we replace x 	 y and y 	 z, and iterate again
until convergence.

Fast cost re-evaluation For reasonable performance, the com-
putation of�C(Pt

x�y) should be fast and independent of the interval
length jx � yj. Let us first consider just the two perturbations
Insert1x�y and Insert2x�y. One key observation is that the cache be-
havior for the sequences F and F� is likely to be different only near
the interval endpoints x and y, since the cache generally resynchro-
nizes within the interior of the interval if x and y are far apart. To
exploit this, our approach is as follows.

For each face Fi we store a set bi of three bits equal to the
current cache-miss states of its three vertex references. Given the
perturbation Pt

x�y : F � F�, we first load up the expected cache
state just prior to location x by moving backwards through F from
x until k misses have been detected in the stored bits bi. Next, we
simulate the cache from x forwards through F�, recording changes in
cache misses from those stored in the bi. When k successive cache
misses are detected without any intervening cache-miss changes
between F and F�, the cache state is known to be resynchronized,
and thus no more changes will occur until y is reached. Note that the
number of faces visited before the caches resynchronize is generally
independent of the interval size jx � yj.

We then perform the same procedure for the sequence beginning
at y. Finally, the last element necessary to compute �C(P) is to
determine the induced change in the number of triangle strips. For
this, we need only consider the face adjacencies at the slice points
used by P (shown in Figure 5).

The Reflectx�y perturbation is more difficult to handle because the
entire interval Fx���y is reversed. For fast evaluation of its change in
cost, we store at each face Fi another three bits bR

i corresponding
to the cache-miss states when traversing the faces of F in reverse
order, and use those when simulating Fy��x 
 F�.

Secondary cost function Because the cost function C is rather
flat and the perturbations do not look very far, we smooth out the
cost function by adding a secondary cost function

C
�
(F) = 0�003 m � rk�1(F) + 0�002 m � rk+1(F)

that examines the number of cache misses for caches with one less
entry (rk�1(F)) and with one more entry (rk+1(F)). The motivation
for this function is that it attempts to maximize unused space in the
cache whenever possible, in order to preserve “slack” for possible
future improvements.

Search pruning It is unlikely that a perturbation will be benefi-
cial if its endpoint x lies in the middle of a strip and the surrounding
faces have good caching behavior. Therefore, we use the simple
heuristic of pruning the search from x if the face Fx is neither at the
beginning nor at the end of a strip and the sum of cache misses on
the three faces fFx�1�Fx�Fx+1g is less than 3.

7 RESULTS

Cache replacement policy Our very first experiments in-
volved a vertex cache with a least-recently-used (LRU) replacement
policy, since this policy usually performs well in other contexts.
However, as shown in Figure 6, we soon found that an LRU cache
cannot support strips as long as a FIFO cache. The reason is that
vertices shared between a strip s�1 and the next strip s are refer-
enced during the traversal of s, and thus “pushed to the front” of the



LRU cache, even though they are no longer used in the subsequent
strip s+1. (For example, see vertices “2” and “3” in Figure 7.) In
contrast, when a FIFO cache reaches steady state, vertices between
strips s�1 and s are dropped from the cache at precisely the right
time — before any vertices used for strip s+1 (Figure 7). On a regu-
lar mesh, the optimal strip length appears to be only k� 2 faces for
an LRU cache versus 2k � 4 faces for a FIFO cache. We therefore
adopted the FIFO policy.

Cache size Figure 8 plots cache miss rate r as a function of cache
size k using different runs of the greedy strip-growing algorithm.
Reordering algorithms depend strongly on the parameter k. A mesh
preprocessed for a cache of size k will be sub-optimal on hardware
with a larger cache, and more importantly, it may completely thrash
a smaller cache. For most of our examples, simulating the face
orderings optimized for k = 16 on a cache of size k = 15 increases
the average cache miss rate r by 10–30%.

Surprisingly, it is theoretically feasible for an element sequence
to perform better on a FIFO cache of size k than on a FIFO cache
of size k + 1.1 For instance, in the limit the sequence

6� 1� 7� 2� 4� 6� (1� 2� 3� 4� 5� 6� 7)� (1� 2� 3� 4� 5� 6� 7)� � � �

has twice as many misses on a cache of size 5 than on one of size 4.
It might therefore be possible that a super-optimized face ordering
would have a similar performance dependency on the precise cache
size. However, we have never seen this behavior in practice.

Greedy strip-growing The columns labeled “Greedy” in Ta-
ble 2 show results of the greedy strip-growing algorithm of Section 5.
Two of the results are pictured in the first column of Figure 9.

For the mesh buffer scheme [3, 4], Chow reports buffer load rates
ranging from 0.62 to 0.70 vertices per triangle. Two of these meshes
are the same ours; he reports 0.62 for the “bunny” and 0.70 for the
“schooner”.2 The cache miss rates for our greedy algorithm are
therefore comparable to those results, even though the cache is not
actively managed.

The “gameguy” mesh has a notably high miss rate. It is due to
the fact many of its vertices have multiple normals and are therefore
artificially replicated in the mesh, resulting in many boundary edges
and a low face-to-vertex ratio. Such duplication of vertices also
occurs in the “fandisk” and “schooner” meshes. A performance
number that better accounts for this variability in m�n is the average
number of times each mesh vertex is loaded into the cache (labeled
“miss/vertex” in Table 2), which has a lower bound of 1.

The three meshes with the highest miss/vertex ratios are
“bunny2000”, “bunny4000” and “buddha”. These meshes are pre-
cisely the ones obtained as the result of mesh simplification. The
high miss rates are probably due to the irregular mesh connectivities
resulting from the geometrically optimized simplification process.

The execution rate of the greedy algorithm on all of these models
ranges from 35,000 to 43,000 faces/second on a 450 MHz Pentium 2
system. So even the most complex mesh is processed in under 6
seconds.

Local optimization Results of the local optimization algorithm
of Section 6 are presented in the columns labeled “Optimiz.” in
Table 2 and in Figures 9b,d.

The results show that local optimization is generally able to reduce
cache misses by 3–6%. This gain is somewhat disappointing, as we
were hoping to see greater improvements. The results seem to
indicate, however, that the solution of the greedy algorithm is near
a local minimum of the bandwidth cost C.

1Thanks to John Miller for pointing this out.
2Chow also reports 0.63 for a buddha model of 293,233 faces but it is

unfortunately not the same mesh as our simplified 100,000-face buddha.

Figure 6: Output of the greedy strip-growing algorithm using an
LRU cache replacement policy instead of FIFO, with cache size
k = 16 (r = 0�66; b = 1�40; C = 23�9). Compare with Figure 4(c).
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Figure 7: Comparison of LRU and FIFO on a simple mesh.
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Figure 8: FIFO cache effectiveness as a function of cache size with
the greedy strip-growing algorithm on the 4000-face bunny.

Also, one must keep in mind that the cache miss rate has an
absolute lower bound of 1 miss per vertex since each vertex must
be loaded at least once into the cache. For most meshes, the lower
bound is in fact higher because the maximum lengths of strips is
bounded by the cache size, and non-boundary vertices on the ends
of strips must loaded in the cache more than once. For an infinitely
large regular triangulation, the number of misses per vertex therefore
has a lower bound of 1 + 1

k�1
.

Execution times for the algorithm range from 5 minutes to 4 hours
on these meshes. The algorithm finds improvements at a high rate
initially, then gets diminishing returns, so it could be stopped earlier.



Data set #vertices #faces Average cache miss rate Bandwidth (bytes/tri)

n m r = miss/triangle miss/vertex Triangle Vertex caching

Greedy Optimiz. Greedy Optimiz. strips Greedy Optimiz.

grid20 391 704 0.62 0.60 1.11 1.07 36.7 22.3 21.7

grid40 1,075 1,999 0.67 0.63 1.25 1.17 43.9 24.7 23.6

fandisk 7,233 12,946 0.61 0.60 1.09 1.08 37.4 22.3 22.1

gameguy 7,874 10,000 0.88 0.86 1.12 1.09 46.9 31.6 30.8

bunny2000 1,015 1,999 0.70 0.66 1.38 1.30 45.0 25.5 24.4

bunny4000 2,026 3,999 0.68 0.65 1.34 1.27 44.2 24.8 23.8

bunny 34,835 69,473 0.64 0.62 1.28 1.24 39.8 23.4 22.8

buddha 49,794 100,000 0.70 0.65 1.40 1.30 45.8 25.5 24.2

schooner 105,816 205,138 0.62 0.61 1.20 1.19 41.2 22.8 22.6

Table 2: Cache miss rates using the greedy strip-growing algorithm and the local optimization algorithm (expressed as both miss/triangle
and miss/vertex), and overall transfer bandwidth using traditional triangle strips versus transparent vertex caching.

(a) Greedy (r = 0�70; b = 1�54; C = 25�5) (b) Optimization (r = 0�66; b = 1�69; C = 24�4)

(c) Greedy (r = 0�70; b = 1�63; C = 25�5) (d) Optimization (r = 0�65; b = 1�70; C = 24�2)

Figure 9: Results of greedy strip-growing (left column) and local optimization (right column) with a 16-entry FIFO vertex cache, for
bunny2000 and buddha. (Blue corners on the left indicate cache misses eliminated on the right.) Captions refer to the average number r of
cache misses per triangle, the strip bloat factor b, and the overall bandwidth cost C in bytes per triangle.



Analysis The rightmost columns of Table 2 compare the total
bandwidth requirements for a traditional triangle strip representation
and for the transparent vertex caching framework. It demonstrates
that bandwidth is reduced by a factor of approximately 1.6 to 1.9 .

8 DISCUSSION

Issues in modifying rendering order Modifying the order
in which faces are rendered may alter the final image if faces are co-
incident, if the Z-buffer is disabled, or if the triangles are partially
transparent. This limitation is shared by all schemes that modify
the face ordering, including ordinary triangle strip generation.

Vertex data compression With the transparent vertex caching
framework, vertex data can be compressed by the CPU indepen-
dently of mesh connectivity. In particular, time-dependent geometry
presents a significant opportunity for vertex data compression. As
an example, Lengyel [10] describes a scheme that clusters vertices
together and predicts their positions by associating to each cluster a
local coordinate frame that deforms over time; the resulting residu-
als are compressed separately. In effect, Lengyel’s scheme reorders
vertices to improve geometric coherence, and does not concern itself
with the order of faces. On the other hand, our framework reorders
faces to improve graphics coherence, and does not care about the
order of vertices. This demonstrates how vertex data compression
could interact elegantly with our framework.

Memory access pattern for vertex data As the results in
Table 2 indicate, a large percentage of vertices are loaded into the
cache only once, i.e. the first and only time they cause a cache miss.
In some system architectures, it may be useful to reorder the vertices
in the mesh to match the order in which they are first requested, so
that the memory access pattern is mostly sequential. The trade-off is
that reordering the vertices causes some loss of transparency, since
the application may need to be aware that the mesh vertices have
been permuted.

In our opinion, the memory access pattern is not a stumbling
block. Unlike in a general CPU computation, the memory access
pattern from the graphics processor can be predicted by buffering
the vertex index stream (which is entirely sequential), so memory
latency becomes less important than overall memory bandwidth.
Several graphics systems already perform similar buffering when
pre-fetching texture memory as triangle fragments make their way
to the rasterizer.

9 SUMMARY AND FUTURE WORK

We have explored the use of a vertex cache to transparently reduce
the geometry bandwidth between the graphics processor and mem-
ory in the context of a traditional mesh rendering API. In many
cases, it is unnecessary for the application program to be aware of
this caching scheme, even if the program applies runtime defor-
mations to the mesh geometry. Maximizing the efficiency of the
cache simply involves reordering the faces in the mesh during a
preprocessing step.

We have presented a greedy strip-growing algorithm for reorder-
ing the faces, and shown that, even without explicit cache man-
agement, it is able to achieve comparable results to the previous
scheme by Deering and Chow. The greedy algorithm operates at an
approximate rate of 40,000 faces/sec and is thus highly practical.

We have also explored a perturbation-based optimization scheme
for further improving the face ordering. Although costly in terms
of computation time, it succeeds in reducing bandwidth by several
percent.

This project suggests a number of areas for future work:

� Exploring more complex reordering perturbations that exploit
the strip structure present in the face ordering.

� Examining the interaction with texture caching. Although op-
timal face orderings for vertex caching and texture caching are
likely different, a compromise would be feasible.

� Maintaining cache-efficient face ordering during level-of-detail
(LOD) control. While this is straightforward for a precomputed
set of LOD meshes, it seems difficult for continuous LOD and
particularly for view-dependent LOD [8].
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