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Abstract

The past two decades of microRNA (miRNA) research has solidified the role of these small non-coding RNAs as key regula-

tors of many biological processes and promising biomarkers for disease. The concurrent development in high-throughput

profiling technology has further advanced our understanding of the impact of their dysregulation on a global scale.

Currently, next-generation sequencing is the platform of choice for the discovery and quantification of miRNAs. Despite

this, there is no clear consensus on how the data should be preprocessed before conducting downstream analyses. Often

overlooked, data preprocessing is an essential step in data analysis: the presence of unreliable features and noise can affect

the conclusions drawn from downstream analyses. Using a spike-in dilution study, we evaluated the effects of several gen-

eral-purpose aligners (BWA, Bowtie, Bowtie 2 and Novoalign), and normalization methods (counts-per-million, total count

scaling, upper quartile scaling, Trimmed Mean of M, DESeq, linear regression, cyclic loess and quantile) with respect to the

final miRNA count data distribution, variance, bias and accuracy of differential expression analysis. Wemake practical

recommendations on the optimal preprocessing methods for the extraction and interpretation of miRNA count data from

small RNA-sequencing experiments.
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Background

microRNAs (miRNAs) are small non-coding RNAs (�18–22 nu-

cleotides in length) that negatively regulate gene expression by

binding to the 30 UTRs of target genes. Depending on the degree

of sequence complementarity, this interaction can mediate ei-

ther translational repression or mRNA degradation. More than

30% of human protein-coding genes are predicted to be con-

served targets of miRNAs [1]; a single miRNA may target many

hundreds of genes, potentially disrupting entire gene networks.

This dysregulation may, in turn, be reflected in the expression

patterns of one or just a few miRNAs. By comparing miRNA pro-

files between different states, such as ‘experimental’ versus

‘control’, we can identify patterns or specific miRNAs implicated

in different biological processes or disease pathogenesis.

With the decreasing cost and high multiplexing capability of

next-generation sequencing (NGS), this technology is increas-

ingly being used for the comprehensive profiling of miRNA

abundance. Although several platforms and protocols exist,

including the Illumina HiSeq systems, Life Technologies

SOLiDTM sequencing and Roche 454 sequencing, the analysis of

the resulting data follows a general scheme: (1) short reads are

filtered for low-quality sequences and adapters, (2) the remain-

ing sequences are mapped to a reference (genome, miRBase,

non-coding RNAs, Refseq and so on), (3) the abundance for each
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biological entity of interest is determined (to give an expression

measure of specific targets), (4) the resulting count data are nor-

malized and (5) downstream analyses are conducted to probe

biologically relevant questions. Despite this, no standard

method or clear consensus exists on how the data should be

preprocessed and the consequences of a chosen method on

subsequent analyses.

Several software packages have been developed over the

past few years for the preprocessing and mapping of miRNA-

seq data [2–13]. These tools differ in the methods used for

adapter trimming or clipping, types and thresholds used for fil-

tering and alignment algorithms. Of these steps, the choice of

the alignment algorithm will have the greatest impact on the re-

covery of accurate miRNA abundance profiles of the sequenced

samples. Although different aligners have been optimized with

respect to various considerations, they may not all be suitable

for miRNA-seq data alignment. For example, SOAP [14] was spe-

cifically designed for detecting single-nucleotide polymorph-

ism, whereas mrsFAST [15] was developed primarily for the

detection of structural variants [16]. Testing different software

for miRNA-seq alignment can help select an optimal aligner for

this type of data.

Following alignment, the recovered miRNA counts need to

be normalized to remove variations in the data that are of

non-biological origins and can affect the measured abundance

levels. Even in replicate experiments, some variations will be

observed, stemming from the experimental procedure—sample

handling, library preparation and sequencing. An effective nor-

malization technique should minimize technical and experi-

mental bias without introducing noise. The differences that

remain should be truly biological effects. Several normalization

methods for miRNA-seq data have been proposed, including lin-

ear scaling, nonlinear scaling and quantile normalization.

However, no standard method is currently used; read counts

from each experiment are usually simply adjusted for differ-

ences in sequencing depth to counts-per-million (cpm), despite

studies showing that this is insufficient to account for the tech-

nical differences across samples [17, 18]. These two studies,

comparing the effect of different normalization methods, made

conflicting conclusions: Garmire and Subramaniam supported

the use of locally weighted linear regression (Lowess) and quan-

tile normalization, while discouraging against trimmed mean of

M (TMM)—these results were validated using polymerase chain

reaction (qPCR); and Dillies et al. suggested the opposite, advis-

ing against quantile normalization but advocating for the TMM

method—data simulations were used to confirm these findings.

While different normalization techniques will likely affect

the accurate quantification of miRNA abundance, the

downstream consequences of using different aligners to map

the raw sequencing reads to a given reference is unknown:

the former study used data aligned using SHRiMP [19] and

Bowtie [20], whereas the latter used Novoalign [21]. Data nor-

malization will not rescue discrepancies caused by the initial

alignment.

To assess the relative merits of different preprocessing

methods in terms of variance, bias and sensitivity and specifi-

city for the detection of differential expression, data for which

true values are known are required [22]. Here, we generated a

spike-in data set, whereby known amounts of oligonucleotides

were added to a common biological reference background.

Using this data set to simulate data characteristics observed in

actual experiments, we assessed the impact of alignment and

normalization on the final processed data and downstream

analyses. Our findings were then validated on a previously

published data set, which compared miRNA profiles between

cell lines and their corresponding xenografts.

Methods

Data sets

Two data sets were used for this study: a spike-in experiment

and a miRNA-seq profiling data set comparing cell lines and

xenografts. The spike-in data set was created using a 12� 12

cyclic Latin Square design. Twelve miRNAs from the Arabidopsis

thaliana genome that are not present in the human genome

were selected as spike-in sequences. RNA oligonucleotides were

synthesized with phosphorylated 50 ends (Integrated DNA

Technologies, see Supplementary Table S1 for sequence infor-

mation), and added at 12 different concentrations (0, 0.1, 0.2,

0.8, 1.6, 6.4, 12.8, 51.2, 102.4, 409.6, 819.2, 3276.8 amol) to 1 lg

Universal Human Reference RNA (Agilent Technologies), with

each concentration appearing once in each row and column of

the design matrix. The samples were subjected to all experi-

mental steps, including small RNA purification. The second

data set, consisting of miRNA-seq data from matched cell lines

and xenografts, has been previously published [23]; this data set

is publicly available in the Gene Expression Omnibus (GEO) re-

pository under the accession GSE51508. This data set was

chosen because qPCR data were also generated, which allowed

for the assessment of sensitivity and specificity.

Overview of the Illumina system

cDNA libraries for sequencing were constructed as per

Illumina’s TruSeq Small RNA protocol (Illumina). In brief, 30 and

50 adapters were sequentially ligated to the ends of RNA < 200

nt long, fractionated from 1 lg of total RNA (PureLink miRNA

Isolation kit, Life Technologies) and reverse transcribed to gen-

erate cDNA. The cDNA was amplified (11 cycles of PCR) using a

common primer complementary to the 30 adapter, and a 50 pri-

mer containing 1 of 48 index sequences. Samples were size-

selected on a 6% polyacrylamide gel, purified, quantified and

pooled for multiplexed sequencing. The resulting pooled libra-

ries were hybridized to oligonucleotide-coated single-read flow

cells for cluster generation on-instrument and subsequent

sequencing on an Illumina HiSeq 2500 instrument. Fifty

sequencing cycles were performed.

Sequence alignment

Short read sequences were output in FASTQ format with corres-

ponding base quality scores. The raw data were initially filtered

for reads containing ambiguous base calls, which did not meet

the Illumina chastity filter based on quality measures. Quality

control of the remaining sequences from each sequenced li-

brary was investigated using FastQC (v0.11.2) [24] to check for

homopolymers, adapters and distribution of base quality. The

reads were then filtered for low-quality reads, contaminating

50 adapters, homopolymers and trimmed for 30 adapters. The

preprocessed reads were aligned in a sequential manner: first to

ribosomal RNA/repeats, miRBase v20, RefSeq and finally to a

genomic reference (hg19). The spike-in sequences were

included in the miRBase v20 reference before indexing. Several

general-purpose aligners were evaluated, including BWA [25]

and Bowtie [20], the two most highly cited aligners, Bowtie 2

[26], and Novoalign [21], a propriety software from Novocraft,

which is becoming quite popular owing to its high accuracy
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claim. Sequence alignment was performed with the following

parameters for each aligner, respectively:

1. BWA 0.7.4: bwa aln -n 1 -o 0 -e 0 -k 1 -t 4

2. BWA 0.7.4 (0 mismatch in seed): bwa aln -n 1 -o 0 -e 0 -l 8 -k

0 -t 4

3. Bowtie 0.12.9: bowtie -n 1 -l 8 -a --best --strata --phred33-quals

4. Bowtie 0.12.9 (0 mismatch in seed): bowtie -n 0 -l 8 -a --best

--strata --phred33-quals

5. Bowtie2 2.1.0: bowtie2 --local -p 8 -q --phred33 -D 20 -R 3 -N

0 -L 8 -i S,1,0.50

6. Novoalign 3.00.05: novoalign -a TGGAATTCTCGGGTGCCA

AGG -l 15 -t 30 -r A

Only reads uniquely aligned to miRNAs were retained and

counted. The miRNAs were filtered for targets with a minimum

of 5 counts in at least 25% of the samples. The raw and

processed data has been deposited in the Gene Expression

Omnibus repository, under the accession GSE67074.

Normalization

Several normalization methods were evaluated, including (1)

cpm, (2) total count scaling, (3) upper quartile scaling (UQ), (4)

TMM, (5) DESeq, (6) linear regression, (7) cyclic loess normaliza-

tion and (8) quantile-based normalization. Each of these meth-

ods is described briefly.

(1) Count-per-million—the simplest form of normalization,

whereby each library is adjusted for differences in sequencing

depth. The counts can then be adjusted to reads per million to

facilitate comparison between samples.

(2) Total count scaling—After scaling each sample to its library

size, they can be rescaled to a common value across all samples.

The baseline reference can be chosen to be the sample with the

median library size. If sbaseline is the size of the reference library,

and si is the sum of all reads of the any given library, then the

normalization factor is as follows:

di ¼
sbaseline

si
(1)

and the counts for the normalized samples would be

x0i ¼ dixi (2)

where xi is the raw count for a specific target.

(3) Upper-quartile scaling—In RNA-seq experiments, the

predominance of zero and low-gene counts has led to the sug-

gestion of a modified quantile-normalization method: the upper

quartile of expressed miRNAs is used instead as a linear scaling

factor [27]. This method has been shown to yield better concord-

ance with qPCR results than linear total counts scaling for

RNA-seq data [27]. It is expected that in miRNA-seq experi-

ments, the 75th percentile of the data will also be found at only

1 or 2 copies/library.

(4) Trimmed mean of M—Normalization by total count scaling

makes intuitive sense because it gives us the proportion of

counts for a specific target across all samples. If a miRNA is

present in the same proportion across all samples, it will be

deemed as non-differentially expressed. However, this method

does not take into consideration the potentially different RNA

composition across the samples. TMM, proposed by Robinson

et al. for RNA-seq data normalization, calculates a linear scaling

factor, di, for sample i, based on a weighted mean after trimming

the data by log fold-changes (M) relative to a reference sample

and by absolute intensity (A) [28]. TMM normalization takes into

account the composition of the RNA population being sampled,

which is neglected in total count scaling. This method is imple-

mented in the R Bioconductor package edgeR, with default trim-

ming of M-value by 30% and A-values by 5% [29].

(5) DESeq—To perform differential expression analysis using

count data, Anders and Huber proposed modeling the data with

the negative binomial distribution, and incorporating data-

driven prior distributions to estimate the dispersion and fold

changes [30]. As a data preprocessing step, the authors intro-

duced the size factor—a scaling factor—to bring the count val-

ues across all the samples to a common scale. The size factor

for a given library is defined as the median of the ratios of

observed counts to the geometric mean of each corresponding

target over all samples. This method is implemented in the R

Bioconductor package DESeq.

(6) Linear regression—This normalization technique assumes

that the systematic bias is linearly dependent on the count

abundance. In microarray data, the log2 ratios, M, between two

samples have been observed to have systematic dependence on

the intensity values, A. This can be visualized by plotting the M

values for each element as a function A (MA plot), where

Mi ¼ log2

xi;j¼1

xi;j¼2

 !

(3)

and

Ai ¼
1

2
log2 xi;j¼1xi;j¼2

� �

(4)

with xi.j as the abundance for a given miRNA, i, in sample j [31]. A

linear least squares regressionmodel is applied in the form of [32]

M0 ¼ b0 þ b1A (5)

The normalized ratio is calculated from the regression equation

[33],

M0
i ¼ Mi �M�

i (6)

where M�
i is the predicted ratio from the least squares estima-

tion. The normalized xi.j¼1 and xi.j¼2 values are given by [33]

x0i;j¼1 ¼ 2aþ
1
2m

0
i and x0i;j¼2 ¼ 2a�

1
2m

0
i : (7)

The samples were normalized to a baseline reference, which

was defined as the median count of each element across the

profiled samples.

(7) Nonlinear regression—Although linear normalization is

simple and robust, the linearity assumption does not always

hold, especially at extreme values. Lowess analysis was initially

proposed for the removal of intensity-dependent effects of the

log2 ratios in two-color microarray experiments [34]. A weight

function is determined, which puts less emphasis on the contri-

bution from elements that are far from each point on a MA plot

[35]. The regression model for Lowess normalization can be con-

sidered to be in the form of [32]

M0 ¼ M� cðAÞ (8)

where c(A) is given by the robust scatter plot smoother Lowess.

The normalized M ratios are determined in the same manner as

952 | Tam et al.



in linear regression normalization. For the normalization of

miRNA-seq data, a cyclic loess approach was used, initially

described by Boldstad et al. for single channel microarrays [33].

(8) Quantile-based normalization—Initially proposed for the

normalization of microarray data, quantile normalization forces

the distribution of read counts in all samples across an experi-

ment to be equivalent [33]. This non-scaling approach assumes

that most targets are not differentially expressed and that the

true expression distribution is similar across all samples.

Data analysis

Data analyses and graphical representations were performed and

generated in the R statistical environment (v3.1.2). Normalization

methods were implemented either in R or Bioconductor (3.0)

libraries. Cyclic loess and quantile normalization were performed

using the normalizeBetweenArrays()function in the limma

package (v3.22.4) [36], whereas TMM and UQ normalizations were

performed using calcNormFactors() in the edgeR (v3.8.5) pack-

age [29]. The function estimateSizeFactors() in the DESeq

(v1.18.0) package was used to normalize the count data using size

factors [30]. For differential expression analysis of the qPCR data

in the cell lines–xenografts comparison study, linear models

were fit to each miRNA, and an empirical Bayes approach was

applied to moderate the variance [36]. The same linear modeling

was applied to the sequencing data, but the mean-variance trend

was first estimated from the data and incorporated into a preci-

sion weight for each individual observation [37]. A paired sample

design was used for all analyses, matching each cell line with its

respective xenograft model. The P-values were adjusted for mul-

tiple testing using the Benjamini and Hochberg approach. This

analysis was performed using the limma package (v3.22.4).

Results

Comparison of alignment tools

Table 1 lists the attributes of software packages and methods

that have been developed over the past few years for the prepro-

cessing and mapping of miRNA-seq data. Aligners used in the

more recently developed software were compared, including

BWA, Bowtie and Novalign (see Figure 1A for experimental de-

sign). The alignment parameters were set to be as similar as pos-

sible across the different tools when permitting. For example,

BWA and Bowtie were run with two different settings: (1) allow-

ing one mismatch across the entire read including the seed re-

gion (bwa_seed and bowtie_seed) and (2) allowing one mismatch

in the non-seed region only. The distribution of reads mapping to

the different annotated references is quite similar (see

Supplementary Figure S1). Despite this, the resulting Bowtie out-

put had a number of miRNAs that were estimated to have higher

abundance levels than the count estimates from BWA and

Novoalign, which was run with the recommended parameter set-

tings for miRNA analysis (Figure 1B). This effect was even more

pronounced in the Bowtie 2 output. Overall, the miRNA abun-

dance profiles were highly similar, with Spearman’s q� 0.91.

Following alignment, the recovered miRNA abundance counts

were normalized using the different methods described in the

Methods section and used for all subsequent analyses.

Qualitative assessment of normalized data

As an illustration of the different normalization methods, the

absolute distribution of the miRNA count data following align-

ment and normalization can be visualized using density

distribution curves (Figure 2A). To avoid problems associated

with zero values, the data were log2 transformed after the add-

ition of þ1 to all counts. From the density curves of the raw

counts, it is evident that there are some inconsistencies be-

tween the distribution profiles of the samples. Adjusting the

data by cpm or total count scaling introduces more variability to

the data, whereas all other methods resulted in more similar

distribution across all samples. The relative log expression

(RLE), defined as the difference between the log of a read count

and the log of the median count across the samples, should be

centered at zero and have comparable distributions across simi-

lar samples. The boxplot of the unnormalized RLE shows large

distributional differences across the samples (Figure 2B); these

differences are amplified in data normalized by cpm and total

count scaling. The distributions are more similar and centered

at zero when the data are normalized using UQ, TMM, DESeq,

cyclic loess and quantile normalizations. Figure 2 shows the dif-

ference in normalization of the data aligned using BWA with

one mismatch allowed across the entire read. The same assess-

ment performed on the data generated from the other five

alignment outputs showed similar results (data not shown),

most likely owing to the comparable percentage of reads map-

ping to miRNAs across the different aligners (Supplementary

Figure S1).

Variance comparison

As the samples were prepared using the same background ref-

erence, most of the detected species should have similar abun-

dance levels, except for the 12 spike-in sequences. Adjusting

the data by cpm or total count scaling introduces more variabil-

ity, whereas UQ and TMM decreased the variance across all

miRNAs compared with the raw data (Figure 3A). The percent-

age of miRNAs with decreased variance following normalization

by each of the methods is shown in Table 2.

To identify any dependency on abundance levels, the mean

and variance of each miRNA was computed across the samples,

and the log ratio of the variance of normalized versus unnor-

malized data was plotted against the mean abundance levels

(Figure 3B). From the Lowess smoother, the variance introduced

by cpm and total count scaling increases slightly with increas-

ing counts, whereas no such trend is present in the data nor-

malized using all other methods. UQ and TMM normalizations

appear to have a slight edge over the other methods at the lower

range.

Assessment of bias

An effective normalization method should decrease the vari-

ance without increasing bias. The following linear model was fit

to each spike-in dilution series to assess the bias in the prepro-

cessed data:

log2 C ¼ b0 þ b1 log2aþ e (9)

where C is the count value and a is the amount, in attomole, of

oligonucleotides added. The sample with spike-in concentra-

tion of 0.0 amol was excluded from the model fit. The closer the

slope (b1) is to 1, the more the data are representative of the true

values. The R2 value was determined to assess the model fit.

For the data normalized by UQ and TMM, b1 for the spike-in

dilution series are closer to 1; however, increase in bias is

observed in the data adjusted by cpm, total count scaling and

quantile normalization compared with the raw data (Table 2).
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The distributions of the b1 and R2 values are shown in Figure 4A.

A problematic dilution series (ath-miR405a) was identified with

low R2 and b1 values, which is most likely attributed to pipetting

errors. This sequence was removed from this analysis and all

subsequent analyses. For the remaining spike-in sequences,

some species have slopes >1, whereas others have slopes <1.

Although the most obvious explanation is the presence of ex-

perimental errors, this effect can also be a result of the back-

ground noise, such as sequencing error, random sampling or

misalignment. For example, as sequencing reads are a random

sample of the population of transcripts, the lower abundance

species may be less likely detected; this will cause b1> 1. On the

other hand, b1< 1 may be a result of the alignment of reads with

a single base mismatch; imperfect alignments will have a more

dramatic effect on low abundance species.

The absolute bias was calculated as the difference between

the estimated fold-changes and the nominal fold-changes. The

background miRNAs are expected to remain consistent across

all the samples, while changes in abundance of the spike-in se-

quences between samples are known. Ideally, the absolute bias

Figure 2. Comparison of data distribution. (A) Density plots of log count distribution. Distributions of the samples before and after normalization are shown in different

panels for each normalization method. Comparing between samples, none appears to have abnormal distributions. (B) Boxplots of RLE. The RLE distributions of

comparable samples should be centered at zero and similar to each other. Boxplots of the raw data clearly indicate the need for normalization. Values beyond the

1.5 interquartile range (IQR) are not shown. The samples are grouped according to the normalization method, with the order of the samples consistent across each

group. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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should be centered at zero (Figure 4B). While normalization by

cpm and total count scaling resulted in increased bias com-

pared with the raw data, UQ, TMM, DESeq and cyclic loess

reduced the bias closer to zero.

Differential expression analysis

Data preprocessing procedures can also be judged by the im-

proved sensitivity and specificity for the detection of differential

expression. As sequences were spiked into a common back-

ground reference, successful differential expression analysis

should only identify the spike-in sequences as differentially ex-

pressed. Following normalization, log2 ratios for all pairwise

comparisons were computed, and precision (positive predictive

value) and recall (true positive rate) were determined for a range

of thresholds for all data sets. As the smallest difference in the

amount of spike-in sequences added across the samples is

2 folds, miRNAs with a fold-change �2 were considered to be

differentially expressed. Precision-recall (PR) curves were used

to assess the performance of the different preprocessing meth-

ods in calling miRNAs differentially expressed. When the num-

ber of positive and negative examples is highly imbalanced, PR

curves are better performance estimators than receiver-operat-

ing characteristic curves. An ideal PR curve will have a precision

value of 1 for all values of recall. Data normalized by cpm or

total count scaling performed unequivocally worse than the

raw data, which were normalized by library concentration be-

fore sequencing. Data normalized by UQ or TMM clearly domi-

nated the PR curves, with BWA-aligned reads (with 1 mismatch

Figure 3. Variance comparison. (A) Boxplots of the variance distribution. The variance of the log2 counts of all non-spike-in miRNAs was computed across the samples,

and visualized using boxplots. The data are grouped according to the normalization method. Values beyond the 1.5 interquartile range (IQR) are not shown. A clear in-

crease in variance is observed in the data normalized by cpm or total count scaling, while a decrease is seen in UQ or TMM normalized data. (B) Mean-variance depend-

ency. The relationship between variance and abundance level is visualized by plotting the ratio of the variance between the normalized and unnormalized data versus

the average counts. Data points below the y¼0 line have decreased variance compared with the raw data. The Lowess smoother line reveals the presence of any trends

in the data. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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in the seed regions) showing a slight advantage (Figure 5A).

Comparison of the estimated fold-changes from the output of

different aligners and normalization procedures reveals that

UQ, TMM, DESeq, quantile and cyclic loess normalized data

have the most similar fold-change estimates (Figure 5B). The

data aligned using Bowtie 2, regardless of the normalization

methods, were different from the remaining combinations of

aligners and normalization techniques used.

The increased sensitivity and specificity of these particular

methods can be assessed using M versus A plots; one sample

was selected as a reference, and the mean and average for each

miRNA was computed for all comparison of this sample to all

other samples (Figure 5C). Data normalized by UQ and TMM

have smaller variances, especially for low abundance species.

This is in contrast to cpm- and total count scaling-adjusted

data, which have increased variance compared with the raw

data across all abundance levels. Fold-change compression is

also observed in the data normalized by these two methods,

and by quantile normalization.

Data normalization and sequencing depth

For data with similar library sizes, the raw and normalized data

have comparable distributions, regardless of the normalization

technique used (Supplementary Figure S2a). However, when large

differences in read depth exist, the efficiency of the different nor-

malization techniques at stabilizing the read distribution across a

data set differs (Supplementary Figure S2b). We explore this con-

cept using the cell lines–xenografts comparison study because of

the more variable count distribution and higher coverage

compared with the spike-in experiment (�116 million total reads

compared with �44 million reads across all samples). The read

depths in this data set ranged from over 2 to 16 million reads per

sample, whereas the library sizes in the spike-in experiment

ranged from over 1 to 11 million reads per sample. To assess the

impact of read depth on data normalization, subsampling was per-

formed to simulate data with similar read counts across all the

samples (�2.2 million reads/samples). The effect of alignment and

normalization was assessed on this subsampled and full data set

using similar metrics as was performed for the spike-in

experiment.

In accordance with the results observed in the spike-in data

set, adjusting the data by UQ and TMM normalization resulted

in more similar count distributions and RLE values centered at

zero, without forcing the distribution to be exactly the same

across the data set, as in quantile normalization

(Supplementary Figures S3a and S3b). Unsurprisingly, the sub-

sampled data showed comparable RLE distributions regardless

of the normalization method used (Supplementary Figure S3c).

Decrease in variance was only observed in data adjusted by

cpm, UQ and TMM in both the full and subsampled data set

(Supplementary Figure S4). To assess the presence of bias intro-

duced by data normalization, log2 ratios for each matched cell

line and xenograft pair were calculated for 56 miRNAs that were

assayed and detected by qPCR. The absolute bias was defined as

the deviation of these ratios from those determined by qPCR

(Supplementary Figure 5). The unnormalized raw counts

showed the largest amount of bias compared with the normal-

ized data. The unnormalized subsampled data, on the other

hand, had a bias distribution centered at zero. While cpm, UQ

and quantile normalization successfully reduced the bias in the

full data set, most normalization methods had little effect in

reducing bias in the subsampled data.

Finally, the sensitivity, specificity and accuracy for the de-

tection of differential expression can be assessed relative to

qPCR, the current gold standard for validating expression profil-

ing results. Regardless of the normalization method, data

aligned using novalign resulted in lower accuracy because of

the lower sensitivity of detection (Supplementary Table S2).

Normalization by cpm, UQ and TMM resulted in similar sensi-

tivity, specificity and accuracy for differential expression

analysis, whereas quantile normalization showed reduced

specificity. The subsampled data did not perform well in this

analysis, despite the superior results observed in the assess-

ment of bias and variance.

Discussion

Despite the increasing use of NGS for the expression profiling of

miRNAs, a standard data preprocessing pipeline for miRNA-seq

data has yet to be implemented. A large number of tools and soft-

ware packages are available, but the method chosen for a particu-

lar study is often left to the discretion of the researcher. To

maintain consistency and reproducibility across different studies,

the implementation of a standardized procedure would be critical.

The past two decades of experience with microarrays has

shown that normalization is a crucial step before data ana-

lysis—subsequent analyses, such as the detection of differential

Table 2. Change in variance and assessment of bias post-normalization

%with lower variance Median slope (b1)* Median R2*

Novoalign BWA

seed

BWA Bowtie

seed

Bowtie Bowtie2 novoalign BWA

seed

BWA Bowtie

seed

Bowtie Bowtie2 novoalign BWA

seed

BWA Bowtie

seed

Bowtie Bowtie2

Raw – – – – – 0.96 0.96 0.98 0.96 0.97 0.96 0.96 0.96 0.98 0.96 0.97 0.96

Cpm 15.4 15.0 10.5 15.5 10.4 24.8 0.87 0.87 0.88 0.87 0.87 0.86 0.87 0.87 0.88 0.87 0.87 0.86

total count

scaling

1.1 1.0 0.6 1.0 0.6 1.2 0.92 0.92 0.91 0.92 0.91 0.92 0.92 0.92 0.91 0.92 0.91 0.92

upper

quartile

96.4 96.5 96.6 96.5 96.7 97.2 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

TMM 95.4 95.4 95.6 95.4 95.7 97.2 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

DESeq 86.3 85.4 88.9 85.0 88.6 88.7 0.98 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.98 0.99 0.98

linear

regression

95.1 95.6 95.8 95.4 95.9 94.9 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.98

cyclic loess 88.0 87.7 89.3 87.9 89.2 88.7 0.98 0.98 1.00 0.98 0.99 0.98 0.98 0.98 1.00 0.98 0.99 0.98

Quantile 88.8 88.1 89.5 87.5 89.2 88.6 0.95 0.96 0.96 0.96 0.96 0.97 0.95 0.96 0.96 0.96 0.96 0.97

*The ath-miR405a dilution series was excluded from the analysis of bias.
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expression, are highly dependent on the chosen normalization

method [38]. However, it is important to note that complex

methods do not necessarily perform better than simple ones—

they can add noise and bias if incorrect assumptions are made.

An optimal method would reduce variance without increasing

bias [33]. Furthermore, a survey of published tools for the

analysis of small RNA-seq data sets reveals that different align-

ers are embedded in these toolkits (see Table 1). The effect on

the accuracy of the recovered miRNAs using different aligners is

not known. To assess the effects of different preprocessing

methods on the estimates of miRNA abundance in small RNA-

seq data sets, we first generated a spike-in data set, whereby

Figure 4. Bias assessment. (A) Assessment of bias. Linear regression was performed on the spike-in dilution series, and the resulting slopes (b1) were visualized using

boxplots, with the asterisk symbol (*) representing the R2 values. The data are grouped according to the normalization method. (B) Comparison of miRNA-seq fold-

changes and nominal fold-changes. The difference between experimentally determined fold-changes and nominal fold-changes was determined for all miRNAs.

Boxplot show the distribution of the deviation from the expected fold-changes. The data are grouped according to the normalization method. A colour version of this

figure is available at BIB online: http://bib.oxfordjournals.org.
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known amounts of 12 oligonucleotides were added to a com-

mon biological background reference. The raw sequence reads

were first filtered for low-quality reads and adapters, and then

aligned using BWA, Bowtie, Bowtie 2 and Novoalign.

The recovered miRNA counts were normalized using cpm, total

count scaling, UQ, TMM, DESeq, linear regression, quantile and

cyclic loess. Normalization to a single housekeeping miRNA

was not considered, as it is not known a priori which targets

have stable expression levels across the samples. Furthermore,

housekeeping genes have been shown to vary considerably

Figure 5. Accuracy in predicting differential expression. (A) PR curves. The effect of normalization on the accuracy of differential expression analysis is visualized using

PR curves. miRNAs with a fold-change �2 were considered to be differentially expressed. The spike-in sequences and the background reference were used as the true-

positive results and true-negative results, respectively. Colors represent different normalization methods, while lines represent aligners. Please see online version for

coloured image. (B) Comparison of fold-change estimates. Spearman’s correlation coefficients between fold-change estimates obtained from the differently processed

data were calculated and subjected to unsupervised hierarchical clustering using Euclidean distance as the distance metric and complete linkage. (C) M versus A plots.

MA plots were generated by comparing all samples to one chosen reference sample. The black points represent log2 fold-changes from the background, while the red

points represent the non-spike-in miRNAs that have a fold-change �2. The colored numbers represent the spike-in sequences, with the precise number representing

the expected fold-change. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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across different biological conditions [39]; global normalization

approaches have greater stability because they exploit the

abundance measures of hundreds and thousands of entities.

For miRNA-seq data, this is made possible because of the large

repertoire of miRNAs profiled and detected. This is in contrast

to qPCR profiling, where often, only a limited number of targets

are assayed. As a result, housekeeping miRNAs must be used

for data normalization. We suspect that in experiments involv-

ing small repertoires of detectable miRNAs, such as circulating

miRNAs, this may also be the case [40]. From this work, we rec-

ommend (1) the alignment of small RNA-seq data using BWA

and (2) UQ or TMM for miRNA count normalization for compre-

hensive miRNA profiling studies.

The mapping of small RNA-seq reads to a reference genome

and the subsequent annotation of miRNAs is the first step in con-

structing miRNA abundance profiles from NGS data. Compared

with RNA-seq, spliced transcripts and indels are not relevant to

miRNA alignments; however, the presence of isomiRs [41, 42] and

sequencing errors need to be considered. As such, miRNA align-

ment cannot be performed by considering exact sequence

matches only. The BWA outputs using different parameter set-

tings are highly similar to each other and to the Novoalign re-

sults; however, the Bowtie output revealed a number of miRNAs

that had higher counts in comparison, despite setting alignment

parameters to be similar to BWA (see Figure 1B). The implemen-

tation of these two algorithms affects the handling of reads that

do not align perfectly. For example, Bowtie did not return poten-

tial alignments where the reference sequence is shorter than the

query sequence, whereas BWA returned all these possible align-

ments with equal scores. Because we only considered uniquely

aligned reads, this resulted in lower counts for these particular

miRNAs in the BWA output. Alignments performed using Bowtie

2 resulted in an even greater number of miRNAs with higher

counts; examination of the alignment output revealed that many

of these were attributed to the allowance of insertions and dele-

tions. Bowtie 2, which was developed for gapped alignment, was

included in our comparison to illustrate the consequences of se-

lecting an inappropriate aligner. Gapped alignment can increase

the mapping sensitivity [43], but was not appropriate for the task

at hand. We focused our comparison on general-purpose align-

ers; however, many more tools are available for sequence align-

ment, which were designed and optimized for specific purposes,

such as SOAPv2 for detecting and genotyping of single nucleotide

polymorphisms [25, 44]. Not all aligners are appropriate for the

task at hand, and we caution users of their specific choice. We

find BWA may be better suited for identifying all possible align-

ments when a perfect match does not exist for a given query

sequence.

Contrary to initial beliefs that miRNA-seq data will not re-

quire sophisticated normalization [45], we and others have

observed that simply adjusting miRNA counts to the sequenc-

ing depth is inadequate [17, 18]. Even when profiling replicates,

the distinct number of miRNAs identified in replicate samples

may differ because of the random sampling nature of the tech-

nology; normalizing to the library size ignores this. Further scal-

ing the data to a common reference sample (herein referred to

as total count scaling) introduces more variability by pushing all

samples toward the same distribution, especially for samples

with different sequencing depth. While downsampling a data

set to a common library size across all samples can remove

some of the variance introduced by the different read depths,

the increased accuracy provided by the deeper sequencing will

be sacrificed (Supplementary Table S2). In accordance to the re-

sults observed by Dillies et al., we support the use of TMM (and

UQ) for the normalization of miRNA count data. Garmire and

Subramaniam, on the other hand, advocated for the use of

quantile and Lowess normalization, while discouraging the use

of TMM. Because TMM was not applied properly in their original

publication, the authors reanalyzed their data with the correct

implementation [46, 47]. Despite an improvement in perform-

ance, the overall conclusions remained the same; their results

could be attributed to the combination of their choice of data

sets and evaluation metrics. Our overall comparison of the dif-

ferent combinations of alignment output and normalization

procedures suggested that UQ, TMM, DESeq, cyclic loess and

quantile normalization are highly similar (Figure 5B). However,

quantile and cyclic loess normalization may be too aggressive

by forcing the distribution of the samples to be the same

(Figure 2A), regardless of the presence of samples that may

have inherently different distributions. In addition, increased

variability was noted in the lower abundance miRNAs com-

pared with UQ and TMM normalized data.

To ensure comparability across different miRNA-seq studies,

a standardized data preprocessing pipeline should be estab-

lished. To this end, we have conducted the present study to

evaluate small RNA-seq data preprocessing procedures with the

end-goal of retrieving miRNA abundance profiles. The combin-

ations of different aligners and normalization methods were as-

sessed in terms of variance, bias and accuracy for the

differential expression analysis of miRNAs based on fold-

change estimates. Based on these evaluation criteria, we con-

clude that the alignment of sequencing reads and the subse-

quent normalization of the miRNA count data using BWA with

one mismatch across the entire read and UQ or TMM, respect-

ively, lead to more accurate results in downstream analyses.

We also note that the output from different aligners is not ne-

cessarily the same—a topic which has not been previously

explored for small RNA-seq data. Finally, we make available

data with spike-in controls that can be used for the future de-

velopment of methods for the preprocessing and analysis of

miRNA-seq data.

Supplementary data

Supplementary data are available online at http://bib.

oxfordjournals.org/.

Key Points

• In recent years, a number of tools have been made

available for the preprocessing of small RNA-seq data

to retrieve miRNA abundance profiles. Different meth-

ods will affect the outcome of downstream analyses.

Despite this, no standard pipeline has been

implemented.
• Previous comparative studies evaluating different nor-

malization procedures resulted in conflicting

conclusions.
• A spike-in dilution study was designed to evaluate the

effects of different aligners and normalization methods

with respect to the final miRNA count data distribution,

variance, bias and accuracy of differential expression

analysis.
• We recommend the use of BWA for alignment of small

RNA-seq data to recover miRNA abundance profiles, fol-

lowed by TMM or upper quartile scaling for normaliza-

tion before conducting any downstream analyses.
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