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Abstract
We propose a fully unsupervised network-based methodology for estimating 
Gaussian Mixture Models on financial time series by maximum likelihood using 
the Expectation-Maximization algorithm. Visibility graph-structured information 
of observed data is used to initialize the algorithm. The proposed methodology is 
applied to the US wholesale electricity market. We will demonstrate that encoding 
time series through Visibility Graphs allows us to capture the behavior of the time 
series and the nonlinear interactions between observations well. The results reveal 
that the proposed methodology outperforms more established approaches.

Keywords  Visibility graph · Markov transition field · Graph embedding · Graph 
machine learning · Topological data analysis

1  Introduction

Models based on complex networks have been extensively introduced in the lit-
erature to provide new insights into a wide range of natural and social phenomena 
(Vespignani 2018; Xie et  al. 2021; Laengle et  al. 2021). In particular, a pleth-
ora of network science-based methods have been published over the past decade 
to analyze the dynamic behavior of time series with the aim of understanding 

Carlo Mari and Cristiano Baldassari contributed equally to this work.

 *	 Cristiano Baldassari 
	 cristiano.baldassari@unich.it

	 Carlo Mari 
	 carlo.mari@unich.it

1	 Department of Economics, University of Chieti-Pescara, Viale Pindaro, 42, Pescara 65100, PE, 
Italy

2	 Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Via 
Luigi Polacchi, 11, Chieti 66100, CH, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-023-00460-4&domain=pdf


	 C. Mari, C. Baldassari 

1 3

   28   Page 2 of 23

their fine and granular structure (Newman 2003, 2010). Indeed, converting a time 
series into a network increases the quality of the analysis, leading to the identi-
fication of non-trivial topological characteristics (Yang and Yang 2008; da Fon-
toura Costa et al. 2005) and providing fresh perspectives and ideas for investigat-
ing the probabilistic structure of time series (Zou et al. 2019; Silva et al. 2021). 
In this regard, network-based methods can be very useful in calibrating realistic 
models of time series dynamics on market data such as Gaussian Mixture Models 
(GMMs) (Mari and Baldassari 2022). The estimation of GMMs can be performed 
by maximum likelihood by using the Expectation-Maximization (EM) algorithm 
(Dempster et al. 1977). However, the existence of several solutions that are locally 
optimal requires the choice of appropriate initialization values of the parameters 
to obtain accurate results (Hipp and Bauer 2006; Shireman et  al. 2017). Clus-
tering methods are typically used in the literature to solve the EM initialization 
problem. Techniques based on K-means (Steinley and Brusco 2011) and Random 
algorithms (Biernacki et al. 2003) have recently garnered interest. Both of these 
approaches require the exogenous setting of the number of mixture components 
and, due to the large number of local solutions, the estimate technique must be 
re-initialized several times before a solution can be found. No method can deter-
mine how many initializations are needed to fully explore the likelihood function 
(Shireman et al. 2017).

Recently, a fully unsupervised framework based on mapping the time series into 
a complex network (or graph) has been proposed in the literature to determine the 
ideal number of mixture model components and the vector of initial parameters 
with the aim of improving the efficiency of the EM algorithm (Mari and Baldassari 
2022). By using a Graph Approximation framework, hereinafter GA-framework, the 
suggested methodology effectively addresses the local-optima issue and provides 
reliable GMM parameter estimation.

Graph approximation techniques suffer from a loss of information from the 
observed time series that can affect the goodness of the estimation procedure. To 
overcome this difficulty, we propose a novel approach in this paper based on a dif-
ferent mapping scheme that can significantly reduce information loss and improve 
the estimation procedure. It is based on graph embedding techniques (Perozzi et al. 
2014), and for we will therefore call it the Graph Embedding framework, hereinafter 
GE-framework. The relevance of the GE-framework over the GA-framework is due 
to the embedding techniques that enables us to work directly on a not reduced graph. 
In fact, graph embedding techniques convert the graph into a multidimensional 
Euclidean space using a data-driven approach and can significantly reduce informa-
tion loss while maintaining the structural features of the graph (Cai et al. 2021). The 
time series encoding is performed using Visibility Graphs (Silva et al. 2021). These 
encoding techniques are based on the traditional visibility algorithms of computa-
tional geometry (Ghosh 2007), and allow univariate time series to be mapped into 
complex networks, thus focusing on the underlying structural features of the time 
series (Lacasa et al. 2008). We found them to be particularly suitable for identify-
ing relevant features of the observed temporal dynamics. The proper combination of 
unsupervised techniques used to perform the initialization of the EM algorithm in 
the GE-framework is the main innovative aspect of the proposed methodology.
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The performance of the GA and GE frameworks will be compared through GMM 
estimation on the time series of financial log-returns, which are calculated as the dif-
ference in log-prices between two subsequent observations. In fact, log-return time 
series display better statistical behavior than market price time series that are gener-
ally non-stationary (Voit 2013). In particular, we tested both the GA and GE frame-
works in the US wholesale electricity market by analyzing the behavior of daily 
log-returns observed at Palo Verde (Southwest area), PJM (Northeast region), SP15 
(Southern California) and Nepool (New England).

Due to its conservative pipeline (less information loss in the Graph Compression 
phase), superior data-driven and unsupervised Graph Machine Learning approaches, 
the GE-framework appears to be a powerful and flexible tool for analyzing the 
dynamics of time series. Although the GA-framework is able to outperform the 
K-means and Random-based initialization methods (Mari and Baldassari 2022), in 
this paper we will demonstrate that the GE-framework produces even better results. 
In fact, we will prove that the best-fitting model in the GE-framework is several 
times (from 2.14 for SP15 to 250.89 for PJM) more likely to be the best model than 
the best-fitting model in the GA-framework, and that, compared with the K-means 
approach, the results are far better in each market under consideration.

The rest of the present paper is structured as follows. The GE-framework is 
detailed in Sect.  2. Section 3 focuses on the empirical analysis. Some concluding 
remarks are provided in Sect. 4. The code needed to reproduce our results can be 
accessed on Github at https://​bit.​ly/​3Hz1D​ky.

2 � The GE‑framework

This section illustrates the Graph Machine Learning approach proposed in this paper 
to estimate GMMs by maximum likelihood by outlining the methods involved in the 
GE-framework in detail and highlighting the novelty of our study.

2.1 � An overview of the methodology

Figure 1 shows a unified diagram of the entire methodology.
Three sections can be identified in the workflow: Input, Distribution Estimation 

and Output. The input consists of a preprocessed time series of log-prices. Very 

Fig. 1   End-to-end workflow

https://bit.ly/3Hz1Dky
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often, in fact, time series feature irregular sampling (lack of daily data points) as 
well as trend and seasonality. For these reasons, preprocessing, which consists of 
a gap-filling procedure and a seasonal-trend removal, is carried out first. Then, 
the preprocessed log-price time series enters the initialization blocks (represented 
in red in Fig. 1). Through a three-step sequence, namely Graph Encoding, Graph 
Compression and Graph Partitioning, the number of GMM components and the 
vector of initialization parameters are determined in a completely unsupervised 
manner. First, the graph associated with the preprocessed log-price time series is 
created in the graph encoding step; then, the complexity of the graph is appropri-
ately reduced by compressing the graph in the graph compression step; finally the 
log-price communities and their associated log-return communities are discov-
ered in the graph partitioning step. Thus, the EM algorithm can be the initialized 
in a completely unsupervised way. In fact, the number of GMM components is set 
equal to the number of discovered communities, and the initializing parameters of 
the EM algorithm can be computed by log-return community membership (Mari 
and Baldassari 2022). The GMM parameters are estimated in the output section.

The main innovative aspect of the proposed approach consists in the proper 
combination of unsupervised techniques used to perform the initialization of 
the EM algorithm. First, the graph encoding step is performed using Visibil-
ity Graphs (Silva et  al. 2021). Second, the graph compression is performed by 
using graph embedding techniques belonging to the four classes of the Karate 
Club framework (Rozemberczki et  al. 2020). We used 12 different embedding 
techniques to identify the one that best fits each market. Third, the community 
detection task is performed in the Graph Partitioning step directly on the net-
work embedding, using a clustering approach based on Topological Data Analy-
sis (TDA) (Skrlj et al. 2020). Embedding techniques and TDA methods improve 
the accuracy and efficiency of feature extraction (Cai et al. 2021).

2.2 � Visibility graphs

Visibility graph mappings have been proposed in the literature as transformations 
from time series to complex networks based on the conventional visibility tech-
niques of computational geometry. In the empirical analysis, we will use Natural 
Visibility algorithms (Lacasa et  al. 2008) and Horizontal Visibility algorithms 
(Luque et al. 2009). These algorithms are easy to use, computationally fast and 
parameter-free.

The concept behind the Natural Visibility Graph (NVG) is that each observation 
in the time series is associated with a node in the graph and represented as a vertical 
bar with a height equal to the numerical value of the observation. The nodes in the 
graph are serially ordered since each one corresponds to a time stamp t of the time 
series. Two nodes are connected if a line of visibility that is not interrupted by the 
bar of a node between the two exists between the corresponding data bars. Stated 
mathematically, two nodes, vi and vj , are connected (have visibility) if any additional 
observation xk with i < k < j satisfies the following NVG algorithm,
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The NVG algorithm is simple to use and has a quadratic computational complexity 
O(n2) , making it rather slow for very long time series. However, a more efficient 
algorithm based on the divide et conquer technique (Lanet  al. 2015) can be used 
and, in this case, the computational complexity is reduced to O(n log n) . Since vis-
ibility graphs are always undirected, and each node vi can see at least two of its 
neighbors, namely vi−1 and vi+1 , they are always connected. NVGs take on many of 
the structural characteristics of time series and, for this reason, seem particularly 
suited to our study.

A simpler technique, known as the Horizontal Visibility Graph (HVG), has 
been presented in the literature to reduce the computing complexity associated 
with NVGs. The difference between the construction of NVGs and HVGs is that 
in the latter case the visibility lines are only horizontal. Stated mathematically, 
two nodes vi and vj are connected if the following condition is met,

for all xk such that i < k < j . In terms of computational complexity, the building of 
HVGs has a computational complexity of O(n log n) (Yela et al. 2020). For a specific 
time series, the HVG is always a subgraph of the NVG, but the converse is not true. 
As a result, some quantitative information is lost in HVGs when compared to NVGs.

2.3 � Graph embedding

Network embedding methods have made significant contributions to the use of 
Machine Learning (ML) in network science (Cui et  al. 2018). Based on unsu-
pervised feature extraction techniques from graph data, these methods yield 
information that can be used as input for link prediction, node and graph classi-
fication, and community detection. Therefore, they seem to be particularly suit-
able for our purposes. In particular, node embeddings map graph vertices to vec-
tors in a Euclidean space, and the application of the Euclidean format, instead 
of the native graph, facilitates the use of conventional ML tools. In this paper 
we will adopt graph embedding methods belonging to the four classes of the 
Karate Club framework (Rozemberczki et  al. 2020). To ensure generality and 
completeness, we will use one method chosen from each class: (i) Diff2Vec as 
a neighborhood preserving embedding; (ii) GraphWave as a structural embed-
ding; (iii) Attributed Social Network Embedding (ASNE); (iv) Network Embed-
ding Update (NEU) as a meta-embedding method. While neighborhood preserv-
ing embeddings preserve the closeness of graph nodes, structural embeddings 
preserve the structural roles of nodes in the embedding space, and attributed 
embeddings maintain the neighborhood, the structure and the generic attribute 
similarity of nodes. Meta-embeddings are designed to produce embeddings with 
a higher representation quality.

(1)xk < xj +
j − k

j − i
(xi − xj).

(2)xk < xi, xj,
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2.4 � ToMATo clustering

Since the graph embedding step generates a high dimensional Euclidean representa-
tion of the graph, we chose a TDA-based approach, which is an emerging field of 
research, with the goal of providing mathematical and algorithmic tools for under-
standing the topological and geometric structure of data, that is particularly suitable 
for high-dimensional data (Zomorodian and Carlsson 2005). The community dis-
covery process is performed directly on the graph embedding using the Topological 
Mode Analysis Tool (ToMATo) (Skrlj et al. 2020), an unsupervised TDA tool that 
allows us to identify clusters that are stable under small perturbations of the input 
(Chazal et al. 2013).

2.5 � The GMM estimation method

Consider a possibly preprocessed log-price time series {xt}Nt=1 and its log-return 
transform {rt}N−1t=1

 , where

Let us suppose that the values, ri , i = 1, 2,⋯ ,N − 1 , are extracted from a sequence 
of independent and identically distributed (iid) random variables with a probability 
density p(x). We assume that p(x) is a finite mixture distribution with C components,

In Eq. (4), zi = {zi1, zi2 ⋯ , ziC} with i = 1, 2,⋯ ,N − 1 , is a vector of C unobserv-
able latent binary random variables that are mutually exclusive and exhaustive, i.e., 
one and only one of the zic is equal to 1, while the others are equal to 0. The vector 
zi plays the role of an indicator random variable representing the identity of the mix-
ture component responsible for the generation of the outcome ri ; pc(ri ∣ zic = 1, �c) 
denotes the density distributions of the mixture components with parameters �c ; 
finally, �1, �2,⋯ , �C are the mixture weights, i.e., positive numbers such that

representing the probability that the value xi was generated by the compo-
nent c. The complete set of the mixture model parameters is denoted by 
Θ = {�1,⋯ , �C, �1,⋯ , �C} . In the case of univariate Gaussian mixture models, the 
components of the model are described by univariate Gaussian densities,

(3)ri = xi+1 − xi, i = 1, 2,⋯ ,N − 1.

(4)p(ri ∣ Θ) =

C∑

c=1

�cpc(ri ∣ zic = 1, �c).

(5)
C∑

c=1

�c = 1,

(6)pc(r ∣ �c) =
1

�c

√
2�

exp

�
−(r − �c)

2

2�2
c

�
,
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with parameters �c = {�c, �
2
c
} denoting, respectively, the mean and the variance of 

the single component distribution.
Mixture models can be efficiently estimated by maximum likelihood using the 

EM algorithm (Dempster et al. 1977). EM is an iterative procedure that begins with 
an initial estimate of parameters Θ = Θ0 and then iteratively updates Θ until conver-
gence is achieved (Smyth 2017).

The initial parameter vector, Θ0 , and the number of mixture components, C, are 
determined by performing the various processes involved in the three initialization 
blocks depicted in Fig. 1. The specifications of the methods used in the three steps, 
namely Graph Encoding, Graph Compression and Graph Partitioning, are depicted 
in Fig. 2 for both the GA and GE frameworks.

In the GA-framework (Mari and Baldassari 2022) the preprocessed log-price time 
series is encoded into a Quantile Graph. The graph encoding is carried out through 
the application of a Markov Transition Field (MTF) used as adjacency matrix (Cam-
panharo et  al. 2011). Then, the graph undergoes a compression phase through a 
coarsening process. The purpose of the graph coarsening is to find a smaller graph 
that well approximates the graph. In our case, the coarsening is performed by reduc-
ing the size of the MTF matrix averaging on its elements. The log-return community 
detection in the graph partitioning task is then performed by applying the Louvain 
method to the coarsened graph (Blondel et  al. 2008). A comparative analysis of 
community detection algorithms reveals that, taking both accuracy and computa-
tional time into account, the Louvain algorithm outperforms other viable alterna-
tives (Lancichinetti and Fortunato 2009). In general, communities can be classified 
as overlapping or non-overlapping, depending on whether a node can belong to sev-
eral communities or only one. We adopted the latter option because the Louvain 
method for community detection is a non-overlapping method, which means that 
each node in the network can only belong to one community. In the Louvain algo-
rithm, nodes are iteratively assigned to communities based on a modularity measure 
that indicates the quality of community structure in a network. The algorithm aims 
to maximize the modularity by moving nodes between communities until no further 
improvement can be achieved.

We recall that in the GE-framework the preprocessed log-price time series is 
encoded into a visibility graph. Then, the graph undergoes a compression phase 
through an embedding process. Graph embedding is an unsupervised Graph 

Fig. 2   The initialization blocks
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Machine Learning technique that computes a representation Euclidean vector for 
each node in a graph. Community detection is performed through clustering tech-
niques based on TDA applied to the embedded multi-dimensional Euclidean space. 
For comparative purposes, the non-overlapping communities option was also used 
in the GE-framework.

In both frameworks, the partitioning step serves as a feature extraction procedure 
for the distribution estimation to automatically generate the number of mixture com-
ponents, C, and the initialization parameter vector, Θ0 . In fact, since each log-return 
value, ri = xi+1 − xi , can be uniquely associated to the value xi , the detected com-
munities can also be viewed as log-return communities. The number of the GMM 
components, C, is set equal to the number of the detected communities, and the 
initialization parameters that are contained in the vector Θ0 , are computed through 
community membership by using the following set of equations,

where wic = 1 if the observation ri belongs to the cluster c, wic = 0 otherwise, and 
Nc =

∑N

i=1
wi represents the effective number of data points assigned to component 

c. We notice that both the mean and the variance are computed similarly to how 
standard empirical average and variance are computed, but with a weight wic.

Once initialized, the EM algorithm first computes the parameter values that maxi-
mizes the log-likelihood and determines the new membership weights accordingly, 
thus providing an overlay of the initial communities. The iterative procedure contin-
ues until convergence is achieved.

3 � The experiment

In this section, we perform an experiment to evaluate the performance of GA and 
GE frameworks on US wholesale electricity prices. Our data collection consists of 
daily prices observed during the time interval from January 1, 2017 to December 
31, 2021. Time series data can be freely downloaded from www.eia.gov/electricity/
wholesale. Observed time series are illustrated in Fig. 3.

Volatility and extreme unpredictability characterize market price movements, 
which are frequently accompanied by sharp spikes and jumps generated by changes 
in the supply–demand balance. All these time series show irregular sampling (as a 
result of weekends, holidays and other missing data due to specific market reasons) 

(7)�0,c =
Nc

N
,

(8)�0,c =
1

Nc

N∑

i=1

wicri,

(9)�2
0,c

=
1

Nc

N∑

i=1

wic(ri − �0,c)
2,
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as well as trend and seasonality. Preprocessing of the data was conducted first to fill 
in gaps in the time series and remove any trends and seasonality over time.

3.1 � Data preprocessing

Let us denote with {yob
t
} the time series of daily prices defined as a function of the 

incomplete observed raw time base {t} , and {xob
t
} its natural logarithm transforma-

tion, i.e., xob
t

= log yob
t

 . The time series {xob
t
} is sampled irregularly (not evenly 

throughout the time interval) since weekends, holidays, and other sporadic missing 
days are not included. The imputation of missing data (gap filling) can convey 
important knowledge (Owen 2007), thus counteracting the phenomenon known as 
informative missingness. In the presence of missing data, different time periods may 
have different information content. In fact, even when the market is closed, new 
information that can influence price dynamics may emerge (French 1980; Mantegna 
, Stanley 1999).

The first step, therefore, involved the gap filling of the time series. To do this, we 
employed a complete daily grid {t} and an imputation technique called missForest 
(Stekhoven and Bühlmann 2011), a ML algorithm for data imputation that is com-
pletely agnostic about data distribution. MissForest is used to compute a value for 
each missing point. In this way, following the same procedure proposed in (Mari , 
Baldassari 2021), we extended the raw time series {xob

t
} to a complete daily time 

base {t},

(10){xob
t
}

F

��������→ {x
f

t },

Fig. 3   Time series observed in the time interval from January 1, 2017 to December 31, 2021. Data are 
expressed in nominal dollars per megawatt-hour
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where F  is the application that transforms {t} in {t} and computes missing values 
using the missForest algorithm to fill the daily-complete grid, mapping {xob

t
} to {xft }.

In the second step, we looked for temporal trend and seasonality, hereinafter 
trend, that must be eliminated in order to reveal the stochastic process driving mar-
ket dynamics. The Locally Weighted Estimated Scatterplot Smoothing (LOWESS) 
technique was used to perform this task (Cleveland 1979; Cleveland and Devlin 
1988). LOWESS is a versatile method for removing the trend by fitting basic poly-
nomial models to restricted portions of data. The key benefit of LOWESS over other 
methods is that it does not need the specification of a global function or the assump-
tion that the data must conform to a certain distribution shape (Dagum , Biancon-
cini 2016). Figure 4 shows detrended log-price time series, {xt} , and the trend, {xtr

t
} , 

which is superimposed for each market under investigation.
Once detected, the trend can be eliminated from the filled time series, thus 

obtaining,

where we assumed, without loss of generality, that the complete time grid {t} is 
represented by the first N natural numbers, {1, 2,⋯ ,N} . Then, log-returns are com-
puted as the difference between two successive daily log-prices, i.e.,

Figure  5 depicts the log-return time series, {rt} , for each market under investiga-
tion. Table 1 depicts the descriptive statistics of log-returns. In all four investigated 
markets, empirical log-return distributions exhibit heavy tails, as indicated by the 
high values of the kurtosis. The occurrence of jumps and spikes in electricity prices 
significantly increases the value of the fourth central moment of empirical log-return 

(11)xi = x
f

i
− xtr

i
, i = 1, 2,⋯ ,N,

(12)ri = xi+1 − xi, i = 1, 2,⋯ ,N − 1.

Fig. 4   Detrended log-price time series x
t
 (in green) and trends xtr

t
 (in red)



1 3

Optimization of mixture models on time series networks encoded… Page 11 of 23     28 

distributions. From this perspective, it is crucial for a given probabilistic model to 
capture the first four central moments of the empirical distribution of log-returns, 
especially for financial applications to account for extreme events (Geman 2005; 
Geman and Roncoroni 2006).

3.2 � Networks visualization

In this section, we constructed the visuals for the time series networks that were 
created in this analysis. It is very interesting to compare the two types of networks, 
NVGs and HVGs, described in Sect. 2. In particular, we used two distinct kinds of 
representations, namely the geometric representation and the Kamada–Kawai rep-
resentation (Kamada and Kawai 1989) for both the NVG and HVG methods. In this 
regard, we note that graphs have an infinite number of possible representations, but 
the informative value of the graph depends on the ease with which it can be read 
(Di Battista et al. 1994). Figures 6 and 7 show NVGs and HVGs, respectively, in the 
geometric representation for the time series observed in the markets under inves-
tigation. In this geometric representation, the nodes are depicted at the same posi-
tions they occupy in the time series. The adopted geometric visibility criterion is 

Fig. 5   Log-return time series

Table 1   Descriptive statistics of 
log-returns

Mean SD Skew Kurt

PALOVERDE 1.6e−04 0.23 − 0.38 19.84
NEPOOL − 1.6e−04 0.17 0.51 9.22
SP15 6.9e−05 0.19 0.29 12.84
PJM − 4.2e−04 0.15 − 0.20 16.02
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self-evident. In fact, the nodes are connected by straight lines drawn according to 
Eq. (1) in Fig. 6 and according to Eq. (2) in Fig. 7.

Figures  8 and 9 illustrate NVGs and HVGs, respectively, in the Kam-
ada–Kawai representation. The Kamada–Kawai representation provides a graph 
force-directed layout algorithm that positions the nodes of a graph in two-
dimensional space, based on an optimization criterion that minimizes the total 
energy of the system (Kamada and Kawai 1989). It offers an effective and intu-
itive way to visualize complex graphs, and can help in the interpretation and 

Fig. 6   NVGs: the geometric representation

Fig. 7   HVGs: the geometric representation
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understanding of graph structure and relationships between nodes. The method 
takes the relative distances between nodes and the edges that connect them into 
account, resulting in intuitive and visually appealing graph layouts that better 
attempt to highlight the initial communities that are identified.

Fig. 8   NVGs: the Kamada–Kawai representation

Fig. 9   HVGs: The Kamada–Kawai representation
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3.3 � Distribution estimation

In this section we discuss the EM-based maximum likelihood estimation of GMMs 
on market log-returns time series. The initialization of the EM algorithm will be 
performed using both the GA and GE frameworks. Figure  10 shows a magnified 
version of the Distribution Estimation section and summarizes the calibration pro-
cedure. As discussed in the previous section, the initialization blocks produce both 
the number of the model component, C, and the initial parameter set, Θ0 . Indeed, the 
number of components is set equal to the number of the detected communities, and 
the initialization parameters are computed through community membership accord-
ing to Eqs. (7)–(9). Then, the EM algorithm is used to estimate the GMM parameter 
set, Θ.

In the GA-framework, to generate the MTF adjacency matrix we need to quantize 
the time series in order to define the dynamic states. In our analysis, both Quantile 
binning and Normal binning will be used (Mari and Baldassari 2022). We perform 
the model estimation for each couple of values (Q,  S) defined on a suitable grid, 
where Q is the number of bins, i.e., the dynamic states, and S is the dimension of the 
MTF coarsened adjacency matrix. The number of bins, Q, is made to vary from 2 to 
100 in increments of 2 for both Quantile and Normal binning strategies; the param-
eter S is made to vary from 5 to 400 in increments of 5. In the GE-framework, the 
parameters of the various embedding methods that are employed in this study are 
the default parameters of the Karate Club framework. Moreover, the ToMATo clus-
tering techniques needs to set three parameters, namely the neighborhood informa-
tion of the point cloud, the density estimator, and the merging parameter. We used 
a ToMATo cluster function contained in the Python library tomaster1 which needs 
only the neighborhood information as input and automatically calculates the other 
two parameters. Since ToMATo relies heavily on neighborhood information, a pop-
ular choice to model a neighborhood seems to be the K-nearest neighbors algorithm. 
As well documented in the literature, this ML algorithm performs well, recover-
ing the correct clusters under an appropriate choice of the parameter K (Chazal 
et  al. 2013). For the GE-framework the model estimation is, therefore, performed 
by exploring a suitable one-dimensional grid for the parameter K. In this grid, the 
parameter K varies from 2 to 100 in increments of 1.

Fig. 10   The distribution estimation section

1  tomaster: Topological Mode Analysis on Steroids. Github repository at https://​github.​com/​louis​abrah​
am/​tomas​ter.

https://github.com/louisabraham/tomaster.
https://github.com/louisabraham/tomaster.
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The embedding method, during the exploration of the grid, always operates on the 
complete graph without using an approximate form, as opposed to the coarsening 
method, which makes use of a reduced adjacency matrix of size S. This is one of the 
most important differences between the GA and GE frameworks. Table 2 reports the 
dimension of the Euclidean space for each embedding method. This parameter was 
chosen based on the default parameter provided by the library. Moreover, Table 2 
shows the log-return time series in correspondence of two well defined embedding 
methods, namely the ASNE and NEU_ASNE methods.2 As we will see in the next 
section, this feature can greatly improve the accuracy of the estimation procedure.

3.4 � Results

This section outlines and discusses the empirical findings of the experiment. More 
specifically, we will compare the outcomes of six embedding methods for the GE-
framework (see Table 2) and one coarsening method for the GA-framework. Due to 
the fact that the GA-framework includes two different binning strategies (Quantile 
and Normal), and the GE-framework also includes two different strategies (Natu-
ral and Horizontal), the comparison will involve 14 outcomes corresponding to 14 
different initialization techniques. For comparative purposes, the estimation result 
obtained through a more traditional K-means-based initialization technique is also 
considered.

There exist information criteria for assessing the relative quality of statistical 
models, such as the Bayesian Information Criterion (BIC), and the Akaike Informa-
tion Criterion (AIC) (Kuha 2004). Both the BIC and AIC criteria attempt to solve 
the model selection problem by introducing a penalty term for the number of param-
eters to account for the trade-off between the quality of the fit and the simplicity of 
the model. The penalty discourages issues related to overfitting because increasing 
the number of parameters in the model always improves the quality of the fit. AIC 
and BIC are expressed in terms of log-likelihood in the following way,

Table 2   Graph embedding 
experimental setup

Framework Embedding method Additional 
attributes

Embed-
ding 
dimension

GE Diff2Vec – 128
GE GraphWave – 400
GE ASNE {r

t
} 128

GE NEU_Diff2Vec – 128
GE NEU_GraphWave – 400
GE NEU_ASNE {r

t
} 128

2  We extended the applicability of the NEU meta-embedding to the ASNE approach as well, as addi-
tional attributes. The method is contained in our repository https://​bit.​ly/​3zFtb​QY.

https://bit.ly/3zFtbQY
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where L is the likelihood, � is the number of free parameters and N is the sam-
ple size. According to Eqs.  (4)–(6), the number of free parameters is given by 
� = 3C − 1 . Lower AIC and BIC values indicate preferable statistical models. In 
most cases, the penalty term is larger in the BIC than in AIC criterion, because the 
penalty is 2� for AIC, and � log(N) for BIC. Therefore, BIC generally results in a 
smaller choice for C than AIC (Steele , Raftery 2010). For these reasons, we will 
apply the BIC criterion.

As a first result, we emphasize that in all four markets considered the most 
suitable model according to the BIC criterion is a three-component model in both 
the GA and GE frameworks. Tables 3, 4, 5, and 6 illustrate this result. Models 
are ordered by ascending BIC value, so that the first row of every table reports 
the best model according to the BIC criterion (the model with the minimum BIC 
value). For each model, the kurtosis absolute percentage error, �4 , is also reported 
in order to measure the model ability to capture the heavy tail phenomenon as 
well. It is defined by

where �m denotes the model kurtosis and �o is the empirical kurtosis. We note that 
in the GMMs �m can be computed exactly. In addition, each table shows the binning 
strategy, which may be quantile (q) or normal (n) for the GA-framework, natural (N) 

(13)AIC = −2 log(L) + 2�,

(14)BIC = −2 log(L) + � log(N),

(15)�4 =
|�m − �o|

�o
,

Table 3   Paloverde

Model Strategy C Grid parameters BIC �
4
(%)

Diff2Vec H 3 6 − 1244.98 35.53
Diff2Vec N 3 29 − 1243.42 39.80
NEU_Diff2Vec N 3 8 − 1243.33 34.78
GA-framework n 3 (12, 265) − 1241.43 44.66
GA-framework q 3 (6, 395) − 1241.23 44.17
NEU_ASNE H 3 50 − 1240.20 33.93
ASNE H 3 42 − 1239.12 47.36
K-means 3 − 1236.74 36.24
ASNE H 3 45 − 1236.03 39.24
NEU_ASNE N 3 41 − 1235.94 43.64
NEU_Diff2Vec H 3 11 − 1235.52 38.56
NEU_GraphWave N 3 8 − 1233.36 41.45
NEU_GraphWave H 3 3 − 1229.43 50.60
GraphWave H 5 87 − 1202.32 33.69
GraphWave N 9 95 − 1088.18 28.62
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or horizontal (H) for the GE-framework, and the best-fit model, along with the cor-
responding grid parameters.

The GE-framework outperforms the GA-framework in all the markets under 
investigation. Lower BIC values indicate better learning features. In each market, 
there is always an embedding method that produces better results than the GA-
framework. In particular, we note that ASNE and Diff2Vec methods and their 

Table 4   Nepool

Model Strategy C Grid parameters BIC �
4
(%)

ASNE N 3 95 − 1895.76 6.95
NEU_Diff2Vec H 3 30 − 1895.15 1.22
NEU_GraphWave H 3 92 − 1894.46 11.31
NEU_Diff2Vec N 3 44 − 1892.56 7.37
GA-framework n 3 (22, 95) − 1891.19 16.15
GA-framework q 3 (26, 175) − 1889.73 18.91
NEU_ASNE H 3 54 − 1889.82 19.55
Diff2Vec N 3 20 − 1878.95 16.92
ASNE H 3 24 − 1874.59 20.97
Diff2Vec H 3 4 − 1874.45 8.77
NEU_ASNE N 3 43 − 1874.26 22.47
K-means 2 − 1871.05 33.28
NEU_GraphWave N 3 10 − 1856.92 18.55
GraphWave H 5 89 − 1848.39 14.01
GraphWave N 10 83 − 1727.04 20.69

Table 5   SP15

Model Strategy C Grid parameters BIC �
4
(%)

Diff2Vec H 3 95 − 1669.10 19.36
Diff2Vec N 3 22 − 1669.04 20.12
GA-framework q 3 (34, 100) − 1667.58 22.70
GraphWave H 3 97 − 1666.51 25.26
GraphWave N 3 9 − 1666.46 15.26
ASNE H 3 40 − 1666.21 25.24
GA-framework n 3 (16, 105) − 1665.84 21.91
ASNE N 3 100 − 1663.87 24.47
NEU_Diff2Vec H 3 39 − 1661.79 10.78
NEU_Diff2Vec N 3 10 − 1657.55 20.32
K-means 4 − 1638.10 3.31
NEU_GraphWave H 4 6 − 1629.14 35.17
NEU_GraphWave N 3 5 − 1626.38 35.75
NEU_ASNE H 5 89 − 1622.14 19.87
NEU_ASNE N 8 94 − 1559.93 4.78
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meta-embeddings represent the best choice in all four power markets. The Dif-
f2Vec method is the best choice in the Palo Verde and SP15 markets. The ASNE 
approach, which makes use of extra information carried on by log-return time series 
as an additional attribute, is the best choice in the Nepool market. Finally, we remark 
that the NEU approach performs very well, matching several rows in Table  8. In 
particular, its combination with the ASNE embedding method represents the best 
choice in the PJM market. Due to less information loss in the Graph Compression 
phase, superior data-driven and unsupervised Graph Machine Learning approaches 
and reduced computational complexity, the GE-framework seems to be a flexible 
and powerful tool for understanding the complex, highly nonlinear behavior of elec-
tricity market prices. Moreover, it requires less CPU time. In fact, the wall-clock 
time on the four markets amounted to about 120 h for the GA-framework and about 
30  min for the GE-framework. This difference is primarily attributed to the opti-
mization methods used in each framework. The GA-framework involves a two-
parameter grid optimization process, whereas the GE-framework employs a simpler 
one-parameter optimization process. Additionally, the Louvain algorithm in the GA-
framework requires a longer processing time compared to the GE-framework, which 
is designed to be more streamlined (a VM from Colab Pro was used with 2 cores 
Intel(R) Xeon(R) CPU 2.20GHz, RAM 13 GB). However, it is important to note that 
the GA-framework ranks in the top 5 of the 14 methods discussed in this paper in 
all four markets, despite using only one compression technique (graph coarsening). 
For comparison purposes, the estimation results obtained using a more traditional 
K-means-based initialization technique is also shown in Tables  3-6. As expected, 
our methodology outperforms this more conventional approach. In fact, for each 
market the BIC value obtained through this initialization technique is greater than 
the minimum BIC value obtained in both the GA and GE frameworks. The BIC 

Table 6   PJM

Model Strategy C Grid parameters BIC �
4
(%)

NEU_ASNE N 3 28 − 2378.67 21.23
Diff2Vec N 3 48 − 2374.49 18.43
NEU_Diff2Vec H 3 67 − 2373.62 34.67
NEU_GraphWave N 3 8 − 2372.28 29.10
GA-framework n 3 (14, 255) − 2367.62 3.71
GA-framework q 3 (36, 385) − 2361.95 43.88
Diff2Vec H 3 95 − 2363.07 30.97
ASNE N 3 14 − 2360.05 44.31
NEU_Diff2Vec N 3 25 − 2358.55 29.22
ASNE H 3 22 − 2345.36 51.48
NEU_ASNE H 3 12 − 2344.04 50.03
K-means 4 − 2337.67 8.05
NEU_GraphWave H 2 4 − 2319.21 47.50
GraphWave H 5 93 − 2292.88 31.83
GraphWave N 10 70 − 2204.89 29.54
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weights obtained by comparing the best performing models of the GE-framework, 
the GA-framework and the K-means approach are shown in Table 7.

The BIC weights are computed according to

where

with BICmin is the minimum BIC value (Wagenmakers and Farrell 2004). The 
weight wi can be interpreted as the probability that the i-th model is the best model 
in terms of Kullback-Leibler discrepancy (Anderson , Burnham 2004). The weight 
ratio wi∕wj is calculated between the two models with the highest probability. From 
Table 7 it can be inferred that the best-fitting model in the GE-framework is sev-
eral times (from 2.14 for SP15 to 250.89 for PJM) more likely to be the best model 
than the best-fitting model in the GA-framework. The weight ratios between the best 
GE-framework model and the best K-means model are much higher for each market 
under consideration. The same line of reasoning proves that the GA-framework also 
far outperforms the K-means approach.

Finally, Table  8 shows the models of both GA and GE frameworks with three 
Gaussian components that minimize the value of the absolute percent error of kur-
tosis, �4.

Overall, the methodology proposed for both the GE and GA frameworks, in addi-
tion to showing a high degree of learning as highlighted by the BIC values, allows 
for remarkable replication of the first four moments of the empirical distribution, as 

(16)wi =
exp (−0.5Δi)

∑3

k=1
exp (−0.5Δi)

i = 1, 2, 3,

(17)Δi = BICi − BICmin,

Table 7   BIC weights and weight 
ratios

Method BIC Weights Weight ratios

PALOVERDE
GE-framework − 1244.98 0.8434 5.90
GA-framework − 1241.43 0.1429
K-means − 1236.74 0.0137
NEPOOL
GE-framework − 1895.76 0.9076 9.83
GA-framework − 1891.19 0.0924
K-means − 1871.05 3.9e−06
SP15
GE-framework − 1669.10 0.6814 2.14
GA-framework − 1667.58 0.3186
K-means − 1638.10 1.3e−07
PJM
GE-framework − 2378.67 0.9960 250.89
GA-framework − 2367.62 0.0040
K-means − 2337.67 1.2e−09
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can be directly verified by comparing the model results with the empirical results 
reported in Table 1.

4 � Concluding remarks

Based on Graph Machine Learning techniques, we provided a new methodology for 
estimating Gaussian mixture models on financial time series by maximum-likeli-
hood using the EM algorithm. We conducted an experiment on US electricity mar-
ket price time series by employing two different schemes of analysis, namely the 
GA-framework and the GE-framework. The graph encoding is performed by using 
quantile graphs with a Markov Transition Field as the adjacency matrix in the GA-
framework and visibility graphs in the GE-framework.

The electricity market price structure is a good example of a system that defies 
straightforward modeling. To take advantage of the graph-structured informa-
tion included in electricity market data, we used complex networks techniques that 
link time series and graphs. In the literature, the GA-framework has been shown 
to outperform more traditional initialization approaches such as K-means and ran-
dom techniques (Mari and Baldassari 2022). In this paper, we demonstrated that the 
GE-framework provides even better results. In fact, we showed that the best-fitting 
model in the GE-framework is several times (from 2.14 for SP15 to 250.89 for PJM) 
more likely to be the best model than the best-fitting model in the GA-framework. 
Compared with the GA-framework, the GE-framework, which uses data-driven 

Table 8   Three-component models with minimum �
4

Method Strategy Grid params BIC �
4
(%) Mean Standard

deviation
Skewness Kurtosis

PALOVERDE
NEU_Dif-

f2Vec
N 15 − 1216.97 14.71 1.6e−04 0.23 0.30 16.92

GA-frame-
work

n (6, 335) − 1212.52 2.38 1.6e−04 0.23 0.39 19.37

NEPOOL
NEU_Dif-

f2Vec
H 29 − 1894.97 0.18 − 1.6e−04 0.17 0.43 9.24

GA-frame-
work

q (12, 15) − 1886.26 1.53 − 1.6e−04 0.17 0.35 9.37

SP15
NEU_Dif-

f2Vec
N 20 − 1665.79 2.72 6.9e−05 0.19 0.06 13.19

GA-frame-
work

n (22, 345) − 1648.84 0.53 6.9e−05 0.19 0.03 12.91

PJM
ASNE H 14 − 2363.76 2.48 − 4.2e04 0.15 0.11 15.62
GA-frame-

work
q (12, 390) − 2362.55 0.15 − 4.2e−04 0.15 0.14 15.99



1 3

Optimization of mixture models on time series networks encoded… Page 21 of 23     28 

and unsupervised graph embedding methods along with TDA-based clustering, has 
a more conservative approach and therefore loses less information in the process. 
Moreover, it requires less CPU time.

The proposed approach allows for a high degree of generalization and flexibility 
and could enable the creation of a super framework adaptable, in principle, to any 
empirical situation. In fact, referring to Fig. 1, the super framework could accommo-
date the methods used in this study and admit new ones. The ability of its functional 
blocks to integrate a wide range of methods and techniques makes it particularly 
flexible to a wide range of empirical analyses. Within this super framework, both the 
GA-framework and the GE-framework can be considered as two different configura-
tions of a very flexible overall scheme. This topic will benefit from future investiga-
tion. In particular, our future research will focus on two main issues: (i) combining 
embedding and coarsening procedures in the graph compression block and testing 
the accuracy of the results; (ii) using initialization blocks as a self-supervised learn-
ing framework to discover communities and assign them to different dynamics.
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