
1SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreports

Optimization of Molecules via Deep
Reinforcement Learning
Zhenpeng Zhou 1,3, Steven Kearnes 2, Li Li2, Richard N. Zare1 & Patrick Riley 2

We present a framework, which we call Molecule Deep Q-Networks (MolDQN), for molecule
optimization by combining domain knowledge of chemistry and state-of-the-art reinforcement learning
techniques (double Q-learning and randomized value functions). We directly define modifications on
molecules, thereby ensuring 100% chemical validity. Further, we operate without pre-training on any
dataset to avoid possible bias from the choice of that set. MolDQN achieves comparable or better
performance against several other recently published algorithms for benchmark molecular optimization
tasks. However, we also argue that many of these tasks are not representative of real optimization
problems in drug discovery. Inspired by problems faced during medicinal chemistry lead optimization,
we extend our model with multi-objective reinforcement learning, which maximizes drug-likeness while
maintaining similarity to the original molecule. We further show the path through chemical space to
achieve optimization for a molecule to understand how the model works.

One fundamental goal in chemistry is to design new molecules with speci�c desired properties. �is is especially
important in material design or drug screening. Currently, this process is expensive in terms of time and cost: It
can take years and cost millions of dollars to �nd a new drug1. �e goal of this study is to partially automate this
process through reinforcement learning.

To appreciate our approach, it is necessary to review brie�y the previous works that employed machine
learning in molecule design. One prevalent strategy is to build a generative model, which maps a point in a
high-dimensional latent space to a molecule, and perform search or optimization in the latent space to �nd new
molecules. Gómez-Bombarelli et al.2, Blaschke et al.3, Segler et al.4, Lim et al.5, and Putin et al.6 utilized strings
as molecule representations to build a generator of SMILES7 strings, which is a linear string notation to describe
molecular structures. One of the most challenging goals in this design is to ensure the chemical validity of the
generated molecules. Kusner et al.8 and Dai et al.9 added grammar constraints to SMILES strings to improve
the chemical validity of the generated molecules. Researchers have also built models on graph representations
of molecules, which regards atoms as nodes and bonds as edges in an undirected graph. Li et al.10 and Li et al.11
described molecule generators that create graphs in a step-wise manner. De Cao & Kipf12 introduced MolGAN
for generating small molecular graphs. Jin et al.13 designed a two-step generation process in which a tree is �rst
constructed to represent the molecular sca�old and then expanded to a molecule. Although almost perfect on
generating valid molecules, these autoencoder-based models usually need to address the problem of optimiza-
tion. Most published work uses a separate Gaussian process model on the latent space for optimization. However,
because the latent space is o�en high dimensional and the objective functions de�ned on the latent space is usu-
ally non-convex, molecule property optimization on the latent space can be di�cult.

Another strategy is based on reinforcement learning, which is a sub-field of artificial intelligence.
Reinforcement learning studies the way to make decisions to achieve the highest reward. Olivecrona et al.14,
Guimaraes et al.15, Putin et al.16, and Popova et al.17 applied reinforcement learning techniques on top of a string
generator to generate the SMILES strings of molecules. �ey successfully generated molecules with given desira-
ble properties, but struggled with chemical validity. Recently, You et al.18 proposed a graph convolutional policy
network (GCPN) for generating graph representations of molecules with deep reinforcement learning, achieving
100% validity. However, all these methods require pre-training on a speci�c dataset. While pre-training makes it
easier to generate molecules similar to the given training set, the exploration ability is limited by the biases present
in the training data.

Here we introduce a new design for molecule optimization by combining chemistry domain knowledge and
reinforcement learning, which we call Molecule Deep Q-Networks (MolDQN). We formulate the modi�cation

1Department of Chemistry, Stanford University, Stanford, California, USA. 2Google Research Applied Science,
Mountain View, California, USA. 3Work done during an internship at Google Research Applied Science, Mountain View,
California, USA. Correspondence and requests for materials should be addressed to P.R. (email: pfr@google.com)

Received: 5 March 2019

Accepted: 10 July 2019

Published online: 24 July 2019

OPEN
There are amendments to this paper

https://doi.org/10.1038/s41598-019-47148-x
http://orcid.org/0000-0002-3282-9468
http://orcid.org/0000-0003-4579-4388
http://orcid.org/0000-0003-0797-0272
mailto:pfr@google.com
https://doi.org/10.1038/s41598-019-47148-x

2SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

of a molecule as a Markov decision process (MDP)19. By only allowing chemically valid actions, we ensure
that all the molecules generated are valid. We then employ the deep reinforcement learning technique of Deep
Q-Networks (DQN)20 to solve this MDP, using the desired properties as rewards. Instead of pre-training on a
dataset, our model learns from scratch. Additionally, with the introduction of multi-objective deep reinforcement
learning, our model is capable of performing multi-objective optimization.

Our contribution di�ers from previous work in three critical aspects:

 1. All the works presented above use policy gradient methods, while ours is based on value function learning.
Although policy gradient methods are applicable to a wider range of problems, they su�er from high vari-
ance when estimating the gradient21. In comparison, in applications where value function learning works,
it is usually more stable and sample e�cient20.

 2. Most, if not all, of the current algorithms rely on pre-training on some datasets. Although expert pre-train-
ing may lead to lower variance, this approach limits the search space and may miss the molecules which are
not in the dataset. In contrast, our method starts from scratch and learns from its own experience, which
can lead to better performance, i.e., discovering molecules with better properties.

 3. Our model is designed for multi-objective reinforcement learning, allowing users to decide the relative
importance of each objective. See 3.3 for more detail.

Methods
Molecule modification as a markov decision process. Intuitively, the modi�cation or optimization of
a molecule can be done in a step-wise fashion, where each step belongs to one of the following three categories:
(1) atom addition, (2) bond addition, and (3) bond removal. �e molecule generated is only dependent on the
molecule being changed and the modi�cation made. �erefore, the process of molecule optimization can be for-
mulated as a Markov decision process (MDP). We have several key di�erences from previous work that employed
MDP for molecule modi�cation18.

•	 We add an explicit limit on the number of steps. �is allows us to easily control how far away from a starting
molecule we can go. In vast chemical space, this is a very natural way to control the diversity of molecules
produced.

•	 We do not allow chemically invalid actions (violations of valence constraints). �ese actions are removed
from the action space entirely and are not even considered by our model.

•	 We allow atoms/bonds to be removed as well as added.
Formally, we have MDP P(, , { },)saS A R , where we de�ne each term in what follows:

•	  denotes the state space, in which each state ∈s is a tuple of m t(,). Here m is a valid molecule and t is the
number of steps taken. For the initial state, the molecule m can be a speci�c molecule or nothing, and =t 0.
We limit the maximum number of steps T that can be taken in this MDP. In other words, the set of terminal
states is de�ned as = | =s m t t T{ (,) }, which consists of the states whose step number reaches its maximum
value.

•	  denotes the action space, in which each action ∈a  is a valid modi�cation to a speci�c molecule m. Each
modi�cation belongs to one of the following three categories mentioned before:

 1. Atom addition. Firstly, we de�ne the set of  be the set of elements a molecule contains. We then
de�ne a valid action as adding (1) an atom in  and (2) a bond between the added atom and the
original molecule wherever possible (all valence-allowed bond orders are considered as separate
actions). For example, with the set of elements  = {C, O}, the atom addition action set of cyclohex-
ane contains the 4 actions shown in Fig. 1a. Note that hydrogens are considered implicitly, and all
atom additions are de�ned as replacements of implicit hydrogens.

 2. Bond addition. A bond addition action is performed between two atoms with free valence (not count-
ing implicit hydrogens). If there is no bond between those two atoms, actions between them consist
of adding a single, double, or triple bond if the valence allows this change. Additional actions increase
the bond order between those two atoms by one or two. In other words, the transitions include:

•	 No bond → {Single, Double, Triple} Bond.
•	 Single bond → {Double, Triple} Bond.

Figure 1. Valid actions on the state of cyclohexane. Modi�cations are shown in red. Invalid bond additions
which violate the heuristics explained in Section 2.1 are not shown.

https://doi.org/10.1038/s41598-019-47148-x

3SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

•	 Double bond → {Triple} Bond.

To generate molecules that are chemically more reasonable, we include several heuristics that incorporate
chemistry domain knowledge. First, in order to prevent generating molecules with high strain, we do not
allow bond formation between atoms that are in rings. In addition, we added an option that only allows
formation of rings with a speci�c number of atoms. Note that it is possible to get a 7-membered ring, even
when only rings with 3–6 atoms are allowed, by creating a bicyclic structure and then removing the bridg-
ing bond (Fig. S8). As an example, Fig. 1b shows the allowed bond addition actions for cyclohexane.

 3. Bond removal. We de�ne the valid bond removal action set as the actions that decrease the bond
order of an existing bond. �e transitions include:

•	 Triple bond → {Double, Single, No} Bond.
•	 Double bond → {Single, No} Bond.
•	 Single bond → {No} Bond.

Note that bonds are only completely removed if the resulting molecule has zero or one disconnected atom
(and in the latter case, the disconnected atom is removed as well). �erefore, no molecules having discon-
nected parts are created in this step.

In our design choice, we do not break an aromatic bond. However, it is still possible to break aromaticity. (See
the third molecule generated in Section 3.3, = .w 0 4; the removal of the extracyclic double bond from the original
molecule breaks aromaticity.) Besides, an aromatic system can still be created in a stepwise way by adding single
and double bonds alternatively, and the resulting system will be perceived as aromatic by the RDKit SMILES
parser. We also include “no modi�cation” as an action, which allows the molecule to remain unchanged before
reaching the step limitation T.

•	 {Psa} denotes the state transition probability. Here we de�ne the state transition to be deterministic. For exam-
ple, if we modify a molecule by adding a single bond, the next state we reach will be the new molecule adding
the bond, with a probability of 1.

•	  denotes the reward function of state m t(,). In material design or lead optimization, the reward is o�en a
property of the molecule m. In our design, a reward is given not just at the terminal states, but at each step,
which empirically produces better learning performance (see Fig. S3). To ensure that the final state is
rewarded most heavily, we discount the value of the rewards at a state with time t by γT–t (where we typically
used γ = 0.9). Note that the de�nition of discount factor is di�erent from the usual way. In future discussions
of reward rt, this discount factor is implicitly included for simplicity.

Implementation details. We implemented the state transition of a molecule with the available so�ware frame-
work of RDKit22. �e properties of molecules are calculated with tools provided by RDKit.

Reinforcement Learning. Reinforcement Learning is an area of machine learning concerning how the deci-
sion makers (or agents) ought to take a series of actions in a prescribed environment so as to maximize a notion
of cumulative reward, especially when a model of the environment is not available. Here, the environment is the
molecule modi�cation MDP we de�ned above, and our goal is to �nd a policy π which selects an action for each
state that can maximize the future rewards.

Intuitively, we are trying to �t a function Q s a(,) that predicts the future rewards of taking an action a on state s.
A decision is made by choosing the action a that maximizes the Q function, which leads to larger future rewards.

Mathematically, for a policy π, we can de�ne the value of an action a on a state s to be

 ∑= =














π π
π
=

Q s a Q m t a r(,) (, ,)
n t

T

n

where π denotes taking an expectation with respect to π, and rn denotes the reward at step n. �is action-value
function calculates the future rewards of taking action a on state s, and subsequent actions decided by policy π.
We can therefore de�ne the optimal policy π = π⁎

⁎

s Q s a() argmax (,)a .
In our case, however, we have both a deterministic MDP and an accurate model of the environment. �erefore,

we chose to approximate the value function =V s Q s a() max (,)a and we calculate the Q function for an action a
moving from state s to s′ as = ′ + ′Q s a s V s(,) () ()

Under the setting that the maximum number of steps is limited, the MDP is time-dependent, and the optimal
policy will be time-dependent as well. Naturally, if there are many steps le�, we can risk pursuing later but larger
rewards, while if only a few steps remain, we should focus on rewards that can be obtained sooner.

We adopt a deep Q-learning20 algorithm to �nd an estimate of the Q function. We refer to a neural network
function approximator as the parameterized Q-value function θQ s a(, ;), where θ is the parameter. �is approxi-
mator can be trained by minimizing the loss function of

θ θ= −l f y Q s a() [((, ;))]
l t t t

https://doi.org/10.1038/s41598-019-47148-x

4SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

where θ= + +y r Q s amax (, ;)
t t a t 1 is the target value, and fl is a loss function. In our case, we use the Huber loss23

as a loss function.

=











| | <

| | −

f x

x x

x

()

1

2
if 1

1

2
otherwise

l

2

Multi-objective reinforcement learning. In real-world applications like lead optimization, it is o�en
desired to optimize several di�erent properties at the same time. For example, we may want to optimize the selec-
tivity of a drug while keeping the solubility in a speci�c range. Formally, under the multi-objective reinforcement
learning setting, the environment will return a vector of rewards at each step t, with one reward for each objective,
i.e. →= … ∈r r r[, ,]t t k t

T k
1, , , where k is the number of objectives.

�ere exist various goals in multi-objective optimization. �e goal may be �nding a set of Pareto optimal
solutions, or �nd a single or several solutions that satisfy the preference of a decision maker. Similar to the choice
in Guimaraes et al.15, we adapted the latter one in this paper. Speci�cally, we implemented the “scalarized” reward
framework to realize multi-objective optimization, with the introduction of a user defined weight vector

= … ∈w w w w[, ,]k
T k

1 2 , the scalarized reward can be calculated as

∑= → =
=

r w r w rs t
T

t
i

k

i i t,
1

,

�e objective of the MDP is then to maximize the cumulative scalarized reward.

Exploitation vs. exploration during training. �e trade-o� between exploitation and exploration pre-
sents a dilemma caused by the uncertainty we face. Given that we do not have a complete knowledge of the
rewards for all the states, if we constantly choose the best action that is known to produce the highest reward
(exploitation), we will never learn anything about the rewards of the other states. On the other hand, if we always
chose an action at random (exploration), we would not receive as much reward as we could achieve by choosing
the best action.

One of the simplest and the most widely used approaches to balance these competing goals is called ε-greedy,
which selects the predicted best action with probability ε−1 , and a uniformly random action with probability ε.
Without considering the level of uncertainty of the value function estimate, ε-greedy o�en wastes exploratory
e�ort on the states that are known to be inferior.

To counter this issue, we followed the idea of bootstrapped-DQN from Osband et al.24 by utilizing randomized
value functions to achieve deep exploration. We built H independent Q-functions | = …Q i H{ 1, , }i() (actually, a

multi-task neural network with a separate head for each Q i(); see Section 2.5), each of them being trained on a

di�erent subset of the samples. At each episode, we uniformly choose ∈ …i H{1, , }, and use Q i() for decision
making. �e above approach is combined with ε-greedy as our policy. During training, we annealed ε from 1 to
0.01 in a piecewise linear way.

Deep Q-learning implementation details. We implemented the deep Q-learning model described by
Mnih et al.20 with improvements of double Q-learning25. Recall that a state s is a pair of molecule m and time t.
Unsurprisingly, including t in the model performs better experimentally (see Fig. S4).

We used a deep neural network to approximate the Q-function. �e input molecule is converted to a vector
form called its Morgan �ngerprint26 with radius of 3 and length of 2048, and the number of steps remaining in the
episode was concatenated to the vector. A four-layer fully-connected network with hidden sizes of [1024, 512,
128, 32] and ReLU activations is used as the network architecture. Its output dimension is the number H (see
above; for computational e�ciency, we implemented these H di�erent models as multiple outputs on top of
shared network layers). In the single property optimization task, we only allow generation with ring sizes of 5, 6,
and 7; while in all other experiments, we allow ring sizes of 5 and 6. In most experiments, we limited the maxi-
mum number of steps per episode to 40, given that most drug molecules have less than 40 atoms (the exception is
for the experiments in Section 3.1, where we limit the max number of steps to be 38 for logP optimization to
match You et al.18, and Section 3.2, where the limit is 20.). We trained the model for 5,000 episodes with the Adam
optimizer27 with a learning rate of 0.0001. We used ε-greedy together with randomized value functions as a explo-
ration policy, and, as mentioned before, we annealed ε from 1 to 0.01 in a piecewise linear way. �e discount fac-
tor γ (as de�ned in Section 2.1) was set to 0.9.

Results and Discussion
In these tasks, we demonstrated the e�ectiveness of our framework on optimizing a molecule to achieve desired
properties. We compared MolDQN with the following state-of-the-art models:

•	 Junction Tree Variational Autoencoder (JT-VAE)13 is a deep generative model that maps molecules to
a high-dimensional latent space and performs sampling or optimization in the latent space to generate
molecules.

•	 Objective-Reinforced Generative Adversarial Networks (ORGAN)15 is a reinforcement learning based mole-
cule generation algorithm that uses SMILES strings for input and output.

https://doi.org/10.1038/s41598-019-47148-x

5SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

•	 Graph Convolutional Policy Network (GCPN)18 is another reinforcement learning based algorithm that oper-
ates on a graph representation of molecules in combination with a MDP.

Single property optimization. In this task, our goal is to �nd a molecule that can maximize one selected
property. Similar to the setup in previous approaches13,18, we demonstrated the property optimization task on two
targets: penalized logP and Quantitative Estimate of Druglikeness (QED)28. LogP is the logarithm of the partition
ratio of the solute between octanol and water. Penalized logP13 is the logP minus the synthetic accessibility (SA)
score and the number of long cycles.

In this experiment setup, the reward was set to be the penalized logP or QED score of the molecule. For logP
optimization, the initial molecule was set to be empty, while for QED optimization, a two-step optimization was
used to improve the result. �e �rst step started with an empty molecule, and the second step started with the 5
molecules that have the highest QED values found in step one. �e max number of steps per episode for LogP
optimization is set to be 38, in order to allow a direct comparison with GCPN. We will discuss the rationale for
this choice in later paragraphs. �is number is set to 40 in QED optimization. We picked the last 100 terminal
states in the training process and report the top three property scores found by each model and the percentage of
valid molecules in Table 1. Note that the range of penalized logP is −∞ ∞(,), while the range of QED is [0, 1]. We
also visualized the best molecules we found in Fig. 2. Note that in the optimization of penalized logP, the gener-
ated molecules are obviously not drug-like, which highlights the importance of carefully designing the reward
(including using multiple objectives in a medicinal chemistry setting) when using reinforcement learning.

We compared our model to three baselines. “Random walk” is a baseline that chooses a random action for
each step, “greedy” is a baseline that chooses the action that leads to the molecule with the highest reward for each
step, and “ε-greedy” follows the “random” policy with probability ε, and “greedy” policy with probability ε−1 .
Additionally, we compared our model to three published literature models: ORGAN15, JT-VAE13, and GCPN18.

With the introduction of bootstrapped DQN, we are able to �nd molecules with higher QED values compared
to naive DQN, demonstrating the exploration e�ciency of bootstrapping. However, on the task of maximizing

Penalized logP QED

1st 2nd 3rd Validity 1st 2nd 3rd Validity

random walka −3.99 −4.31 −4.37 100% 0.64 0.56 0.56 100%

greedyb 11.41 — — 100% 0.39 — — 100%

ε-greedy, ε = .0 1b 11.64 11.40 11.40 100% 0.914 0.910 0.906 100%

JT-VAEc 5.30 4.93 4.49 100% 0.925 0.911 0.910 100%

ORGANc 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%

GCPNc 7.98 7.85 7.80 100% 0.948 0.947 0.946 100%

MolDQN-naïve 11.51 11.51 11.50 100% 0.934 0.931 0.930 100%

MolDQN-bootstrap 11.84 11.84 11.82 100% 0.948 0.944 0.943 100%

MolDQN-twosteps — — — — 0.948 0.948 0.948 100%

Table 1. Top three unique molecule property scores found by each method. a“random walk” is a baseline that
chooses a random action for each step. b“greedy” is a baseline that chooses the action that leads to the molecule
with the highest reward for each step. “ε-greedy” follows the “random” policy with probability ε, and “greedy”
policy with probability ε−1 . In contrast, the ε-greedy MolDQN models choose actions based on predicted Q-
values rather than rewards. cvalues are reported in You et al.18.

Figure 2. Sample molecules in the property optimization task. (a) Optimization of penalized logP from
MolDQN-bootstrap; note that the generated molecules are obviously not drug-like due to the use of a single-
objective reward. (b) Optimization of QED from MolDQN-twosteps.

https://doi.org/10.1038/s41598-019-47148-x

6SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

penalized logP, bootstrapped DQN does not provide a signi�cantly better result. �is is partly because maximiz-
ing logP corresponds to a simple policy: adding carbon atoms wherever possible. �is straightforward policy does
not require much exploration e�ort, and can be regarded as a greedy policy (Table 1).

Moreover, our experiments reveal that the task of maximizing logP with no constraints is not a good metric to
evaluate the performance of a model. �e penalized logP value almost increases linearly with the number of atoms
(Fig. S7), therefore it is not fair to compare logP without limiting the number of atoms to be the same. Although
the task of optimizing logP can be used to evaluate whether a model can capture the simple domain-speci�c
heuristic, we suggest that maximization should be performed under certain constraints, for example, number
of atoms, or similarity. We also suggest that targeting a speci�c range of logP is also a valid task to evaluate the
performance of di�erent models. �is task not only avoids the problem of unconstrained optimization, but also
represents a real need in typical drug discovery projects.

Compared with GCPN, MolDQN demonstrates better performance on the task of logP, and similar perfor-
mance on the task of QED. �ese results can be partly attributed to learning from scratch, where the scope is not
limited to the molecules in a speci�c dataset.

Note that we can also start from an existing molecule for optimization. In Section S1.1, we demonstrate optimi-
zations starting from 30 di�erent molecules in ChEMBL for two di�erent target synthetic accessibility (SA) scores.

Constrained optimization. We performed molecule optimization under a speci�c constraint, where the
goal is to �nd a molecule m that has the largest improvement compared to the original molecule m0, while main-
taining similarity δ≥m mSIM(,)0 for a threshold δ. Here we de�ned the similarity as the Tanimoto similaritya

between Morgan fingerprints26 with radius 2 of the generated molecule m and the original molecule m0.
Following the experiment in Jin et al.13, we trained a model in an environment whose initial state was randomly
set to be one of the 800 molecules in ZINC29 dataset which have the lowest penalized logP value, and ran the
trained model on each molecule for one episode. �e maximum number of steps per episode was limited to 20 in
consideration of computational e�ciency. In this task, the reward was designed as follows:

λ δ δ
=






− × − <
s

m m m m m

m
()

logP() (SIM(,)) if SIM(,)

logP() otherwise
0 0

where λ is the coe�cient to balance the similarity and logP. If the similarity constraint is not satis�ed, the reward
is penalized by the di�erence between the target and current similarity. In our experiments λ = 100. We report
the success rate—the percentage of molecules satisfying the similarity constraint—as validity, as well as the aver-
age improvement on logP in Table 2. Using Welch’s t-test30 for =N 800 molecules, we found that both variants of
MolDQN gives a highly statistically signi�cant improvement over GCPN for all values of δ with < −t 8. �e
bootstrap variant also signi�cantly outperforms the naive model (except for δ = .0 2) with < −t 3.

Multi-objective optimization. In drug design, there is o�en a minimal structural basis that a molecule must
retain to bind a speci�c target, referred to as the molecular sca�old. �is sca�old is usually de�ned as a molecule
with removal of all side chain atoms31. O�en the question arises: can we �nd a molecule similar to a existing one but
having a better performance? We designed the experiment of maximizing the QED of a molecule while keeping it
similar to a starting molecule. �e multi-objective reward of a molecule m was set to be a 2-dimensional vector of
→=r m m m[QED(), SIM(,)]0 , where mQED() is the QED score and m mSIM(,)0 is the Tanimoto similarity
between the Morgan �ngerprints of molecule m and the original molecule m0.

Di�erent weights w can be applied to denote the priorities of these two objectives. �e variable w denotes the weight
of similarity score, while the QED score is balanced by − w(1). �is is referred to as a “scalarized” multi-objective
optimization strategy (see Section 2.3):

= × + − ×s w s w s() SIM() (1) QED()

We trained the model with objective weight of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, and collected the last 20 unique
molecules generated in the training process to plot the properties of molecules on a 2-D space. (i.e., there xwas

δ

JT-VAEa GCPNa MolDQN-naive MolDQN-bootstrap

Improvement Success Improvement Success Improvement Success Improvement Success

0.0 1.91 ± 2.04 97.5% 4.20 ± 1.28 100% 6.83 ± 1.30 100% 7.04 ± 1.42 100%

0.2 1.68 ± 1.85 97.1% 4.12 ± 1.19 100% 5.00 ± 1.55 100% 5.06 ± 1.79 100%

0.4 0.84 ± 1.45 83.6% 2.49 ± 1.30 100% 3.13 ± 1.57 100% 3.37 ± 1.62 100%

0.6 0.21 ± 0.71 46.4% 0.79 ± 0.63 100% 1.40 ± 1.05 100% 1.86 ± 1.21 100%

Table 2. Mean and standard deviation of penalized logP improvement in constraint optimization tasks. δ is the
threshold of the similarity constraint δ≥m mSIM(,)0 . �e success rate is the percentage of molecules satisfying
the similarity constraint. avalues are reported in You et al.18.

aThe Tanimoto similarity uses the ratio of the intersecting set to the union set as the measure of similarity. Represented as a

mathematical equation =
+ −

T a b(,)
Nc

Na Nb Nc
. Na and Nb represents the number of attributes in each object (a, b). Nc is the number

of attributes in common.

https://doi.org/10.1038/s41598-019-47148-x

7SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

no separate evaluation step). Figure 3a shows the properties of the optimized molecules under di�erent weights.
Figure 3a demonstrates that we can successfully optimize the QED of a molecule while keeping the optimized mol-
ecule similar to the starting molecule. As the weight applied on similarity increases, the optimized molecules have
higher similarity to the starting molecule, and larger fractions of the optimized molecules have QED values lower
than those of the starting molecules. �e same experiment was repeated for 20 molecules randomly selected from
ChEMBL32 (Fig. S1), and the empirical distribution of the relative improvement of QED was plotted in Fig. 3b, where
the relative improvement of molecule m with respect to the original molecule m0 is de�ned as

=
−

−

m m

m
imp

QED() QED()

1 QED()rel
0

0

Intuitively, the relative improvement is the ratio of the actual improvement to the largest possible improve-
ment in QED. �e distribution of absolute QED improvement is shown in Fig. S6.

Figure 3. (a) �e QED and Tanimoto similarity of the molecules optimized under di�erent objective weights.
�e grey dashed line shows the QED and similarity score of the starting molecule. �e legends are transparent,
thus it will not cover any point. (b) �e empirical distribution of the relative QED improvements in 20 multi-
objective optimization tasks. �e variable w in legends denotes the weight of the similarity in the multi-objective
reward, while the QED score is weighted by − w(1), i.e. = × + − ×r w s w sSIM() (1) QED(). (c) Unique
molecules sampled from the multi-objective optimization task. �e original molecule is boxed.

https://doi.org/10.1038/s41598-019-47148-x

8SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

As the weight on similarity increases, the distribution of QED improvements moves le�wards because higher
priority is placed on similarity. Finally, we visually examined the optimized molecules (Fig. 3c). �e molecules
generated under w >= 0.4 possessed the same sca�old as the starting molecule, indicating that the trained model
preserves the original sca�old when the similarity weight is high enough.

Optimality vs. diversity. Related work in this area reports results for two distinct tasks: optimization and
generation (or, to avoid ambiguity, property-directed sampling). Optimization is the task to �nd the best molecule
with regard to some objectives, whereas property-directed sampling is the task of generating a set of molecules
with speci�c property values or distributions.

For the results we report in this paper, we note that there is o�en a trade-o� between optimality and diver-
sity. Without the introduction of randomness, execution of our learned policy will lead to exactly one molecule.
Alternatively, there are three possible ways to increase the diversity of the molecules generated:

 1. Choose one Q function Q s a(,)i() uniformly for i in … H1, , to make decision in each episode.
 2. Draw an action stochastically with probability proportional to the Q-function in each step (as in Haarnoja

et al.33).
 3. During evaluation, use non-zero ε in the ε-greedy algorithm.

In Strategy 1, we are following the action maximizing the Q-function, which is an optimal choice. However,
this strategy is slightly less optimal than using a single Q-function in the sense that each Q-function is only
trained on a subset of the samples. Strategies 2 and 3 are clearly sub-optimal because the policy is no longer pur-
suing the maximum future rewards. In the results above, we focused primarily on optimization tasks and leave
the question of diversity for future work.

We also conducted experiments to illustrate that we are able to �nd molecules with properties in speci�c
ranges with 100% success (Table S1). In addition, we demonstrated that we can generate molecules that satisfy
multiple target values (Table S2). However, because we formulated the property targeting to be an optimization
task, it is not fair for us to compare to other generative models that produce diverse distributions of molecules.

Visualization and Interpretation. Users prefer interpretable solutions when they applying methods that
construct new molecules. Here we demonstrated the decision making process of MolDQN that maximizes the
QED, starting from a speci�c molecule.

In the �rst step of decision making, the Q-network predicts the Q-value of each action. Figure 4a shows the
predicted Q-values of the chosen actions. �e full set of Q-values of for all actions in the �rst step are shown in
Fig. S2. We observe that adding a hydroxyl group is strongly favored, while breaking the �ve-member ring struc-
ture is disfavored.

Note that the Q-value is a measure of future rewards; therefore, it is possible for the algorithm to choose an
action that decreases the property value in the short term but can reach higher future rewards. Figure 4b shows a
sample trajectory of maximizing the QED of a molecule (note that ε = 0 during evaluation). In this trajectory,
step 6 decreases the QED of the molecule, but the QED was improved by 0.297 through the whole trajectory.

Figure 4. (a) Visualization of the Q-values of selected actions. �e full set of Q-values of actions are shown in
Fig. S2. �e original atoms and bonds are shown in black while modi�ed ones are colored. Dashed lines denote
bond removals. �e Q-values are rescaled to [0, 1]. (b) �e steps taken to maximize the QED starting from a
molecule. �e modi�cations are highlighted in yellow. �e QED values are presented under the modi�ed
molecules.

https://doi.org/10.1038/s41598-019-47148-x

9SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Conclusion
By combining state-of-the-art deep reinforcement learning with domain knowledge of chemistry, we developed
the MolDQN model for molecule optimization. We demonstrated that MolDQN reaches equivalent or better
performance when compared with several other established algorithms in generating molecules with better spec-
i�ed properties. We also presented a way to visualize the decision making process to facilitate learning a strategy
for optimizing molecular design. Future work can be done on applying di�erent Q-function approximators (for
example MPNN34) and hyperparameter searching. We hope the MolDQN model will assist medicinal and mate-
rial chemists in molecular design.

As a parting note, it seems obvious to us that the experiments and metrics commonly employed in the litera-
ture (including this work) are inadequate for evaluating and comparing generative models in real-world optimi-
zation tasks. In particular, logP is a “broken” metric that should be discouraged except as a sanity check, and many
other commonly used metrics such as QED su�er from boundary e�ects that limit comparability. Additionally,
“computable” metrics like QED should be deprioritized in favor of therapeutically relevant properties that can be
veri�ed by experiment—this likely requires incorporating predictive models based on experiment into generative
decision making, as in Li et al.11. Even better would be to couple these predictions with experimental validation, as
has been done by Merk et al.35 and Putin et al.6. We note that some e�orts have been made in addressing generator
evaluation36, but there remains much work to be done to fairly compare one model to another on meaningful
tasks and make these models relevant and e�ective in prospective drug discovery.

Data Availability
�e ChEMBL32 and ZINC29 datasets used in this study are available online. No dataset was generated during the
current study. �e code is available at https://github.com/google-research/google-research/tree/master/mol_dqn.

References
 1. Hughes, J. P., Rees, S., Kalindjian, S. B. & Philpott, K. L. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011).
 2. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci.

4, 268–276 (2018).
 3. Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. & Chen, H. Application of generative autoencoder in de novo molecular

design. Mol. Inform. 37, 1700123 (2018).
 4. Segler, M. H., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused molecule libraries for drug discovery with recurrent neural

networks. ACS Cent. Sci. 4, 120–131 (2017).
 5. Lim, J., Ryu, S., Kim, J. W. & Kim, W. Y. Molecular generative model based on conditional variational autoencoder for de novo

molecular design. arXiv preprint arXiv:1806.05805 (2018).
 6. Putin, E. et al. Adversarial threshold neural computer for molecular de novo design. Mol. Pharm. 15, 4386–4397 (2018).
 7. Weininger, D. Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem.

Inf. Comput. Sci. 28, 31–36 (1988).
 8. Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar variational autoencoder. arXiv preprint arXiv:1703.01925 (2017).
 9. Dai, H., Tian, Y., Dai, B., Skiena, S. & Song, L. Syntax-directed variational autoencoder for structured data. arXiv preprint

arXiv:1802.08786 (2018).
 10. Li, Y., Vinyals, O., Dyer, C., Pascanu, R. & Battaglia, P. Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324

(2018).
 11. Li, Y., Zhang, L. & Liu, Z. Multi-objective de novo drug design with conditional graph generative model. J. Cheminformatics 10, 33

(2018).
 12. Cao, N. De & Kipf, T. Molgan: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018).
 13. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. arXiv preprint

arXiv:1802.04364 (2018).
 14. Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design through deep reinforcement learning. J.

Cheminformatics 9, 48 (2017).
 15. Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C. & Aspuru-Guzik, A. Objective-reinforced generative

adversarial networks (organ) for sequence generation models. arXiv preprint arXiv:1705.10843 (2017).
 16. Putin, E. et al. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model. (2018).
 17. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).
 18. You, J., Liu, B., Ying, R., Pande, V. & Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation.

arXiv preprint arXiv:1806.02473 (2018).
 19. Bellman, R. A markovian decision process. J. Math. Mech. 679–684 (1957).
 20. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529 (2015).
 21. Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E. & Levine, S. Q-prop: Sample-e�cient policy gradient with an o�-policy critic.

arXiv preprint arXiv:1611.02247 (2016).
 22. Rdkit. Rdkit: Open-source cheminformatics so�ware, http://www.rdkit.org/, https://github.com/rdkit/rdkit (2016).
 23. Boyd, S. & Vandenberghe, L. Convex optimization (Cambridge university press, 2004).
 24. Osband, I., Blundell, C., Pritzel, A. & Van Roy, B. Deep exploration via bootstrapped DQN in Adv. Neural Inf. Process. Syst. 4026–4034

(2016).
 25. Van Hasselt, H., Guez, A. & Silver, D. Deep reinforcement learning with double Q-Learning. In AAAI 2, 5 (2016).
 26. Rogers, D. & Hahn, M. Extended-connectivity �ngerprints. J. Chem. Inf. Model. 50, 742–754 (2010).
 27. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
 28. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 4,

90 (2012).
 29. Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S. & Coleman, R. G. Zinc: a free tool to discover chemistry for biology. J. Chem.

Inf. Model. 52, 1757–1768 (2012).
 30. Welch, B. L. �e generalization ofstudent’s’ problem when several di�erent population variances are involved. Biometrika 34, 28–35

(1947).
 31. Garg, T., Singh, O., Arora, S. & Murthy, R. Sca�old: a novel carrier for cell and drug delivery, Crit. Rev. �er. Drug. Carrier. Syst. 29

(2012).
 32. Gaulton, A. et al. �e chembl database in 2017. Nucleic Acids Res. 45, D945–D954 (2016).
 33. Haarnoja, T., Tang, H., Abbeel, P. & Levine, S. Reinforcement learning with deep energy-based policies. arXiv preprint

arXiv:1702.08165 (2017).

https://doi.org/10.1038/s41598-019-47148-x
https://github.com/google-research/google-research/tree/master/mol_dqn
http://www.rdkit.org/
https://github.com/rdkit/rdkit

1 0SCIENTIFIC REPORTS | (2019) 9:10752 | https://doi.org/10.1038/s41598-019-47148-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

 34. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017).

 35. Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo design of bioactive small molecules by arti�cial intelligence. Mol. Inform.
37, 1700153 (2018).

 36. Benhenda, M. Chemgan challenge for drug discovery: can ai reproduce natural chemical diversity? arXiv preprint arXiv:1708.08227
(2017).

Acknowledgements
�e authors thank Zan Armstrong for her expertise and help in visualization of the �gures. �e authors thank
David Belanger and John Platt for the internal review and comments. Z.Z. and R.N.Z. thank the support from the
National Science Foundation under the Data-Driven Discovery Science in Chemistry (D3SC) for EArly concept
Grants for Exploratory Research (EAGER) (Grant CHE-1734082).

Author Contributions
Z.Z., S.K., L.L. and P.R. conceived the presented idea and performed the computations. P.R. and R.N.Z. supervised
the �ndings of this work. All authors discussed the results and contributed to the �nal manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-47148-x.

Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© �e Author(s) 2019

https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1038/s41598-019-47148-x
http://creativecommons.org/licenses/by/4.0/

	Optimization of Molecules via Deep Reinforcement Learning

	Methods

	Molecule modification as a markov decision process.
	Implementation details.

	Reinforcement Learning.
	Multi-objective reinforcement learning.
	Exploitation vs. exploration during training.
	Deep Q-learning implementation details.

	Results and Discussion

	Single property optimization.
	Constrained optimization.
	Multi-objective optimization.
	Optimality vs. diversity.
	Visualization and Interpretation.

	Conclusion

	Acknowledgements

	Figure 1 Valid actions on the state of cyclohexane.
	Figure 2 Sample molecules in the property optimization task.
	Figure 3 (a) The QED and Tanimoto similarity of the molecules optimized under different objective weights.
	Figure 4 (a) Visualization of the Q-values of selected actions.
	Table 1 Top three unique molecule property scores found by each method.
	Table 2 Mean and standard deviation of penalized logP improvement in constraint optimization tasks.

