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Optimization of Molecules via Deep 
Reinforcement Learning
Zhenpeng Zhou  1,3, Steven Kearnes  2, Li Li2, Richard N. Zare1 & Patrick Riley  2

We present a framework, which we call Molecule Deep Q-Networks (MolDQN), for molecule 
optimization by combining domain knowledge of chemistry and state-of-the-art reinforcement learning 
techniques (double Q-learning and randomized value functions). We directly define modifications on 
molecules, thereby ensuring 100% chemical validity. Further, we operate without pre-training on any 
dataset to avoid possible bias from the choice of that set. MolDQN achieves comparable or better 
performance against several other recently published algorithms for benchmark molecular optimization 
tasks. However, we also argue that many of these tasks are not representative of real optimization 
problems in drug discovery. Inspired by problems faced during medicinal chemistry lead optimization, 
we extend our model with multi-objective reinforcement learning, which maximizes drug-likeness while 
maintaining similarity to the original molecule. We further show the path through chemical space to 
achieve optimization for a molecule to understand how the model works.

One fundamental goal in chemistry is to design new molecules with speci�c desired properties. �is is especially 
important in material design or drug screening. Currently, this process is expensive in terms of time and cost: It 
can take years and cost millions of dollars to �nd a new drug1. �e goal of this study is to partially automate this 
process through reinforcement learning.

To appreciate our approach, it is necessary to review brie�y the previous works that employed machine 
learning in molecule design. One prevalent strategy is to build a generative model, which maps a point in a 
high-dimensional latent space to a molecule, and perform search or optimization in the latent space to �nd new 
molecules. Gómez-Bombarelli et al.2, Blaschke et al.3, Segler et al.4, Lim et al.5, and Putin et al.6 utilized strings 
as molecule representations to build a generator of SMILES7 strings, which is a linear string notation to describe 
molecular structures. One of the most challenging goals in this design is to ensure the chemical validity of the 
generated molecules. Kusner et al.8 and Dai et al.9 added grammar constraints to SMILES strings to improve 
the chemical validity of the generated molecules. Researchers have also built models on graph representations 
of molecules, which regards atoms as nodes and bonds as edges in an undirected graph. Li et al.10 and Li et al.11 
described molecule generators that create graphs in a step-wise manner. De Cao & Kipf12 introduced MolGAN 
for generating small molecular graphs. Jin et al.13 designed a two-step generation process in which a tree is �rst 
constructed to represent the molecular sca�old and then expanded to a molecule. Although almost perfect on 
generating valid molecules, these autoencoder-based models usually need to address the problem of optimiza-
tion. Most published work uses a separate Gaussian process model on the latent space for optimization. However, 
because the latent space is o�en high dimensional and the objective functions de�ned on the latent space is usu-
ally non-convex, molecule property optimization on the latent space can be di�cult.

Another strategy is based on reinforcement learning, which is a sub-field of artificial intelligence. 
Reinforcement learning studies the way to make decisions to achieve the highest reward. Olivecrona et al.14, 
Guimaraes et al.15, Putin et al.16, and Popova et al.17 applied reinforcement learning techniques on top of a string 
generator to generate the SMILES strings of molecules. �ey successfully generated molecules with given desira-
ble properties, but struggled with chemical validity. Recently, You et al.18 proposed a graph convolutional policy 
network (GCPN) for generating graph representations of molecules with deep reinforcement learning, achieving 
100% validity. However, all these methods require pre-training on a speci�c dataset. While pre-training makes it 
easier to generate molecules similar to the given training set, the exploration ability is limited by the biases present 
in the training data.

Here we introduce a new design for molecule optimization by combining chemistry domain knowledge and 
reinforcement learning, which we call Molecule Deep Q-Networks (MolDQN). We formulate the modi�cation 
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of a molecule as a Markov decision process (MDP)19. By only allowing chemically valid actions, we ensure 
that all the molecules generated are valid. We then employ the deep reinforcement learning technique of Deep 
Q-Networks (DQN)20 to solve this MDP, using the desired properties as rewards. Instead of pre-training on a 
dataset, our model learns from scratch. Additionally, with the introduction of multi-objective deep reinforcement 
learning, our model is capable of performing multi-objective optimization.

Our contribution di�ers from previous work in three critical aspects:

 1. All the works presented above use policy gradient methods, while ours is based on value function learning. 
Although policy gradient methods are applicable to a wider range of problems, they su�er from high vari-
ance when estimating the gradient21. In comparison, in applications where value function learning works, 
it is usually more stable and sample e�cient20.

 2. Most, if not all, of the current algorithms rely on pre-training on some datasets. Although expert pre-train-
ing may lead to lower variance, this approach limits the search space and may miss the molecules which are 
not in the dataset. In contrast, our method starts from scratch and learns from its own experience, which 
can lead to better performance, i.e., discovering molecules with better properties.

 3. Our model is designed for multi-objective reinforcement learning, allowing users to decide the relative 
importance of each objective. See 3.3 for more detail.

Methods
Molecule modification as a markov decision process. Intuitively, the modi�cation or optimization of 
a molecule can be done in a step-wise fashion, where each step belongs to one of the following three categories: 
(1) atom addition, (2) bond addition, and (3) bond removal. �e molecule generated is only dependent on the 
molecule being changed and the modi�cation made. �erefore, the process of molecule optimization can be for-
mulated as a Markov decision process (MDP). We have several key di�erences from previous work that employed 
MDP for molecule modi�cation18.

•	 We add an explicit limit on the number of steps. �is allows us to easily control how far away from a starting 
molecule we can go. In vast chemical space, this is a very natural way to control the diversity of molecules 
produced.

•	 We do not allow chemically invalid actions (violations of valence constraints). �ese actions are removed 
from the action space entirely and are not even considered by our model.

•	 We allow atoms/bonds to be removed as well as added.
Formally, we have MDP P( , , { }, )saS A R , where we de�ne each term in what follows:

•	   denotes the state space, in which each state ∈s  is a tuple of m t( , ). Here m is a valid molecule and t is the 
number of steps taken. For the initial state, the molecule m can be a speci�c molecule or nothing, and =t 0. 
We limit the maximum number of steps T that can be taken in this MDP. In other words, the set of terminal 
states is de�ned as = | =s m t t T{ ( , ) }, which consists of the states whose step number reaches its maximum 
value.

•	  denotes the action space, in which each action ∈a  is a valid modi�cation to a speci�c molecule m. Each 
modi�cation belongs to one of the following three categories mentioned before:

 1. Atom addition. Firstly, we de�ne the set of   be the set of elements a molecule contains. We then 
de�ne a valid action as adding (1) an atom in   and (2) a bond between the added atom and the 
original molecule wherever possible (all valence-allowed bond orders are considered as separate 
actions). For example, with the set of elements  = {C, O}, the atom addition action set of cyclohex-
ane contains the 4 actions shown in Fig. 1a. Note that hydrogens are considered implicitly, and all 
atom additions are de�ned as replacements of implicit hydrogens.

 2. Bond addition. A bond addition action is performed between two atoms with free valence (not count-
ing implicit hydrogens). If there is no bond between those two atoms, actions between them consist 
of adding a single, double, or triple bond if the valence allows this change. Additional actions increase 
the bond order between those two atoms by one or two. In other words, the transitions include:

•	 No bond → {Single, Double, Triple} Bond.
•	 Single bond → {Double, Triple} Bond.

Figure 1. Valid actions on the state of cyclohexane. Modi�cations are shown in red. Invalid bond additions 
which violate the heuristics explained in Section 2.1 are not shown.
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•	 Double bond → {Triple} Bond.

To generate molecules that are chemically more reasonable, we include several heuristics that incorporate 
chemistry domain knowledge. First, in order to prevent generating molecules with high strain, we do not 
allow bond formation between atoms that are in rings. In addition, we added an option that only allows 
formation of rings with a speci�c number of atoms. Note that it is possible to get a 7-membered ring, even 
when only rings with 3–6 atoms are allowed, by creating a bicyclic structure and then removing the bridg-
ing bond (Fig. S8). As an example, Fig. 1b shows the allowed bond addition actions for cyclohexane.

 3. Bond removal. We de�ne the valid bond removal action set as the actions that decrease the bond 
order of an existing bond. �e transitions include:

•	 Triple bond → {Double, Single, No} Bond.
•	 Double bond → {Single, No} Bond.
•	 Single bond → {No} Bond.

Note that bonds are only completely removed if the resulting molecule has zero or one disconnected atom 
(and in the latter case, the disconnected atom is removed as well). �erefore, no molecules having discon-
nected parts are created in this step.

In our design choice, we do not break an aromatic bond. However, it is still possible to break aromaticity. (See 
the third molecule generated in Section 3.3, = .w 0 4; the removal of the extracyclic double bond from the original 
molecule breaks aromaticity.) Besides, an aromatic system can still be created in a stepwise way by adding single 
and double bonds alternatively, and the resulting system will be perceived as aromatic by the RDKit SMILES 
parser. We also include “no modi�cation” as an action, which allows the molecule to remain unchanged before 
reaching the step limitation T.

•	 {Psa} denotes the state transition probability. Here we de�ne the state transition to be deterministic. For exam-
ple, if we modify a molecule by adding a single bond, the next state we reach will be the new molecule adding 
the bond, with a probability of 1.

•	  denotes the reward function of state m t( , ). In material design or lead optimization, the reward is o�en a 
property of the molecule m. In our design, a reward is given not just at the terminal states, but at each step, 
which empirically produces better learning performance (see Fig. S3). To ensure that the final state is 
rewarded most heavily, we discount the value of the rewards at a state with time t by γT–t (where we typically 
used γ = 0.9). Note that the de�nition of discount factor is di�erent from the usual way. In future discussions 
of reward rt, this discount factor is implicitly included for simplicity.

Implementation details. We implemented the state transition of a molecule with the available so�ware frame-
work of RDKit22. �e properties of molecules are calculated with tools provided by RDKit.

Reinforcement Learning. Reinforcement Learning is an area of machine learning concerning how the deci-
sion makers (or agents) ought to take a series of actions in a prescribed environment so as to maximize a notion 
of cumulative reward, especially when a model of the environment is not available. Here, the environment is the 
molecule modi�cation MDP we de�ned above, and our goal is to �nd a policy π which selects an action for each 
state that can maximize the future rewards.

Intuitively, we are trying to �t a function Q s a( , ) that predicts the future rewards of taking an action a on state s. 
A decision is made by choosing the action a that maximizes the Q function, which leads to larger future rewards.

Mathematically, for a policy π, we can de�ne the value of an action a on a state s to be

 ∑= =














π π
π
=

Q s a Q m t a r( , ) ( , , )
n t

T

n

where π denotes taking an expectation with respect to π, and rn denotes the reward at step n. �is action-value 
function calculates the future rewards of taking action a on state s, and subsequent actions decided by policy π. 
We can therefore de�ne the optimal policy π = π⁎

⁎

s Q s a( ) argmax ( , )a .
In our case, however, we have both a deterministic MDP and an accurate model of the environment. �erefore, 

we chose to approximate the value function =V s Q s a( ) max ( , )a  and we calculate the Q function for an action a 
moving from state s to s′ as = ′ + ′Q s a s V s( , ) ( ) ( )

Under the setting that the maximum number of steps is limited, the MDP is time-dependent, and the optimal 
policy will be time-dependent as well. Naturally, if there are many steps le�, we can risk pursuing later but larger 
rewards, while if only a few steps remain, we should focus on rewards that can be obtained sooner.

We adopt a deep Q-learning20 algorithm to �nd an estimate of the Q function. We refer to a neural network 
function approximator as the parameterized Q-value function θQ s a( , ; ), where θ is the parameter. �is approxi-
mator can be trained by minimizing the loss function of

θ θ= −l f y Q s a( ) [ ( ( , ; ))]
l t t t
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where θ= + +y r Q s amax ( , ; )
t t a t 1  is the target value, and fl is a loss function. In our case, we use the Huber loss23 

as a loss function.
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Multi-objective reinforcement learning. In real-world applications like lead optimization, it is o�en 
desired to optimize several di�erent properties at the same time. For example, we may want to optimize the selec-
tivity of a drug while keeping the solubility in a speci�c range. Formally, under the multi-objective reinforcement 
learning setting, the environment will return a vector of rewards at each step t, with one reward for each objective, 
i.e. →= … ∈r r r[ , , ]t t k t

T k
1, , , where k is the number of objectives.

�ere exist various goals in multi-objective optimization. �e goal may be �nding a set of Pareto optimal 
solutions, or �nd a single or several solutions that satisfy the preference of a decision maker. Similar to the choice 
in Guimaraes et al.15, we adapted the latter one in this paper. Speci�cally, we implemented the “scalarized” reward 
framework to realize multi-objective optimization, with the introduction of a user defined weight vector 

= … ∈w w w w[ , , ]k
T k

1 2 , the scalarized reward can be calculated as

∑= → =
=

r w r w rs t
T

t
i

k

i i t,
1

,

�e objective of the MDP is then to maximize the cumulative scalarized reward.

Exploitation vs. exploration during training. �e trade-o� between exploitation and exploration pre-
sents a dilemma caused by the uncertainty we face. Given that we do not have a complete knowledge of the 
rewards for all the states, if we constantly choose the best action that is known to produce the highest reward 
(exploitation), we will never learn anything about the rewards of the other states. On the other hand, if we always 
chose an action at random (exploration), we would not receive as much reward as we could achieve by choosing 
the best action.

One of the simplest and the most widely used approaches to balance these competing goals is called ε-greedy, 
which selects the predicted best action with probability ε−1 , and a uniformly random action with probability ε. 
Without considering the level of uncertainty of the value function estimate, ε-greedy o�en wastes exploratory 
e�ort on the states that are known to be inferior.

To counter this issue, we followed the idea of bootstrapped-DQN from Osband et al.24 by utilizing randomized 
value functions to achieve deep exploration. We built H independent Q-functions | = …Q i H{ 1, , }i( )  (actually, a 

multi-task neural network with a separate head for each Q i( ); see Section 2.5), each of them being trained on a 

di�erent subset of the samples. At each episode, we uniformly choose ∈ …i H{1, , }, and use Q i( ) for decision 
making. �e above approach is combined with ε-greedy as our policy. During training, we annealed ε from 1 to 
0.01 in a piecewise linear way.

Deep Q-learning implementation details. We implemented the deep Q-learning model described by 
Mnih et al.20 with improvements of double Q-learning25. Recall that a state s is a pair of molecule m and time t. 
Unsurprisingly, including t in the model performs better experimentally (see Fig. S4).

We used a deep neural network to approximate the Q-function. �e input molecule is converted to a vector 
form called its Morgan �ngerprint26 with radius of 3 and length of 2048, and the number of steps remaining in the 
episode was concatenated to the vector. A four-layer fully-connected network with hidden sizes of [1024, 512, 
128, 32] and ReLU activations is used as the network architecture. Its output dimension is the number H (see 
above; for computational e�ciency, we implemented these H di�erent models as multiple outputs on top of 
shared network layers). In the single property optimization task, we only allow generation with ring sizes of 5, 6, 
and 7; while in all other experiments, we allow ring sizes of 5 and 6. In most experiments, we limited the maxi-
mum number of steps per episode to 40, given that most drug molecules have less than 40 atoms (the exception is 
for the experiments in Section 3.1, where we limit the max number of steps to be 38 for logP optimization to 
match You et al.18, and Section 3.2, where the limit is 20.). We trained the model for 5,000 episodes with the Adam 
optimizer27 with a learning rate of 0.0001. We used ε-greedy together with randomized value functions as a explo-
ration policy, and, as mentioned before, we annealed ε from 1 to 0.01 in a piecewise linear way. �e discount fac-
tor γ (as de�ned in Section 2.1) was set to 0.9.

Results and Discussion
In these tasks, we demonstrated the e�ectiveness of our framework on optimizing a molecule to achieve desired 
properties. We compared MolDQN with the following state-of-the-art models:

•	 Junction Tree Variational Autoencoder (JT-VAE)13 is a deep generative model that maps molecules to 
a high-dimensional latent space and performs sampling or optimization in the latent space to generate 
molecules.

•	 Objective-Reinforced Generative Adversarial Networks (ORGAN)15 is a reinforcement learning based mole-
cule generation algorithm that uses SMILES strings for input and output.

https://doi.org/10.1038/s41598-019-47148-x
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•	 Graph Convolutional Policy Network (GCPN)18 is another reinforcement learning based algorithm that oper-
ates on a graph representation of molecules in combination with a MDP.

Single property optimization. In this task, our goal is to �nd a molecule that can maximize one selected 
property. Similar to the setup in previous approaches13,18, we demonstrated the property optimization task on two 
targets: penalized logP and Quantitative Estimate of Druglikeness (QED)28. LogP is the logarithm of the partition 
ratio of the solute between octanol and water. Penalized logP13 is the logP minus the synthetic accessibility (SA) 
score and the number of long cycles.

In this experiment setup, the reward was set to be the penalized logP or QED score of the molecule. For logP 
optimization, the initial molecule was set to be empty, while for QED optimization, a two-step optimization was 
used to improve the result. �e �rst step started with an empty molecule, and the second step started with the 5 
molecules that have the highest QED values found in step one. �e max number of steps per episode for LogP 
optimization is set to be 38, in order to allow a direct comparison with GCPN. We will discuss the rationale for 
this choice in later paragraphs. �is number is set to 40 in QED optimization. We picked the last 100 terminal 
states in the training process and report the top three property scores found by each model and the percentage of 
valid molecules in Table 1. Note that the range of penalized logP is −∞ ∞( , ), while the range of QED is [0, 1]. We 
also visualized the best molecules we found in Fig. 2. Note that in the optimization of penalized logP, the gener-
ated molecules are obviously not drug-like, which highlights the importance of carefully designing the reward 
(including using multiple objectives in a medicinal chemistry setting) when using reinforcement learning.

We compared our model to three baselines. “Random walk” is a baseline that chooses a random action for 
each step, “greedy” is a baseline that chooses the action that leads to the molecule with the highest reward for each 
step, and “ε-greedy” follows the “random” policy with probability ε, and “greedy” policy with probability ε−1 . 
Additionally, we compared our model to three published literature models: ORGAN15, JT-VAE13, and GCPN18.

With the introduction of bootstrapped DQN, we are able to �nd molecules with higher QED values compared 
to naive DQN, demonstrating the exploration e�ciency of bootstrapping. However, on the task of maximizing 

Penalized logP QED

1st 2nd 3rd Validity 1st 2nd 3rd Validity

random walka −3.99 −4.31 −4.37 100% 0.64 0.56 0.56 100%

greedyb 11.41 — — 100% 0.39 — — 100%

ε-greedy, ε = .0 1b 11.64 11.40 11.40 100% 0.914 0.910 0.906 100%

JT-VAEc 5.30 4.93 4.49 100% 0.925 0.911 0.910 100%

ORGANc 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%

GCPNc 7.98 7.85 7.80 100% 0.948 0.947 0.946 100%

MolDQN-naïve 11.51 11.51 11.50 100% 0.934 0.931 0.930 100%

MolDQN-bootstrap 11.84 11.84 11.82 100% 0.948 0.944 0.943 100%

MolDQN-twosteps — — — — 0.948 0.948 0.948 100%

Table 1. Top three unique molecule property scores found by each method. a“random walk” is a baseline that 
chooses a random action for each step. b“greedy” is a baseline that chooses the action that leads to the molecule 
with the highest reward for each step. “ε-greedy” follows the “random” policy with probability ε, and “greedy” 
policy with probability ε−1 . In contrast, the ε-greedy MolDQN models choose actions based on predicted Q-
values rather than rewards. cvalues are reported in You et al.18.

Figure 2. Sample molecules in the property optimization task. (a) Optimization of penalized logP from 
MolDQN-bootstrap; note that the generated molecules are obviously not drug-like due to the use of a single-
objective reward. (b) Optimization of QED from MolDQN-twosteps.
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penalized logP, bootstrapped DQN does not provide a signi�cantly better result. �is is partly because maximiz-
ing logP corresponds to a simple policy: adding carbon atoms wherever possible. �is straightforward policy does 
not require much exploration e�ort, and can be regarded as a greedy policy (Table 1).

Moreover, our experiments reveal that the task of maximizing logP with no constraints is not a good metric to 
evaluate the performance of a model. �e penalized logP value almost increases linearly with the number of atoms 
(Fig. S7), therefore it is not fair to compare logP without limiting the number of atoms to be the same. Although 
the task of optimizing logP can be used to evaluate whether a model can capture the simple domain-speci�c 
heuristic, we suggest that maximization should be performed under certain constraints, for example, number 
of atoms, or similarity. We also suggest that targeting a speci�c range of logP is also a valid task to evaluate the 
performance of di�erent models. �is task not only avoids the problem of unconstrained optimization, but also 
represents a real need in typical drug discovery projects.

Compared with GCPN, MolDQN demonstrates better performance on the task of logP, and similar perfor-
mance on the task of QED. �ese results can be partly attributed to learning from scratch, where the scope is not 
limited to the molecules in a speci�c dataset.

Note that we can also start from an existing molecule for optimization. In Section S1.1, we demonstrate optimi-
zations starting from 30 di�erent molecules in ChEMBL for two di�erent target synthetic accessibility (SA) scores.

Constrained optimization. We performed molecule optimization under a speci�c constraint, where the 
goal is to �nd a molecule m that has the largest improvement compared to the original molecule m0, while main-
taining similarity δ≥m mSIM( , )0  for a threshold δ. Here we de�ned the similarity as the Tanimoto similaritya

 

between Morgan fingerprints26 with radius 2 of the generated molecule m and the original molecule m0. 
Following the experiment in Jin et al.13, we trained a model in an environment whose initial state was randomly 
set to be one of the 800 molecules in ZINC29 dataset which have the lowest penalized logP value, and ran the 
trained model on each molecule for one episode. �e maximum number of steps per episode was limited to 20 in 
consideration of computational e�ciency. In this task, the reward was designed as follows:

λ δ δ
=






− × − <
s

m m m m m

m
( )

logP( ) ( SIM( , )) if SIM( , )

logP( ) otherwise
0 0

where λ is the coe�cient to balance the similarity and logP. If the similarity constraint is not satis�ed, the reward 
is penalized by the di�erence between the target and current similarity. In our experiments λ = 100. We report 
the success rate—the percentage of molecules satisfying the similarity constraint—as validity, as well as the aver-
age improvement on logP in Table 2. Using Welch’s t-test30 for =N 800 molecules, we found that both variants of 
MolDQN gives a highly statistically signi�cant improvement over GCPN for all values of δ with < −t 8. �e 
bootstrap variant also signi�cantly outperforms the naive model (except for δ = .0 2) with < −t 3.

Multi-objective optimization. In drug design, there is o�en a minimal structural basis that a molecule must 
retain to bind a speci�c target, referred to as the molecular sca�old. �is sca�old is usually de�ned as a molecule 
with removal of all side chain atoms31. O�en the question arises: can we �nd a molecule similar to a existing one but 
having a better performance? We designed the experiment of maximizing the QED of a molecule while keeping it 
similar to a starting molecule. �e multi-objective reward of a molecule m was set to be a 2-dimensional vector of 
→=r m m m[QED( ), SIM( , )]0 , where mQED( ) is the QED score and m mSIM( , )0  is the Tanimoto similarity 
between the Morgan �ngerprints of molecule m and the original molecule m0.

Di�erent weights w can be applied to denote the priorities of these two objectives. �e variable w denotes the weight 
of similarity score, while the QED score is balanced by − w(1 ). �is is referred to as a “scalarized” multi-objective 
optimization strategy (see Section 2.3):

= × + − ×s w s w s( ) SIM( ) (1 ) QED( )

We trained the model with objective weight of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, and collected the last 20 unique 
molecules generated in the training process to plot the properties of molecules on a 2-D space. (i.e., there xwas 

δ

JT-VAEa GCPNa MolDQN-naive MolDQN-bootstrap

Improvement Success Improvement Success Improvement Success Improvement Success

0.0 1.91 ± 2.04 97.5% 4.20 ± 1.28 100% 6.83 ± 1.30 100% 7.04 ± 1.42 100%

0.2 1.68 ± 1.85 97.1% 4.12 ± 1.19 100% 5.00 ± 1.55 100% 5.06 ± 1.79 100%

0.4 0.84 ± 1.45 83.6% 2.49 ± 1.30 100% 3.13 ± 1.57 100% 3.37 ± 1.62 100%

0.6 0.21 ± 0.71 46.4% 0.79 ± 0.63 100% 1.40 ± 1.05 100% 1.86 ± 1.21 100%

Table 2. Mean and standard deviation of penalized logP improvement in constraint optimization tasks. δ is the 
threshold of the similarity constraint δ≥m mSIM( , )0 . �e success rate is the percentage of molecules satisfying 
the similarity constraint. avalues are reported in You et al.18.

aThe Tanimoto similarity uses the ratio of the intersecting set to the union set as the measure of similarity. Represented as a 

mathematical equation =
+ −

T a b( , )
Nc

Na Nb Nc
. Na and Nb represents the number of attributes in each object (a, b). Nc is the number 

of attributes in common.
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no separate evaluation step). Figure 3a shows the properties of the optimized molecules under di�erent weights. 
Figure 3a demonstrates that we can successfully optimize the QED of a molecule while keeping the optimized mol-
ecule similar to the starting molecule. As the weight applied on similarity increases, the optimized molecules have 
higher similarity to the starting molecule, and larger fractions of the optimized molecules have QED values lower 
than those of the starting molecules. �e same experiment was repeated for 20 molecules randomly selected from 
ChEMBL32 (Fig. S1), and the empirical distribution of the relative improvement of QED was plotted in Fig. 3b, where 
the relative improvement of molecule m with respect to the original molecule m0 is de�ned as

=
−

−

m m

m
imp

QED( ) QED( )

1 QED( )rel
0

0

Intuitively, the relative improvement is the ratio of the actual improvement to the largest possible improve-
ment in QED. �e distribution of absolute QED improvement is shown in Fig. S6.

Figure 3. (a) �e QED and Tanimoto similarity of the molecules optimized under di�erent objective weights. 
�e grey dashed line shows the QED and similarity score of the starting molecule. �e legends are transparent, 
thus it will not cover any point. (b) �e empirical distribution of the relative QED improvements in 20 multi-
objective optimization tasks. �e variable w in legends denotes the weight of the similarity in the multi-objective 
reward, while the QED score is weighted by − w(1 ), i.e. = × + − ×r w s w sSIM( ) (1 ) QED( ). (c) Unique 
molecules sampled from the multi-objective optimization task. �e original molecule is boxed.
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As the weight on similarity increases, the distribution of QED improvements moves le�wards because higher 
priority is placed on similarity. Finally, we visually examined the optimized molecules (Fig. 3c). �e molecules 
generated under w >= 0.4 possessed the same sca�old as the starting molecule, indicating that the trained model 
preserves the original sca�old when the similarity weight is high enough.

Optimality vs. diversity. Related work in this area reports results for two distinct tasks: optimization and 
generation (or, to avoid ambiguity, property-directed sampling). Optimization is the task to �nd the best molecule 
with regard to some objectives, whereas property-directed sampling is the task of generating a set of molecules 
with speci�c property values or distributions.

For the results we report in this paper, we note that there is o�en a trade-o� between optimality and diver-
sity. Without the introduction of randomness, execution of our learned policy will lead to exactly one molecule. 
Alternatively, there are three possible ways to increase the diversity of the molecules generated:

 1. Choose one Q function Q s a( , )i( )  uniformly for i in … H1, ,  to make decision in each episode.
 2. Draw an action stochastically with probability proportional to the Q-function in each step (as in Haarnoja 

et al.33).
 3. During evaluation, use non-zero ε in the ε-greedy algorithm.

In Strategy 1, we are following the action maximizing the Q-function, which is an optimal choice. However, 
this strategy is slightly less optimal than using a single Q-function in the sense that each Q-function is only 
trained on a subset of the samples. Strategies 2 and 3 are clearly sub-optimal because the policy is no longer pur-
suing the maximum future rewards. In the results above, we focused primarily on optimization tasks and leave 
the question of diversity for future work.

We also conducted experiments to illustrate that we are able to �nd molecules with properties in speci�c 
ranges with 100% success (Table S1). In addition, we demonstrated that we can generate molecules that satisfy 
multiple target values (Table S2). However, because we formulated the property targeting to be an optimization 
task, it is not fair for us to compare to other generative models that produce diverse distributions of molecules.

Visualization and Interpretation. Users prefer interpretable solutions when they applying methods that 
construct new molecules. Here we demonstrated the decision making process of MolDQN that maximizes the 
QED, starting from a speci�c molecule.

In the �rst step of decision making, the Q-network predicts the Q-value of each action. Figure 4a shows the 
predicted Q-values of the chosen actions. �e full set of Q-values of for all actions in the �rst step are shown in 
Fig. S2. We observe that adding a hydroxyl group is strongly favored, while breaking the �ve-member ring struc-
ture is disfavored.

Note that the Q-value is a measure of future rewards; therefore, it is possible for the algorithm to choose an 
action that decreases the property value in the short term but can reach higher future rewards. Figure 4b shows a 
sample trajectory of maximizing the QED of a molecule (note that ε = 0 during evaluation). In this trajectory, 
step 6 decreases the QED of the molecule, but the QED was improved by 0.297 through the whole trajectory.

Figure 4. (a) Visualization of the Q-values of selected actions. �e full set of Q-values of actions are shown in 
Fig. S2. �e original atoms and bonds are shown in black while modi�ed ones are colored. Dashed lines denote 
bond removals. �e Q-values are rescaled to [0, 1]. (b) �e steps taken to maximize the QED starting from a 
molecule. �e modi�cations are highlighted in yellow. �e QED values are presented under the modi�ed 
molecules.
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Conclusion
By combining state-of-the-art deep reinforcement learning with domain knowledge of chemistry, we developed 
the MolDQN model for molecule optimization. We demonstrated that MolDQN reaches equivalent or better 
performance when compared with several other established algorithms in generating molecules with better spec-
i�ed properties. We also presented a way to visualize the decision making process to facilitate learning a strategy 
for optimizing molecular design. Future work can be done on applying di�erent Q-function approximators (for 
example MPNN34) and hyperparameter searching. We hope the MolDQN model will assist medicinal and mate-
rial chemists in molecular design.

As a parting note, it seems obvious to us that the experiments and metrics commonly employed in the litera-
ture (including this work) are inadequate for evaluating and comparing generative models in real-world optimi-
zation tasks. In particular, logP is a “broken” metric that should be discouraged except as a sanity check, and many 
other commonly used metrics such as QED su�er from boundary e�ects that limit comparability. Additionally, 
“computable” metrics like QED should be deprioritized in favor of therapeutically relevant properties that can be 
veri�ed by experiment—this likely requires incorporating predictive models based on experiment into generative 
decision making, as in Li et al.11. Even better would be to couple these predictions with experimental validation, as 
has been done by Merk et al.35 and Putin et al.6. We note that some e�orts have been made in addressing generator 
evaluation36, but there remains much work to be done to fairly compare one model to another on meaningful 
tasks and make these models relevant and e�ective in prospective drug discovery.

Data Availability
�e ChEMBL32 and ZINC29 datasets used in this study are available online. No dataset was generated during the 
current study. �e code is available at https://github.com/google-research/google-research/tree/master/mol_dqn.
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