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Abstract
A new method of optimizing MRI data acquisition protocols is presented. Tissues are modeled with
probability density functions (PDFs) of tissue parameter values (such as T1, T2). The imaging data
acquisition process is modeled as a mapping from a tissue parameter space to a signal strength space.
Tissue parameter PDFs are mapped to signal strength PDFs for each tissue in a clinical problem. The
efficacy of an MRI protocol is evaluated using the methods of statistical decision analysis applied
to the signal strength PDFs, including the propagation of noise. This procedure evaluates the ability
to discriminate different tissues based on the signal strengths produced with the protocol. The model
can incorporate an arbitrary number of tissues, parameters, and pulse sequences in the protocol. The
multivariate nature of MRI and the observed broad distribution of tissue parameter values makes this
model more appropriate for optimizing data acquisition protocols than methods which maximize the
signal-difference-to-noise ratio between discrete values of the tissue parameters. It is shown that
these two methods may calculate different optimal protocols. The method can be used to optimize
data acquisition for quantitative computer-based tissue classification, as well as imaging. Data
acquisition and image processing philosophies are discussed in light of the method.

1. Introduction
The application of NMR in medicine, as originally proposed, was a simple diagnostic test based
on measured relaxation times T1 and T2 (1). It was recognized that this test would be most
useful when performed in vivo on an isolated region of tissue. Magnetic resonance imaging
(MRI) techniques provided the means for this isolation and today yield tomograms of
impressive visual quality. However, with the movement toward a rich radiological technique,
MRI has suffered the loss of its development as a quantitative diagnostic test. The majority of
the MRI research to date has been geared toward producing aesthetically pleasing images with
higher signal-to-noise ratio (SNR), finer resolution, and faster scan times. While these are
laudable goals in the context of imaging, it is not clear how to transform improvements in these
attributes into improvements in diagnostic performance. Although many diagnoses can be
made from observation of abnormal morphology, MRI offers a unique opportunity to derive a
multivariate diagnostic test based on tissue parameters. In order to exploit this opportunity, we
should think of the MRI experiment not as something that generates contrast between tissues,
but as a process that discriminates between different tissues. This difference may seem subtle
but, as this paper will show, these two philosophies lead to different methods of optimization.

Early methods for deriving optimal MRI pulse sequences applied differential calculus to the
signal strength equations (2-7) and used the maximum signal-difference-to-noise ratio (SDNR)
or maximum signal gradient as the quantitative figure of merit. These methods address the one-
dimensional problem of producing a gray-scale representation of an object with the maximum
“sensitivity” at a specific value, or maximum SDNR between two specific values of the tissue
parameters; as such, they are elegant and the mathematics is straightforward. However, these
methods do not directly address the problem of maximizing the sensitivity and specificity of
MRI as a diagnostic test applied to a patient population. To do this, one must incorporate into
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the figure of merit the ideas associated with evaluation of a diagnostic test: the reduction of
multiparametric collected data into a single test value, and the distribution of expected test
values from the patient population (8-10).

The need for a universal optimization method becomes more apparent with the development
of each new MRI technique. Innovations in MRI tend to exploit additional tissue parameters,
and bring with them new pulse sequence parameters. For example, fast imaging with gradient
echoes is sensitive to chemical shift (δ) and magnetic susceptibility (χ0), and the signal strength
is highly dependent upon the interaction of relaxation rates and the rf flip angles (α). Thus, it
introduces two new tissue parameters (δ, χ0), and a new pulse sequence parameter (α). While
new innovations are assumed to increase the power of MRI as a diagnostic test, the increased
complexity necessitates a coherent method of choosing the subset of techniques to use in the
limited examination time. What is needed is a framework upon which all of these techniques
can be placed and evaluated in terms of their power as diagnostic tests, individually and when
used in concert.

2. A Model of MRI as a Diagnostic Test
Images with an acceptable SNR are now available at a wide range of magnetic field strengths.
They usually have a SNR far in excess of the minimum required to demonstrate the pathology
being investigated. This implies that we can now turn our attention to the more subtle problem
of consistently distinguishing tissue types by means of their MRI signal characteristics. An
increase in specificity may require a decrease in overall SNR; that is, imaging time may be
more wisely spent increasing the specificity of the technique with the addition of different pulse
sequences, rather than increasing the SNR by averaging the same pulse sequence. Any model
of MRI should allow one to calculate the tradeoffs between overall SNR and specificity.

For the purpose of optimizing the application of MRI in the clinical environment we model it
as an in vivo diagnostic test. When assessing the value of any diagnostic test, one must observe
the distribution of test results obtained from the normal (those without the disease) and
abnormal (those with the disease) patient populations. The performance of the test can be
calculated by determining the overlap of these distributions.

2.1. Model of the Patient Population
It became evident quite early in the development of NMR in medicine that there was a large
sample-to-sample variability in the measured values of T1 and T2 in the same tissue; this
variability was much greater than the predicted error in the measurements (10-13). This does
not come as a surprise; the medical community is quite familiar with the concept of the normal
variant. Determination of optimal data acquisition protocols for differential diagnoses must
incorporate this observed variability of tissue parameters (14). A single value for a tissue
parameter does not adequately characterize a tissue; thus, statements such as “The T1 of white
matter is 700 ms at 1.5 T” are of limited worth.

The appropriate mathematical construct for modeling the variability of tissue parameter values
found in a given tissue type is a probability density function (PDF). For MRI, a tissue specific
probability density function (TPDF) describes the patient-to-patient variability of tissue
parameters, and the variability within a single tissue in a single patient. A specific example
will assist with the explanation of the TPDF and the underlying assumptions in its construction.
Suppose that in each of 100 patients 10 separate volumes of interest in normal fibrous breast
tissue are isolated with MRI, and two tissue parameters are measured in each volume. The
resulting 1000 points are pairs of tissue parameter values, and as such may be plotted in a two-
dimensional space. In this two-dimensional space the points will cluster together with a density
described by the TPDF for normal fibrous breast. Such a two-dimensional distribution, based
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on the tissue parameters T1 and T2, is shown in Fig. 1, accompanied by TPDFs for fat and
infiltrating duct carcinoma (15). The extension to higher dimensions (more tissue parameters)
is mathematically and conceptually straightforward.

There are a large number of tissue parameters that are now important in MRI: the relaxation
times (before, after, and during the administration of contrast agents) T1, T2, T1ρ, the proton
density N(H), the ratio of chemical species, the diffusion coefficient D, the magnetic
susceptibility χ0, and the velocity v, to name only the main ones. When collecting data to
construct TPDFs, the number of tissue parameters measured in each voxel determines the
dimension of the TPDF. Many of the tissue parameters are not mathematically independent,
which increases the complexity of the TPDFs. This is discussed further in Section 4. In the
following analysis it is assumed that the TPDFs are independent. If the tissue parameter values
found in the lesion are correlated with those in the normal tissues, then the TPDFs as described
here are inappropriate.

2.2. Model of the Imaging Data Acquisition
The relative signal strength values for most MRI pulse sequences and the effects of slice
selection are predicted accurately by equations found in the literature (16-25). For the
optimization procedure proposed here, we deliberately separate the tissue parameters, and the
pulse sequence parameters. There is a fundamental difference between these two classes of
variables; the tissue parameters are assumed to follow stationary TPDFs (they are the given in
the diagnostic problem), while the pulse sequence parameters are the variables to be
determined. The data collection process consists of transforming the entire tissue parameter
space encompassed by the TPDFs into signal strengths. With this holistic model, we can
investigate the interaction of the imager with a whole domain of possible tissue parameter
values.

Mathematically, MRI data acquisition from the patient population is modeled by mapping the
TPDFs from a tissue parameter space (T-space) to signal strength space (S-space). The
transformed distributions can now be called signal probability density functions (SPDFs). The
mapping comprises one or more signal strength equations, with the pulse sequence parameters
fixed and the tissue parameters as independent variables; thus, each set of pulse sequence
parameters produces an individual mapping with its domain in T-space and its range in S-space.
Figure 2 shows how two Gaussian TPDFs (shown as 2σ perimeters) are mapped from a two-
dimensional T-space into two SPDFs in a one-dimensional S-space.

In general, a mapping is given formally by

[1]

where ψi is the signal strength function for each of the Ns pulse sequences used, and Xj are the
tissue parameters, which are the independent variables in the expression. We see that Np-
dimensional points in the T-space (tissue) (X1,X2, . . . , XNp) are mapped to Ns-dimensional
points in the S-space (signal) (S1,S2, . . . , SNs). In this manner, the TPDFs that give the expected
distribution of tissue parameters, now give, as SPDFs, the distribution of expected signal
values, which are the quantities that we measure during the MRI examination. Of course, the
physical result of a mapping is a set of Ns images of a slice of the patient; these images comprise
points in the S-space. The data acquisition optimization is simply the search for the best
mapping, once a method of evaluating the efficacy has been established.

Modeling MRI data collection as shown in Fig. 2 makes one concept intuitively obvious. No
mapping will improve the separation of the distributions; the SPDFs can only overlap as much
or more than the TPDFs. Thus the separation of the TPDFs sets the upper bound on MRI as a
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discriminator of tissues based on signal strength characteristics, regardless of the pulse
sequences available. In Section 2.3 the quantitative evaluation of this separation is described.

An alternative method of visualizing how well a mapping will discriminate tissues is to look
at isosignal contours for the individual pulse sequences in the T-space (26). If the T-space is
of dimension Np, the isosignal contours for a single pulse sequence, or an algebraic combination
of pulse sequences, will be loci of dimension Np - 1. Figure 3a shows an example of isosignal
lines in the T-space for a single IR pulse sequence. In this case, the line s = s0 acts as a good
decision boundary between tissue A and tissue B. The representation of data collection shown
in Fig. 3a demonstrates the cardinal idea underpinning this model of MRI; that is, the signal
strength equations provide us with discriminant functions in the T-space. If one were modeling
a diagnostic test, this concept would be taken for granted, but somehow in the development of
MRI it seems to have been lost. This isosignal picture in T-space is useful for demonstrating
how MRI will distinguish tissues, but when noise is included in the model the examination of
the SPDFs in S-space becomes the simpler of the two pictures.

An essential part of any model of data acquisition is the behavior of the noise. The
characteristics of the noise in spin-warp MR images are simple; the noise is spatially invariant,
it has a flat power spectrum, and it follows a Gaussian PDF (27). Edelstein et al. (28) outlined
a good SNR calibration procedure for MR imagers, which gives the SNR per milliliter times
root hertz. Thus, given the minimum volume required for the diagnostic task, the bandwidth
containing that volume, and the maximum signal strength obtainable from the imager, the
expected root mean square deviation (RMSD) of the signal in the volume can be calculated.
Thus, to incorporate noise into the model, each point in S-space is broadened by convolution
with a Gaussian distribution whose breadth is the RMSD for the volume. After this convolution
the overlap of the SPDFs will increase with the amount of the increase depending upon their
proximity to one another. Extension to higher dimensions is straightforward. The changes in
the noise level as a function of sampling and filtering have been described elsewhere (27,29,
30).

In this optimization procedure a number of imaging parameters are treated as constraints on
the problem. These constraints are specified by the diagnostician and are task dependent. The
minimum required resolution must be specified, that is, the dimensions of the smallest volume
upon which the diagnostician expects to employ the diagnostic test. The total volume to be
covered in the examination, the maximum imaging time, and the importance of artifact
rejection must be specified as well. Assuming the constraints are not inconsistent, there will
be a domain of possible pulse sequences and pulse sequence parameters from which the optimal
mapping may be extracted.

2.3. Model of Performance Evaluation
When deriving a figure of merit, one must keep the diagnostic task in mind—to discriminate
abnormal from normal tissues. The figure of merit should be an estimate of how well the
technique performs this task. Performance estimates may be expressed in different forms, such
as ROC curves (31), contingency tables (8), or risk functions calculated from Bayes’ decision
rule (32,33). The derivation of this type of figure of merit for the model described in Sections
2.1 and 2.2 is illustrated with an example in the following paragraph.

First, we deal with the calculation of the upper bound of performance. Suppose a clinical
problem of interest has two tissues involved, normal tissue and a lesion. Suppose also that the
two TPDFs for the tissues are known exactly for a two-dimensional T-space, say (T1 × T2). In
this example, the desire is to estimate how well we can distinguish each tissue from the other,
without any assumption as to the cost of false identification. This means that we do not impose
any external bias upon a decision rule; we let the TPDFs dictate how to classify a given point
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in the T1 × T2 plane. Because we make the assumption that the TPDFs are known exactly, this
is a problem in statistical decision theory (32-34).

For the figure of merit, we require an estimate of how well separated the two tissues are with
respect to their NMR characteristics. In order to evaluate the degree of separation, a decision
rule must be constructed by which each point of the T-space is classified to be one of the two
tissues. The rate of correct classification quantifies the degree of separation of the TPDFs. The
decision rule for this example is simple; each point in the T-space will be classified as the tissue
type whose TPDF has the greatest value at that point. In this way, two regions of the T-space
are defined, one for each tissue. The decision boundary between these regions is the line on
which the two TPDFs have equal value. This is illustrated in Fig. 4 for the TPDFs describing
infiltrating duct carcinoma and fibrous breast tissue. This method of deriving a decision
boundary can be applied to any set of TPDFs of known functional form.

The construction of the contingency table is simple for this example. The integral of the lesion
TPDF on its side of the decision boundary will give the fraction of correct classifications of
lesion. In this same region, the integral of the normal TPDF will give the probability of
classifying the normal tissue as lesion. By repeating this process for the normal tissue one can
calculate a 2 × 2 contingency table describing how accurately the MRI parameters discriminate
these tissues and where the major confusions will arise. Extensions to more tissues is not
difficult. This calculation will give the upper bound of the performance for any imaging
technique that depends on the two tissue parameters chosen; therefore, one can hope to match
but cannot exceed this performance with MRI data acquisition. This implies that, given
unlimited examination time, one obtains the most accurate and specific examination by
calculating the tissue parameters. However, this may not be the most efficient way of
performing the diagnostic test, because we may be able to differentiate the tissues adequately
with less information than is required to calculate the tissue parameters accurately.

In the example above, two important features have been omitted. These are the a priori
probability that a disease will be present and the relative cost of the classification errors. First,
let us deal with the a priori probabilities. The probability that a patient is bearing a lesion will
depend on the population from which that patient is drawn. This a priori probability for the
existence of a tissue is incorporated into the analysis by normalizing the TPDFs to reflect the
prevalence of the tissue in the patient population. This normalization will change the decision
boundaries between tissues. This aspect of the model is therefore important. The values used
for the a priori probabilities will depend upon the clinical environment in which the MR scanner
is being used.

The other factor that can influence the position of the decision boundaries is the relative cost
of erroneous classifications. The radiologist’s decision rule often varies with the situation. For
example, if grave circumstances follow from a missed lesion (false-negative call), the
radiologist will be more aggressive in calling cases positive. In contrast to this, if a positive
call implies a morbid treatment regime with limited chance of cure, a more conservative call
is appropriate. This variability in the threshold values for positive and negative calls can be
built into the figure of merit through the use of a risk function (32).

Simply stated, the risk is the sum of the probabilities of all classifications, weighted by their
respective costs. When this sum is a minimum, the optimum decision boundaries are found.
The risk can be evaluated with the contingency table and a loss matrix, Lci. The numerical
values of the loss matrix are the relative cost associated with each element in the contingency
table, that is, the loss associated with classifying tissue i as tissue c. For example, if Lci were
given as

True tissue
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i = 1 i = 2 i = 3

Classified tissue
c = 1 -2 2 2
c = 2 1 -1 0
c = 3 1 0 -1

this would imply a high reward for correctly identifying tissue 1 (negative cost), a high penalty
for misclassifying tissues 2 or 3 as tissue 1, a moderate penalty for misclassifying tissue 1 as
tissue 2 or 3, no penalty for confusing tissues 2 and 3 with each other, and moderate reward
for correctly identifying tissues 2 or 3. If tissue 1 is considered the target, this loss matrix will
weigh heavily against false-positive calls and more moderately against false-negative calls.
The total risk for a given set of decision boundaries is calculated by multiplying each element
of Lci with its corresponding element in the contingency matrix, and then taking the sum of
these products. The reader is referred elsewhere for a more detailed account of risk functions
(32,33).

To estimate the actual performance obtained with MRI, the analysis is best done in the S-space.
First, the TPDFs are mapped to the S-space. Second, the resulting SPDFs are convolved with
the Gaussian noise function to give the final SPDFs that we expect to measure with the imager.
Third, the same analysis that was applied to the TPDFs can be used to derive the contingency
table and risk function representing the performance of the mapping. The optimization
procedure is a search for the mapping that produces the risk that comes closest to that derived
from the TPDFs.

3. An Example
Suppose we are presented with the simple problem of detecting a specific lesion in a
background tissue. To derive the optimal MRI protocol for this task the following steps should
be followed: (1) Characterize the lesion and the normal tissues found in the patient population
as thoroughly as possible with TPDFs in a tissue parameter space. (2) Set the imaging
constraints, such as maximum scan time, minimum resolution, minimum total volume scanned.
(3) Decide upon an appropriate figure of merit for the task. (4) Search for the mapping (i.e.,
pulse sequence protocol) that produces the maximum figure of merit.

This process is illustrated for a hypothetical example in Fig. 5. In Fig. 5a two Gaussian
distributions are plotted as 2σ contours in a two-dimensional T-space, T1 × T2. They have the
following parameters: tissue A, μT1 = 400, σT1 = 100, μT2 = 40, σT2 = 10, and a correlation
coefficient ρ = 0; tissue B, μT1 = 600, σT1 = 100, μT2 = 60, σT2 = 10, and ρ = 0. In this example
the a priori probabilities are the same and both distributions are normalized to unity; that is,
the integral under the bivariate normal TPDF is 1.0. In Fig. 5b the two TPDFs are mapped into
a one-dimensional S-space by an inversion recovery (IR) sequence with TR = 1100, TE = 35,
and TI = 165. (This will be shown to be the optimal IR sequence.) The resulting SPDFs are
convolved with a Gaussian model of image noise to produce the final SPDFs. The method of
deriving this Gaussian was given in Section 2.3. For this example the imaging constraints were
a total time of 5 min, a required resolution of 2 × 2 × 5 mm, 20 slices. The SNR at this resolution
was assumed to be 100.

The figure of merit chosen is the minimum risk of the technique. Assuming equal cost for false-
positive and false-negative calls, we define the risk as the sum of the false-positive rate and
the false-negative rate. For each mapping a threshold signal s0 is chosen in the S-space as a
decision boundary. This divides the space into two domains: signals above s0 will be called
tissue A, signals below s0 will be called tissue B. For a given value of the threshold signal s0,
a 2 × 2 contingency table is calculated and the risk evaluated. The set of all possible mappings
and decision boundaries is searched for the minimum risk. The optimal mapping and decision
boundary is shown in Fig. 5c.
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The IR pulse sequence that produces the maximum SDNR between the points (600, 60) and
(400, 40) in the T1 × T2 plane, for the same imaging constraints, is TR = 1100, TE = 15, TI =
340. This is significantly different from the optimal IR pulse sequence derived from the risk
calculation. In order to examine why this discrepancy occurs, it is instructive to look at plots
of isosignal contours for each sequence in the T1 × T2 plane. In Fig. 6a we show the SPDFs
for the optimal sequence with the decision boundary marked on the axis. Corresponding to
this, the two TPDFs are shown in the T1 × T2 plane with the isosignal contours of the optimal
sequence overlayed. The dashed isosignal contour serves as a good decision boundary for the
TPDFs representing tissue A and tissue B. Figure 6b shows this same relationship between the
SPDFs and the isosignal contours of the suboptimal sequence that produces the maximum
SDNR between the points (600, 60) and (400, 40). Note that the overlap of the SPDFs is greater
for this sequence than that for the optimal sequence of Fig. 6a. The reason for this is
demonstrated well in the plot of isosignal contours for the suboptimal sequence shown in Fig.
6b. While the points (600, 60) and (400, 40) have the maximum SDNR in the suboptimal
sequence of Fig. 6b, there does not exist an isosignal contour that acts as a good decision
boundary. This demonstrates why it is important to model the tissues as TPDFs rather than
discrete points.

One further point can be made with this simple example: in some instances, one can obtain
close to maximum discrimination with far fewer data than are required to calculate the tissue
parameters. Recall that the minimum risk one can obtain from any method that depends on
T1 and T2 is calculated from the TPDFs in the T-space. For this example, the minimum risk
calculated from the TPDFs is 0.1. This is close to that obtained with the single optimal sequence
(in Fig. 6a 0.10 + 0.07 = 0.17).

4. Characteristics of the Model
In this section some conclusions regarding MRI data acquisition are drawn based on a
mathematical analysis of this optimization procedure.

4.1. Dimensionality
For each clinical problem there are three fundamental quantities: the number of tissues involved
(Nt), the number of parameters used to model these tissues (Np), and the number of pulse
sequences used in the protocol (Ns). Naturally, part of the optimization problem is to determine
the most appropriate values for Nt, Np, and Ns. The three dimensions are dependent upon one
another. This section is devoted to investigating this dependence and how it affects the data
acquisition philosophies.

The appropriate order of operations to determine the dimensions of the optimization problem
is as follows.

1. Determine the number of tissues involved in the problem. For example, when looking
for a lesion in the brain, one would include white matter, gray matter, CSF, and the
lesion. This sets Nt = 4.

2. Decide whether one tissue will be treated as the target, or more than one tissue must
be completely differentiated, and set the loss matrix accordingly. This may affect the
number of both tissue parameters and pulse sequences needed.

3. Determine which tissue parameters offer the best potential in discriminating the target
tissue from the background, or all tissues from each other. This sets the value of Np.

4. Choose the pulse sequences used in the protocol as the mapping from T-space to S-
space. This sets Ns.
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4.1.1. Number of tissues, Nt—For a given radiological task, it is usually possible to name
the tissues that will be involved. Attempting to find a lesion against a background of known
normal tissues is a common case. If the number of tissues in the problem is Nt, including the
lesion, there are Nt - 1 discrimination problems to consider. In the best case, one pulse sequence
will supply all of the decision boundaries for the Nt - 1 discrimination problems. The other
extreme situation has Nt tissues, all of which must be discriminated from each other, giving
Nt(Nt - 1)/2 discrimination problems. For either of these situations, in order to be able to derive
the best protocol, it is necessary to include all Nt tissues in the optimization simultaneously.
Breaking the problem up into separate two-tissue problems may simplify the computational
complexity, but the optimal solution may then not be obtained.

Most situations will lie between the two extreme cases of a single target tissue and a full Nt
tissue discrimination problem. This character of the problem is modeled with the loss matrix,
Lci as described in Section 2.3.

4.1.2. Number of parameters, Np—After deciding what tissues to include in the
optimization, and their relative importance, one must choose which parameters should be used
to model these tissues. This is an important step because the upper bound of the performance
is set by the amount of overlap of the parameter values described by the TPDFs.

The amount of data needed to determine the TPDF function to within a specified accuracy
increases exponentially with the dimension of the TPDF (32). This has come to be known as
the curse of dimensionality (35). However, only a subset of the complete list of available
parameters is usually needed to attack a given problem. In order to minimize expense, some a
priori knowledge should be used when deciding to collect multivariate data for the purpose of
characterizing tissues with TPDFs. The parameters chosen should not be highly correlated. If
two parameters are highly correlated, one of them can usually be dropped without reducing
the effective dimension of the T-space.

For each tissue parameter in the T-space, there must exist at least one pulse sequence which
exploits differences in that parameter. This pulse sequence should be robust under the day-to-
day variations in the operating conditions of the imager and be relatively simple to implement.
Unless such a pulse sequence is devised, it may not be worth the effort to add the corresponding
dimension to the TPDFs.

Addressing the problem of estimating PDF parameters or constructing parameter free PDFs
from the collected data is beyond the scope of this paper. The theory for these processes is
found in standard textbooks on pattern recognition and statistical decision theory (32-34). The
bulk of published tissue parameter data cannot be used for fitting multiparametric PDFs.
However, suitable data are starting to emerge (10-12,15). For the remainder of this paper it is
assumed that the functional form of the TPDFs is known exactly. Optimization with incomplete
knowledge of the functional form of the TPDFs will be treated in a subsequent paper.

4.1.3. Number of sequences, Ns—Data acquisition protocols can be divided into two
classes of mappings: those that have the potential to be a one-to-one mapping and those that
do not. In the first case a necessary condition is that the number of pulse sequences is greater
than or equal to the number of tissue parameters in the pulse sequence equations, that is, Ns ≥
Np. In the second case, Ns < Np. We deal with these cases separately.

In the context of this model of MRI data acquisition, Ns < Np implies that the mapping is many-
to-one; i.e., it contracts the Np-dimensional T-space to an Ns-dimensional S-space. Figure 3
shows a two-dimensional T-space (Np = 2) being mapped to a one-dimensional S-space (Ns =
1) by an IR pulse sequence. Note that each point in the one-dimensional S-space corresponds
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to a curve in the T-space. Therefore, the SPDF value at a point s0 in the S-space corresponds
to the line integral of the TPDF along the contour s = s0 in the T-space. In Fig. 7 we show an
example with Np = 3, Ns = 2. In this case the isosignal contours for each sequence in the T-
space are two-dimensional surfaces. The line of intersection of two surfaces, S1 = k1, S2 = k2,
corresponds to a point in the S-space. Again, the value of the SPDF at the point (k1, k2) is the
line integral of the TPDF in the T-space along the line of intersection of the two surfaces S1 =
k1, S2 = k2.

In general, the contour surfaces of individual pulse sequences are (Np - 1)-dimensional loci in
the T-space. The intersections of the contour surfaces for the Ns sequences are loci of dimension
Np - Ns, and the SPDF value at a point in the S-space is the integral of the TPDF on this locus.
In the special case of a one-sequence protocol (Ns = 1), one must pay special heed to the decision
boundaries supplied by the pulse sequence isosignal contours in the T-space, for these are the
only ones available. When Ns is greater than one, decision boundaries may be synthesized by
algebraic combination of the images from each sequence.

In the alternative case when Ns ≥ Np, there exists the potential to construct a one-to-one mapping
from the T-space to the S-space. This is equivalent to a coordinate transformation in the domain
of the T-space for which the mapping is one-to-one. An example of this is given in Fig. 8 in
which the “T1-weighted, T2-weighted” imaging protocol is shown mapping a domain of the
T1 × T2 plane (Np = 2) to a range in the S-space; each point in the domain is uniquely defined
by a pair of signal values. We can now construct any decision boundary we choose in this
domain; therefore, the optimum decision boundary derived from the risk function and the
TPDFs is available. This optimum decision boundary is, of course, mapped from the T-space
to the S-space where it may be used directly; however, after the inclusion of noise it may no
longer give optimal performance. When this happens, a new optimal decision boundary must
be calculated from the SPDFs.

When the number of sequences is greater than the number of tissue parameters, the SPDFs are
contained within an Np-dimensional manifold in the Ns-dimensional S-space. In Fig. 9, for
example, we assume that we have two pulse sequences (Ns = 2) which are dependent upon
only one parameter, say T2, and the T-space is one-dimensional. The mapping of the SPDFs
in this case is from the one-dimensional T2 axis to a curve in the two-dimensional signal strength
plane. This situation is similar to that of a multiecho sequence. The pixels of an eight-echo
sequence of images can be considered to be points in an eight-dimensional S-space. However,
because the signal strength from echo to echo is only modulated by T2, most of this eight-
dimensional space is empty. In fact, if one normalizes out the T1 and N(H) dependence with
the first image of the sequence (assuming TE ≪ T2), the pixels of the remaining seven
normalized images lie near a single one-dimensional curve; excursions from this curve are due
to image noise only. The relative position of the pixel on the curve is determined by the T2
value of the voxel it represents.

The locus upon which the image data are contained in the S-space has a simple analytical
expression. It is an Np-dimensional manifold in the Ns-dimensional space, parameterized by
the Np tissue parameters. This relation is given by Eq. [1]. Thus, it is not surprising that when
principal component analysis is performed on any number of pulse sequences which are
dependent only on T1 and T2 (N(H) and T1 being highly correlated), nearly all of the information
is contained in the first two components (36). In this case, the T-space is effectively two-
dimensional and, therefore, the image information is mostly contained in a two-dimensional
manifold contained in any S-space of dimension greater than two. (The first two PCA images
are the basis of a linear manifold; therefore there will be some residual power in higher
dimensions, but this is found to be small for the sequences used thus far.) One way of using
the redundant images to advantage is to decrease the noise in the final displayed image. When
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an S-space is contracted by combining images (for example, weighted addition of the multiecho
images), the random noise level can be reduced with respect to the level of the coherent signal.
The maximum gain in SNR available from this kind of contraction is  where N is the number
of images used in the contraction.

5. Discussion
This paper has presented a new approach to optimizing MRI data acquisition protocols for
differential diagnosis. The main innovation of the method is the movement away from the
traditional methods of optimizing the imaging technology and toward the methods used for
optimizing the diagnostic test. Two sources of previous work are useful in this study, those of
statistical pattern recognition (32-34) and clinical decision analysis (9). The existing
development of these theories is sufficiently general to apply them to MRI with few
modifications.

One of the major drawbacks of this method of optimization is its dependence upon a data base
to determine the TPDFs. There are two problems associated with acquiring these data:
obtaining truth and the cost. In order to collect tissue parameter data from a specified tissue,
one needs to unambiguously classify the tissue from which the data point is collected. This
requires an independent method of classifying the tissue that has a very low probability of
error. In MRI, the classification of the normal tissues can be done using anatomical location.
For lesions the problem is more complicated, unless there are results from a biopsy or autopsy
available. These difficulties magnify the importance of publishing tissue parameter data as
correlated values from the same sample, not as independent means.

The imaging data that are collected using the optimal protocol offer the maximum separation
between tissues in a mathematical sense. In order to translate this mathematical separation into
a diagnostic improvement, a set of “display” images must be synthesized. The collected images
can be considered a basis set from which display images are derived; the algorithm that
synthesizes the display images may be changed according to the needs of the diagnostician.
For example, it may be suitable to synthesize an image for each discrimination problem (i.e.,
lesion vs white matter, lesion vs gray matter).

The optimization algorithm described in this paper has mathematically separated tissue-
dependent signal characteristics in the entire patient population; therefore, any image
processing that is done automatically on all of the images should be based on the SPDFs.
However, once the data for an individual have been taken, some image processing can be done
based solely on the acquired data. Such processing includes principal component analysis
(36,37), the calculation of eigenimages (38), and SDNR maximization between specific regions
of interest (ROIs) with matched filters (39). For example, the radiologist may spot a region of
suspicion in a background of normal tissue. By defining two ROIs, one for the region of
suspicion, the other for the known normal tissue, the data in the S-space can be contracted by
taking the sum of the collected images of the slice with weighting coefficients that produce
maximum SDNR between the region of suspicion and the background. This summation is
based on the data for this patient only and therefore may differ from that derived from the
whole population. But, it should be noted that the region of suspicion must be found first; it is
the job of the optimized protocol to give the radiologist the best chance at finding this region
of suspicion. Once the region of suspcicion is found, many sophisticated image processing and
data analysis techniques can be used.
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6. Conclusions
A number of conclusions have been drawn throughout this analysis and are summarized for
clarity in point form.

1. In order to derive the optimal data acquisition protocol, the natural variability of the
tissue parameters must be taken into account.

2. The figure of merit needs to reflect the clinical task, not machine performance. For
this reason the separability of tissues is a more pertinent figure of merit than SNR or
SDNR.

3. The upper bound of separability of tissues with MRI signal values is set by the overlap
of the PDFs describing the distribution of tissue parameter values in the patient
population. The first stage of any optimization should be the calculation of the PDFs
describing the tissue parameters.

4. All of the tissues relevant to the clinical problem must be included in the algorithm
in order to derive the optimal protocol.

5. The prevalence of disease in the patient population can be accounted for through
normalization of the TPDFs.

6. The relative importance of differentiating the tissues in the problem can be modeled
with a loss matrix.

7. The effective dimension of the signal strength space is given by the number of tissue
parameters upon which the pulse sequences are dependent. That is, all signal strength
values will lie upon a manifold in a signal strength space whose dimension is
determined by the number of tissue parameters (assuming the number of sequences
is greater than or equal to the number of tissue parameters). Additional pulse
sequences added to a protocol may stretch this manifold, but they will not increase
its dimension unless a new, independent tissue parameter is introduced.

8. If the TPDFs are known exactly, the image extraction process used to derive the
display images from the collected data can be established in advance. Further adaptive
image processing may be done with human assistance based on what the radiologist
finds in the display image set.
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Fig. 1.
Three bivariate normal TPDFs in the T1 × T2 plane. These distributions were derived from data
measured in vitro for fat, fibrous, and infiltrating duct carcinoma tissues.
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Fig. 2.
Two bivariate normal TPDFs with 2σ perimeters shown as dashed lines are mapped from a
two-dimensional tissue parameter space (T-space) to a one-dimensional signal strength space
(S-space) with an IR pulse sequence. The signal strengths are in units of the root mean square
deviation (RMSD) of the image noise.
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Fig. 3.
(a) Two bivariate normal distributions in T-space (T1 × T2), with three isosignal contours from
an IR pulse sequence overlayed. (b) Each contour maps to a single signal strength value as
shown in the plot of the S-space. It is demonstrated in both the T-space and the S-space that
the signal value s = s0 acts as a good decision boundary between tissue A and tissue B.
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Fig. 4.
TPDFs for fibrous breast tissue (bottom) and infiltrating duct carcinoma (top) are shown as
isoprobability density contours. The dashed line is the decision boundary derived from these
TPDFs when the costs of both types of error (false-positive and false-negative) are identical.
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Fig. 5.
The method of optimization shown in three steps. (a) The model of the tissues. (b) The mapping
to an S-space and the incorporation of image noise. (Note: the Gaussian is scaled down for
display purposes.) (c) Selection of the decision boundary and risk calculation.
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Fig. 6.
The SPDFs and associated TPDFs for two sequences. The TPDFs have isosignal contours of
the sequence overlayed. The sequence shown in (a) has the minimum risk, the sequence in (b)
has the maximum SDNR between the means of the TPDFs. Note the poor decision boundaries
provided by sequence (b).
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Fig. 7.
A schematic of a mapping for which Ns < Np. In this case the mapping is from a three-
dimensional T-space to a two-dimensional S-space. The TPDF is shown as an ellipsoid with
isosignal surfaces intersecting it. One isosignal surface from each pulse sequence is shown.
The integral of the TPDF along the line of intersection of the two surfaces gives the value of
the SPDF at a point in the two-dimensional S-space. The SPDF is shown as isoprobability
density contours in the S-space.
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Fig. 8.
A one-to-one mapping from a two-dimensional T-space (T1 × T2) to a two-dimensional S-space
(spin-echo, T1-weighted × T2-weighted). (a) The isosignal contours draw a grid over a region
in the T-space. (b) The same region of T-space as that in (a) mapped into the S-space. The grid
shown in the S-space is equivalent to a set of curvilinear coordinates.
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Fig. 9.
A mapping for which Ns > Np. In this case the mapping is from a one-dimensional T-space
(T2) to a two-dimensional S-space (spin-echo, TE = k, TE = 3k). Note that all of the signal
strenghts will be confined to the curve .
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