
Optimization of Multi-Domain Queries on the Web

Daniele Braga Stefano Ceri Florian Daniel Davide Martinenghi
Dipartimento di Elettronica e Informazione – Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy
{braga,ceri,daniel,martinen}@elet.polimi.it

ABSTRACT
Where can I attend an interesting database workshop close
to a sunny beach? Who are the strongest experts on service
computing based upon their recent publication record and
accepted European projects? Can I spend an April week-
end in a city served by a low-cost direct flight from Milano
offering a Mahler’s symphony? We regard the above queries
as multi-domain queries, i.e., queries that can be answered
by combining knowledge from two or more domains (such
as: seaside locations, flights, publications, accepted projects,
conference offerings, and so on). This information is avail-
able on the Web, but no general-purpose software system
can accept the above queries nor compute the answer. At
the most, dedicated systems support specific multi-domain
compositions (e.g., Google-local locates information such as
restaurants and hotels upon geographic maps).

This paper presents an overall framework for multi-domain
queries on the Web. We address the following problems: (a)
expressing multi-domain queries with an abstract formalism,
(b) separating the treatment of “search” services within the
model, by highlighting their differences from “exact” Web
services, (c) explaining how the same query can be mapped
to multiple “query plans”, i.e., a well-defined scheduling of
service invocations, possibly in parallel, which complies with
their access limitations and preserves the ranking order in
which search services return results; (d) introducing cross-
domain joins as first-class operation within plans; (e) eval-
uating the query plans against several cost metrics so as to
choose the most promising one for execution. This frame-
work adapts to a variety of application contexts, ranging
from end-user-oriented mash-up scenarios up to complex ap-
plication integration scenarios.

1. INTRODUCTION
The current evolution of the Web is characterized by an

increasing availability of online services (e.g. book search
services provided by online stores or libraries) and novel
search facilities (e.g. flight search Web sites, provided by

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

most commercial airlines or travel offers integrators). Being
specific to a restricted domain, they offer a quality of their
answers that goes much beyond what can be achieved via
conventional, general purpose search engines. The overall
amount of data that can contribute to such queries is con-
tinuously growing, mainly within the so-called deep Web [2],
i.e., in a form not immediately indexable by search engines.

In light of these considerations, multi-domain queries as
the ones mentioned in the abstract no longer represent a
mere academic exercise; rather, they witness how intricate
real life queries may be, and what a user would like to find
available in order to fulfill real needs. However, we are still
lacking effective query systems on the Web allowing users
even to ask similar queries. General purpose search engines
fail to answer multi-domain queries, while domain-specific
search services cover a subset of the query domains. Thus,
at the current state-of-the-art, the above queries can be an-
swered only by patient and expert users, whose strategy is
to interact with specialized services one-at-a-time and then
feed the result of one search as input to another, reconstruct-
ing answers in their mind.

This paper delves into the research issues that arise in de-
veloping and optimizing a query system for multiple-domain
Web queries, focusing on the specific features due to the
presence, among them, of several search services. The dis-
tinguishing feature of a search service is to return answers in
relevance order. In general, although the answers produced
by a search service can be very numerous, users are only
concerned with the answers provided within the first batch.
Thus, a query strategy that retrieves all the answers from a
search service is not appropriate. On the other hand, only
the user can correctly evaluate the relevance of answers pro-
duced by search engines; therefore, if a query involves sev-
eral searches, all answers produced by the involved search
engines should be composed in the query output and pre-
sented to the user for a correct evaluation. Moreover, the
user expects results in ranking order; thus, while compos-
ing answers from multiple search services, answers should
be presented according to a global ranking that is a good
composition of the various partial rankings; in this way, the
user can control the interaction, seeing “good answers”, and
behave by arresting the search, changing the input values,
or even interacting with the environment according to a
more complex protocol, aware of which services are being
invoked1.

The paper by Srivastava et al. [16], which introduced the

1This is outside the scope of this paper but part of our
research.

562

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

notion of Web Service Management System, can be consid-
ered as the direct predecessor of this paper; however, [16]
did not consider the difference between search services and
other services, or the problem of ranking results in the an-
swer. Thus, our model and results are different from our
predecessor.

1.1 Contributions of the paper
We define an original formal model for the optimiza-

tion and the execution of multi-domain queries over het-
erogeneous Web information sources, which serves as a uni-
fying perspective for several diverse settings, ranging from
user-oriented service mashups to vertical service integration
frameworks. The originality of the model resides in intro-
ducing a simple and yet effective classification of services:
exact services have a “relational” behavior and return ei-
ther a single answer or a set of unranked answers, search
services return a list of answers in ranking order, according
to some measure of relevance.

We formally define query plans as equivalent to rela-
tional physical access plans; query plans schedule the in-
vocations of Web services and the composition of their in-
puts and outputs. A plan is defined as the orchestration
of service invocations, possibly in parallel, which takes into
account the most significant features of the service, includ-
ing its ability to page the results (i.e., to return a given
number of answers with a single request-response). Within
plans, the main operations are joins between Web service
results, whose execution can take place according to several
join strategies.

We define an optimization technique resorting to a clas-
sical and well-grounded approach such branch and bound in
order to efficiently explore the solution space and find the
optimal execution plan. Cost minimization is performed ac-
cording to one of several alternative cost metrics capturing
different scenarios.

We give experimental evidence that our proposed model
fits well on a set of services and Web information sources
that allow accessing deep Web data. We specifically focus
on immediately invokable Web services and manually and
semi-automatically generated wrappers for data intensive
Web sites.

The approach and the techniques described in this pa-
per are core components of a multi-center Italian research
project (New Technologies and Tools for the Integration of
Web Search Services) [3].

2. OVERVIEW OF OUR APPROACH
The optimization problem considered in this paper is:

given a query over a set of services, find the query plan that
minimizes the expected execution cost according to a given
metric in order to obtain the best k answers. The process
of generating an optimal plan starts from a datalog-like for-
mulation of the query and ends with a fully instantiated
invocation schedule.

The execution environment is a system capable of exe-
cuting query plans (as they will be formally defined in the
sequel); this means that the system can execute Web Service
requests, collect their results, and integrate them progres-
sively, forming the “answers”.

2.1 Characteristics of the information sources
We consider conjunctive queries (i.e., select-project-join

queries) on services over information sources available on
the Web. We abstract away from the technicalities of the
underlying data representations and resort to simple signa-
tures with a name and a list of attributes for each source.

A fundamental distinction in our model concerns the na-
ture of services; we distinguish between exact and search
services. Search services return a list of tuples in ranking
order, according to some measure of relevance; such measure
is normally opaque (i.e., not visible in the result). Exact ser-
vices return either a single tuple or a set of unranked tuples;
these tuples cannot be distinguished with respect to a pref-
erence criterion.

It should be noted that Web sources are not freely acces-
sible as in the traditional relational setting, because they
typically expose a limited number of interfaces, in which
certain fields must be mandatorily filled in order to obtain
a result. These fields may be the input fields of a form on
a data-intensive Web site or the input parameters of a Web
Service invocation. Such access limitations are crucial to
the optimization problem, and modeled as follows. We as-
sume that each service is characterized by a given number of
combinations of input and output parameters, correspond-
ing to the different ways in which it can be invoked. Along
with the literature, we call each such combination an ac-
cess pattern for the service. Intuitively, a query including
several services is executable if a schedule exists that allows
invoking each service mentioned in the query according to
an available access pattern. This may occur either because
the user has specified all the input values required for the
input fields or because values output by a service can feed
other services’ input fields, so as to globally comply with the
available access patterns.

Disregarding the access patterns, services can be abstractly
thought of as relations. In general, each service has an as-
sociated cardinality, expressing the total number of tuples
that it could produce after being called in all possible ways.
However, to our purposes, it is more important to character-
ize a service through its expected result size per invocation
(erspi), i.e., the average number of results produced by one
invocation. If a service’s erspi is greater than 1 we say,
along with [16], that the invocation is proliferative; if it is
between 0 and 1 we say that it is selective. Normally, search
services are highly proliferative, thus the retrieval of their
tuples must be halted, while exact services can either be
selective or proliferative.

Services can further be classified as “bulk” or “chunked”;
in the former case, they return all their results as effect of
a single request, in the latter case they return results in
chunks (or pages) of a fixed size; this occurs in general with
search services, and can occur whenever a service returns a
large number of results. In our abstract model, we charac-
terize chunked service with a chunksize , which expresses the
number of tuples returned by each “fetch” (i.e., sequential
invocation) performed on the service.

Joins can be considered as particular exact services pro-
vided by the system, capable of merging results from two
services if they satisfy a join condition. Also, joins have an
associated erspi; the erspi of a join over two services is given
by the product of the erspi values of the services multiplied
by the selectivity of the join condition.

563

2.2 Query plans
A query plan indicates the sequence of invocations of ser-

vices and their conjunctive composition through joins. The
specification of a query plan allows the execution of a query
as a dataflow computation, from the user’s input to the first
k answers. We represent plans as directed acyclic graphs
(DAGs):

• Every node represents either an atom in the conjunc-
tive query (i.e., a service invocation) or a join. Every
node is characterized by an erspi value, chunked atoms
are further characterized by a chunksize value.

• Every arc indicates a precedence in the invocation and
possibly a parameter passing from values of the results
of one service to inputs of another service.

• Every join node is marked with an indication of the
join strategy to be employed, and an indication of the
number of fetches to be performed on each joined ser-
vice, if they are chunked.

The graphical syntax that we use for representing query
plans will be introduced in detail in Section 3.3 (Figure 4).

Constant values appearing in a query are either presented
by the user through a form or set within a query template;
optimization is performed for each query template under
suitable assumptions of domain uniformity and indepen-
dence. In our framework, we retrieve only the fraction of
tuples of proliferative services that are sufficient to obtain
the first k query answers; we set k so that the answered
tuples should normally satisfy the user’s needs, but we also
assume that a plan execution can be continued, by produc-
ing more answers. A user can either be satisfied with the
first k answers, or ask for more results of the same query, or
change the choice of keywords and resumbmit a new query
with the same template, or turn to a different Web activity.
We assume that services are independent of each other and
that at each service call the values are uniformly distributed
over the domains associated to their input and output fields.
These assumptions allow us to obtain estimates for predicate
selectivities and sizes of results returned by each service call;
cost models use erspi and chunksize parameters.

2.3 Cost Metrics
A cost metric is a function that associates a cost to each

query plan. We mainly consider the following cost metrics:

• Sum cost metric, which computes the cost of the plan
for producing k answers as the sum of the costs of
each operator used in the plan. Examples of costs for
a service invocation are the cost of computing joins or
the cost charged by the service.

• Execution time metric, which measures the (expected)
time elapsed from the query submission time to the
production of the k-th answer.

A special case of the sum cost metric is the request-response
cost metric, which consists of counting the number of service
invocations required to execute the plan; it assumes that ser-
vice invocations are the only relevant operations and their
cost is set to 1. This metric is particularly relevant when
the transfer of data over the network is the dominating cost
factor.

In our examples, we will use the execution time and request-
response metrics, as they best captures the typical usage

Empty plan

Rewrite query based
on access patterns

Fix execution
order and joins

Bound is better

Feasible
access plans

Selective and
parallel are better

Plans with
parallel joins

Assign number
of fetches

Greedy and
square are better

Executable
plans with

costs
C1 C2 C3 C4 CN...

Figure 1: Overview of the global optimization phases

scenario we have in mind, where a query is executed in an
open world of free-of-charge services, and where determining
fine granularity service execution costs is difficult.

There are other cost metrics of interest, though not con-
sidered in detail in the rest of the paper:

• Bottleneck cost metric, which gives the execution time
of the slowest service in the plan, and is relevant in
contexts of pipelined execution of continuous queries.
This metric, fully studied in [16], is suitable to contexts
with homogeneous services (resembling a distributed
DBMS) but it is not advised in our context, where
search services rarely produce all their tuples and the
execution is normally limited to reaching k answers.

• Time-to-screen cost metric, which measures of the time
required to present the user with the first output tu-
ple, accounting for settings in which the user expects
a prompt interaction.

2.4 Optimization Approach
Finally, after characterizing services, query plans, and cost

metrics, we are in the position of introducing our overall op-
timization approach; this is the paper’s main contribution,
represented in Figure 1. The approach consists in exploring
a highly combinatorial solution space that characterizes all
possible translations from the user query into fully instan-
tiated query plans. The exploration is separated into three
phases, that provide subsequent details about query plans.

• The first phase is the selection of a given query rewrit-
ing such that every service is called with one of the
available access patterns. This phase transforms the
conjunctive query over web services into several anno-
tated access queries over access patterns of the corre-
sponding services.

• The second phase is the selection of a query plan for
the given query rewriting. This phase fixes the order
of execution of the query over the services as well as
the position and kind of joins between services used in
the plan.

564

conf(1)(Topic, Name, Start, End, City)

conf(2)(Topic, Name, Start, End, City)

weather(City, Temperature, Date)

flightS(From, To, OutDate, RetDate, OutTime, RetTime, Price)

hotelS(1)(Name, City, Category, CheckInDate, CheckOutDate, Price)

hotelS(2)(Name, City, Category, CheckInDate, CheckOutDate, Price)

Figure 2: Schema of the available services

• The third phase is the assignments of the exact num-
ber of fetches to be performed over the chunked ser-
vices. This phase allows to fully determine the execu-
tion strategy for a query and therefore to compute its
cost according to a given metrics.

Each phase is combinatorial, hence the considered prob-
lem is intractable by exact methods, even with simple queries.
However, all considered cost metrics are monotonic, which
suggests an exploration of the space with a branch and bound
strategy.

Each choice in a construction step corresponds to the
selection within a class of DAGs (i.e., those that may be
constructed starting from the initial query or the previous
choice); all possible classes at a given step determine a sub-
division of the search space into non-overlapping subsets,
which is an ideal branching. Then, thanks to the mentioned
monotonicity, each DAG of a class can be assigned a lower
bound for the cost by calculating the cost on the partially
constructed DAG. To complete the bounding step, we can
obtain an upper bound for a class of DAGs by fully construct-
ing one DAG in the class and calculating its cost. With this,
we may apply the pruning step: if the lower bound for some
class A is greater than the upper bound for some other class
B, then A may be safely discarded from the search.

This approach is used within database optimizers; e.g.
the analogous phases in join optimization consist first in
determining the join order, then the join method, then its
parameterization according to the supported join execution
procedures. The considered problem has a similar combina-
torial explosion, hence there are good hopes that optimizers
could find sufficiently good solutions in acceptable compu-
tation time.

2.5 Running example
Consider the query “find all database conferences in the

next six months in locations where the average temperature
is 28oC degrees and for which a cheap travel solution includ-
ing a luxury accommodation exists”; answering this query
requires: (i) finding interesting conferences in the desired
timeframe via online services by the scientific community;
(ii) understanding whether the conference location is served
by low-cost flights; (iii) finding luxury hotels close to the
conference location with available rooms; and (iv) checking
the expected average temperature of the location.

This query will be walked through in the next sections.

2.6 Structure of the paper
Section 3 formally defines the three models. Then, Section

4 defines the constituting elements of the branch and bound
method, by assigning to each phase both a suitable first
choice heuristics (a good first choice is essential for building
an effective upper bound) and a suitable exploration strategy
for exhausting all alternatives in the search space. In Section
5 we discuss cost metrics in further detail, and give some re-

q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) :-

flight(’Milano’, City, Start, End, StartTime, EndTime, FPrice),

hotel(Hotel, City, ’luxury’, Start, End, HPrice),

conf(’DB’, Conf, Start, End, City),

weather(City, Temperature, Start),

Start ≥ ′2007/3/14′, End ≤ ′2007/3/14′ + 180,

Temperature ≥ 28, FPrice+HPrice < 2000.

Figure 3: Query from the running example

sults that hold under simplifying assumptions either related
to the metrics or to the considered problem (specifically,
the number of involved search services). We next present
experiments validating our approach and related work.

3. FORMAL MODEL

3.1 Notation for queries and services
Formally, each service s is equipped with a signature of

the form sα(A1, . . . , An), where s is the service name, n
is called the arity of the service, each Ai is an abstract
domain2, and α is a set of feasible access patterns for s.
An access pattern α is a sequence of ‘i’ and ‘o’ symbols of
length n; for 1 ≤ k ≤ n, the k-th argument of s is said to
be an input argument in α if the k-th symbol in α is ‘i’, an
output argument otherwise. A schema is a set of signatures
for different services.

We denote variables by uppercase letters and constants by
lowercase letters, numbers or as strings enclosed in quotes;
variables and constants are collectively called terms. An
atom for a schema S is an expression of the form s(t1, . . . , tn),
where s is the name of a service with a signature of the form
sα(A1, . . . , An) in S, and each ti is a term; if ti is a constant,
then it belongs to the abstract domain Ai. For convenience
of notation, we sometimes indicate a sequence of terms (or
other objects) t1, . . . , tn as t and a tuple 〈c1, . . . , cm〉 as 〈c〉;
the length of a sequence t is denoted by |t|.

We use a datalog-like notation for queries. A conjunctive
query (CQ) q of arity n over a schema S is written as

q(X) ← conj (X,Y)

where |X| = n, q(X) is called the head of q, conj (X,Y) is
called the body of q and is a conjunction of comma-separated
atoms for S involving the variables in X and Y and possibly
some constants. We assume that queries are safe, i.e., that
each variable of the query appears in at least one atom in the
body. Note that CQs with atoms corresponding to different
services represent multi-domain queries.

Given a schema S, the answer qD to a CQ q over S with
data instance D is the set of tuples 〈c〉 of constants, with
|c| = |X|, such that there is a sequence of constants d, with
|d| = |Y |, for which each atom in conj (c, d) is in D.

For uniformity of notation, we shall always use the same
letters to refer to service properties. In particular, ξs will
indicate the erspi of a service s and τs its average response
time. If s is chunked, css will indicate its chunksize and Fs

the number of performed fetches; if s is a search service, ds

will indicate its decay, i.e., the number of tuples after which
ranking is known to decrease under the threshold of interest
(if such information is available). For a selection predicate
p, we indicate its selectivity as σp.

2Note that we use a positional notation and that the Ai’s
do not denote attributes but abstract domains.

565

Selective exact
service without/
with chunking

Proliferative exact
service without/
with chunking

Search service
with chunking

Name

Name

Name
Query
input

Query
output

Pipe join*

Name

Name

*
IN OUT

NL/MS Nested Loop (NL) or
Merge Scan (MS)
parallel join

S2

S1

Figure 4: Visual syntax for representing query plans

Example 3.1. The schema of our running example is rep-
resented in Figure 2, where, for ease of notation, we have
rewritten a signature for each access pattern, by adding a
different subscript index to the service name, and by under-
lining the input fields. For instance, the conf service would
have the signature conf{ioooo,ooooi}(Topic, Name, Start, End,
City), according to the notation introduced previously. Search
services (extracting hotels and flights in ranking order) are
indicated with an “S” superscript that will be omitted in the
following. The query from our running example is shown in
Figure 3.

3.2 Access patterns
We consider a conjunctive query expressed over a set of

services {s1, . . . , sn} with access patterns; we assume that
each service si has mi feasible access patterns, for 1 ≤ i ≤ n.
Clearly, there are

∏
1≤i≤n m

oi
i possible ways of selecting an

access pattern for each atom in the query body, where oi is
the number of occurrences of service si in the query.

Although the number of choices is potentially very high,
typically, only few of these lead to an executable query, as
specified next.

Definition 3.1. Let Q be a conjunctive query of the form
H ← B1, . . . , Bn. An atom Bi is callable in Q with respect
to a sequence α = 〈α1, . . . , αn〉, where each αi is a feasible
access pattern for Bi’s service, for 1 ≤ i ≤ n, if

• each of its input fields is filled with a constant, or,

• inductively, each of its input fields is filled with a con-
stant or contains a variable that occurs in an output
field of a callable atom.

Q is executable with respect to α if each Bi is callable, for
1 ≤ i ≤ n; in this case, we say that α is permissible in Q.

In [21] the authors propose an algorithm to check the ex-
istence of a permissible sequence of access patterns for a
conjunctive query; the time complexity of this algorithm is
linear in the size of the query3. Non-permissible sequences
are therefore discarded from consideration at the very early
stages of our approach.

3.3 Query Plans
Once a permissible sequence of access patterns is chosen,

the variables in the query determine precedences between
service invocations. For instance, whenever the same vari-
able X occurs both in an output field of an atom A1 and in

3Under the reasonable assumption that the number of feasi-
ble access patterns for each service is bounded by a constant.

Response set service 1

R
es

po
ns

e
se

t s
er

vi
ce

 2

Response set service 1

R
es

po
ns

e
se

t s
er

vi
ce

 2

Nested Loop Merge-Scan

Figure 5: Join strategies: nested loop and merge-scan

an input field of an atom A2, and nowhere else, this indi-
cates that A1’s service must be called before A2’s service for
X to provide a binding for A2’s input. In other words, A1

necessarily precedes A2 during the execution of the query;
we write A1 ≺ A2.

More generally, precedences between atoms determine a
partial order on the query atoms. Following the intuition of
Definition 3.1, we say that an atom A is callable after N ,
where N is a set of query atoms, if A 6∈ N and A’s input
fields contain a constant or a variable occurring in an atom
in N ; an atom is directly callable if it is callable after ∅ –
obviously, atoms with no input field are directly callable.
The set of atoms callable after N in a query Q is denoted
callableQ(N).

A query plan is represented by a DAG that complies with
the precedences between atoms, i.e., if N is the set of nodes
(corresponding to the query atoms A) preceding a node N
(corresponding to the query atom A) in the DAG, then A
must be callable after A. From now on, we will use the
terms node and atom interchangeably.

Placing a node on the DAG means representing the invo-
cation of the corresponding service. If two nodes are con-
nected by an arc in the DAG, the destination is invoked after
the origin; if they are not connected by any directed path,
they are invoked in parallel.

Figure 4 introduces the graphical modeling notation for
DAGs. A query plan has a unique start node (the user
query’s input) and a unique end node (the query result).
Selective, exact services are represented as simple boxes;
proliferative, exact services are represented as boxes labeled
with an asterisk; search services are represented as boxes
with a grey trapezium (sketchily representing the decrease
in ranking of the results). Chunked services are represented
by splitting the service’s box into three smaller boxes. As
for joins, we distinguish between two join patterns: pipe join
and parallel join. The pipe join is denoted by an arrow con-
necting two nodes, indicating that the join is computed by
feeding with the output of the origin the input of the desti-
nation. Indeed, this way of joining the results corresponds
to a feed-forward of values. Instead, a parallel join occurs
when join predicates are applied to fields that are in output
for both involved services.

Parallel joins enable parallelizing the use of Web services
and thus are fundamental operations of query plans. They
are represented by means of dedicated nodes, shaped as join
symbols, with an associated label expressing the respective
join method (denoted as NL to mean “nested loop” or MS
to mean “merge-scan”). These methods are the subject of a
dedicated article [4], restricted to binary joins, whose main
results are summarized below for the reader’s convenience.

566

conf(1) weather

flight

hotel(1)
OUTIN

MS

*

Figure 6: A query plan for the running example

If we represent the items returned by the two involved
services on two Cartesian axes, each point in the plane rep-
resents a candidate join result, to be tested against the join
condition. Along with Figure 5 we can represent the join
strategies as ways of scanning such search space.

• NL is employed when there is one service that is highly
selective, and produces the highly ranked tuples with
few fetches; in this case, the result space is explored by
executing first the (few) fetches of the selective service,
then the (many) fetches of the other service, and im-
mediately scanning the search space while the tuples
of the less selective field become available.

• MS is employed when there is no a priori distinction
between the selectivity of services to be joined; in this
case, given numbers of fetches are executed in parallel
for both services, and tuples in output are produced
by traversing their cartesian product “diagonally”.

In both cases, the traversing strategy outputs tuples in a
global order that is consistent with the partial orders of each
service. In general, the choice between NL or MS depends
on the particular pair of services and can be made at service
registration time, by analyzing their statistical behavior. An
example of possible query plan at this stage is shown in the
DAG of Figure 6.

3.4 Annotated Query Plans
For each node n in the plan we can estimate the number of

tuples in output, denoted as tout
n . By tout

n we mean the sum
of all outputs of all invocations of the service associated to
n. We assume that the user always injects one single input
tuple in the plan, represented by the start node. For exact
services, tout

n is given by the product of t in
n (the number of

input tuples, each of which a priori requires one invocation
of n) by ξn, the erspi of n. For chunked services, tout

n equals
csn ·Fn (where Fn is the number of fetches). If node n rep-
resents a join (say, of the outputs of nodes l and m), tout

n is
given by the product tout

l · tout
m ·σp, where σp is the selectiv-

ity of the join predicate p. The selection predicates applied
to all service invocations are included for convenience in the
notion of erspi. Estimating the erspi of a service does not
differ, in principle, from what is normally done to estimate
the effect of a selection predicate over a table in a relational
database.

The overall result size of the query, denoted as tout , only
depends on the number of fetches Fni for all chunked ser-
vices ni. These are the only open parameters fixed in this
phase. An annotated plan with the values Fni of its chunked
services is executable, and thus can be associated with an
execution cost. Figure 8 shows an example that also includes

the expected size of intermediate results; it would produce
enough answers with, e.g., k set to 10. The calculations
needed to obtain such values are discussed in Section 5.3.

4. INSTRUMENTING THE BRANCH AND
BOUND METHOD

This section addresses the three optimization phases in-
troduced in 2.4. For each of these three phases (choice of
access patterns, topology of the plan, and number of fetches)
we give some heuristics for choosing an initial choice and a
definition of the branching and bounding steps to be used in
the global optimization process for examining the other solu-
tions in the space. The heuristics perform first assignments
of the open parameters, so as to provide the branch-and-
bound strategy with a heuristically good upper bound to
start the exploration of the search space and rapidly achieve
convergence. An intuitive snapshot of the process has been
given by Figure 1.

4.1 Access Pattern Selection

4.1.1 Heuristics: bound is better
A good heuristics for selecting the most promising choices

of access patterns among the permissible ones consists in
preferring access patterns with input fields wherever possi-
ble; we refer to this heuristics as “bound is better”.

More formally, given two feasible access patterns α1 and
α2 for a service s, we say that α1 is more cogent than α2,
written α1 �IO α2, if every field in s that is marked as input
in α2 is also marked as input in α1.

Generalizing, given two sequences of n feasible access pat-
terns α1 and α2, for n corresponding services, we write
α1 �IO α2 if α1[i] �IO α2[i] for 1 ≤ i ≤ n, where we have
indicated with α[i] the i-th element of a sequence α. We
write α1 ≺IO α2 whenever α1 �IO α2 and not α2 �IO α1.
A sequence α of n feasible access patterns is most cogent
whenever there is no other sequence α′ of n feasible access
patterns such that α′ ≺IO α. Any most cogent choice of
access patterns is a heuristically good initialization. This
choice is grounded on the following considerations.

• Given a fixed cardinality for a service, an invocation
with a more cogent access pattern is much more likely
to return a smaller answer set, and certainly cannot re-
turn a bigger one. Therefore, fewer requests are needed
to retrieve the data, and the size of intermediate results
is heuristically reduced. In analogy with traditional
databases, this corresponds to pushing selections near
to data sources.

• If the service is implemented with suitable indices on
the bound fields, a more cogent service is more likely
to respond more quickly.

• With smaller intermediate results, less computational
effort is required for caching data and for operating on
them.

These observations hold for all the cost metrics that we
consider, which therefore all benefit from the “input is bet-
ter” heuristics.

567

4.1.2 Exploration of the search space
This phase explores the space of permissible sequences of

patterns, starting with the most cogent choices, and contin-
uing with the other choices. Lower bounds for the patterns
can be computed by isolating the services that are less co-
gent than some services in an already computed solution,
and then by computing the cost associated to those services
under the most favorable assumptions; the bound is effec-
tive if such cost exceeds the complete cost of the considered
solution.

Example 4.1. According to the feasible binding patterns,
there are 4 possible choices corresponding to the services
conf, flight, hotel,weather used in the query of Example 3.1:

α1 = 〈conf1, flight, hotel1,weather〉
α2 = 〈conf1, flight, hotel2,weather〉
α3 = 〈conf2, flight, hotel1,weather〉
α4 = 〈conf2, flight, hotel2,weather〉

However, α3 is not permissible in Q, since variable C in Q
then always occurs in input fields, and therefore none of the
query atoms is callable. In addition, we have α1 ≺IO α2,
since hotel2 only has output fields. Therefore the only two
most cogent choices are α1 and α4.

4.2 Query Plan Selection

4.2.1 Heuristics: selective and parallel are better
Two independent heuristics for obtaining a good upper

bound are: (i) having one single path in the DAG, ordered
by increasing erspi wherever possible, or (ii) always making
the choice that maximizes parallelism; of course, this does
not necessarily minimize the cost. Generally speaking, incre-
menting the parallelism plays in favor of those metrics that
take time into account, while sequencing selective services
plays in favor of metrics that minimize the overall number
of invocations. In absence of access limitations, this gives
the optimal solution, as proved in [16].

4.2.2 Exploration of the search space
The construction of all possible DAGs for a query Q takes

place incrementally. It starts by placing after the initial
node some directly callable nodes, and then by progressively
adding nodes that are callable after the placed nodes. The
notion of (directly) callable was introduced in 3.3.

The plan can start with any single directly callable node,
or with the parallel of any number of such nodes. Once a set
of nodes N i is placed on the DAG, one can add the parallel
of any subset N i+1 of the nodes in callableQ(N i) such that

• any node inN i+1 has an incoming arc originating from
a node in N i placed during the previous step, and

• there is an arc (A,B) for any node B ∈ N i+1 such
that A ≺ B.

In other words, at each step of the construction, the number
of choices for placing a node on the DAG equals |2callableQ(Ni)|−
1, i.e., the cardinality of the power set of the placed nodes
minus 1; for the first step, there are |2N1 |−1 choices, where
N1 is the set of directly callable atoms.

Clearly, the space of constructible DAGs may grow very
quickly, due to the exponential number of choices at each

step of the construction (yet, the choices depend on the de-
grees of freedom on the partial order induced by the access
patterns – if they determine a total order, then there is only
one possible DAG).

4.3 Chunked Service Selection
Whenever a query includes chunked services, we need to

provide an estimate of the number of chunks that will be
retrieved per input tuple at the service. This number is the
fetching factor of the service, and we call fetch the operation
for requesting a chunk of results.

4.3.1 Heuristics: greedy and square are better
We consider two possible heuristics.

• “Greedy”. Initially all fetching factors are set to 1,
which is the lowest admissible value for such parame-
ters. This is already the optimal solution if the number
h of tuples in the result already equals or exceeds k.
Otherwise, we iteratively increment the fetching factor
of the node with the highest sensitivity with respect
to the increase in the number of tuples per cost unit;
we stop as soon as h ≥ k. This procedure finds a local
optimum, which coincides with the global optimum if
the search space is convex.

• “Square is better”. All fetching factors are initially set
to 1, as in the greedy heuristics, but, at each itera-
tion, each of them is incremented by a value that is
proportional to its chunk size, until h ≥ k. This im-
plies that, in average, after query execution, all chun-
ked services will have explored about the same number
of tuples. By “democratically” assigning proportional
fetching factors to all chunked services, this heuris-
tics suits scenarios in which ranking of search services
quickly decreases, and fetching many chunks of results
only from few, selected services does not pay off.

4.3.2 Exploration of the search space
Clearly, if the n-tuple 〈1, 1, . . . , 1〉 determines h ≥ k re-

sults, then it is also the optimal solution. Otherwise an
exploration of the search space is needed, starting from the
initial assignment determined by the chosen heuristics. In
general, given n chunked services, finding the best n-tuple
of fetching factors is a combinatorial problem. Each fetch-
ing factor Fi ranges from 1 to some maximum integer value
Fmax

i , which can be calculated as the minimum value for Fi

to obtain h ≥ k when all the other fetching factors are 1.
However, not all n-tuples need to be considered, since

some may be dominated by already explored ones: an n-
tuple is dominated by another if all its integers are greater
than or equal to those in the corresponding positions, and
therefore need not be considered. The space of n-tuples can
then be exhaustively explored by starting from the initial
assignment, and varying the n-tuple by incrementing and
decrementing some fetching factors so that the new n-tuple
is not dominated by any previously explored tuple and none
of its fields exceeds its upper bound. Besides simple enu-
meration, the exploration can be done in several ways, for
instance by first iterative deepening on the sum of the vari-
ations on all fields.

Note that a known decay for a service i also provides an
upper bound for Fi: after di

csi
fetches no relevant data are re-

turned by i. Small upper bounds determined by decays may
sometimes even mean that k answers can never be reached.

568

5. EXECUTION SETTINGS AND COSTS
This Section is concerned with the instantiation of the

optimization framework onto specific architectures and spe-
cific cost models. Thanks to the above choices, a generic
search strategy of optimal query plan may be significantly
improved. We assume that any compliant execution envi-
ronment would support:

• Service registration, i.e. a process by means of which
the services become known to the optimizer; the reg-
istration includes several features about each service,
such as its signature and its patterns, and gives es-
timates (by sampling) of its erspi, average response
time, and chunk values. The estimates are periodi-
cally updated, also taking advantage of subsequent in-
vocations. For each pair of services, it is known which
parallel join method should be used.

• Service orchestration, including the join methods and
the mechanisms for composing the answers and pre-
senting them to the user.

• Multi-threading, i.e. the ability to invoke services in
parallel as distinct threads associated with the same
query execution.

5.1 Logical caching
A relevant aspect of the execution engine is logical caching,

i.e. the ability of caching result tuples from services corre-
sponding to given input parameters; this aspect is very use-
ful in order to avoid calls that were already executed during
the query plan execution. We distinguish between three dif-
ferent settings:

• no cache: every call is repeated.

• one-call cache: the system recalls the last call to each
service and its results; this is enough for avoiding the
re-issuing of any immediate “second-call” with exactly
the same input parameters.

• optimal cache: the system recalls parameter settings
and results of all calls, thus the execution of a query
plan globally issues a number of calls to each service
that is equal to the cardinality of its inputs (i.e., of the
different values presented in input to all calls).

Repeating service invocations using the same parameters
in consecutive calls may occur frequently in a query plan,
as a consequence of the presence of proliferative services.
The one-call cache setting best trades the savings with the
simplicity of implementation and tuning of the execution
engine, and therefore best captures the scenario of multi-
domain Web queries. In particular, we will show that such
a limited caching mechanism can perceivably improve per-
formances.

5.2 Accurate estimate of required invocations
Measuring the cost of a plan G requires estimating how

many times each service is invoked. At this stage, the above
different caching scenarios require different ways to calculate
t in
n , the numbers of tuples in input for each node n (each of

which, a priori, may require one invocation of n).
The authors of [16] assume that tout always equals∏

ni∈nodes(G)

ξni (1)

This corresponds to a no-cache setting.
However, with caching, the nodes that are guaranteed not

to vary the input tuples for n should not be considered. In-
deed, tout

n is given by t in
n ·ξn or csn ·Fn for exact and chunked

services respectively. Generally speaking, t in
n retroactively

depends on the erspi and fetching factors of all nodes preced-
ing n in G. As several consecutive invocations of the same
service in a short period of time are likely to return the same
result, fully determined by the values in input, the number
of actually required calls for a service n may be smaller than
t in
n .

In a given plan, the relative position of two service in-
vocations may either be: (1) independent, i.e., in parallel,
if no path in the plan includes them both, or (2) in a se-
quence, when such a path exists. Sequenced services may
have field dependencies, if some output of the former ser-
vice feeds some input fields of the latter; otherwise, they
are field-independent4. It should not be forgotten that the
use of the same variable in the query indicates an equi-join.
Therefore, for each input variable X in n, the number of in-
put distinct values for X cannot exceed the minimum erspi
of the services having X in output multiplied by the number
of tuples they receive in input.

By construction, during the execution of a query, all the
tuples originating from a proliferative service are retrieved
contiguously, and will therefore be contiguously sent forward
in the plan preserving the same values for the input fields
of the invocation of non-dependent services. When such
“blocks” of uniform tuples arrive to a node n with no field
dependency from the node that originated the blocks, one
call to n will suffice to compose n’s results with all the tuples
of each block. Therefore, for each input variable X of n, we
consider the node m in the plan that has X in output and
for which tout

m is minimal ; the product of all such minimal
values, for all input variables, conservatively estimates the
maximum number of required invocations of n. To boil all
this down to formulas and give a compact expression for the
cost functions, we write as follows:

t in
n =

∏
m∈N (n)

ξmt in
m , (2)

where N (n) is the set of nodes giving the minimal contribu-
tion to each input variable of n. Indicating with (nj , ni, n)
a path from nj to n passing through ni (nj and ni may
coincide, ni and n cannot) such set is:

N (n) =
⋃

X∈InVars(n)

{
m
∣∣∣tout

m = min
ni:(nj, ni, n) ∈ paths(G),

X ∈ OutVars(nj)

(
tout
ni

)}

5.3 Details of the considered cost metrics
Given the notion of field-dependent nodes and a notation

m(n) for the individual cost of invocation for service n, the
global cost associated to a plan according to the sum cost
metric is then given by the sum of the costs incurred by each
service invocation:

SCM (G) =
∑

n∈nodes(G)

m(n) · t in
n (3)

4In other words, two services that are sequenced but field-
independent happen to be invoked in series according to the
execution schedule, but no real parameter passing happens
between them.

569

With the execution time metric, the cost ETM (G) must
account for the slowest path flowing tuples from the user
input to the output of the plan, and associates to each path
an execution time that consists of two components: (i) a
bottleneck, which is the node in which the product of invo-
cation/fetches multiplied by the time-per-invocation is max-
imal, and (ii) the time needed to reach the bottleneck node
with the first tuple (filling in the pipe) plus the time to reach
the output from the bottleneck (emptying out the pipe):

ETM (G) = max
P∈paths(G)

[(
max

n∈nodes(P)
Fn·t in

n ·τn

)
+

∑
m∈nodes(P)\nbn

τm

]
(4)

where nbn is the bottleneck node maximizing the first term.
It is worth noting that both these metrics are monotonic

with respect to the way in which DAGs are constructed in
our framework, and that the values for t in

n can be calcu-
lated accordingly to any of the considered settings, yielding
different values.

5.3.1 Fetching factors: interesting special cases
We now address the problem of assigning fetching factors

according to the heuristics for one of the aforementioned
cost metrics.

In case only one chunked service sn is in G, its Fn may be
easily calculated. Indeed, tout is a function of Fn only, so
it suffices to equal its expression with k (the desired result
size) to obtain a value for Fn. This is easy if the contribution
Fn ·cssn of tuples from n can be isolated in the expression of
tout , which happens, e.g., if n is the last node in G or if all
the outputs of a node are used as inputs for the subsequent
nodes. In the latter case, tout equals the expression (1),
therefore we have:

tout =
∏

i∈nodes(G)\{n}

ξi · Fn · cssn . (5)

The factor
∏

i∈nodes(G)\{n} ξi equals the bulk erspi Ξ(G) =∏
i∈bulkNodes(G) ξi, which is the product of all erspi for the

bulk services in the DAG. In order to obtain k tuples in
output, the fetching factor for n should be Fn = d k

Ξ(G)·css
e;

obviously, Fn depends on k.
When two nodes n1 and n2 corresponding to chunked ser-

vices s1 and s2 are present in G, tout depends in general
both on Fn1 and Fn2 ; therefore, k fixes a class of pairs for
these fetching factors. Under the same assumptions as Equa-
tion (5), we have here: tout = Ξ(G) · Fn1 · css1 · Fn2 · css2 .
In this case k determines the product of the two fetching
factors: Fn1 · Fn2 = d k

Ξ(G)·css1 ·css2
e = K ′, where Fn1 and

Fn2 are positive integers. The number of 〈Fn1 ,Fn2〉 pairs
can at most be 2 · dK ′e, and we need to find the pair that
minimizes the plan’s cost. If the metric in use is, say, the
sum cost metric, and the cost associated to a fetch of service
si is ci, the optimal values for the fetching factors are found
by minimizing the expression Fn1 · t in

n1 · c1 + Fn2 · t in
n2 · c2.

If n1 and n2 are not on the same path, t in
n1 and t in

n2 do not
depend on Fn1 or Fn2 , so their optimal values are given by

Fn1 =

⌈√
K ′ ·

t in
n2 · c2

t in
n1 · c1

⌉
Fn2 =

⌈√
K ′ ·

t in
n1 · c1

t in
n2 · c2

⌉
(6)

If n2 follows n1 on the same path and uses as input some
output from n1, then t in

n2 grows linearly with Fn1 , so the

c w f h(a)

(b) c f ...

(c) c

f

h

w

(d) c

f

h

w

...

...

...

IN OUT

IN

IN

IN OUT

Figure 7: Running example: some alternative plans

optimal values are

Fn1 = 1 Fn2 = dK ′e (7)

Under the same assumptions, we can generalize Equations
6 and 7 , to the presence of n chunked services by respec-
tively extracting the n-th root of an expression with more
elaborated constants and by augmenting as much as possible
the fetching factors for the last services in the chain.

Example 5.1. We consider again the query and services
from Example 3.1 and the choice of α1 from Example 4.1,
and optimize it according to the execution time metric. The
only directly callable atom is conf, so every plan associated
with the patterns α1 will necessarily start by invoking this
atom. Since all other atoms are callable after it, there are 19
alternative plans, obtained by using 6 different permutations
and 13 parallelization options of the three other atoms.

Figure 7(a) sketches the DAG corresponding to the serial
invocation of atoms in order of increasing erspi (i.e., weather,
flight, and hotel), which is the plan suggested by the selective
heuristics. This plan contains a single path, with t in

conf = 1.
The weather service is invoked with t in

weather = ξconf tuples,
and produces tout

weather = ξconf ·ξweather tuples. Services conf and
flight share input variables with their predecessor services,
hence by using Equation 2 we obtain t in

flight = min(ξconf , ξconf ·
ξweather) = ξconf ·ξweather and t in

hotel = min(ξconf , ξconf ·ξweather, ξconf ·
ξweather · ξflight) = ξconf · ξweather.

Assuming the hotel atom as the bottleneck node, we ob-
tain:

ETM 1 = Fhotel · t in
hotel · τhotel + τconf + τflight + τweather

= Fhotel · ξconf · ξweather · τhotel + τconf + τflight + τweather

where Fhotel depends on k. By computing ETM 1, we obtain
an upper bound and can prune other choices. For example,
Figure 7(b) shows a partially constructed plan in which flight
is chosen as the second service to be invoked; the estimated
cost of this partial plan is ETM 2 = t in

flight · τflight + τconf . If
ETM 2 > ETM 1, then we prune any plan having the nodes
in Figure 7(b) as prefix. Under the same assumption, the
choice of parallelizing weather, flight, and hotel, shown in
Figure 7(c), is also pruned, since also its cost is greater than
ETM 2.

A plan that parallelizes flight and hotel after weather is
shown in Figure 7(d). Since no decay is known for either
hotel or flight, merge-scan is used; the join’s estimated erspi
is 0.01. The plan corresponding to these choices is shown

570

conf(1) weather

flight

hotel(1)

OUTIN

Fflight=3

Fhotel=4

tconf=20 tweather=20
tweather=1

tflight=1

thotel=1

tMS=1500
tMS=15

in

in

out in

out

in

out

MS

tflight=75
out

thotel=20out

Figure 8: Running example: a physical access plan fully

instantiating the plan of Figure 6

weather

flight

OUTIN

NL
Fflight=3

conf(1)

hotel(2)

Fhotel=2

Figure 9: Running example: another access plan

in Figure 8, annotated with the actual values required for
producing k = 10 result tuples. Some of the profiling param-
eters used for services are shown in Table 1. The calcula-
tion of the fetching factors for this plan is done by applying
Equation 6, since hotel and flight are in parallel. This plan
turns out to be optimal for the given choice of parameters
according to the execution time metric.

Figure 9 shows another plan corresponding to different
choices (access patterns, topology, fetching factors) for the
same query, without reporting the t in and tout factors.

6. EXPERIMENTS
In order to test the assumptions made about services

throughout this paper and to assess the quality of query
outputs, we have implemented a set of services that allow
us to access deep Web data. Specifically, we have imple-
mented the conf, weather, flight, and hotel services adopted
in our running example, by using available services or wrap-
ping data sources on the Web. For instance, the implemen-
tation of the flight service is based on data coming from
www.expedia.com; the site implements an interactive ser-
vice accepting user-oriented data input and a confirmation
procedure, and producing chunks of XML information that
includes the tuples as modeled in flight; therefore we had to
implement our own version of the service, that transparently
performs the protocol and produces clean output tuples.
Similarly, we built the other services from public-domain ser-
vices: conf takes data from www.conference-service.com,
weather from www.accuweather.com, and hotel from www.

bookings.com. Our services are coded in Java (based on
regular expressions) and executed locally on our test server,
which supports a rudimental query engine capable of per-
forming both sequential and parallel joins; rewritten services
feature chunking as in the respective source; this allows us
to fetch a new chunk of results with Web service calls, so
that the execution model of experiments is consistent with
the execution model assumed by our this paper.

Table 1 reports the profiles of the four services with the
data that are necessary for query optimization. Profiling
information is derived from several test queries that have
been individually issued to the different services.

Service Type Chunk
size

Average
response
size

Average
response
time

conf exact - 20 1.2
weather exact - 0.05 1.5
flight search 25 - 9.7
hotel search 5 - 4.9

Table 1: Characterization of the example services

Figure 10: Screenshot of results for the optimal plan

The most interesting comparative experiments are con-
cerned with different query plans for the same query or dif-
ferent levels of caching for the same plan, as discussed next.

The first experiment measures the execution time and the
number of service calls for query plans in the no-cache set-
ting; we have chosen the optimal query plan obtained an-
alytically (see Example 5.1), and the two query plans sug-
gested by the serial and parallel heuristics; the three plans
are shown in Figure 7, and we will indicate plan (a) as S,
plan (c) as P , and plan (d) as O. The results are shown
in the three leftmost bars of the chart of Figure 11. All the
plans make exactly one call to conf, which returns 71 tuples,
corresponding to 54 different cities (some cities host several
events). Plan S filters the 71 tuples through weather, and
only 16 cities remain. The results proliferate through flight,
and then traverse the hotel node. Plan P immediately in-
vokes weather, flight, and hotel in parallel. This turns out to
be the worst choice, since the selective effect of weather is
lost, which weighs the heaviest on the slowest service (flight).
The optimal plan O calls hotel and flight in parallel after
weather. The improvement between S and O is significant:
redundant calls (72%) on hotel are removed by construction
of the plan; however, the overall time improvement is not
as high, since the saved calls are cached on the server of
Bookings.com and are therefore answered very quickly. The
experiment confirms that the predicted optimal plan is in-
deed better than the other choices, and both the time and
the service calls saved by O are significant.

Figure 10 shows a screenshot of the answer produced by
the execution engine on the running example query, in which
the constants concerning the conference topic and the tem-
perature have been asked as parameters; the figure reports
the results obtained with plan O on a no-cache setting.

The second experiment measures the effect of different
cache settings on query plan execution. We have tested O,
S, and P in the three different cache settings considered
in this paper. Along with the already discussed results for
the no-cache setting, the corresponding values for the one-

571

71 71 71 71 71 71 54 54 54

16
71

16 16
71

16
11

54
11

284

71

16 15

71

16
10

54

11

0

100

200

300

400

N
um

be
ro

fs
er
vi
ce

ca
lls weather flight hotel

374
596

218 266

598

219 176

512

155

0

1000

To
ta
lt
im

e
[s
ec
]

S P O S P O S P O
No cache One cache Optimal cache

Figure 11: Measures for the tested plans (calls per ser-

vice, and total times in seconds).

call cache and optimal cache settings are also reported in
Figure 11. In the no-cache setting, the results proliferate
through flight, and then traverse the hotel node. When exe-
cuting S in the one-call cache setting, the redundancy pro-
voked by flight is taken care of, and no more than 16 calls
will be forwarded to hotel (in fact, only 15 will flow, since
for one city no flight is found). The optimal cache allows
reducing the number of calls already to weather by remov-
ing duplicate cities (54 distinct cities out of 71); the overall
number of calls is greatly reduced with the optimal cache,
since duplicates are disregarded from the start. Note that
no improvement can be observed for O (and, similarly, for
P) between the execution in the no-cache and in the one-call
cache setting, since no further redundant calls are captured
by the cache. Instead, the improvement is apparent with
the optimal cache because a few duplicate calls are avoided
(and Expedia does not cache such calls). The experiment
confirms that the benefits of caching are significant, and may
be remarkable already in the one-call cache setting, although
this highly depends on the structure of the plan.

Further improvements are obtained by leveraging paral-
lelism on the server side, when services are known to sup-
port it. We have done this as a separate test, where we have
immediately dispatched all the available calls to a service
on parallel threads. For example, in S, all the 71 calls to
weather can be dispatched to parallel threads, and so can
those to flight (and, later, to hotel); the overall execution
time, measured in 76s, will then amount to the sum of the
heaviest calls to weather, flight, and hotel, plus some over-
head due to multi-thread management. However, the per-
formance of the one-step cache will be affected by such a
multi-threading, since the order in which duplicate results
will appear is randomized by parallelism (the 284 calls to
hotel have reduced to 212 with the one-call cache setting in
our experiments with multi-threading, whereas they reduced
to 16 without it). Of course, the optimal cache suffers no
such drawbacks.

We have also applied the framework to other domains,
such as news management, bibliographic search, and bioin-
formatics. For example, we were able to query protein repos-
itories to find evolutionary relationships between human and
mouse proteins including repeated protein domains and in-
volved in the glycolysis metabolic pathway, using the In-
terProt (http://www.ebi.ac.uk/interpro/), UniProt (http://
www.uniprot.org/), BLAST (http://www.ebi.ac.uk/blast2/),
and KEGG (http://www.genome.jp/kegg/) data sources.

7. RELATED WORK
The most closely related work is [16], in which the au-

thors propose a Web service management system (WSMS)
that enables querying multiple Web services in a transparent
and integrated fashion, similarly to the problem approached
in this paper. The authors propose an algorithm for arrang-
ing a query’s Web service calls into a pipelined execution
plan that exploits parallelism among Web services to min-
imize the query’s total running time under the bottleneck
cost metric. They assume all services to be exact and with
no chunking of results, and model them by means of their
per-tuple response time and selectivity; in the queries they
consider, all input attributes get their values from either
exactly one other Web service or from the user’s input.
Answering queries over Web services. Historically, an-
swering queries over independent data sources has been the
research object of parallel or distributed query processing [10,
17, 7]. Two main techniques have emerged in this research
field: code shipping and data shipping. The latter tech-
nique is heavily leveraged in our work, and data are shipped
in a pipelined fashion from one service to another, so as to
maximize parallelism.

The coordinated execution of distributed Web services is
the subject of Web services composition, which comes in
two different flavors: orchestration and choreography. The
distributed approach of choreographed services (e.g., using
WS-CDL [20] or WSCI [19]) does not suit our query process-
ing problem, because choreographies are not executable and
require the awareness of and compliance with the choreog-
raphy by all the involved services. The centralized approach
of orchestrated services (e.g., using BPEL [13]) suits better
the research problem addressed in this paper, as orchestra-
tions are executable service compositions (i.e., query plans,
in our terminology) and services need not be aware of being
the object of query optimization and execution. In the spe-
cific case of BPEL, however, its workflow-based approach
does not provide the necessary flexibility when the invoca-
tion order of services needs to be computed at runtime, as
is our case (e.g., dynamically fixing a number of fetches to
be issued to a service remains hard).

Finally, Yahoo Pipes5 and IBM DAMIA6 [1] enable a
Web 2.0 approach to compose (“mash up”) queries over dis-
tributed data sources like RSS/Atom feeds, comma-separated
values, XML files, and similar. Both approaches come with
user-friendly Web interfaces, which allow users to draw work-
flow-like data feed logics based on nodes representing data
sources, data transformations, operations, or calls to exter-
nal Web services. Unlike the techniques discussed in this
paper, both Pipes and DAMIA require the user to explicitly
specify the query processing logic procedurally, which is gen-
erally not a trivial task for unskilled users; we automatically
derive a plan from a declarative query formulation.

It is worth noting that the previous service querying ap-
proaches effectively enable users to distribute a query over
multiple Web services, but they do not focus on the pecu-
liarities of search services, such as ranking and chunking.
Answering queries under access limitations. The is-
sue of processing queries under access limitations, by some
authors studied under the headline of binding patterns, has
been widely investigated in the literature [14, 11, 12, 21, 6].

5http://pipes.yahoo.com/pipes/
6http://services.alphaworks.ibm.com/damia/

572

In this paper, we have assumed that queries are always de-
signed so as to admit at least one permissible choice of access
patterns. However, for some queries, it may happen that no
permissible choice of access patterns exists. Although, in
this case, the original user query cannot be answered, it
may still be possible to obtain a subset of the answers to
the original user query by invoking services that are not
necessarily mentioned in the query, but that are available
in the schema. In particular, such “off-query” services may
be invoked so that their output fields provide useful bind-
ings for the input fields of the services in the query with the
same abstract domain. In our running example, one could
conclude, e.g., that conf.City, weather.City, flight.From, flight.To,
and hotel.City are all locations; if these were all input fields
but there was another service, say, oldTown(City) providing
locations in output, this could be used to find some of the
answers to the query. This query expansion can only pro-
vide an approximation of the original query that, in general,
requires the evaluation of a recursive query plan even if the
initial query was non-recursive [12].

Also, since accessing data sources over the Web is typi-
cally a costly task, later works have addressed the issue of
reducing the accesses to the sources, while still returning
all obtainable answers. For instance, some optimizations
to be made during query plan generation to minimize the
accesses to data sources are discussed in [11] for a subset
of conjunctive queries, named connection queries; more ex-
pressive classes of queries, including conjunctive queries, are
covered in [5].
Optimizing query plans. We propose a branch-and-bound
query construction method driven by a set of heuristics that
allow us to take into account the peculiarities of search ser-
vices and to converge to an optimal solution with respect to
a given cost metric. Other well-known query optimization
techniques exist, such as transformation-based approaches
[15] or randomized approaches [9]. Like in [8], in our case
we cannot easily resort to transformation-based techniques,
as in general access patterns and ranking orders do not al-
low us to guarantee properties like associativity and com-
mutativity for joins. The use of randomized approaches,
on the other hand, is not efficiently practicable in presence
of explicit access patterns, as such would typically lead to
uselessly consider a large number of infeasible plans during
query optimization.

Branch-and-bound algorithms are, e.g., adopted in [18],
which considers a query optimization problem with charac-
teristics that are similar to our problem. Specifically, the
authors focus on ranked queries in the context of classical
databases, where the “ranking” is expressed by means of an
explicit preference function over the values of a tuple’s at-
tributes, to be taken into account when computing top-k an-
swers. However, service characteristics and implicit ranking
orders are not dealt with, which instead are a distinguishing
feature of the work presented in this paper.

8. CONCLUSIONS
This paper has presented an overall framework for ex-

pressing and optimizing multi-domain queries on the Web.
The paper highlights the relevance of search services and
rankings in such queries, and adapts to this new framework
classical models and methods successfully used by relational
query optimizers.

Acknowledgements All authors acknowledge support from

Italian project “New technologies and tools for the integration of

Web search services”, PRIN Call 2007-08.

9. REFERENCES
[1] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie,

V. Markl, L. Mau, Y.-H. Ng, D. Simmen, and A. Singh.
Damia: a data mashup fabric for intranet applications. In
VLDB’07, pages 1370–1373. VLDB Endowment, 2007.

[2] M. K. Bergman. The deep web: Surfacing hidden value.
The Journal of Electronic Publishing, 7(1), 2001.

[3] D. Braga, D. Calvanese, A. Campi, S. Ceri, F. Daniel,
D. Martinenghi, P. Merialdo, and R. Torlone. Ngs: a
framework for multi-domain query answering. In Proc. of
IIMAS’08, ICDE 2008 workshop, pages 254–261, 2008.

[4] D. Braga, A. Campi, S. Ceri, and A. Raffio. Joining the
results of heterogeneous search engines. Information
Systems, 2008. To appear.

[5] A. Cal̀ı and D. Martinenghi. Querying data under access
limitations. In Proc. of ICDE 2008, pages 50–59, 2008.

[6] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries
using views with access patterns under integrity
constraints. Theoretical Computer Science, 371(3):200–226,
2007.

[7] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The Gamma
Database Machine Project. IEEE Transactions on
Knowledge and Data Engineering, 2(1):44–62, 1990.

[8] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu.
Query optimization in the presence of limited access
patterns. In SIGMOD’99, pages 311–322, 1999.

[9] Y. E. Ioannidis and Y. Kang. Randomized algorithms for
optimizing large join queries. SIGMOD Rec.,
19(2):312–321, 1990.

[10] Z. G. Ives, A. Y. Halevy, and D. S. Weld. Adapting to
source properties in processing data integration queries. In
SIGMOD’04, pages 395–406, 2004.

[11] C. Li and E. Chang. Answering queries with useful
bindings. ACM Trans. Database Syst., 26(3):313–343, 2001.

[12] T. D. Millstein, A. Y. Levy, and M. Friedman. Query
containment for data integration systems. In PODS’00,
pages 67–75, 2000.

[13] OASIS. Web Services Business Process Execution
Language. Technical report,
http://www.oasis-open.org/committees/wsbpel/, 2007.

[14] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In
PODS’95, pages 105–112, 1995.

[15] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C. Leung,
R. Ramakrishnan, D. Srivastava, P. J. Stuckey, and
S. Sudarshan. Cost-based optimization for magic: algebra
and implementation. SIGMOD Rec., 25(2):435–446, 1996.

[16] U. Srivastava, K. Munagala, J. Widom, and R. Motwani.
Query optimization over web services. In VLDB’06, pages
355–366. VLDB Endowment, 2006.

[17] M. Tamer Ozsu and P. Valduriez. Principles of distributed
database systems. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1991.

[18] Y. Tao, V. Hristidis, D. Papadias, and
Y. Papakonstantinou. Branch-and-bound processing of
ranked queries. Inf. Syst., 32(3):424–445, 2007.

[19] W3C. Web Service Choreography Interface (WSCI) 1.0.
W3C Note, August 2002.

[20] W3C. Web Services Choreography Description Language
Version 1.0. W3C Working Draft, December 2004.

[21] G. Yang, M. Kifer, and V. K. Chaudhri. Efficiently
ordering subgoals with access constraints. In PODS’06,
pages 183–192, 2006.

573

