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OPTIMIZATION OF MULTICLASS QUEUEING NETWORKS:
POLYHEDRAL AND NONLINEAR CHARACTERIZATIONS
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JOHN N. TSITSIKLIS

Massachusetts Institute of Technology

We consider open and closed multiclass queueing networks, with
Poisson arrivals (for open networks), exponentially distributed class de-
pendent service times and class dependent deterministic or probabilistic
routing. The performance objective is to minimize, over all sequencing and
routing policies, a weighted sum of the expected response times of differ-
ent classes. Using a powerful technique involving quadratic or higher
order potential functions, we propose methods for deriving polyhedral and
nonlinear sets that contain the set of achievable response times under
stable and preemptive scheduling policies. By optimizing over these sets,
we obtain lower bounds on achievable performance. In the special case of
single station networks (multiclass queues and Klimov’s model) and homo-
geneous multiclass networks, the polyhedron derived is exactly equal to
the achievable region. Consequently, the proposed method can be viewed
as the natural extension of conservation laws to multiclass queueing
networks. We apply the same approach to closed networks to obtain upper
bounds on the optimal throughput. We check the tightness of our bounds
by simulating heuristic policies and we find that the first order approxi-
mation of our method is at least as good as simulation-based existing
methods. In terms of computational complexity and in contrast to simula-
tion-based existing methods, the calculation of our first order bounds
consists of solving a linear programming problem with a number of
variables and constraints that is polynomial (quadratic) in the number of
classes in the network. The ith order approximation leads to a convex
programming problem in dimension O(R**!), where R is the number of
classes in the network, and can be solved efficiently using techniques from
semidefinite programming.

1. Introduction. A multiclass queueing network is one that services
multiple types of customers that may differ in their arrival processes, service
requirements, routes through the network and costs per unit of waiting time.
The fundamental optimization problem that arises in open networks is to
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determine an optimal policy for sequencing and routing customers in the
network that minimizes a linear combination of the expected sojourn times of
each customer class. The fundamental optimization problem that arises in a
multiclass closed network is the maximization of throughput. There are both
sequencing and routing decisions involved in these optimization problems. A
sequencing policy determines which type of customer to serve at each station
of the network, while a routing policy determines the route of each customer.

There are several important applications of such problems: packet-switch-
ing communication networks with different types of packets and priorities,
job shop manufacturing systems, and scheduling of multiprocessors and
multiprogrammed computer systems, to name a few.

The control of multiclass queueing networks is a mathematically challeng-
ing problem. In order to achieve optimality, stations have to decide how to
sequence competing customer types at each point in time, based on informa-
tion about the load conditions of various other stations. Additionally, cus-
tomers can choose their route through the network, taking into account the
current state of various queues. These interactions between various stations
create serious dependencies among them and prevent not only optimization,
but even performance analysis of a given policy. To indicate the difficulty of
the problem, it is worth mentioning that even with Poisson arrivals and class
dependent exponential service times, and for the simplest possible policy,
FCFS (First Come First Serve), product form or analytical solutions are not
available. Naturally, optimizing a multiclass queueing network is an even
harder problem. Thus, not surprisingly, simulation is the most common
practice among researchers and practitioners as a tool of evaluating heuristic
policies. However, even if simulation is used for a proposed heuristic policy, it
may not give any indication on how close to optimality this policy is.

These considerations lead us to the first contribution of the present paper.
In the tradition of discrete optimization in the mathematical programming
community, we develop a sequence of lower bounds to the optimal cost. We
also compare the lower bounds with proposed heuristic policies in order to
evaluate the closeness to optimality of these policies. In the relatively simple
examples that we studied, we found that our first order bounds are compara-
ble to the “pathwise” bounds derived in Ou and Wein (1992) by means of a
simulation-based method. Moreover, our first order bound consists of solving
a linear programming problem with O(R?) variables and O(R?) constraints,
R being the number of classes in the network. In general our ith order bound
consists of solving a nonlinear programming problem with O(R*!) variables
and O(R'*!) constraints.

A second, and in our opinion significant, contribution of the present work is
to expand on the idea that rather than optimizing a stochastic and dynamic

, system (in particular, a multiclass queueing network), it is important to
characterize all the achievable performance vectors (in the case of a multi-
class open queueing network, the vector of expected response times for the
different classes in the network). In this way, one is able to formulate a
stochastic and dynamic optimization problem as a mathematical program-
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ming problem. This has serious advantages because one can use advanced
algorithmic methods from a mature field, and also consider more general
objective functions (for example, involving variances). With respect to this
objective, we obtain a sequence of progressively more complicated nonlinear
approximations that are progressively closer to the exact achievable region.
We note that, except for a simple example in Gelenbe and Mitrani (1980), we
do not know of any other example of a nonlinear characterization.

In the case of simpler systems (a multiclass queue [Gelenbe and Mitrani
(1980); Kleinrock (1976)], a single server network [Klimov (1974); Tsoucas
(1991)] and a homogeneous open network [Ross and Yao (1987)]), our first
order characterization is exact, that is, it is identical to the characterization
in Gelenbe and Mitrani (1980), Ross and Yao (1987) for the multiclass queue
and homogeneous network, respectively, and consistent with the characteri-
zation of Tsoucas (1991) derived using conservation laws. In all of these cases
we also find a reformulation of the achievable region with a polynomial
number of variables and constraints, which is interesting from a combinato-
rial point of view. As a result, our approach can be seen as the natural
extension of conservation laws to multiclass queueing networks. By optimiz-
ing over an approximation of the achievable region, we obtain bounds to the
optimal value. In the case where the characterization is exact, we find the
exact value as well as an optimal policy.

The third methodological contribution of this paper is the use of potential
functions to derive mathematical programming formulations for stochastic
systems. Potential function methods in science have a rather rich history and
a vast literature. From Liapunov functions to prove stability of dynamical
systems, to proof methods in linear programming and network flows in recent
times, potential function methods have been established as a very powerful
proof technique. For stochastic systems, Kushner in the 1960’s used potential
function methods to prove stability. Regarding the use of potential function
methods to bound performance in queueing systems, Kumar (1992) uses a
method of Meyn and Down (1994) (who used it to prove stability of general-
ized Jackson networks) to derive one inequality (as opposed to a family of
inequalities) and obtain a bound on the achievable performance in an open
network with deterministic routing (reentrant line). Kumar points out in his
paper that his bound is rather weak. In the present paper we realize the full
potential of the method and significantly expand its power by introducing an
arbitrary potential function that gives a family of bounds (linear and nonlin-
ear) that takes into account high order interactions of various classes. We
also propose the use of symbolic manipulation of multivariable polynomials
(e.g., using Mathematica or Maple) for automatically deriving the constraints
of the approximating spaces; these constraints are then fed to an LP solver
that calculates the lower bound. In other words, the user provides the data
. (arrival and service rates, the topology of the network and the routing) and
receives as output a lower bound on achievable performance.

The fourth methodological contribution is a general technique for generat-
ing nonlinear (convex) constraints. We show that optimization over this set of
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constraints can be performed efficiently (in polynomial time) using cutting
plane methods and techniques from semidefinite programming. Our ideas are
influenced by the recent developments in deriving lower bounds for integer
programming problems using semidefinite programming [Lovasz and
Schrijver (1990), Alizadeh (1992)].

Literature review. With respect to characterizing the performance region
of stochastic and dynamic systems, there have been some interesting develop-
ments in the last decade. Gelenbe and Mitrani (1980) first showed, using
conservation laws, that the performance region of a multiclass queue can be
described as a polyhedron. Federgruen and Groenevelt (1988) advanced the
theory by observing that in certain special cases of multiclass queues the
polyhedron has a very special structure (it is a polymatroid) that gives rise to
very simple optimal policies (the cu rule). Shanthikumar and Yao (1992)
generalized the theory further by observing that if a system satisfies conser-
vation laws, then the underlying performance space is necessarily a polyma-
troid polytope and the optimal policy is a strict priority rule. Their results
partially extend to some rather restricted queueing networks, in which they
assume that all the different classes of customers have the same routing
probabilities and the same service requirements at each station of the
network [see also Ross and Yao (1987)]. Tsoucas (1991) derives the achievable
region for scheduling a multiclass nonpreemptive M/G/1 queue with
Bernoulli feedback introduced by Klimov (1974). Finally, Bertsimas and
Nifio-Mora (1992) generalize the idea of conservation laws and show that for
all systems that satisfy these generalized conservation laws, the underlying
performance space is a polyhedron with very strong structural properties,
called an extended polymatroid in Bhattacharya, Georgiadis and Tsoucas
(1992). Optimization of a linear function over extended polymatroids can be
achieved by an adaptive greedy algorithm [see Bhattacharya, Georgiadis and
Tsoucas (1992) and Bertsimas and Nifo-Mora (1992)]. The framework of
Bertsimas and Nino-Mora (1992) includes all the cases we mentioned before,
as well as the multiarmed bandit problem [Gittins (1989)], branching bandits
[Weiss (1988)] and some deterministic scheduling problems.

Perhaps one of the most successful approaches for controlling multiclass
queueing networks in heavy traffic, which offers valuable new insights, is to
use Brownian network models, where the stochastic processes in the network
are modeled as Brownian motions. Introduced by Harrison (1986) and further
explored by Wein, this approach proposes heuristic policies that typically
outperform more traditional ones. This approach has been more successful in
closed networks [Harrison and Wein (1990)] and networks with controllable
input [Wein (1990a, b)], but has not been as successful in scheduling open
networks. In particular, Harrison and Wein (1989) show that a threshold
policy is consistent with the optimality conditions for a Brownian two-station,
three-class network that we also consider in this paper (Section 3). Wein
(1990a, b) proposes priority rules and admission control policies in open
networks where admission control is allowed. For a nice survey of the
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heavy-traffic approach for optimization of multiclass networks, the reader is
referred to Kelly and Laws (1992). For a thorough survey of the rather vast
literature on routing in stochastic systems, see Walrand (1988).

In the only study that concerns lower bounds for general networks, Ou and
Wein (1992) derive pathwise lower bounds for general open queueing net-
works with deterministic routing. They also calculate steady-state bounds by
averaging over all sample paths. A distinct characteristic of their approach is
that simulation is needed for the computation of the bounds, to be contrasted
with our approach where bounds are calculated by solving a mathematical
programming problem (linear or nonlinear) with all the parameters known in
closed form from the data of the network.

Chen, Yang and Yao (1991) follow a stochastic intensity control approach
for the specific network topology studied in Harrison and Wein (1989), which
we also study in Section 3. They model the arrival and service processes as
counting processes with controllable stochastic intensities, their objective
being to minimize a discounted cost function over an infinite time horizon,
and they establish a switching curve structure.

Structure of the paper. The rest of the paper is organized as follows. In
Section 2, we formally define the sequencing problem for multiclass open
networks and the class of policies that we will be considering. In Section 3, we
start with a well-studied, simple, open network in order to illustrate the
fundamental ideas in our approach without excessive notation. The particular
structure of this network allows us to derive further bounds, which are based
on different ideas. In Section 4, we introduce two variations of a method for
obtaining polyhedral descriptions (first order methods) of a general open
multiclass network with Poisson arrivals and exponentially distributed, class
dependent service times with deterministic or probabilistic routing. In Sec-
tion 5, we extend our methodology to include routing decisions and closed
networks. In Section 6, we explain how the methodology can be extended to
derive tighter approximations of the achievable region by taking into account
higher order interactions and by introducing an additional family of nonlin-
ear constraints. We also describe how ideas from semidefinite programming
can be used to handle this family of nonlinear constraints. In Section 7, we
prove that our method produces the exact characterization for an M/M/1
multiclass queue and for Klimov’s problem with Poisson arrivals and expo-
nentially distributed service times. In Section 8, we apply our first order
methods to specific network examples and report numerical results. Finally,
in Section 9, we include some concluding remarks.

2. Problem formulation. In this section, we define the class of queue-
ing networks we will consider, the class of policies we allow and establish our

. notation.
Here, as well as in Sections 3 and 4, we will consider an open multiclass
queueing network involving only sequencing decisions (routing is given) with
N single server stations (nodes) and R different job classes. The class of a job
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summarizes all relevant information on the current characteristics of a job,
including the node at which it is waiting for service. In particular, jobs
waiting at different nodes are by necessity of different classes and a job
changes class whenever it moves from one node to another. Let o (r) be the
node associated with class r and let C; be the set of all classes r such that
o(r) = i. When a job of class r completes service at node i, it can become a
job of class s, with probability p,., and move to server o (s). It can also exit
the network, with probability p,, =1 — XE | p,.. There are R independent
Poisson arrival streams, one for each customer class. The arrival process for
class r customers has rate A,, and these customers join station o (r). The
service time of class r jobs is assumed to be exponentially distributed with
rate u,.. Note that jobs of different classes associated with the same node can
have different service requirements. We assume that service times are inde-
pendent of each other and independent of the arrival process.

Whenever there is one or more customer waiting for service at a node, we
can choose which, if any, of these customers should be served next. (Notice
that we are not restricting ourselves to work-conserving policies.) In addition,
we allow for the possibility of preemption. A rule for making such decisions is
called a policy. Let n,(¢) be the number of class r customers present in the
network at time £. The vector n(¢) = (n(¢), ..., ng(¢)) will be called the state
of the system at time ¢. A policy is called Markovian if each decision it makes
is determined as a function of the current state. It is then clear that under a
Markovian policy, the queueing network under study evolves as a
continuous-time Markov chain.

For technical reasons, we will only study Markovian policies satisfying the
following assumption:

AssuMPTION A. (a) The Markov chain n(¢) has a unique invariant distri-
bution.

(b) For every class r, we have E[n2(¢)] < », where the expectation is
taken with respect to the invariant distribution.

Let n, be the steady-state mean of n,(¢) and let x, be the mean response
time (waiting plus service time) of class r customers. We are interested in
determining a scheduling policy that minimizes a linear cost function of the
form Y2 ¢, x,. We approach this problem by trying to determine the set X of
all vectors (x4, ..., xz) that are obtained by considering different policies that
satisfy Assumption A. By minimizing the cost function *Z ¢, x, over the set
X, we can then obtain the cost of an optimal policy.

The set of X is not necessarily convex and this leads us to considering its
convex hull X', Any vector x € X’ is the performance vector associated with
, a generally non-Markovian poliey obtained by “time sharing” or randomiza-
tion of finitely many Markovian policies. Note also that if the minimum over
X' of a linear function is attained, then it is attained at some element of X.
We will refer to X’ as the region of achievable performance or, simply, the
achievable region.
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Given that the exact characterization of the achievable region appears to
be very difficult, in general, we provide methods that approximate the
achievable region by a larger set. Minimizing X*_c,x, over this larger set
provides us with a lower bound on the cost of an optimal policy.

3. A simple two-station network. In this section, we-use a simple
example to illustrate the methodology that will be developed in its full
generality in the next sections.

We consider the network, with two types (not classes) of customers,
depicted in Figure 1. Type 1 customers visit stations 1 and 2, in that order,
before exiting the network and type 2 customers visit only station 1 before
exiting the network. We define class 1,3 customers to be type 1 customers at
stations 1,2, respectively, and class 2 customers to be type 2 customers at
station 1. Let A, and A, be the arrival rates for customers of class 1 and 2,
respectively. Let u, and u, be the service rates at stations 1 and 2, respec-
tively. (We assume that both customer types have the same service require-
ments at the first station.) In order to ensure that at least one stable policy
exists, we assume that A; + A, < gy and A; < gy

Let n; and x; be as defined in Section 2. We are interested in a scheduling
policy that minimizes a linear cost function of the form ¥2_,c,x;, where
¢1, Cg,C5 are given finite weights. Note that for this problem, a policy amounts
to a rule according to which the first server can decide which customer class,
if any, to serve.

In the remainder of this section, we illustrate our methodology for deriving
a lower bound on the optimal cost. To this effect, we use a systematic
procedure for obtaining 2% — 1 inequalities that must be satisfied by the
vector (x;, x4, x3). (Note that we have one inequality for each nonempty set of

Type 2

Type 1

Fic. 1. A simple two-station network.
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classes.) The derivation of these inequalities readily extends to more general
networks (Section 4). We also obtain some additional inequalities by less
systematic (but still generalizable) methods.

3.1. The main inequalities. The result that follows is derived by making
use of potential functions (R5(¢))?, where

(1) R3(t) = X fs(i)ny(2).

ieS
S is a set of classes and the quantities f¢(i) are positive constants, which we
will call f-parameters.

THEOREM 3.1. For the network defined in this section and for every policy
satisfying Assumption A, the following inequalities hold:

X1+ Agxy > ,
. 27 By = AL = Ay
3) -
x> —,
! My — A
(4 -
X9 = s
2 M1 — Ay
1
(5) x32_:
Mo
(6) -
X txyg =2 —m,
! : Mo — Ay
Xy + Mg > ——m
2TE T g — Ay
A + A
(8) QA% + Ag Xy + A%y > R

Byt pp = 20 = Ay

ProOF. We will only prove (2). The other inequalities can be derived
similarly. For the interested reader, the complete derivation can be found in
Paschalidis (1992).

The analysis is much simplified by “uniformizing” the Markov chain under
study, so that the total transition rate out of a state is the same for all states.
To this effect, we visualize the process as if server 2 were always working on
a class 3 customer. However, if n4(¢) = 0, we say that server 2 is working on
. a fictitious customer and a service completion does not lead to a new state.
Similarly, we visualize the first server as if it were always working concur-
rently on a customer of class 1 and a customer of class 2, at a total rate of
2 p;- A service completion at server 1 corresponding to a class 1 customer is a
fictitious one that leaves the state unchanged, unless n,(¢) # 0 and the
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scheduling policy had decided that a class 1 customer should be served. With
the foregoing conventions, the transition rate is A; + Ay + 2u4 + o, which
we assume, for convenience, to be equal to 1.

Let 7, be the sequence of times at which a transition (due to a real or
fictitious customer) occurs. We assume that the state vector n(¢) is a right-
continuous function of time so that n(r,) refers to the state right after the
kth transition. We will be using the notation 1{-} to denote the indicator
function; that is, 1{ A} = 1 if event A occurs and zero otherwise. Finally, by
B,(¢) we denote the event that node o(r) is busy with a class r customer at
time ¢ and by B,(¢), its complement.

The derivation of (2) uses the function R(¢) = f(Dn(¢) + f(2n,(¢). We
have

E[R*(7y, )(7y)] = M(R(m;) + F(1)) + A(R(7) + F(2))
+ m{By(mp)(R(7y) — A1) + pal{By(7)}R2(7,)
+ wL{By(r))(R(7,) — £(2))" + 11{By(7,)}R%(7)

+ pa R%(7,).
We expand the squared terms and observe that if we set f(1) = f(2) = f, the
term

2, 1{By()}R(7,) f(1) + 2p,1{By(7,)}R(7,) f(2)
is equal to 2 u,1{server 1 busy at 7,}JR(r,)f. Using the fact

9) 1{server L busyat 7,} <1,
we obtain
E[R2(7k+1)|n(7k)] > R*(m,) + M f2 + A f?
(10) + Y By(m) 2 + pal{By(7,)}f?

=2 R(T)f+ (2AM [+ 20f)R(7,).

Recall that after uniformizing the Markov chain under consideration, the
transition rate out of a state became the same for all states. Given this
property, it is easily verified that the unique invariant distribution of the
continuous-time Markov chain is the same as the (necessarily unique) invari-
ant distribution of the embedded discrete-time Markov chain n(r,). In partic-
ular, under the invariant distribution of the two chains, we have

(11) E[R(7.1)] = E[R(7)] = E[R(t)] Vi, k
and
(12) E[R%*(r,, )] = E[R%*(r,)] = E[R%(t)] V¢,k.

. Furthermore, (12) and Assumption A imply that E[ R%(r,)] is finite.

We now consider the Markov chain n(7,) under its invariant distribution
and take expectations of both sides of (10). We use (11) to replace E[ R(7,)] by
E[R()], (12) to cancel the R? terms and the relation E[1{B;(r,)}] = A;/p1,
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J = 1,2. We then rearrange terms to obtain

(Al + /\2)f

E[R(Tk)] > P

We finally use the relationn; = A, x;, i = 1,2, to obtain (2). O

DiscussioN. Note that (2) is the same as the conservation law for the
multiclass M/M /1 queue [see Gelenbe and Mitrani (1980), Chapter 6], with
an inequality sign instead of an equality. Within the class of policies we are
considering the conservation law does not hold since we allow idling. If,
however, we restrict ourselves to work-conserving policies, then it is possible
to derive the conservation law using our approach. See Section 7 for more
details on the application of our approach to the multiclass queue.

Note also, that (3) and (4) have a very intuitive explanation: They are the
two inequalities that together with the conservation law define the achievable
region for the multiclass queue at station 1. In Section 7 we prove, for the
general case of multiclass queue and for work-conserving policies, that (3)
and (4) hold with equality if we give preemptive priority to customers of class
1 and class 2, respectively.

3.1.1. ADDITIONAL INEQUALITIES. We note that (5) simply states that the
mean response time of class 3 is no smaller than its mean service time 1/ u,.
In fact, the inequalities of Theorem 3.1 allow x4 to be as small as 1/u,. This
is reasonable because policies of the following type lead to zero waiting time
for class 3 customers: serve class 1 customers only if server 2 is idle and has
no customers in its queue. On the other hand, any such policy runs the risk of
being unstable. To see this, suppose that A, = 0. For the system to remain
stable, there have to be 2 A, service completions per unit time. Given that the
preceding policies only allow one server to work at a time, such policies are
unstable if 2A; > max( u,, uy). We conclude that x; must be strictly larger
than 1/pu, if a policy is stable and 2A; > max( u;, uy). This argument can be
carried out in more detail and leads to the following result; its proof is
omitted and can be found in Paschalidis (1992).

THEOREM 3.2. Suppose that 2\, > max( u,, uy). Then, for every policy
satisfying Assumption A, we have

27, — max( py, pg) M1 1

(13) X3 > — + —.
7 w4 py —max(pg, o) ma( By F Mg) K

Another bound is obtained as follows. If we set ¢; = ¢ = 1 and ¢, = 0, it is
obvious that an optimal policy gives lowest priority to class 2 customers and
processes customers of class 1 or 3 without any idling. However, then
customers of class 1 and 3 evolve according to a tandem queue for which the
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value of x; + x5 is known to be equal to 1/(u; — A;) + 1/(p, — Ay). For an
arbitrary policy, the value of x; + x; is at least that large and we have

1 1
14 X, tx3> + .
(14) ! 2 My — A Mg — A

We are able to derive the bound (14) because we could find a choice of the
cost coefficients ¢; for which an optimal policy and its cost is known. This
suggests that we also consider the case where ¢; = 0. For this case, we are
dealing with the problem of priority scheduling of a two-class queue. An
optimal policy is given by the well-known cu rule and its cost is also known.
However, for reasons that will become clearer in Section 7, the bounds that
are obtained via this approach do not provide any new information, but are
subsumed by the bounds of Theorem 3.1.

As discussed in Section 2, we can use the bounds derived in this section to
provide a lower bound on the cost of an optimal policy. This lower bound can
be computed by minimizing T?_,c;x; subject to the constraints of Theorems
3.1 and 3.2, and the additional constraint (14). Some numerical results can be
found in Section 8.

4. Sequencing of multiclass open networks: Approximate polyhe-
dral characterization. In this section, we derive bounds on the achievable
performance region for a general open multiclass queueing network when
only sequencing decisions are involved. We will be using the model and the
notation of Section 2. We first derive a set of inequalities by generalizing the
method of the previous section. We then propose a nonparametric variation of
the method that yields tighter and computationally more efficient bounds.
The nonparametric variation has also been derived independently by Kumar
and Kumar (1993). Our development of the general method using potential
functions predates the work of Kumar and Kumar (1993) and was published
in Bertsimas, Paschalidis and Tsitsiklis (1992).

4.1. A parametric method. The traffic equations for our network model
take the form

R
(15) A=, + Y Aup.,, r=1,...,R.
r'=1
We assume that the inequality
Ar
Y —<1
rec; Mr

holds for every node i. This ensures that there exists at least one policy under

which the network is stable.
. Let us consider a set S of classes. We consider a potential function of the

form (RS(¢))?, where

(16) RS(t) = X fs(r)n.(¢)

res§



54 D. BERTSIMAS, I. CH. PASCHALIDIS AND J. N. TSITSIKLIS

and where f4(r) are constants to be referred to as f-parameters. For any set
S of classes, we will use a different set of f~parameters, but in order to avoid
overburdening our notation, the dependence on S will not be shown explic-
itly.

We will impose the following condition on the f-parameters. Although it
may appear unmotivated at this point, the proof of Theorem 4.1 suggests that
this condition leads to tighter bounds. We assume that for each S the
following statement holds. For any node i, the value of the expression

(17) Ky Z prr'(f(r) _f(r/)) + Z prr'f(r)
re8 reS
is nonnegative and the same for all r € C; N S, and will be denoted by f;. If
C; N S is empty, we define f; to be equal to zero.
We then have the following theorem.

THEOREM 4.1. For any set S of classes, for any choice of the f-parameters
satisfying the restriction (17) and for any policy satisfying Assumption A, the
following inequality holds:

N'(S)
18 A > —,
(18) L M A% = Ty

res

where

N'(8) = L A, fH(r) + L A X P f(7)

resS reS r'eS§
+ Y A,[ Y b (£(r) = F(F)* + L pof*(r)],
res r'es resS
N
D(S)=2|Xfi- X /\Orf(")]:
i=1 res

S being a subset of the set of classes and x, being the mean response time of
class r.

Proor. The steps are similar to the proof of Theorem 3.1. We first
uniformize the Markov chain so that the transition rate at every state is
equal to

V= Z/\Or + ZI‘Lr'
r r

The idea is again to pretend that every class is being served with rate p,, but
a service completion is a fictitious one unless a customer of class r is being
, served in actuality. Without loss-of generality we scale time so that v = 1. Let
7, be the sequence of transition times for the uniformized chain. Again, by
B,(t) we denote the event that node o(r) is busy with a class r customer at
time ¢ and denote by B, (t) its complement. As in Theorem 3.1, we assume
that the process n(¢) is right-continuous.
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We have the following recursion for R(r,):

E[R*(7,.,)In(7,)]
= ZS/\Or(R(Tk) +f("))2 + ZS/\OrRZ(Tk)
# T w(B.(0)| £ po(R() = £r) + £

+ T ol B(m) —f(r))z}

resS
+ ) #rl{Er(Tk)}Rz(Tk)

re§

+ Y url{Brm)}[ Y po(B(ry) +f()) + T p,,fR2<fk)]

reS re8 r'eS
+ Z I‘Lrl{Br(Tk)}Rz(Tk)‘

reS
In the above equation, we use the convention that the set of classes r' & S
also contains the case r’ = 0, which corresponds to the external world of the
network. (Recall that p,, is the probability that a class r customer exits the
network after completion of service.) We now use the assumption that the
f-parameters satisfy (17). Then the term

2 Z /‘Lrl{Br(Tk)} Z prr'R(Tk)(f(r) - f(r,)) + Z prr’R(Tk)f(r)
res r'eS r'eS
" can be written as
N
Y f.R(r,)1{server i busy from some class r € S N C, at 7,}.
i=1
(Recall that we defined f; = 0 for those stations i having C; N S empty.) To
bound the preceding term, we use the fact that the indicator is at most 1. It
should now be apparent why we selected f-parameters satisfying (17). By
doing so, we were able to aggregate certain indicator functions before bound-
ing them by 1.
In addition, to bound the term
Z 2/*"7'1{Br(7k)} Z prr’R(Tk)f(r,)
res res
we use the inequality 1{B,(7,)} > 0.

We apply all of these bounds to our recursion for R(r,). We then take
expectations of both sides. For the same reasons as in the proof of Theorem
3.1, we can take expectations with respect to the invariant distribution (these
expectations are finite due to Assumption A) and we can replace E[ R(t,)] by
E[R(t)]. After some elementary algebra and rearrangements, using (17) and
the relation (valid in steady state) E[1{B,(r,)}] = A,/u,, we finally obtain
(18). ©
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REMARKS. In order to apply Theorem 4.1, we must choose some f-parame-
ters that satisfy (17). We do not know whether there always exists a choice of
the f-parameters that provides dominant bounds. However, even if this were
the case, it would probably be difficult to determine these “best” f-parame-
ters. Later in this section, we show that finding the best f-parameters is not
so important because there is a nonparametric variation of this bounding
method that yields tighter bounds.

The proof method in Theorem 4.1 is similar to the one used by Kumar
(1992) [who attributes it to Meyn and Down (1994)]. He dealt with a network
with deterministic routing and with special structure (reentrant line), and
only considered the case where the f-parameters were the “remaining num-
ber of stages” in order to obtain a single and fairly crude lower bound on the
average number of customers in the system. The flexibility in the choice of
the f-parameters that we have introduced, along with the aggregation of
certain indicator functions, yields much tighter bounds.

Let us now specify one choice of the f-parameters that satisfies (17). For a
set S of classes, (17) yields

fizl“(‘rf(r) Zprr'_:u‘r Z prr’f(r,)+/“’“rf(r) Zprr’ erCinS7

reS r'e8 res
which implies
f ,
L of(r) = T pf(r) VreCinS.
My reS
Thus, due to (17), in order to explicitly determine the f-parameters, it suffices
to select nonnegative constants f;, for each station { with C; N S nonempty.
One natural choice of these f;’s that appears to provide fairly tight bounds is
to let f; = 1 for all stations i with C; N S nonempty. This leads to f¢(r) being
equal to the expected remaining processing time until a job of class r exits
the set of classes S. With this choice, the parameters f(r) can be determined
by solving the system of equations

1
(19) fS(r) =—+ Z prr’fS(r’)’ res.

My resS
Moreover, this choice of the f-parameters causes the denominator of (18) to
be of form 1 — X . ¢A./u,, which is the natural heavy traffic term; this is a
key reason why we believe that it leads to tight bounds. Our claim is also
supported by the fact that in Klimov’s problem (see Section 7), this choice of
the f-parameters yields an exact characterization.

Based on Theorem 4.1, a lower bound on the optimal cost can be found as

, follows. For every nonempty set of classes S, choose some f-parameters that
satisfy the assumptions of Theorem 4.1 and obtain a linear inequality on the
vector (x,..., x5). Then, a lower bound is obtained by minimizing ©%_,c, x,
subject to these 2% — 1 inequalities. Note that this is a linear programming
problem.
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4.2. A nonparametric bounding method. In this subsection, we present a
nonparametric method for deriving constraints on the achievable perfor-
mance region. We use again a function of the form

R
(20) R(t) = gf(r)nr(t),

where f(r) are scalars that we call f~-parameters. We use the same notation
as in Section 4.1 and we also introduce By,(¢) to denote the event that node i
is idle at time ¢. We then define

(21) Irr’ :E[l{Br(Tk)}nr’(Tk)]
and
(22) N, = E[I{Bm(“'k) (Tk)]

where 1{-} is the indicator function and the expectations are taken with
respect to the invariant distribution.

THEOREM 4.2. For every scheduling policy satisfying Assumption A, the
following relations hold:

R
2p, 1, — 2 Z B Py Ly = 2R0, A, %,
(23) r=1
=/\0r+/\r(1_prr)+ ZAr’pr’r’ r=1""’R7
r'#r
and
R R
(24) l’l‘rIrr +/“Lr r'r Z /J“wpwr wr' Z Moy Py Iwr /\Or/\r Xy AOr A Xy
w=1 w=1

= —ADpp — Ay Dy, Vr,r suchthatr > r',
(25) Z Irr’ +Zvir' = /\r’xr’> I, > 0 N, = 0 x; = 0.

rrl = ir =
recC;

ProoF. We uniformize as in Theorem 4.1 and proceed similarly to obtain
the recursion

E[R2(7k+1)|n(7k)]

R
= X Aor(R() + ()
R R 9
+ L i l{B())| T per(B(m) = () +£())
+Pro(R(7) = F(r))’

R
+ ;1 Iu‘rl{'_gr(Tk)}Rz(Tk)'
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Rearranging terms and taking expectations with respect to the invariant
distribution, we obtain

R R
2 Zlur L p(f(r) = £(r")) +prOf(r)]E[l{Br(Tk)}R(Tk)]

- r=1

R
(26) -2 §1A0rf(r)E[R(Tk)]

R R R 2
= Z:IAOrfz(r) + z:lAr[ Z prr'(f(r) _f(r/)) +pr0f2(r) .

r'=1

Moreover, it is seen from (20) and (21) that

R
E[I{Br(Tk)}R(Tk)] = Z f(r/)Irr"
r'=1
Let us define the vector f = (f(1),..., f(R)). We note that both sides of (26)
are quadratic functions of f. In particular, (26) can be written in the form

(27) F1Qf = FTQuf

for some symmetric matrices @, @,. Since (27) is valid for all choices of f, we
must have @ = @,. It only remains to carry out the algebra needed in order
to determine the entries of the matrices @ and @,. From (26), equality of the
rth diagonal entries of @ and @, yields (23), and equality of the off-diagonal
terms yields (24). Due to symmetry, it suffices to consider » > r'. Finally,
since the events B,.(r,) =“server i busy from class r at 7,,” r € C;, and
By,(7,) =“server i idle at 7,” are mutually exclusive and exhaustive, we
obtain (25). O

REMARK 1. An alternative derivation of the equalities of Theorem 4.2 is as
follows: We consider a test function g and write

E{E[g(n(“'k+ 1))|n(7'k)]} = E[g(n(Tk))]

as long as the indicated expectations exist. By rewriting the previous equality
in terms of the instantaneous transition rate matrix for the Markov chain
n(¢) and by introducing some new variables, we obtain certain relations
between the variables. In particular, (23) can be derived by considering test
functions of the form g(n(#)) = n%(¢), while (24) can be derived by consider-
ing the test functions of the form gm(¢)) = n,(¢)n,(t). Intuitively, we expect
that these quadratic test functions capture some of the interaction among
different customer classes.
- Although the two methods of. derivation [using the potential function R(¢)
or the test functions g(:)] are entirely equivalent, we chose to present the
method using potential functions for two reasons:

(a) It makes the connection with conservation laws more apparent (see
Section 7).
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(b) More importantly, it permits the automatic derivation of constraints
for arbitrary networks. The different constraints are generated by collecting
terms in a multivariable polynomial, which is easily done using a symbolic
manipulation program such as Mathematica or Maple, and then can be fed to
an LP solver. We thus obtain a software tool that receives a description of the
queueing network and its parameters and outputs a lower bound on the
achievable performance.

REMARK 2. The polyhedron defined in Theorem 4.2 contains as much
information on the region of achievable performance as the polyhedron
defined in Theorem 4.1. Both polyhedra are derived using the same basic
recursion for R(r,), but in the nonparametric approach no inequalities are
introduced, in constrast to the approach of Theorem 4.1, where certain
inequalities were used to bound certain terms, leading to possible loss of
tightness. Qur next theorem formally proves such a relation between the two
polyhedra and establishes that the nonparametric approach is at least as
powerful as our first approach.

THEOREM 4.3. If the variables {x,,I.,,,N,.;r,r'=1,...,R, i=1,...,N}
satisfy the constraints in Theorem 4.2, then the variables {x,, r = 1,..., R}
satisfy the constraints in Theorem 4.1.

PrOOF. Let the variables {x,,I,..,N,.; r,r=1,...,R, i =1,..., N} sat-
isfy the constraints in Theorem 4.2. Since (27) holds for every choice of the
f-parameters, it is seen that we can write down an equality for every
nonempty set of classes S if we set to zero the f-parameters corresponding to
classes outside S. For any such S, it is apparent from (25) that

Z Irr' + Z Irr’ + Zvir’ = Ar'xr’7
reSnc; réSnc;

which implies that

Z Irr’ < nrr
reSnc;
and
(28) E[1{server o (r) busy from some class r € S N C; at 7,}n,(7,)]

< n,..

Now recall that in the proof of Theorem 4.1 we used that

(29) 1{server o (r) busy from some class r € SN C;at 7} < 1
and ]
(30) 1{B, (7)) = 0

in order to get the bound (18). That is, we first wrote down the recursive
equation, we then applied (29) and (30) and we finally took expectations to
get (18). It can be seen that exactly the same bound is obtained by first
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writing down the recursive equation, then taking expectations and finally
using (28) along with the positivity constraint for the variables I... Thus,
from the equality in (27) corresponding to the subset S, the inequality (18) is
derived by using (25). O

By minimizing T ;c,x, subject to the constraints of Theorem 4.2 we
obtain a lower bound that is no smaller than the one obtained using Theorem
4.1. In addition, the linear program in Theorm 4.1 only involves O(R?)
variables and constraints. This should be contrasted with the linear program
associated to our nonparametric variation of the method, which involved R
variables, but O(2%) constraints. Although in most cases the nonparametric
method is preferable, in certain special cases (Section 7) the polyhedron
defined in Theorem 4.1 has special structure (it is an extended polymatroid),
which leads to an efficient one-pass greedy algorithm for finding an optimal
solution.

5. Extensions: Routing and closed networks. In this section we
briefly describe several generalizations of the methods introduced in the
previous section. In particular, we treat networks where routing is subject to
optimization and closed networks. We will only outline our methodology. The
interested reader can find the details in Bertsimas, Paschalidis and Tsitsiklis
(1992a).

5.1. Routing and sequencing. We extend our nonparametric method to
multiclass open queueing networks that allow both routing and sequencing
decisions. The framework and the notation is exactly the same as in Section
4. Instead of the routing probabilities p,, being given, we control whether a
customer of class r becomes a customer of class r'. For this reason, we
introduce p,,.(7,) to denote the probability (which is under our control) that
class r becomes r' at time 7,,,, given that we had a class r service
completion at time 7, , ;. For each class r, we are given a set F. of classes to
which a class r customer can be routed. (If F, is a singleton for every r, the
problem is reduced to the class with no routing decisions allowed.)

The procedure for obtaining the approximate achievable region is similar
to the proof of Theorem 4.2 except that the constants p,, are replaced by the
random variables p,,.(r,) in the main recursion. We also need to define some
additional variables. As in (21) and (22) in Section 4, these variables will be
expectations of certain products of certain random variables; the routing
random variables p,.(r,) will also appear in such products.

An important difference from Section 4 is that the application of the
nonparametric method to R(¢) also yields the traffic equations for the net-
work. These traffic equations -are now part of the characterization of the
achievable region because they involve expectations of the decision variables
p,(7;,), whereas in Section 4 they involved the constants p,.. Application of
the method to R%(¢) provides more equations that, with some definitional
relations between variables, similar to (25), complete the characterization.
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Rather than providing the full details here, we refer the reader to the
example in Section 8.2.

5.2. Closed networks. The methodology is very similar to the one in open
networks, although there are some differences. Consider a closed multiclass
queueing network with N single server stations (nodes) and R different job
classes. There are K customers always present in the closed network. We use
the same notation as for open networks except that there are no external
arrivals (Ay, = 0) and the probability that a customer exits the network is
equal to zero (p,, = 0). We do not allow routing decisions, although routing
decisions can be included in a manner similar to the case of open networks.

As in open networks, we only consider sequencing decisions and policies
satisfying Assumption A(a); Assumption A(b) is automatically satisfied. We
seek to maximize the weighted throughput

R
Z cr/\r’
r=1

where A, = u, E[1{B,(7,)}] is the throughput of class r.

The procedure for obtaining the approximate achievable region is again
similar to the proof of Theorem 4.2. We substitute Ay, = 0 and p,o, = 0 in the
main recursion to obtain constraints similar to (23), (24) and (25). As in
Section 5.1, the application of the nonparametric method to R(¢) yields the
traffic equations that are part of the characterization of the achievable region.
In addition, for every class r we have the constraints Zfl 1I; = KA. /p, and
Yicc(A;/m) < 1, along with L® 1n; = K and the positivity constraints of the
variables involved.

5.3. Other extensions. Although we presented the method for systems
with Poisson arrivals and exponential service time distributions, the method
can be easily extended to systems with phase-type distributions by introduc-
ing additional variables. Moreover, one can use the method to derive bounds
on the performance of particular policies. This is done by introducing addi-
tional constraints that capture as many features of a particular policy as
possible.

6. Higher order interactions and nonlinear characterizations. The
methodology we have developed so far leads to a polyhedral set that contains
the achievable region and takes into account pairwise interactions among
classes in the network. In this section, we extend. the methodology and its
power as follows:

1. We take into account higher order interactions among various classes by

. extending the potential function technique developed thus far.

2. We obtain nonlinear characterizations of the achievable region in a sys-
tematic way by using ideas from the powerful methodology of semidefinite
programming.
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In particular, we show how to construct a sequence of progressively more
complicated nonlinear approximations (relaxations) that are progressively
closer to the exact achievable space. We note that there are no examples of
nonlinear characterizations of the achievable region in the literature with the
exception of a simple example in Gelenbe and Mitrani (1980).

6.1. Higher order interactions. Our results so far have made use of the
function R(¢) = £F_ | f(r)n,(t) and were based essentially on the equation

E[E[R*(ry..)n(7y)]] = E[R*(7)]-

By its nature, this method takes into account only pairwise interactions
among the various classes. For example, the nonparametric method intro-
duces variables E[1{B,.(7;)}n(7,)], taking into account the interaction of
classes r and j.

We now describe a generalization that aims at capturing higher order
interactions. Consider again an open queueing network of the form described
in Section 2, where there are no routing decisions to be made. We apply the
nonparametric method by deriving an expression for E[ R*(7,, )In(7,)] and
then collecting terms. Alternatively, we can use test functions g(n(z)) =
n,(n()n,(t). [We need to modify Assumption A(b) and assume that
E[n3(¢)] < «.] In addition to the variables I, = E[1{B,(t)}n j(rk)], we intro-
duce some new variables, namely,

(31) H,, =E[l{Br(Tk)}nj(Tk)nk(Tk)]
and
M, = E[nj(Tk)nk(Tk)]-
The recursion for E[R3(r,,,)n(r,)] leads to a set of linear constraints
involving the variables {(n,, I,;, H, 3, M;;)}.

The new variables we introduced take into account interactions among
three customer classes and we expect that they lead to tighter constraints.
Another advantage of this methodology is that we can now obtain lower
bounds for more general objective functions involving the variances of the
number of customers of class r, since the variables M;; = E[n?(,)] are now
in the augmented space.

Naturally, we can continue with this idea and apply the nonparametric
method to E[RY(r,,,)mn(7,)] for i > 4. In this way, we take into account
interactions among i classes in the system. There is an obvious trade-off
between accuracy and tractability in this approach. If we denote by P, the set
obtained by applying the nonparametric method to' E[ R (7, )in(7,)], the
approximate performance region that takes into account interactions of up to
order i is N_;P,. The dimension of this set and the number of constraints is
"O(R?"), which even for moderate i can be prohibitively large.

The explicit derivation of the resulting constraints is conceptually very
simple, but is algebraically involved and does not yield any additional in-
sights. In fact, this derivation is not hard to automate: A symbolic manipula-
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tion program, like Mathematica or Maple, can be used to write down the
recursion for E[ Ri(r,, ;)n(t,)] and generate equality constraints by collect-
ing the coefficients of each monomial in the f-parameters. We have indeed
developed this software package, which automatically generates linear con-
straints and finds lower bounds using an LP solver.

6.2. Nonlinear interactions. In several examples (see Section 8), we found
that although the method provides relatively tight bounds, it does not exactly
characterize the achievable region and there is a gap between the lower
bound and the performance of an optimal policy. We believe that the reason is
that the achievable region is not always a polyhedron. We will therefore
discuss how to extend our methods so as to allow the possibility of nonlinear
characterizations.

Let Y be a vector of random variables and let @ be a symmetric positive
semidefinite matrix. Clearly,

E[(Y - E[YD"Q(Y - E[Y])] = o,
which implies that
(32) E[Y'QY| > E[YT]1QE[Y],

which is Jensen’s inequality applied to the convex function x”Qx. Notice that
(32) holds for every symmetric semidefinite matrix @. By selecting particular
values for matrices @, one obtains a family of inequalities. For example,
consider the model of Section 6. 1 and fix some r. Let Y be the vector with

components 1{B (Tk)}n (1), j= ,R, and use the identity 1{B.(7,)} =
(1{B,(7,)})? to obtain the quadratlc 1nequa11t1es
(33) Z erQzJ— ZQL_] ri rj’ r=1,...,R,

where I,; and H, have been deﬁned in (21) and (31).

Any ch01ce of Q leads to a new set of quadratic inequalities. We will
actually impose the constraints of the form (33) for all choices of Q. Let Z be
the polyhedron obtained by using the ideas in Section 6.1. We then obtain a
lower bound by solving the following optimization problem, which we call
Pyrp:

R
minimize ), c,x,
(34) r=1
subject to (x,,I.;, H,;;, M) € Z,

Z H,,Q;> ZQ” L, r=1,.,RVYQ=0.

Although this lower bound 1nvolves an optlmlzatlon problem with infinitely
many constraints, it can be efficiently solve, as we now explain. We first note
that for any fixed positive semidefinite matrix @ > 0, the constraint (34) is
convex in the variables I,; and H,,;;. Let us start by imposing the constraint
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(34) only for @ equal to the identity matrix and solve the resulting optimiza-
tion problem, which is a relaxation of Py;p. We then check whether the find
solution violates any of the constraints (34) for some @ > 0. This can be done
by solving the following separation problem:

SEPARATION PROBLEM. Given some (n,, [,;, H, ;, M;,) € Z, minimize, for
each r, the objective function

ZHrijQij - EQijIriIrj
i,J i,J
over all positive semidefinite matrices .

If the optimal value in the separation problem is nonnegative for every r,
then the current vector (n,, I,;, H,;,, M,,) satisfies all constraints of the form
(34) and is an optimal solution for problem P, . If not, then a semidefinite
matrix ¢ has been found for which the corresponding constraint is violated
by the current vector. We can then add this constraint explicitly, solve the
resulting relaxation of Py;, and continue similarly.

We note that the separation problem is a semidefinite programming prob-
lem that can be solved efficiently by simplex type or interior point methods
[see Alizadeh (1992)]. The overall algorithm would run in polynomial time if
we use the ellipsoid algorithm or a variant like Vaidya’s algorithm to solve
the relaxations of Py;, and interior point methods for the semidefinite
programming problem.

Higher order nonlinear constraints also can be obtained by using inequali-
ties such as

E[1B,(7)}n}(7)] = E[UB,(m)}ni()]",  Rh=1,2,...,

which again follow from Jensen’s inequality. We thus obtain a sequence of
progressively more complicated convex sets that approximate the achievable
region.

7. Single station networks: Complete characterization. In this sec-
tion, we demonstrate that our characterizations of the achievable region are
exact in the case of single station systems. More specifically, the contributions
of this section are the following:

1. We consider a multiclass M/M /1 queue with Bernoulli feedback [Klimov’s
(1974) problem], where each class can have distinct service requirements
under work-conserving preemptive policies. We show that our parametric
method leads to a complete and explicit characterization. This result is
similar to the results of Tsoucas (1991), who derives the form of the
achievable region in Klimov’s. problem under non-preemptive policies and
general service requirements. In contrast to the characterization in Tsou-
‘cas (1991), all of the parameters in our characterization are given in closed
form. Bertsimas and Nifio-Mora (1992) also derive the performance space
in this case using different methods.
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2. Using the nonparametric method, we obtain an exact characterization of
the achievable region for single station systems that involves only a
polynomial number of variables and constraints. This is, in our opinion,
interesting not only from a probabilistic, but also from a combinatorial
point of view. The parametric method gives rise to a polyhedron (an
extended polymatroid) in R variables and 2% — 1 constraints for which
the optimization problem can be solved by means of a one-pass polynomial
time algorithm. It has been conjectured that whenever problems of this
type are solvable in polynomial time, they have LP formulations with a
polynomial number of variables and constraints. The nonparametric
method verifies this conjecture for this special case.

3. In multiclass queues without feedback and homogeneous open networks,
the performance space was derived in Gelenbe and Mitrani (1980) and
Ross and Yao (1987), respectively, using conservation laws. Since our
parametric method is exact in these cases, we see that our parametric
method is as powerful as conservation laws. Moreover, as the method
generalizes to arbitrary networks, the parametric method can be viewed as
generalization of conservation laws to queueing networks.

We next introduce conservation laws and their connections with polyhedral
performance regions. For a more comprehensive discussion, see Bertsimas
and Nifo-Mora (1992) and Shanthikumar and Yao (1992).

7.1. Strong conservation laws. Consider a multiclass queueing network of
the type described in Section 2. Let E = {1,..., R} be the set of all classes and
let 2% be the set of all subets of E. Let % be the set of all work-conserving,
possibly preemptive, Markovian policies that satisfy Assumption A. We say
that a policy is a priority rule if it assigns priorities to jobs according to some
particular order. Finally, we say that a priority rule gives preemptive priority
to a subset S of the set of classes if all classes in S have higher priority than
the classes outside S. For any policy u € # and any class i, we use n} to
denote the mean number of class i customers in the system under that policy.

DEFINITION 7.1 (Strong conservation laws). The vector n is said to satisfy
strong conservation laws if there exists a function b: 2% - R, such that
b(Z) = 0 and a set of coefficients [ = (f5(i)); c g s p satisfying

(35) fs(i) >0, forieS and f5(i) =0, fori &S,
such that:
(a) for any S C E and any priority rule # that gives priority to S,
(36) L fs(i)nT = b(8);
ieS

" (b) for any policy u € %,

B7) Y fs(i)n*=2b(S) forall SCE and ), fz(i)n? =0b(E).
ieS i€k
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Consider now the inequalities in Theorem 4.1. If we can show that for each
set S of classes, the corresponding inequality holds with equality when
priority is given to classes in S, then the system satisfies strong conservation
laws.

Our interest in strong conservation laws stems from the following result.

THEOREM 7.1 [Bertsimas and Niho-Mora (1992)]. Assume that the vector
n satisfies strong conservation laws. Define the polyhedron ZB(f,b) as the set
of all vectors that satisfy the linear constraints in (37). Then:

(a) The vertices of F(f,b) are the performance vectors n™ of priority rules.
(b) B(f,b) is the achievable region when we restrict to work-conserving
policies.

When strong conservtion laws are satisfied, the achievable region.%#(f, b) is
an extended polymatroid [see Bertsimas and Nifio-Mora (1992) and Bhat-
tacharya, Georgiadis and Tsoucas (1992) for the definition]. The fundamental
structural property of an extended polymatroid is that minimizing a linear
function ¥, . zc;n; over &(f, b) can be achieved by a one-pass (in particular,
polynomial time) algorithm [see Bertsimas and Nifio-Mora (1992)]. In addi-
tion, the vertices of the extended polymatroid can be very easily calculated by
solving a triangular system of equations and therefore, according to Theorem
7.1, the performance vectors of the absolute priority rules are readily avail-
able.

7.2. Klimov’s problem. Consider the single-server station of Figure 2.
Customers of class i € E ={1,2,..., R} arrive in the system according to
independent Poisson processes with rate A,, and have an exponentially
distributed service time with mean 1/u,. Upon service completion, a class i
customer is fed back into the system as a class j customer with probability
Dp;j> while with probability p;, it leaves the system. Let n; be the expected
number of customers of class i in steady state.

The server is using a preemptive, work-conserving discipline satisfying
Assumption A. We show that for this problem the polyhedron obtained from
our method in Section 4 is equal to the achievable region.

1\
Pij
2\
- Q pi0
R/

Fie. 2. Klimou’s problem.
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The traffic equations for the foregoing system are

R

(38) A=X+ X A;ipji-
j=1

We assume that A; < u; for all i.
Our characterization is as follows:

THEOREM 7.2. The achievable region for the Klimov problem under work-
conserving policies satisfying Assumption A is the polyhedron P defined by the
constraints

. N'(8S)
(39) lEZSfS(l)nl = D/(S) VSCE’
. N'(E) .
(40) iEZEfS(L)ni=—D,(E) R n; >0, i=1,...,R,

where

N,(S) = Z )\oL‘fsz(i) + Z A

T py(fs(i) —fs())" + L pyf3 ()

ieS ieS jes
+ 2N X pyfs(d),
igS JjeS§
D($) =2[1- T sl
ieS
and where the coefficients (i) satisfy the system of equations
1
(41) fs(i) = —+ X pi;fs(J)-
i jes

Proor. We apply Theorem 4.1 with the f-parameters chosen as in (41).
This shows that the inequalities (39) are necessary and the polyhedron P
contains the achievable region.

We will show next that the vector n satisfies strong conservation laws. We
note that in the proof of Theorem 4.1 we used the fact

(42)  R®(7,)1{server busy from some class i € S at 7,} < R%(7,).

The preceding inequality holds with equality when preemptive priority is
given to the classes i € S. To see this, observe that when R5(r,) # 0 (that is,
if a customer of some class i € S is present) and preemptive priority is given
to the classes i € S, then the server should be working on a customer of some
class in S. Otherwise, when R(7,) = 0, (42) holds with equality, trivially. In
addition, we also used in the proof of Theorem 4.1 the fact that

R5(7,)1{B.(7,)} = 0, reS.
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This also holds with equality when preemptive priority is given to the classes
i €8. Hence the rhs of (39) is achieved by this specific priority policy.
Moreover, since we have restricted ourselves to work-conserving policies,

when S = E, (40) holds.
Therefore, the performance vector n satisfies strong conservation laws.
Applying Theorem 7.1, we conclude that P is equal to the achievable region.
O

REMARK 1. Having derived the achievable region, the optimal policy and
the optimal performance vector can be found by applying a one-pass algo-
rithm [see Bertsimas and Nifio-Mora (1992)]. In particular, although the
characterization of the achievable region has an exponential number of
inequalities, this computation runs in polynomial time (in fact, linear time).

REMARK 2. If we apply the nonparametric method (Theorem 4.2), we find
an alternative polyhedral characterization of the achievable region, which we
call @, that has O(R?) variables and constraints in the enlarged space of
{(n;,I;;, N;;)}. Due to Theorem 4.3 and the fact that P is the exact achievable
region, @ is also an exact characterization of the achievable region.

REMARK 3. If we specialize Theorem 7.2 to a multiclass queue without
feedback, we find exactly the performance space first derived in Gelenbe and
Mitrani (1980). Once more, Theorem 4.2 leads to an alternative polynomial
characterization. Finally, our approach can be shown to yield the exact
achievable region for homogeneous networks [Ross and Yao (1987)].

8. Numerical results. In this section, we provide some numerical re-
sults in order to evaluate the performance of our bounding techniques for
open and closed networks with sequencing or routing control.

8.1. Sequencing for open networks. In this subsection we provide two
network examples where sequencing decisions are involved. For each of these
examples and for various traffic conditions, we calculate the following items:

1. The lower bound on achievable performance obtained from the parametric
method of Section 4.1.

2. The lower bound on achievable performance obtained from the nonpara-
metric method of Section 4.2.

3. The performance of the FCFS policy.

4. The performance of the best policy we were able to find, serves as an upper
bound. ’

Since the optimal cost is not known, we cannot calculate the closeness of
our lower bound to the optimal cost. Instead, we will calculate its closeness to
the upper bound, which is, of course, an overestimate. In particular, we will
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calculate the efficiency of the bound, which we define as

best lower bound
00%.

efficiency = 1
raency best upper bound

8.1.1. The simple two-station network revisited. Consider the two-station
network example studied in Section 3 and depicted in Figure 1. Table 1
compares our lower bounds on attainable performance with FCFS and the
following threshold policy:

Let B be some constant. Give priority to type 1 customers
at station 1 when there are B or fewer customers at station
2. Otherwise give priority to type 2 customers. Never idle.

This policy was proposed in Harrison and Wein (1989), where the Brownian
network model approach was used.

“Lower bound 1”7 and “Lower bound 2” in the table correspond to the
bounds developed in Sections 4.1 and Section 4.2, respectively. The objective
function is the total expected number of customers in the network, that is,
¢; = ¢ = Ay, ¢; = A,. Note that the performance reported in the table for the
threshold policy corresponds to the optimal value of the threshold B, which
was found for each case by doing several simulation runs. Table 2 contains
the data used for each case reported in Table 1, and p, and pp are the total
traffic intensities at stations 1 and 2, respectively.

It is interesting that the efficiency of our lower bound is comparable to, the
efficiency of the “pathwise bound” derived in Ou and Wein (1992), which is
based on simulation. Note also that the threshold policy clearly outperforms
FCFS. From Table 1 it is apparent that as p — 1, the efficiency of the bound
increases for both balanced and imbalanced traffic conditions. We believe that
this behavior is mainly due to the fact that the threshold policy behaves
better as the traffic gets heavier [see Harrison and Wein (1989)]. Moreover,
the efficiency of the bounds is better in imbalanced traffic conditions.

TaBLE 1
Numerical results for the network of Figure 1

Load Lower Lower Thresh. Efficiency

node 1-node 2 bound 1 bound 2 FCFS policy %)
Heavy—heavy 14.15 14.15 19.43 16.98 83
Heavier—heavier 19.9 199 28 23.76 84
Very heavy—very heavy 4996 - 49.96 73 57.38 87
Medium-heavy 9.99 9.99 10.5 10.44 96

" Light-medium 2.04 2.04 2.17 2.16 94
Heavy—medium 9.6 9.6 10.5 9.98 96

Medium-light 19 1.9 217 2.14 89
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TABLE 2
Data for the experiments of Table 1

Load Pa Pp A Ay My L2
Heavy-heavy 0.93 0.86 0.86 1 2 1
Heavier—heavier 0.95 0.90 0.90 1 2 1
Very heavy—very heavy 0.98 0.96 0.96 1 2 1
Medium-heavy 0.6 0.9 0.9 0.3 2 1
Light-medium 04 0.6 0.6 0.2 2 1
Heavy—-medium 0.9 0.6 0.6 1.2 2 1
Medium-light 0.6 04 0.4 0.8 2 1

8.1.2. A six-class network example. Consider the network depicted in
Figure 3. Customers of type 1 enter the network in a Poisson stream of rate
A; and they visit stations 1,2,1,2 in that order, before exiting the network,
forming classes 1,2, 3, 4, respectively. Customers of type 2 enter the network
in a Poisson stream of rate A, and they visit stations 1,2 before exiting the
network, forming classes 5, 6, respectively. The single servers at stations 1
and 2 have service times exponentially distributed with rates wu; and pu,,
respectively.

Table 3 compares our lower bounds on attainable performance with FCFS
and the best policy found for various load conditions, and evaluates the
efficiency of the bound. “Lower bound 1” and “Lower bound 2” in the table
correspond to the bounds developed in Sections 4.1 and 4.2, respectively. The
costs for all of the experiments reported in the table were chosen to be
¢c;=15,¢,=13,¢3=12,¢,=1,¢5=11and ¢; = 1.1.

For each load condition that we considered, the best policy we were able to
find was a strict priority rule, not necessarily the same rule for different
cases. (We only considered non-preemptive policies.) Table 4 contains the
data used for each case reported in Table 3. Once more, p, and pgz denote the
total traffic intensities at stations 1 and 2, respectively.

8.2. Routing. In this subsection we treat the network of Figure 4. Cus-
tomers arrive according to a Poisson process with rate A and have to be
routed to one of two service stations where they wait to be served. Service

Type 1 1 2

Type 2 5 6

F1G. 8. A six-class network example.
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TaBLE 3
Numerical results for the network of Figure 3

Load Lower Lower Best Efficiency
node 1-node 2 bound 1 bound 2 FCFS policy (%)
Heavy-heavy 15.72 16.67 30.56 26.89 62
Medium-medium 5.83 6.17 9.86 9.25 67
Medium-heavy 15.77 15.85 21.26 18.20 87
Heavy-medium 18.77 18.79 23.00 19.80 95

times are exponentially distributed with rate p at either station. We are
interested in a routing policy that minimizes the expected number of cus-
tomers in the system. Let n,, r = 1,2, be the steady-state mean of the
number of customers in stations 1 and 2, respectively.

We use the extension of the nonparametric method discussed in Section 5.1
and obtain the following set of equations, which are true for work-conserving
policies satisfying Assumption A:

Apy + AKy = pyng,
A1 = py) + Mny — Kyp) = pang,
AKyjp + Mny = Kyy) = pylip + poply,
I, £ ny, I, <ng, K, <nq, K, <n,, p, <1

Besides n; and n,, the variables in this characterization are as follows:

.p1 = E[ p,(7,)] is the steady-state probability of routing customers to the first
station; I, ’s have been defined in (21) and K;; = E[ p/(7,)n(7,)] take into
account the interaction between the routing decision and the number of
customers at station j.

A lower bound is obtained by minimizing n, + n, subject to the preceding
constraints along with the nonnegativity constraints of the variables in-
volved. If A > p (i.e, for medium to heavy load), this minimization can be
carried out analytically and the lower bound on the achievable performance is

A

43 2;p = —.
(43) 1= 5
TABLE 4
Data for the experiments of Table 3
Load Pa PB Ay Ag By 2]
Heavy-heavy 0.85 0.90 0.5 0.7 2 1.89
Medium-medium 0.7 0.7 0.5 0.7 2.43 2.43
Medium—heavy 0.6 0.9 0.5 0.7 2.83 1.89

Heavy-medium 0.9 0.6 0.5 0.7 1.89 2.83
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Fi1G. 4.

For this problem, the policy SQ that lets each arriving customer join the
shortest queue is known to be optimal [Walrand (1988)]. In addition, Foschini
and Salz (1978) have shown that this policy asymptotically achieves (43) as
p=A/(2p — 1). Hence, our lower bound is asymptotically exact. Table 5
compares our lower bound with the performance of the shortest queue policy
(SQ) and provides its efficiency. In Table 6 we report the data used for the
experiments of Table 5.

8.3. Closed networks. In this subsection we treat a closed network. Con-
sider the network of Figure 3. We require a 50-50 product mix for types 1
and 2. Thus, customers of class 4, upon exiting station 2, are equally likely to
become customers of class 1 and of class 5. Similarly, customers of class 6,
upon exiting station 2, are equally likely to become customers of class 1 and
of class 5. Service times are exponentially distributed with means 8,5,2,7, 4,1
for classes 1 to 6, respectively. Due to the 50-50 product mix, A = A, = A,.
The objective is to maximize the total throughput 2 A.

We use the extension of the nonparametric method proposed in Section 5.2
to derive a polyhedral approximate performance region for this problem
under work-conserving policies satisfying Assumption A(a). Maximizing the
objective function over this region, we obtain an upper bound on the optimal
throughput. This network was treated in Harrison and Wein (1990), where a
particular strict priority policy was proposed based on heavy-traffic consider-
ations. Table 7 compares our upper bound with the policy of Harrison and
Wein (1990) and calculates the efficiency of the bound.

TABLE 5
Numerical results for the routing example

Lower SQ Efficiency
Load bound . policy (%)
Heavy 9.00 9.85 92
Medium 2.33 2.95 79

Light 1.22 1.69 72
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TABLE 6
Data for the experiments of Table 5

Load P A p
Heavy 0.9 2.7 1.5
Medium 0.7 2.1 1.5
Light 0.55 1.65 1.5

8.4. Summary. Our computatiohal results suggest the following conclu-

sions:

1.

The lower bound obtained by the nonparametric variation of the method is
at least as good as the lower bound obtained by the parametric method as
expected from Theorem 4.3. In the more complicated example with six
classes, it was strictly better. The reason is that the nonparametric
method better takes into account the interactions among various classes.
The efficiency of our lower bounds is comparable to the efficiency of the
“pathwise bound” derived in Ou and Wein (1992).

. The bounds are very efficient in imbalanced traffic conditions and the

efficiency of the bounds increases with the traffic intensity. A plausible
explanation is that in imbalanced conditions the behavior of the system is
dominated by a single bottleneck station, and for single station systems we
know our bounds to be exact.

In balanced traffic conditions, the bounds also behave well, especially
when the traffic intensity is not very close to 1. However, even for heavy-
balanced traffic conditions and for the examples that we studied, the
efficiency did not get worse than 62%.

. In the routing example, the method is asymptotically exact, which is very

encouraging.

. In the closed network example (as well as other examples that we ran), the

bounds were extremely tight.

9. Reflections. In this paper we proposed new techniques for describing

the region of achievable performance for multiclass open and closed queueing
networks, with Poisson arrivals (in open networks) and exponentially dis-

TABLE 7
Numerical results for the closed network example

Upper Heavy-traffic Efficiency
Population bound policy (%)
7 0.131 0.127 + 0.0009 97
10 0.135 0.133 + 0.0009 99

20 0.139 0.138 + 0.0009 99
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tributed service times. Our techniques use linear and nonlinear potential
function methods. We introduced an arbitrary potential function that gives a
family of bounds (linear and nonlinear) that take into account high order
interactions of various classes. We also introduced the idea of choosing the
best possible potential function to obtain the tightest possible bounds by
allowing the flexibility of unknown coefficients.

We believe that the power of the method stems from the fact that it takes
into account higher order interactions among various classes. Our first order
method is as powerful as conservation laws since it leads to exact characteri-
zations (single station network, homogeneous networks). As such, this ap-
proach can be seen as the natural extension of conservation laws. It is

"desirable to check the tightness of the various bounds derived in the paper in
actual applications. The numerical results we report are encouraging, but
certainly more work is needed, especially to illustrate the power of the higher
order formulations.
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