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Abstract—We propose a new method for the intermodal reg-
istration of images using a criterion known as mutual informa-
tion. Our main contribution is an optimizer that we specifically de-
signed for this criterion. We show that this new optimizer is well
adapted to a multiresolution approach because it typically con-
verges in fewer criterion evaluations than other optimizers. We
have built a multiresolution image pyramid, along with an interpo-
lation process, an optimizer, and the criterion itself, around the uni-
fying concept of spline-processing. This ensures coherence in the
way we model data and yields good performance. We have tested
our approach in a variety of experimental conditions and report
excellent results. We claim an accuracy of about a hundredth of a
pixel under ideal conditions. We are also robust since the accuracy
is still about a tenth of a pixel under very noisy conditions. In addi-
tion, a blind evaluation of our results compares very favorably to
the work of several other researchers.

Index Terms—B-spline, intermodal volume alignment, Mar-
quardt–Levenberg, Parzen window, pyramid.

I. INTRODUCTION

IMAGE registration addresses the following problem: given
two images (or volumes), find a geometric transformation

that maps the first image into the second one [1]. This problem
often occurs in biomedical applications [2], [3]. When the differ-
ence between the two images is only the condition of the subject
(e.g., resting versus performing a task), we speak of intramodal
registration [4], [5]. Alternatively, when the subject is imaged in
essentially two different ways (e.g., local glucose uptake versus
proton density), we speak of intermodal registration [6]. This
second task is more difficult than the first one because of the
lack of a direct relation between the intensities of the two im-
ages. Another area where image registration plays an important
role is remote sensing [7]. There, intramodal registration is often
applied to mosaicking applications [8], the registration of im-
ages with different ground resolutions [9], and the detection of
changes in the landscape [10], while intermodal registration is
necessary to correct for band-to-band misregistration [11].

Recently, an elegant solution has been proposed indepen-
dently by Viola et al. [12] and Collignon et al. [13], which is
based on the maximization of the statistical dependence—or
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mutual information—of corresponding voxel intensities in the
images to register. This information-theoretic criterion does not
depend on any assumption on the data (other than stationarity),
does not assume specific relations between intensities in
different modalities and can be applied without modification
to any pair of modalities.

The purpose of this paper is to present a new, highly-efficient
optimizer for the maximization of mutual information. It is de-
signed to converge in very few criterion evaluations to the de-
sired optimum when initialized with good starting conditions.
We formulate the mutual-information criterion as a continuous
and differentiable function of the registration parameters using
Parzen windows. The optimizer takes advantage of the differ-
entiability of the criterion to get a global understanding of the
behavior of the criterion near the optimum. This is exploited
in a Marquardt–Levenberg-type of iterative procedure and ex-
hibits superlinear convergence when close enough to the op-
timum [14].

Another goal of this paper is to investigate the issue of accu-
racy. While the criterion alone more or less determines the accu-
racy of registration on a one-pixel scale, the interpolation model
plays an essential role when sub-pixel accuracy is desired. In the
intramodal case, correlation methods allowed for high accuracy
when combined with high-order interpolation models [5]. Thus,
the question arises whether it is possible to reach a similar ac-
curacy in a reasonable time for the intermodal case. Since the
main drawback of high-order interpolation models is their com-
putational cost, it is necessary to develop an optimizer that is fast
without compromising accuracy. Multiresolution is a natural so-
lution to this problem, but not all optimizers are equally suitable:
the best candidates are those optimizers that converge in very
few criterion evaluations when initialized with good starting
conditions. This requirement rules out many optimizers, for ex-
ample those that first need to explore around the initial condition
before eventually becoming superlinear, or those that consider
only one parameter at a time.

Our optimizer works in conjunction with a high-quality mul-
tiresolution representation of the image based on cubic splines.
Optimization is first performed on a coarse scale with few data
and then refined at finer scales, gradually taking more data into
account. Our image pyramid is such that there are as few dif-
ferences as possible between levels. Together, this least-squares
pyramid and the immediate superlinear convergence of our opti-
mizer tend to diminish the number of criterion evaluations; the
simultaneous processing of all parameters further reduces this
number.

We investigate the performance of our optimizer on intra-
modal and intermodal images with simulated misregistrations.

1057–7149/00$10.00 © 2000 IEEE
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We demonstrate the accuracy of the method on real-world data
from the Vanderbilt database, for which the correct registration
solution is approximately known [2]. We also compare our op-
timizer to the method of Maes et al. [15] using the standard
Powell optimization algorithm and show an increase in perfor-
mance with a factor of about 6 without loss of precision.

This paper is organized as follows: in Section II, we introduce
mutual information and we design a way to achieve its compu-
tation. In Section III, we present a continuous model for the im-
ages and we discuss the benefits of a multiresolution approach.
In Section IV, we describe a new algorithm that optimizes the
mutual information between the two images to register. In Sec-
tion V, we perform several experiments and compare our results
to those of other researchers. In Section VI, we relate this paper
to the work of other researchers. We conclude in Section VII.

II. MUTUAL INFORMATION

A. Definitions

1) Parzen Window: Let be a function with unit integral
. Further, let be a set of samples

of a random variable with probability density function .
Then, the so-called Parzen estimate of is

(1)

where is a strictly positive scaling factor that controls the width
of the Parzen window . From (1), it is easy to see that
takes a large value at some position where many samples
happen to cluster so tightly that their associated Parzen win-
dows overlap often. In the contrary, at some
other position where the samples happen to be not dense, few
overlap takes place and has a lower value. This process is
particularly easy to understand if we ask that the Parzen window
be positive . We shall satisfy this posi-
tivity constraint throughout this paper, even though this is not
required to ensure that converges to when enough samples
are available. Note that other technical conditions on and on
the dependence of on are required for this convergence
[16]. The underlying principle is as follows: when is large,
many samples are available and is made small, which leads to
a scaled Parzen window that is Dirac-like. In turn,
can be captured in great details because the contribution of the
samples are very local. In the contrary, when only few samples
are available, is made large. This corresponds to a widening of
the Parzen window such that the influence of any sample
has a larger support, which tends to obliterate the details of .

2) Histogram Estimation: Let be a test image we
want to align to a reference image . These images are
defined on a continuous domain that may have any
number of dimensions (e.g., surface, volume). The coordinates

are samples of ; the discrete set of these samples is called
. Let be some geometric transformation

with associated parameters . Let and
be discrete sets of intensities associated to the test and the

reference image, respectively. Let be a separable Parzen

window defined as above. Then, we define the joint discrete
Parzen histogram as

(2)

where and , and where is related to
and to . Hence, the contribution to the joint his-
togram of a single pair of pixels with intensities which
can take values in a continuum, is distributed over several dis-
crete bins at once by the window function . This joint
histogram is proportional to the discrete Parzen probability (or
frequency) given by

(3)

where we have introduced the normalization factor

(4)

This normalization factor takes up the role of the factor in
(1). It is required because it may happen that
for some , even though every admissible Parzen window
satisfies . The marginal discrete probabilities and
histograms are given by

(5)

(6)

3) Mutual Information: The negative of the mutual infor-
mation between the transformed test image and the reference
image is

(7)

The mutual-information registration criterion states that the
transformed test image is correctly aligned with the
reference image by the parameter for which is minimal.

B. Illustration

To give a concrete example of the objects defined above, we
propose to simplify the situation as much as possible—in the
context of the present illustrative section. First of all, we con-
sider that the intensities of the test image and that those of the
reference image consist of two levels only, given by ,
and , respectively. To further simplify, we also assume
that and that . Then, we as-
sume that these images are defined on an infinite domain, while
the discrete domain onto which we shall perform computa-
tions is limited to some finite aperture. Two arbitrary images
satisfying these conditions are given on top of Fig. 1, where it
should be obvious that they are misregistered by a translation of
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Fig. 1. Determination of the joint histogram needed to compute the mutual-
information criterion.

1 pixel, both horizontally and vertically, and where we have that
. Then, we select as Parzen window a centered

square pulse such that for , and such
that elsewhere. In addition, we set .
For this trivial choice of Parzen window, the joint histogram de-
fined in (2) is no different from a traditional one, where inten-
sities would be first quantized and then would increment some
discrete counter (this process is sometimes called binning).

The bottom-left part of Fig. 1 presents a pictorial description
of the paired elements , , ,
that contribute to the joint histogram computed according to
(2). To help focus the attention, some specific entry with spa-
tial location and with intensities is shown with
a black dot. The bottom-right part of the same figure gives the
resulting joint histogram itself. After application of (3)–(7), the
configuration shown in Fig. 1 results in the negated mutual in-
formation value

We leave to the reader the verification that, should the two im-
ages be aligned without misregistration, the mutual-information

criterion (which is the negative of the mutual information itself)
would reach its minimal value; in the case of this pair of images,
it is given by . To undertake this task, it is necessary
to remember the relation .

C. Partition of Unity

An unfortunate consequence of computing as a marginal
probability is that it makes it depend explicitly on the trans-
formation parameters , even if the discrete images
were to be of infinite spatial extent . Although the reference
image doesn’t change with a variation in these parameters,
is sensitive to them because of the coupling introduced by the
separable Parzen window . One way to avoid this effect is to
introduce the partition of unity constraint

(8)

Note that this constraint should not be confounded with the
unit-integral constraint imposed upon every admissible Parzen
window. When the partition of unity is satisfied for any sample
value , the marginal probability becomes independent of
the transformation parameters . From (6), (3), and
(2), we determine that

(9)

where and have been chosen such that and
for and , respectively. Hence, we

finally have that

(10)

This happens irrespectively of the extent of , be it infinite
or finite. Another advantage is that the normalization factor

now takes a constant value that doesn’t depend on
as shown in (11) at the bottom of the page, where

denotes the number of samples in .

(11)
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D. Partial Overlap

In practice, the images and are defined over the con-
tinuous but finite domains and , respectively. It follows
naturally that the domain on which it is possible to determine
is limited to their intersection

(12)

the extent of which will vary during the course of optimization,
and is at most as large as . To implement (2), these continuous
domains are then sampled to yield the discrete set , with size

. Although (12) seems to imply that there exist a depen-
dence between and some component of , it is necessary
to understand that, due to the discrete nature of , this depen-
dence is not continuous: an infinitesimal variation does not
result in an infinitesimal variation . Rather, varies
in an incremental way. Being discrete and finite, the set is
necessarily countable; thus, the ratio is zero almost ev-
erywhere (a.e.). Therefore, we shall ignore this last contribution
in the calculus of the gradient of with respect to .

Nevertheless, even if the infinitesimal variation is zero a.e.,
the incremental variation cannot be ignored. We acknowledge
that fact by taking into account the actual value of the geometric
parameter while recomputing the volume of overlap each
time is modified. Then, we recompute , ,

, , and accordingly.

E. B-Splines

B-spline functions have many interesting properties
[17], [18]. Of particular relevance for this paper is the fact that
they satisfy the constraint for the partition of unity (8), while
remaining positive, thus being admissible Parzen windows. In
addition, they have the advantage of being smooth functions
with explicit derivatives and a finite support. They are piecewise
polynomials of degree and can be recursively defined as
the convolution of the B-spline of degree with

(13)

where is a unit square pulse

(14)

and where the function is defined by

.
(15)

Not only will these B-splines be used as Parzen window, but they
will also provide the basis functions for representing continuous
images given by a set of samples.

III. MULTIRESOLUTION

A. Image Model

Let us assume that an image is known from a set of sam-
ples that are regularly spaced on a Cartesian grid. To

be useful, an image model must satisfy several constraints. First,
it must allow one to interpolate an image, which links the sam-
ples and their location to the continuous function .
This property is typically needed when performing the geo-
metric transformation . Second, given some con-
tinuous function , there must exist a procedure to recover
a set of samples at locations such that the model based
on this set would reconstruct a close approximation to . A
typical application of this requirement arises when one com-
putes a resolution pyramid, for in this case the procedure can be
sketched by .

We base our image model on the B-spline functions of degree
introduced in Section II-E. Specifically, we have that

(16)

where is a separable convolution kernel given by the
product , and where the expansion B-spline
coefficients are computed from the sample values

by recursive digital filtering [18]. This model is continuous,
differentiable a.e. for , and differentiable for .
It serves three purposes. First, its rescaled versions yield the
image pyramid that we use for our multiresolution approach
[19]. Second, it allows us to resample the transformed image

. Finally, it is used in computing the image gradient
needed during optimization.

B. Model Degree

The model degree determines the quality of the approach.
The lowest-possible degree is called nearest-neighbor.
Used to compute the resolution pyramid, it results in aliasing.
Used to compute , it results in blocking artifacts. Used
to compute , it results in a discontinuous criterion, which is
hard to optimize. Also, the optimum is generally not uniquely
defined. The next degree corresponds to linear inter-
polation. It results in less aliasing, and oversmoothing substi-
tutes for blocking. Meanwhile, the criterion is better-behaved.
In these two cases, the computation of the B-spline coefficients

is trivial. For higher degrees, this computation is slightly more
involved, but aliasing is reduced substantially. Blocking and
smoothing are gradually replaced by ringing. At the extreme,
when , aliasing disappears altogether but ringing is
strongly present (sinc, or Shannon interpolation [20]). A good
compromise between all these issues is to select a cubic B-spline

as model kernel.
There are three major reasons why the choice of a

high-quality model is essential to the proper behavior of a
multiresolution registration method. First, consider performing
optimization at a coarse level of the pyramid. The steps made
by the optimizer at this level correspond to big strides at the
finest level. It follows that precision is of utmost importance at
this coarse level, and subpixel interpolation must be faithful.
This calls for a degree that is higher than what is traditionally
selected. Second, consider having found the optimal parameter

at some level . The optimal parameter at the next finer level
is not identical because data are more detailed, and the

added details call for some corrective action. It is however
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desired that the corrections be as small as possible, which is
achieved by minimizing the amount of detail distinguishing
level from level . Thus, it is best to limit the aliasing
inherent in the size-reduction operation, which again calls for
a high model degree . We shall see in Section IV that our
optimizer requires a differentiable kernel. We prefer to avoid
having to sample a derivative where it is discontinuous, which
could sometimes arise with linear interpolation. This is one
more reason to select a high model degree .

C. Grey Cone

One of the benefits of a multiresolution strategy is the reduc-
tion of the amount of data when the resolution is coarse. How-
ever, this data simplification is detrimental to the robustness of
the estimation of the joint probability from which mu-
tual information is computed. A compromise must be found be-
tween, on one hand, too few data and too many grey-levels in

, and on the other hand, an abundance of data but a
coarse grey-level quantization. For these reasons, we feel it is
appropriate to extend the concept of geometric multiresolution
(image pyramid) to the concept of grey-level multiresolution
(grey cone). A reasonable approach is to keep, at any resolu-
tion level, a constant ratio between the amount of available data
at that particular resolution, and the number of entries in the
discrete joint probability . One consequence to keep in mind
is that not only do we change data when we switch from one
level to the next, but we also change the criterion itself, since we
now let and depend on the actual resolution level. How-
ever, we still expect that the true optimal alignment parameters

will vary only slightly between levels. The sets
are constructed by regular sampling of the grey-level

range of .

D. Underlying Assumptions

To use multiresolution with some success in performing the
registration of two datasets, it is necessary that their coarse rep-
resentation be discriminant enough. In an imaging context, it is
well-known that most of the signal energy is concentrated to-
ward low spatial frequencies, which are essentially preserved
while switching from a fine resolution to a coarser one. There-
fore, it is legitimate to first register the large-scale features at
coarse resolution, and then only to refine registration by taking
fine-scale features into account.

In addition to multiresolution, the pseudo-quantization intro-
duced by the grey cone results in a registration criterion that
tends to be dominated by high-contrast features at coarse scales.
However, this trend can be partially compensated so as to restore
some sensitivity to low-contrast features. Suppose for a while
that the discrete set of intensities has been so badly chosen
that all intensities would fall in the same bin, should a traditional
histogram be constructed: in this case apparently, no informa-
tion can be used for registration. By contrast, the histogram con-
struct proposed in (2), together with a cubic spline in the role of
the Parzen window, spreads data contributions over several bins,
which allows the recovery of more information than with tradi-
tional binning. In fact, the cubic spline satisfies not only the
partition of unity , but also additional re-

lations related to the Strang–Fix theory of approximation [21].
Those are as follows:

(17)

(18)

(19)

It is trivial to derive from these relations the fact that the em-
pirical average computed over the bins
is identical to the empirical average computed over the data

, no matter how bad the choice
of the set is; in particular, this shows that the presence of the
grey cone has no influence on the data average. Moreover, it
can also be shown that the -based variance is simply a bi-
ased version of the empirical one.1 More precisely, if the former
is and if the latter is

, then we have that
. Furthermore, the third moments are exactly equal,

whether computed over the bins or over the data

It should be clear from these relations of statistical equivalence
up to third order—disregarding the constant bias in the case of
the variance—that reducing the number of levels while working
within the coarse region of the grey cone is not as detrimental
as it may seem at first.

IV. OPTIMIZATION

In addition to optimizing at the coarse levels, the multireso-
lution strategy does not preclude optimization at the finest one.
For this strategy to be efficient in terms of computation time,
it is required that, at the finest level, the number of criterion
evaluations necessary to reach some registration precision be
less than the number needed to solve the same problem without
a multiresolution strategy. From this consideration, it follows
that it is important to select an optimizer that benefits strongly
from good starting conditions. As examples of bad candidates,
one can think of many direction-set methods (e.g., conjugate-
gradient with or without explicit derivatives), where the opti-
mizer often needs to sequentially explore several directions in
the space, before even starting to really optimize.
With such algorithms, especially when the conditions are nearly
optimal, many criterion evaluations are wasted simply to assess
that these conditions are, well, nearly optimal.

The main contribution of this paper is an optimization
algorithm based on the same strategy as that of the Mar-
quardt–Levenberg optimizer which is characterized by a global
“understanding” of its immediate surroundings [14]. It benefits
from superlinear convergence, a regime in which the optimizer
converges quadratically (or better) when the optimum is close
enough. An important difference between the present optimizer

1We consider here that card(V ) is sufficiently large so as to have
1=(card(V ) � 1) �= 1=card(V ).
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and Marquardt–Levenberg’s is that our specific registration
problem is non least-squares.

Our optimizer is iterative; it proceeds by trying potentially
better solutions around a given initial condition. Apart from
the propagation of the final solution from a coarser level to the
next finer level, where it will be used as initial condition, the
existence of an underlying image pyramid and of a grey cone
is ignored while optimizing within any given level. Hence, we
present this algorithm out of the multiresolution context.

A. Criterion Model

As a first step, let us express the mutual information (7) by a
Taylor expansion

(20)

We then simplify (20) by ignoring all terms above second-order.
Thus, the residual error will decay like , provided

is bounded. This happens in particular
when the Parzen window is a B-spline of degree . If
both and are not too far from the optimum, this simplified
quadratic model is known to be quite appropriate.

B. Gradient

Let us define the gradient as

(21)

In general, a component of is given by

(22)

where is the exponential constant. This expression can be sim-
plified because, in our formulation of the mutual-information
criterion, and do
not dependent on . By selecting a B-spline of degree as a

Parzen window satisfying the partition of unity condition, we
get that

(23)

The derivation from (22) to (23) is detailed in the Appendix.
Then, we can expand the gradient of the joint probability distri-
bution

(24)

where it is possible to introduce the explicit expression for the
derivative of a B-spline derived from (13)

(25)

and where the spatial gradient of an image is given by
the B-spline model of degree

...
(26)

The last unexplained term in (24) is , which de-
scribes the variation in position due to a variation in parameter.
This term depends on geometry alone. Finally, the gradient of
the marginal joint density can be expressed by

(27)
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C. Hessian

Let us define the matrix of the second derivative of as its
Hessian

...
...

. . .

(28)

With the same assumptions as before, including a Parzen
window satisfying the partition of unity condition, we deter-
mine a component of the Hessian by

(29)

The first term of (29) depends on the second-order variation
of the joint probability when a pair of registration parameters
varies jointly. We will ignore this term, which amounts to lin-
earizing the variation of with respect to . Another motivation
for dropping the first term in (29) arises when one considers the
situation at ideal registration of two dependent images. In this
case, we have that . Then, the partition
of unity condition implies

(30)

and the first term in (29) vanishes. We note that the remaining
terms do still contribute and that the Hessian does not globally
vanish at ideal registration. This is important to keep superlinear
convergence near the optimum. Finally, in this paper we use the
following simplified form

(31)

Comparing this last expression with (24) and (28), one sees
that every term needed by our simplified Hessian has been al-
ready precomputed while determining the value of the gradient.

Thus, another fortunate consequence of ignoring the second-
order term in (29) is that the Hessian comes at essentially
no additional computational cost with respect to that of the gra-
dient .

D. Standard Optimizers

The steepest-gradient descent is a minimization algorithm
that can be succinctly described by

(32)

Its local convergence is guaranteed, although it may be very
slow. A key problem is the determination of the appropriate
scaling diagonal matrix .

The Newton method can be described by

(33)

Its convergence to an optimum is not guaranteed: it may con-
verge to a saddle point (at the same time a maximum for some
parameter and a minimum for another parameter ). Even
worse, it diverges from the desired solution when the problem is
not convex. In return, it is extremely efficient when the criterion
is locally quadratic convex, for in this case it finds the optimum
after a single criterion evaluation.

E. Marquardt–Levenberg Strategy

The Marquardt–Levenberg strategy is a convenient way to
combine the advantages of the gradient method with those of the
Newton method, preserving the efficiency of the latter when the
conditions are nearly optimal, and the robustness of the former
when they are not.

Let us introduce a modified Hessian in which we retain
the off-diagonal entries of and multiply its diagonal entries
by some factor

(34)

where is the Kronecker symbol, and where is a tuning
factor that represents the compromise between the gradient
method and the Newton method. Suppose we now determine
the new update as in

(35)

Depending on the value of , one can distinguish two extreme
cases. When , one sees that (35) and (33) are identical.
When , the diagonal terms of the modified Hessian

dominate, and we are in the situation of (32). Note that,
although the magnitude of the update is adapted to each com-
ponent by the virtue of the normalizing term , the steps
are vanishingly small in this second case. This is not a problem
because it is easy to adapt between these two extremes in order
to achieve a good compromise between the efficiency (but lack
of robustness) of the Newton approach, and the size of the steps
of the robust (but generally inefficient) gradient approach. In
this paper, the mechanism to adapt is identical to the original
Marquardt–Levenberg proposition.
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V. EXPERIMENTS

We want first to illustrate the performance of our approach
with experiments in which the true alignment is known a priori,
and in which the grey-level correspondence between the modal-
ities is controlled. This will allow for an objective measure-
ment of the quality of our algorithm. Then, we propose a case
where the true alignment is approximately known, but where
the grey-level correspondence between the modalities is not. Fi-
nally, we present results in which the true alignment has been
estimated by another registration technique that is believed to
be very accurate, but that is generally unavailable because it
requires planning before data acquisition. This last validation
approach has been used as a benchmark by several other re-
searchers [2], and is representative of a typical application for
this algorithm.

A. Warping Index

The general procedure for validating our algorithm will be to
start with two images that are supposed to be in perfect registra-
tion. We then destroy this correspondence by applying a known
geometric transformation. The goal is to recover its inverse by
our registration method.

Consider a test image and a reference image that are
already in perfect correspondence. Rather than transforming a
single image in this pair, we prefer to transform both because
this tends to lessen any bias that would otherwise result from
the introduction of interpolation artifacts into one image only.
Therefore, we compute

(36)

where is a rigid-body transformation consisting of a random
translation and a random rotation around the center of the image.
It follows that the correct registration of to involves the
transformation such that . In
our case, since is rigid-body, so is .

Next, we estimate a rigid-body transformation out of the
data . Our aim is now to determine the precision of
each estimation. We achieve this goal by introducing a warping
index that measures an average geometric error

(37)

where stands for the Euclidean distance. After having per-
formed several registrations with different realizations of the
random transformation , we average together the values
and report a pooled warping index. For this paper, there are 100
warping indexes to pool for each experiment. Meanwhile, has
a translation that is uniformly distributed in , and a
rotation around the center of the image that is uniformly dis-
tributed in . Hence, the maximal excursion of

is about seven pixels of translation and of
rotation.

B. Objective Validation

We start our series of experiments in a controlled environ-
ment where we know a priori both the geometry and the grey-

level correspondence between the test and the reference image.
First, we attempt to register identical images and show that our
registration algorithm performs well in this intramodal case.
Then, we simulate the intermodal case by performing a non-
linear, nonmonotonic transformation on the grey-levels of one
of the image, and show that our registration algorithm performs
as well as in the intramodal case. Finally, we add white Gaussian
noise to the simulated intermodal images and show that our reg-
istration algorithm is robust with respect to this type of noise.
We perform these experiments in 2-D with widely available im-
ages. Although unrealistic, this controlled environment offers a
clear framework for the interpretation of the results.

1) Intramodal Case: Selecting the Lena image in
the role of both and , we expect a multiresolution approach
to influence at least two aspects of the registration method. First,
it should improve the robustness of nonstochastic optimization
procedures such as ours. Second, it should improve its speed.
To observe these effects, we compare the success of our regis-
tration method when we vary the number of levels in the image
pyramid. Since the goal is to investigate the interaction between
robustness and precision, we prescribe a fixed overall computa-
tion time and adapt the number of criterion evaluations at each
level such that this resource is shared between levels in an ade-
quate fashion.

Table I presents the results of these experiments where the
first block of lines corresponds to a strategy using a one-level
“pyramid,” and the last block of lines to a six-level pyramid (the
coarsest level is a image). The geometric unit of the
warping index for the intramodal case is 1.0 pixel at the
finest resolution, and the time unit is 1.0 CPU second on a Sun
ULTRA 30 workstation. The processing time reported in this
table includes the overhead time necessary for computing the
pyramid (starting each time from the finest level). For example,
performing 64 criterion evaluations on an image down-sized
from to requires
3.9 s, while performing twice as many criterion evaluations with
the same overhead requires only 5.9 s. We also give

the number of quantized intensities at
each level of the grey cone. To determine this number of grey-
levels, we observe the rule
that we proposed at Section III-C, and we select a constant ratio

.
The purpose of this experiment is to show the degree to which

multiresolution is able to ameliorate the performance. We ob-
serve that our algorithm is essentially unable to converge within
the allotted computation time when the pyramid consists of its
finest level only. This was to be expected, since we spent most
of our attention to building an optimizer that works well when
it is close to the solution, without concerning ourselves with its
behavior when the solution is remote. With two levels, the accu-
racy improves but is still insufficient. In the three-level case, the
order of magnitude of the accuracy reached by our algorithm is
about a pixel. With four levels, this accuracy still improves to
about a couple hundredth of a pixel; it reaches a hundredth of
a pixel for five levels. An additional sixth level does not bring
additional gains. It is also interesting to note that, although half
of the processing time is spent at the finest level, the biggest
improvements result from computations performed at coarser
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TABLE I
INFLUENCE OF MULTIRESOLUTION ON THE ROBUSTNESS OF REGISTRATION IN AN IDEAL CASE. $ : ORIGINAL LENA VERSUS

ORIGINAL LENA. $ : MODIFIED LENA VERSUS ORIGINAL LENA

levels; the improvements at fine levels are however the hardest
to obtain, and our optimizer excels at getting them. As planned,
the overall computation time is about the same in all cases.

2) Intermodal Ideal Case: Now, we keep the same image
as before, and we synthesize by applying a grey-level trans-
formation that is nonlinear and nonmonotonic, thus possessing
no inverse. By this operation we try to confuse the algorithm.
The synthesized test image is

(38)

where the range of intensities found in is assumed to be
. We performed the same experiments as in the intramodal

case. Table I shows the results where the warping index for the

intermodal case is given by . We observe that the opti-
mization is trapped in local minima far from the true optimum
for pyramids consisting of one, two and three levels. Using at
least four levels solves this problem. We see that the perfor-
mance of the algorithm is essentially the same for the intermodal
ideal case as it was for the intramodal one.

3) Intermodal Noisy Case: Trying to confuse the algorithm
even more, we now add independent realizations of white
Gaussian noise both to the reference image , and to the
test image synthesized according to (38). We measure
the amount of added noise as a signal-to-noise ratio (SNR)
expressed in decibels, according to

(39)
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Fig. 2. Warping index$ versus amount of added noise (noisy modified Lena
versus noisy original Lena).

Fig. 3. Lena image corrupted with 0 dB noise. Left: reference. Right: modified
histogram.

where is the variance of an image and is the vari-
ance of the added noise. We corrupted the test and reference
image in such a way that they exhibit the same SNR. Fig. 2
shows the resulting dependence of the warping index on ,
using the same methodology as in the previous experiments, and
with a five-level pyramid. We observe that the algorithm is left
undisturbed by moderate amounts of noise (SNR better than 15
dB). Moreover, the degradation is graceful when more noise is
added. For example, even when the variance of the noise is as
big as the variance of the signal itself (0 dB case), the warping
index is still no more than a tenth of a pixel. Fig. 3 displays
and in this particular 0 dB case. Note that the actual realiza-
tion of the noise is different in all 100 experiments performed
for each data point of Fig. 2.

We can now compare the performance of the present inter-
modal image registration algorithm with those of the intramodal
one that we presented in [5]. We conclude that their precision is
essentially the same in presence of strong noise (both reach a
tenth of a pixel in the 0 dB case), while the intermodal algo-
rithm applied to the intramodal noiseless case of Section V-B1
performs worse than the intramodal algorithm (a hundredth of a
pixel instead of a thousandth of a pixel for a comparable allotted
computation time). This relative loss of precision is largely com-
pensated for by the fact that it is impossible to register im-
ages like those presented at three with the intramodal algorithm.
Also, for many practical purposes, the precision of a hundredth
of a pixel reached by the present intermodal algorithm is often
sufficient.

Fig. 4. Cryosection of a human brain in an RGB representation. Left: red
channel. Right: blue channel.

C. Known Geometry with Unknown Grey Correspondence

We now use a pair of biomedical 2-D images coming from
different modalities. Fig. 4 shows such a pair, where the left
image is the red channel of the cryosection of a human brain
(Slice 4125 of the Visible Human Project), and the right image
is its blue channel. Since they come from the same 24 bit color
photograph, we can have some a priori confidence in their
overall correct prior alignment. However, we may also have to
mitigate this statement since inaccuracies in the scanner interfere
with the level of geometric precision we are interested in. To
alleviate this problem somewhat, we have reduced the image
size threefold to , which tends to reduce any original
mismatch in the color channels by as much. Contrary to the
experiments of Section V-B, the correspondence between the
intensities recorded into the red and the blue channel is unknown.

1) Multiresolution: Table II presents the results of the same
experiments as before performed with the images of Fig. 4. Out
of 100 trials, we retain in this table only those for which the
quality of the registration is subpixel; we consider the rejected
cases to be failures. We name capture range the largest pre-reg-
istration warping index that leads to a subpixel post-registra-
tion warping index. Trying again to assess the gain in robustness
brought by multiresolution, we observe that our algorithm is un-
able to converge within the allotted computation time when the
pyramid consists of its finest level only. With two levels, some
cases are within the capture range but the number of failures is
still very significant. Both accuracy and capture range improve
with the introduction of a third level, where we still experience
about as many failures as successes. With a fourth level how-
ever, the capture range is maximal and every of the 100 random
transformations leads to a successful subpixel registration. The
residual error, which might also be due to inaccuracies in the
scanning device itself, reaches a half tenth of a pixel.

Since we retain in Table II only those experiments with ini-
tial conditions that lead to subpixel registration at full resolution,
it is easy to read in the first data column of this table the max-
imal amount of initial misregistration our method can cope with.
This maximal amount clearly depends on the number of levels
of the pyramid; its general trend is to double for each additional
level, which is consistent with the use of a dyadic multiresolu-
tion scheme. As a rule of thumb, we observe that our method
works well as soon as the initial misregistration is subpixel at
any given level; this subpixel score has then to be scaled from
the actual spatial resolution to the final spatial resolution to in-
dicate the true range of misregistration where our method is ef-
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TABLE II
INFLUENCE OF MULTIRESOLUTION ON THE ROBUSTNESS OF REGISTRATION (CRYOSECTION BLUE CHANNEL VERSUS CRYOSECTION RED CHANNEL)

TABLE III
INFLUENCE OF THE MODEL DEGREE ON THE ROBUSTNESS OF REGISTRATION (CRYOSECTION BLUE CHANNEL VERSUS CRYOSECTION RED CHANNEL)

ficient. For example, we see in Table II that the capture range of
a four-level multiresolution pyramid is about pixels,
as computed according to Definition (37).

2) Quality of the Model: We expect the quality of the image
model to reflect itself in the quality of registration, particularly
at the coarse levels of the pyramid. To investigate this hypoth-
esis, we construct Table III, where we show the results of reg-
istration using cubic, quadratic and linear models, respectively.
The number of levels and the number of criterion evaluations
are identical in these three cases.

The quality of the model affects both interpolation and
pyramid computation. One can see that the difference between
a cubic and a quadratic model is not striking when dealing with
the finer levels of the pyramid. For the coarser levels however,
the difference is more marked. This tends to show that the main
advantage of using a cubic model (with respect to the quadratic
one) is not so much due to interpolation, but rather to reduced
aliasing in the pyramid. Note that quadratic and cubic models
have essentially the same computational cost, while a linear
model is somewhat cheaper. The gain in speed is not dramatic
however, and has to be weighed against a sharp reduction in
accuracy. Moreover, since the algorithm sometimes failed to
converge with a linear model, robustness is also decreased. For
all these reasons we advocate the use of a cubic model.

3) Powell Optimizer: We want now to compare the accuracy
and efficiency of our proposed optimizer to the Powell algorithm
that has also been used in the context of image registration based
on mutual information [15]. The goal of this presentation is to
show the reason why a Powell algorithm fails to take full ad-
vantage of a multiresolution approach, while the optimizer pro-
posed in this paper succeeds. The unfortunate corollary to this

proposition is that our optimizer is inefficient out of a multireso-
lution context; in particular, at the first (coarsest) pyramid level,
it is less robust and slower than many other optimizers. To ben-
efit from both of best worlds, we suggest a compromise where
a robust, but eventually evaluation-hungry optimizer, is used at
the coarsest resolution, followed by the efficient use of our accu-
rate, evaluation-savvy optimizer at finer levels. This suggestion
is not further pursued here; rather, we concentrate on the perfor-
mance of our optimizer alone.

The structure of this presentation is as follows: we first show
a case where the traditional Powell optimizer yields good results
(no multiresolution). Since this case does not correspond to the
context in which our optimizer has been developed, we experi-
ence much worse performance. We then introduce multiresolu-
tion in a way that tends to be very favorable to Powell. We ob-
serve that this optimizer performs better than without multires-
olution; at the same time, we observe that our algorithm yields
good performances too. The important point comes last: while it
is not possible to further enhance Powell, it is still possible to have
a large increase inperformancewithouralgorithm.Inconclusion,
we outperform the best (multiresolution) Powell result by a factor
three with respect to time, without any compromise in accuracy.

The Powell algorithm computes no criterion derivatives while
attempting to recover the gradient and the Hessian ,
which makes it an attractive candidate when closed forms of
the derivatives are not available or when their computation cost
is prohibitive. It is known as a direction-set method, where the
parameter space span( ) is explored along straight lines exclu-
sively [linear combinations of ].

Line minimizations require a bracketing of the minimum
along the considered line before being able to start the opti-
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Fig. 5. Left: accuracy of the multiresolution Powell algorithm during optimization versus number of criterion evaluations. Right: accuracy of the proposed
algorithm during optimization versus number of criterion evaluations. Thick line: best solution. Thin line: current attempt. Square dots: change of resolution level.

mization itself. This bracketing alone is worth several criterion
estimations, which is inefficient when using a multiresolu-
tion strategy. Because these initial criterion estimations are
necessary for the proper behavior of the Powell optimizer,
regardless of whether the starting conditions are good or not, it
is not possible to arbitrarily reduce their number. In addition,
no convergence can be detected before at least as many line
minimizations as free parameters have been performed. Obvi-
ously, the fact that the Powell algorithm uses estimates for the
derivatives rather than their true values tends to further reduce
its efficiency.

We conduct an experiment where the transformation cor-
responds to an initial displacement of 10 pixels along each axis
and to a rotation of . The image model is cubic for
both algorithms (including Powell), and the joint histogram and
the mutual information are computed according to (2) and (7),
respectively. Thus, we expect to reach the same accuracy with
either optimizer since the absolute optimum is defined only by
the criterion and by the interpolation technique. The images are
the same as in Section V-B2, with the same grey-cone strategy.

First, we attempt registration without multiresolution. We ob-
serve that the Powell algorithm needs 196 criterion evaluations
to converge when its working conditions are identical to those
found in [15], that is, at most 10 criterion evaluations for each
line minimization, and convergence thresholds set to for
Powell and for Brent minimization routine, respectively
[22]. Allowing for the same number of criterion evaluations, the
algorithm proposed in this paper is unable to converge at all,
which demonstrates its lack of efficiency and robustness when
it is far from the solution.

We then attempt registration in a multiresolution context.
Using a four-level pyramid, we observe the evolution of the
warping index during the course of registration, both for
our algorithm and for Powell. Fig. 5 shows the result of this
experiment, where Powell has been allowed to freely decide for
convergence at each level, and where the number of criterion
evaluations performed by our optimizer has been set equal
to those observed while letting Powell converge. We can
clearly see that both algorithms reach a satisfying solution
( in both cases), which demonstrates the gain
in robustness brought by multiresolution. Thick square dots
indicate the last result reached before a change of level. From
the coarsest to the finest level, Powell claimed convergence
after 155, 102, 62, and 62 criterion evaluations.

The bracketing episodes of the Powell algorithm can be easily
identified as big excursions of . Those are necessary because
this algorithm has no indication of the correct scale of the opti-
mization problem and has to start with wild guesses each time a
new direction is tried. The reward is a reduction in complexity,
since no explicit derivative computations are performed. This
translates in a reduction of the time per criterion evaluation.
With a number of evaluations set to match those of the Powell
algorithm, we need 716 s to perform the computations, while
Powell is done in half the time (363 s). This last value has to be
compared to the time needed by Powell to reach convergence
without multiresolution (821 s).

We observe that both algorithms can be characterized by
bursts of an efficient optimization mode alternating with more
static periods. It is important to point out that, as soon as the
initial conditions are good (about one pixel), our algorithm
converges almost instantly when compared to Powell. In fact,
the 62 criterion evaluations performed by the latter on the two
finest resolution levels represent the smallest possible amount
of computation, because Powell needs a first sweep through
three parameters (with ten criterion evaluations each) to opti-
mize for the added image details that distinguish a resolution
level from the next, and one additional sweep to decide for
convergence. By contrast, our algorithm is not constrained by
line minimizations; it can stop at any time during optimization,
and starts to simultaneously optimize for all parameters from
the very first criterion evaluation on. This suggests that it can
converge with a much reduced number of evaluations at each
level, but for the first one.

We then propose an optimization strategy where the number
of evaluations performed at finer levels of the multiresolution
pyramid has been sharply reduced. Fig. 6 shows a case where
128, 32, 16 and 8 evaluations have been performed (so few eval-
uations make no sense in the context of a Powell optimizer, so
we provide no direct comparison). Our accuracy is as good, or
better than Powell (we reach ). Moreover, since
we remove many of those criterion evaluations that make for
the longest computation time, we are able to reach convergence
much earlier than Powell, both in terms of time and criterion
evaluations. We need no more than 132 s to perform the whole
optimization procedure, which is about the third of Powell in a
multiresolution context, and about six times faster than the tra-
ditional Powell optimizer. Fig. 7 substantiates these results and
show that the time spent at coarse resolution is essentially irrel-
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Fig. 6. Left: accuracy of the proposed algorithm during optimization versus number of criterion evaluations. Right: observed value of the criterion. The number
of allowed criterion evaluations at each level is less than those demanded by the Powell optimizer. Thick line: best solution. Thin line: current attempt. Square dots:
change of resolution level.

Fig. 7. Comparison of accuracies during optimization versus computation
time. Thick line: proposed optimizer. Thin line: Powell optimizer. Square dots:
change of resolution level.

evant. Obviously, there are many—perhaps more robust—op-
timizers other than ours that could be used for this first level,
including Powell. Thereafter, an optimizer that takes strong ben-
efit of starting conditions, such as ours, is an absolute necessity
for a successful multiresolution strategy.

We also take advantage of this experiment to show the rela-
tionship between the measure of geometric accuracy and the
value taken by the criterion during the course of optimization
by our algorithm. It can be seen in Fig. 6 that closely follows

. It is also very likely that the most efficient behavior of our
algorithm has been while optimizing on the range ,
because there it needed few evaluations to head its way toward
the optimum.

D. Prospective and Retrospective Registration

We also applied our algorithm to the registration of volumes
acquired by computed tomography (CT) or positron emission to-
mography (PET) with respect to three different magnetic reso-
nance imaging (MRI) modalities: proton density (PD), T1 relax-
ation time (T1), and T2 relaxation time (T2) . The goal was to
align the CT or the PET volumes with the MRI ones, which rep-
resents very different measurements since the former use X-rays,
respectively, the decay of injected radioactive isotopes, while the
latter deals with the interaction between spin and magnetic field.
The MRI volumes were available in two versions: raw (PD, T1,
T2), and corrected (rectified) for scanner-dependent geometric
distortion (PDr, T1r,T2r). There were seven patients in each case.

We compare the results of our intermodal brain image regis-
tration algorithm to those of several other approaches published

TABLE IV
RESIDUAL DIFFERENCE IN mm BETWEEN A FIDUCIAL-MARKER PROSPECTIVE

REGISTRATION TECHNIQUE AND THE PROPOSED RETROSPECTIVE ALGORITHM

(VOLUMETRIC BRAIN DATA)

in the literature. The comparison is based on a methodology pro-
posed by West et al. [2], who let selected researchers access
a standard set of volumes to be registered. They also act as a
repository for the ideal registration transformations (gold-stan-
dard) acquired by a prospective method using physical markers.
These markers are erased before the volumes are disclosed to
the investigators, who then face a retrospective blind registra-
tion task. After registration, they report back a set of transfor-
mation parameters that are compared to the gold-standard. This
results in a geometric error measured in mm, and allows for a
simple ranking of the competing algorithms—from an accuracy
point of view. Although we carried out our registration some
time after the researchers listed in the paper by West et al., we
were blinded in exactly the same way.

Table IV shows the results obtained by our algorithm and
give the median and the maximum error over about ten cases
for each pair of modalities. The registration of the images was
crudely initialized by an exhaustive search procedure. With a
proper heuristic to decide for convergence of the optimization,
the typical execution time for a CT-MR registra-
tion is about 4 min on a Macintosh 9600 clocked at 350 MHz,
including about 40 s of data preprocessing (e.g., determination
of a mask over which to carry the optimization, nonlinear in-
tensity modification of the CT data to spread their distribution
more evenly). For a PET-MR registration, the
typical execution time is about 40 s, of which 10 s are spent
in preprocessing and 30 s in performing the realignment itself.
These results compare very favorably to those of other investi-
gators published in the literature [2].

We show the performance of the other investigators in Figs. 8
and 9, where the labels are the same as in [2], and where we have
represented ourselves by the label TH. The accuracy of the gold-
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Fig. 8. Residual difference in mm between the prospective gold-standard and several retrospective registration algorithms (CT versus other modalities). The
algorithm proposed in this paper is labeled TH.

Fig. 9. Residual difference in mm between the prospective gold-standard and several retrospective registration algorithms (PET versus other modalities). The
algorithm proposed in this paper is labeled TH.

standard has been estimated in the paper previously cited. Thus,
for a given pair of modalities, we can surround the best result
of all 11 investigators by a tolerance band of the corresponding
size. This band is shown in grey in Figs. 8 and 9.

We can draw several comments with respect to ranking. First,
no single algorithm is the best in all cases. Moreover, there are
only three algorithms that stay within the tolerance band de-
fined above (CO [13], HI [23] and TH); those three algorithms
are all implementations of mutual information. Among all algo-
rithms, there are 2 that come first the most often (HI and TH);
however, TH is the only algorithm that is beaten by the least
number of better results. It is also the best algorithm with respect
to pooled median errors (for precise numeric results and exper-
imental conditions, see [2]). Nevertheless, no algorithm taking
part in this study clearly outperformed the others, and a better
gold-standard or a larger number of datasets would be necessary
to get more confidence in these comparative results.

VI. DISCUSSION

A. Choice of the Criterion

While the mutual-information measure is based on the joint
histogram, some measures from other researchers [6], [23] are

based on the joint histogram, too. Maes et al. [15] show relations
between them. Other criterions are also suggested in the same
paper, such as the -divergence, the -information, the -di-
vergence, the -information, the difference between the joint
entropy and the mutual information, and the ratio between the
mutual information and the sum of the marginal entropies. The
authors could not establish a clear preference for either of these.

Studholme et al. [23]–[25] present a comparative study of
several voxel-based registration criterions (e.g., various corre-
lation measures, corresponding variance, moments of the joint
histogram, joint entropy , mutual information ). In term of
robustness, they conclude that mutual information performs ex-
tremely well when compared to the other measures. In another
paper [26], they propose to use , the ratio be-
tween mutual information and the joint entropy, which hints at
even better performances. Due to its apparent robustness to the
partial overlap problem, this last criterion could be a good can-
didate to initiate registration at the coarsest level of a pyramid
approach.

B. Computation of the Criterion

Viola et al. [12], [27] propose to estimate the joint histogram
on the basis of Parzen windows made of Gaussian den-
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sity functions which do not satisfy the partition of unity. Thus,
their scheme does not benefit from the simplified expression of
derivatives that we presented at Section IV, which is particularly
relevant when computing the second-order derivatives needed
for the Hessian.

While Viola and Wells produce an estimate of the joint his-
togram that is entirely continuous, thanks to Parzen windows
and thanks to the direct use of unquantized grey values, Col-
lignon et al. [13], [15], [28] represent the joint histogram in
an essentially discrete fashion: they use binning with regularly
spaced bins. Our work is a compromise between these two ex-
treme views, because our representation of the histogram is con-
tinuous, like in Viola’s approach, and at the same time it is
described by a set of discrete and regularly-spaced intensity
values, like in Collignon’s approach.

C. Optimizer

Viola et al. [12], [27] propose a stochastic estimate of the
mutual information between two datasets. They proceed by
drawing two population data samples (or sets) and , which
hold, respectively, and elements. Each element con-
sists of a pair of pixels located at identical coordinates
in the two images to register. The purpose of the first set is
to provide an estimate of the joint histogram , while the
purpose of the second set is to estimate the mutual infor-
mation . This leads to a computational
load that is quadratic in the number of elements. Thus, in their
approach it is impractical to sample the data in an exhaustive
way, which constrains the optimization to use noisy estimates
of both the criterion itself and of its derivatives. Other ap-
proaches (ours, and those presented below) do not suffer this
limitation.

Studholme et al. [23]–[25] perform experiments based on a
hill-climbing optimization algorithm that requires no derivative
estimates. In the terminology of Hooke and Jeeves [29], their
algorithm is best described as direct search without pattern
search. This simple optimizer, where only the exploratory phase
is retained, is embedded in a multiresolution framework. Their
pyramid is computed by an averaging-downsampling scheme
akin to Haar’s wavelet. By contrast, we take in this paper
full advantage of a pyramid that is optimal in a least-squares
sense and that can be computed at a very modest computa-
tional cost (typically, less than a single criterion evaluation),
while outperforming a Gaussian pyramid and its associated
oversmoothing drawbacks, even considering an idealized,
nontruncated Gaussian kernel.

Collignon et al. [13], [15], [28] use a Powell optimization al-
gorithm to search for the best alignment of data. This optimizer is
based on a series of line minimizations in the parameter space and
suffers from sensitivity to the initial order in which the parame-
ters are optimized. This order must be tuned to the data, which
detracts from the general applicability of the mutual-informa-
tion criterion. The optimizer developed in this paper is insensi-
tive to that aspect because all parameters are considered simulta-
neously. In addition, it offers savings in the number of needed cri-
terion evaluations when compared to a Powell optimizer because

none is wasted in bracketing and because our algorithm is free to
stop at any time. Nevertheless, a clear advantage of the Powell
algorithm is its robustness. This suggests a global optimization
strategy where Powell is used at the coarsest level of a multires-
olution pyramid to bring robustness, and where our algorithm is
used at all finer levels for faster convergence.

VII. CONCLUSIONS

We have developed a new optimizer for solving the problem
of intermodal image registration. This optimizer takes benefit of
the Marquardt–Levenberg strategy, while extending its capabil-
ities to a specific problem that does not involve a least-squares
criterion. The optimized criterion is the mutual information be-
tween the two images to register. We propose to compute its
value by using separable Parzen windows. We show that the
selection of a Parzen window that satisfies the partition of unity
simplifies several aspects of the problem. It allows us to find a
tractable closed-form expression for the gradient of the criterion
with respect to the transformation parameters, and to justify a
simplified form for its Hessian as well. Moreover, the partition
of unity guarantees that the marginal histogram of the fixed
reference image does not depend on the geometric transforma-
tion applied on the test image. We have introduced a coherent
framework based on a continuous image model for applying the
transformations and for computing the derivatives of the crite-
rion. The same model is used for performing the registration
in a multiresolution context. Both model and Parzen windows
are based on B-splines. We have shown experimentally that our
new optimizer is well adapted to multiresolution processing,
which brings robustness and speed to the whole approach. We
reach a better accuracy in less time than previously published
methods.

APPENDIX

We provide here the steps that link (22) to (23). First, we
concentrate on the middle term of (22) and determine that

where we have taken into account the definition (6) and the con-
ditions that lead to (10). Introducing (3) into (22), and taking
advantage of the independence of on , we get that
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By reorganization of the terms, we write that

The first of these three terms disappears because
. For the last term, we get from the

definition (5) that

We also observe that

which concludes the equivalence between (22) and (23).
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