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Abstract 

Minimum weight design is an important criterion in aireraft and spacecraft because it 

d o w s  either an increased pay-load or higher performance. As a result, the use of composite 

sandwich panels has grown due to their light weight and high rigidity. In order to hvther 

increase the efüciency of these structures, designers have used different materials in different 

shapes in the facesheets and in the a re .  One of the most recent innovations has been the 

use of a uniform net of carbon fibre/epoxy as the facesheet S. 

In the present study, the optimal design of sandwich plates with heterogeneous face- 

sheets is treated. The plate mass is minimized, considering the first natural frequency and 

certain fa.ilure loads as constraints. Weight reduction is obtained by defining a nonuniform 

distribution of composite material in the facesheets. Initidy, the facesheets are assumed to 

be constructed of composite strips in a regular pattern. During the optimization process, 

both the widths of the strips and the spacing between them are varied to decrease the 

amount of material nsed. Such a design is conceptually straightforward to manufacture 

and, therefore, would lead to improved performance with Little cost penalty. 

In order to solve this problem, it is first necessary to develop a computer code to 

determine the natural frequeaues and the stresses in these plates, The bending and vi- 

bration problems for sandwich plates with heterogeneous facesheets are solved using the 

Ritz Method in conjunction with the assumptions fomulated by Reissner for sandwich 

plates. Since the sandwich plate considered in this study has facesheets constructed of nets 

and the computer code was developed to analyse laminates wit h heterogeneous continu- 

ous layers, it was necessary to use a procedure to approximate the nonuniform net as a 

smoot hed ort hotropic heterogeneous continuum. The smoot hing process is accomplished 

using the theory of homogenisation and the material coefficients were calculated using the 

Finite Element Method. Two approaches were considered to d e h e  the design variables 

of the problem: an independent design approach, in whieh the facesheets are discretized 

into regions with uniform design parameters; and o reduced basis formulation, in which the 

design is specified by a linear combination of orthogonal ba i s  functions. 

This stndy solved the problem proposed. It has b e n  demonstrated that variation in 

density is important and con lead to signifiant design improvement. Across of the face of 

the optimally designed plate, the density vanes by a factor of 9. Also, the problems solved 

showed that the mass of the facesheets can be reduced up to 50%. 
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Chapter 1 

Introduction 

1.1 Motivation 

Minimum weight is an important criterion in airuaft and spacecraft design as i t  dows  

either an increased pay-load or higher performance. As a resdt , the use of composite 

sandwich panels has grown due to their light weight and high rigidity. These panels are 

rnanufactured as a three layer structure. The external layers, the facesheets, usually consist 

of thin laminates of high-stiffiiess material. The central layer, the core, is a slab of low 

stiffness and density. This type of panel has an eflicient structural geometry, becanse it 

places the stiff material away fiom the neutrd plane thereby increasing the flexural rigidity. 

In order to further increase the efficiency of these structures, designers have nsed different 

materiais in different shapes in the facesheets and in the core. One of the most recent 

innovations has been the use of a nniform net of carbon fibre/epoxy as the facesheets. 

The idea for this work came from a satellite project d e d  CBERS (China-Brazil Earth 

Resource Satellite), Figure 1.1. This is a remote sensing satellite developed in a joint 

program between the Brazilian and Chinese govemments. This satellite has an appendage 

composed of three sandwich panels; these panels covered with sol= cells which generate 

power during operation in space. The sandwich panels have facesheets composed of carbon 

fibre/epoxy nets and a core of aluminium honeycomb. The goal of this thesis is to undertake 

an optimization study related to these panels where the objective is to obtain a minimum 

weight design. 

In the next section, a brief history and status of structural optimization wiU be pre- 

sented. Then a literature review related to the analysis and optimization of sandwich panels 



Figure 1.1: China-Brazil Earth Resources Satellite. 



will be completed. Following this, the objectives of this dissertation are explainecl and then 

the ontline of the thesia is given. 

1.2 History and Status of Structural Optimization 

This section presents a brief overview of structural optimization. A more complete pre- 

sentation may be fomd in the paper pnblished by V e h y y a  [110] or in any nnmber of 

publications dealhg with strnctnral optimization [B, 49,711. 

Research in the area of structural optimization goes back as far as Galileo Galilei, 1638. 

His strongest cantilever beam in bending and constant shear formulation can be considered 

an optimal design for minimum weight under a nniform stress constra.int [65]. However, the 

development of mathematid op timization started only after the introduction of calculus by 

Newton and/or Leibniz a t  the end of the 17th centnry. This was foilowed by t h  development 

of the d c u l n s  of vaxiations in the 17th and 18th centuries. 

The development of high-speed digital computers in the 1950s and the subsequent com- 

puter revolution have had an immeasurable impact in the field of engineering. Increased 

computational power has resdted in calcdation capabilities never seen before for the so- 

lution of complex mathematical and engineering problems. The computer has led to the 

development of powerful numerical methods such as the finite element and h i t e  difference 

techniques; these techniques have as th& main feature the characteristic that they reduce 

the differential field equations of solid and fiuid mechanics to algebraic form. Algebraic 

equations of dmost any order are easily solvable by modern digital computers. 

Also during the 1950s, the simplex rnethod was introduced by Dantzig [19]. It is a 

simple and versatile method which is very attractive for solving linearized constrained opti- 

mization problems. This work also led to the development of many nonlinear programming 

methods known today, snch as: gradient projection, feasible directions, and penalty func- 

tions, as examples. In 1960, Schmit [93] developed an idea that was critical in bringing 

these techniques to the attention of the researchers in the area of structural mechanics. 

The cost and Iack of robustness when numerical search techniques are applied to large- 

scde problems, revived discrete optimality research during the 1960s and 1970s. In the 

19808, Vanderplats [107] implemented the feasible direction methods (CONMIN); currently 

these are probably the most widely used techniques in structural optimization. It was also 



at  this time that structnral optimization started to become accepted as one of the design 

tools in practical strocturd design. This happened not only because designers had gained 

confidence, but also because large-scale software tools for production applications started 

appearing in the latter half of the 1980s. Duysinx & Fleury (241 and Johnson [43] present 

a broad survey of structural optimization tools that have been developing in Europe and 

North America, respectively. 

Some topics in structural optimization which have recently received the attention of 

researchers include: sensi tivity analysis, multidisciplinary design, heuristic met ho&, op ti- 

mization by decomposition and shape optimization. Sensitiuity analysis is being increas- 

ingly investigated because of the recognition of the power and broad range of applicability 

of sensitivity derivatives. These ideas have been applied to approximate analysis, analytical 

model improvement, and assessrnent of design trends. Haber et. al. [35], Choi [18] and 

k o r a  & Lee [4] have recently presented a comprehensive review of the latest publications 

in this topic. 

Although there has b e n  considerable progress in the fidd of rnultidàsciplinary de- 

sign [83], there remains a great ded to be done. The principal difficdty is that the 

combination of individudy complicated disciplines leads to even more complex discipline 

interactions; these complex interactions are serious impediments to fkrther developments. 

On the other hand, practical applications of optimization algorithms to mdtidisciplinary 

design problems are expected to advance with the increasingly more powerful cornputers. 

Heuristic search methods have been developed to solve complex combinatoric problems. 

They are powerfd tools for locating optimal solutions for difficdt problems, since they do 

not require gradient calculations. Among these methods, four are most commonly used: 

genetic algorithms (411 and neural networks [15,48] have the biological sciences as their 

background; simulated anneding is inspired by the second law of thermodynamics; while 

tabu search resdts from attractive procedures for problem solving. 

Large optimization problems considered intractable due to their large number of design 

variables and constraints c m  be treated through optimization by decomposition [100]. In 

this case, a large problem is transformed in a set of coordinated smaller subproblems. This 

approach is well-suited to an engineering team, whereaach member concentrates on different 

parts of a project. 

One important area of structural optimization explored recently is shape optimim- 



tion [8,66] (geometry and topology of a structural layout). The reason for focusing on this 

problem is that it  has a great impact on the performance of the structures. The standard 

approach to shape optimization is to introdace boandasy variations for a given topology 

of the structure. This methodology can now be considered mature for planar structures; 

however, there is still developments remaining regitrding boundaxy shape optimization for 

three-dimensional solids. This results fiom the complexity of geometrical representations 

and the associated automatic h i t e  dement mesh generation methods in these structures. 

Recently a homogenisation method [6] for generating optimal topologies of structural ele- 

ments bas appeared in the literature. This method predicts grid- and truss-like structures 

for planar structures. 

1.3 Structural Analysis of Sandwich Plate 

A considerable number of papers have been published concerning the analysis of sandwich 

plates. These papers can be divided in three main categories: analytical, numerical and 

experimental. This work is now discussed. 

- Analytid Work 

One of the earüest analytical papers concerning sandwich plates was due to Reissner [87]. 

He presented the basic differential equations for finite transverse deflections of sandwich 

plates under the assnmptions that in-plane stresses in the core and variation of the stress 

over the thickness of the facesheets are negligible. After that, Yu [113] published several 

papers t reating one- dimensional % m a l  vibration of sandwich plates. In the early l96Os, 

Habip [36] presented a survey of the analysis of sandwich structures. Liaw & Little [54] 

developed the governing equations for bending of multi layered sandwich plates; in t heir 

mode1 the plate is considered to be a multi layer sandwich with n membranes and (n-1) 

orthotropic cores. In 1970, Pagano [69] published a three-dimensional elasticity solution 

for rectangulax laminates with pinned edges. Since then, this paper has been nsed as a 

reference for verifying numerical methods to solve sandwich plate problems. Pearce & 

Webber [73] presented a met hod to determine the overd budding and local wrinkling loads 

of sandwich panels with honeycomb cores and laminated angle-ply faces; their work was 

based on the assumption that the facesheets have a sufficient nnmber of layers so as they 

may be considered to be orthotropic sheets. Using generalised harmonie analysis, Kulkarni 



et. ai. [52] have investigated the displacement response of orthotropic sandwich plates 

s u b h t e d  to ideal white noise. Frostig & Bamch [29] present a high-order theory for the 

bending behaviour of a sandwich panel with flexible core to study localised load dects. 

Their theory uses classical thin-plate theory to model the skin and a the-dimensional 

elastiuty representation of the core material. They used this model to study the effect of 

the plate aspect ratio on the deformations, intemal resultants, and stresses at  skin-core 

interfaces. 

- Numerical Work 

Among p a p m  published concerning numerical met hods applied to sandwich plate anal- 

ysis, one of the first was written by Bacon & Bert [5]. They used the Rayleigh-Ritz technique 

to determine both the axisymmetric and unsymmetric vibrational characteristics of arbi- 

trary open-ended sandwich shells of revolution. The facing and core materials can be either 

orthotropic or isotropic. Chan & Cheung [16] nsed the finite element strip method to solve 

bending and vibration problems of multi-layered sandwich plates. Khatua & Cheung [47] 

formdated beam and plate elements of the displacement type for bending and vibration 

analysis of mdt i  layer sandwich beams and plates. In the formulation of these elements 

the bending stiffness of the face layers and independent shear deformation of the core and 

facesheets were considered. Monforton & Ibrahim [63] stndied the efTect of coupling in the 

static structural response of sandwich plates constructed with an orthotropic core and lami- 

nated faces. They considered simply snpported sandwich plates under lateral loads in which 

the fxes  are antisymmetric cross-ply laminated plates. Using an accurate hybrid-stress fi- 

nite element, Rao & Mayer-Piening [84] performed bending aoalyses of thick angle-ply 

composite sandwich plates and concluded that these plates are very sensitive to various in- 

herent parameters such as the relative thicknesses of face and core, fibre orientation of the 

facesheets and boundary conditions. Argyris & Tenek [3] developed a three-node layered 

triangular dement based on the natural mode method for bending analysis of isotropic, 

anisotropic and hybrid plates. This element is free of shear locking, has zero strains undet 

ngid body motion and converges to the trne state of deformation. 

- Experimental Work 

Most of the papers in the literature reporting experimental results for sandwich plates 

deal with stability experiments. However, RavilIe & Ueng [86j described vibration tests of 

a simply-supported sandwich plate. Sullins et. ai. [IO21 presented an extended study on 



stability of sandwich plates, inclnding sorne experimental resdts. Later, P w c e  & Web- 

ber [74] conducted experiments to determine o v e d  buckling and facesheet wrinlrling loads 

for sandwich plates with carbon fibre composite facesheets and honeycomb cores. These 

experimentd r d t s  are compared with the analytical resdts they presented in [73]. 

1.4 Optimization of Sandwich Structures 

In the past sixty years many studies have been completed investigating sandwich-structure 

optimization problems. Vinson [Ill] discussed these studies np to 1964. Here, the more 

recent research in tbis area is discussed. The sandwich-structure optimization problems 

described below are divided in three groups, according to the type of structure being opti- 

mized: beams, plates or shells. 

- Optimization of Sandwich B e a m ~ ~  

Paydar & Park [72] stndied the minimum weight design of sandwich beams that have 

Mnable facing and core thicknesses. They presented a small deflection theory that deter- 

mines the stresses and deformations for this type of beam. The design Miiables are the 

parameters that define the thicknesses of the facesheets and the core. The constraints are 

the upper limits on the maximum stresses in the facesheet and core and the displacement at 

the end of the beam. In order to solve the optimization problem, the Recursive Qoadratic 

Programming Algorithm was used. 

- Optimization of Sandwich Plates 

Vinson [Ill] presented dosed-fom solutions for the analysis and design of minimum 

weight sandwich plates with hex-cd and square c d  cores. Be considered overstressing, 

overall buckling, core shear instability, face hn l l i ng ,  and monocell buckling as constraints. 

Later, Vinson (1121 developed analyticd solutions to determine optimd stôcking sequences 

of minimal weight design of sandwich panels sub jected to Miious in-plane loads (compressive 

and shear). 

Ueng & Liu [105] investigated the least-weight problem of a sandwich panel with light- 

weight core made fiom a superplastic sheet. The modified Fletcher-Powell method in con- 

junction with the golden section searching technique was osed to solve the sequence of 

unconst rained minimization problems. 

Kodiydam et. al. [50] nsed the genetic search method for tailoring composite materid 



structures, inclnding a satellite solar array snbstrate. In this problem the objective fnnction 

was the weight of the panel with constraints on the fundamental fiequency, ply strength, 

and sandwich local buckling failnre margins of safety. The design variables used were 

the ply thicknesses and ply angle orientation. Using a Linear least-squares approximation 

procedure, they condnded t hat the genetic search met hod t hey implemented required too 

many fnnction evaluations. 

Malott et. al. [57] compared the performance of three genetic algorithm topologies when 

used to determine the optimal l a p p  (orientation and number of plies in the top and bottom 

facesheets) of a eôntilever sandwich plate (an i d d s a t i o n  of an airfoil). They rninimized 

the weight of the structure while maximising the twist in the direction opposite to the one 

caused by the loading. Stifiess, strength and ply clustering were considered as  constraints. 

- Optimisation of Sandwich Sheils 

Min & de Chaxentenay (621 developed a code to determine the minimum weight of 

a sandwich cyhders with orthotropic faicings and core. The design mriables were the 

facesheet ply-fibre angles and the facesheet and core thicknesses. The constraints are quite 

general and relate to local buckiing (dimpling and wridding) and the strength of the com- 

posite material under the combined action of axial compression, bending moment and trans- 

verse shear. The variabIe metric method for constrained optimization was used to find the 

optimal design; multiple st arting points were used. 

Ding [22] optimized the weight of sandwich construction by viewing thicknesses of the 

face and the core as design variables. The constraints were different failure modes: facesheet 

tension failme, core shear failure, general budding, facesheet wrinkling, shear crimping, and 

facesheet dimpling. the stresses in the face and in the core were determined using a six-node 

triangnlar sandwich shell elernent. Later, Ding [23] extended this work by considering c d  

waSl thickness and the diameter of an inscribed circle in a honeycomb cell as additional 

design variables. 

Ostwald [68] solved the problem of minimum weight design for sandwich cylindrical 

shells under axial compression and extemal pressure. The shell facesheets were constructed 

of aluminium dloy and the core was a foamed plastic; the thickness of the layers were the 

design variables. He congidered stability and material strength as constraints. The stabiüty 

problem is solved nsing the Bubnov-Galerkin method. 



1.5 Objective 

Lightweight composite sandwich panels have been designed for space applications snch as 

satellite solar panels. In these structnres, the fibre reinforcecl composite material of the 

facesheets are arrange4 in a net configuration composed of fibre strips interwoven in a per- 

pendidar fashion. This facesheet configuration hab; been used in the CBERS solar array 

support (Figure 1 4 ,  as w d  as in other satellite sandwich panels. A t y p i d  detail illutrat- 

ing the C B W  design is shown in Figure 1.3. In the present study, the optimal design of 

this type of structure is treated. The mass of the sandwich plates with orthotropic facesheets 

and core is minimized, considering the first naturd freqnency and certain failure loads as 

constraints. Weight rednction is obtained by permitting a nonuniform distribution of com- 

posite material in the facesheets. Initidy, the facesheets are assumed to be constructed of 

strips in a regular pattern. During the optimization process, both the widths of the strips 

and the spacing between them are MTied to decrease the amount of material used. Such a 

design is conceptnally straightforward to mil11ufacture and therefore codd lead to improved 

performance wit h lit tle cost penalty. 

Ln order to solve this problem, it is first necessaxy to develop a computer code to de- 

termine the natural fiequemies and the stresses of these plates when they are sab jected 

to a specified load condition. The bending and vibration problems for anisotropic sand- 

wich plates was solved using the Ritz Method; the assumptions formulated by Reissner for 

sandwich plates were adopted, [87]. 

Since the sandwich plate considered in this study has facesheets constituted of nets 

and the cornputer code was developed to analyse laminates with heterogeneous continu- 

ou8 layers, it was necessary to use a procedure to approximate the nonuniform net as a 

smmt hed ort hotropic heterogeneous continuum. The smoot hing process was accomplished 

using the theory of homogenisation and the material coefficients are dcuiated using the 

Finite Element Method. 

The next step is to define the design Mliables of the problem. Two approaches were 

considered: an independent design a p p r o d ,  in which the facesheets are discretized into 

re&ona with uniform design parameters; and a reduced basis formulation, in which the 

design is specified by a linear combination of orthogonal and complete basis functions. 

The last step was to determine from among ail the numerical optimization methods 



Figure 1.2: The Solar Array Support of CBERS. 

A.4 

Figure 1.3: Dimensions of the CBERS Solar Array Support. 



which one fnnctions b a t  for the solution of this problem. A cornputer package was created 

based on a range of numerical methads which have ben used in structural optimization 

problems, These methods were evaluated by solving example sandwich plate problems and 

t hen the most &&nt algont hm was chosen. 

Chapter 2 presents a description of the most common numerical optimization methods used 

to solve structural optimization problems. This chapter reports on a compnter package 

which was developed using some of these rnethods. 

A comprehensive description of the numerical models developed in this study to deter- 

mine stresses and natural fiequencies of composite sandwich plates is presented in Chapter 3. 

Two numericd models were generated: one for a simply-supported and another for a f i e -  

fkee composite sandwich plate. These models were verified by cornparing their results with 

results available in the literature or with results from a commercial Finite Element code 

(MSC/NASTRAN). 

Chapter 4 describes the procedure used to determine the homogenised engineering con- 

stants of an anisotropic layer that models the composite net. These properties were calcu- 

lated using the Finite EhIE.nt Method and the boundary conditions of the finite elemeuit 

mode1 used are specified in this chapter as well. At the end of the chapter the verification 

of the procedure adopted is presented, in which a sandwich plate with facesheets f o d  

from a net was built, and tested; the experimental results were compared with numerical 

results obtained nsing these homogenised engineering constants. 

Two approaches were developed to define the design variables in these optimization 

problems. These approdes  are described in Chapter 5. In addition, the failure modes 

considered and the sensitivity analysis are described. The final part of this chapter outlines 

the process of choosing the optimization algorithm. 

Chapter 6 presents optimal solutions for composite sandwich plates with facesheets of 

carbon fibrelepoxy nets. In these problems, the effect of the approach used to define the 

design variable, the plate aspect ratio and failure modes are presented. 

Finally, in Chapter 7, the conclusion of this work are presented as w d  as some recom- 

mendations for future work. 



Chapter 2 

Numerical Methods for Structural 

Optimization 

Before describing some of the numerical methods used in structural optimization, it is 

necessary to define the terminology utilized in this area. The property of the structure to 

be minimised or maximised (weight, cogt, st-ess, strength, etc.) is cded  the objective 

function. In this study, only the minimization problem is considered, since the maximization 

problem can be obtained simply by multiplying the objective function by minus one. The 

objective function depends on a number of parameters calied design variables, such as 

dimensional parameters and material properties; each design variable is defined within 

a particdar range. AU these rmges deIimit a region of a l l  possible designs, the design 

space. The structure to be optimized is typically subjected to some wnstraints, such as 

maximum weight, minimum stifiess, etc. The constraints set boundaries to the design 

space, thus specifying the feasible spce; a space of aJl possible designs which do not violate 

the constraints. 

A typical procedure in the search for the optimal design begins with the selection of an 

initial design; this is arbitrary but must be within the design space. A search dàwtion, is 

then specified starting fiom this design and the minimum of the objective function in this 

direction is sought; such a minimizing point is called an intermediate design. This process 

is repeated until a minimum of the objective function is found. Such a design represents 

a global minimum or optimal design if the feasible space is convex. Figure 2.1 illustrates 

schematicall y a l l  the aforementioned nornenclat ure. 



Figure 2.1: Nomenclature of Structural Optimization 

In general, a stmctural optimization problem can be formulated as foilows: 

Minimize : F(x)  

Subject to : gj(x) 5 O j = l,m 

hk(x)  = 0 k = l,l 

Z: 5 5 X: i = 1,n 

where 

vector of design variables 

design vari ables 

objective function 

inequality constraints 

eqnality constraints 

side constraints (design space) 

There are many possible approaches to solve this problem and they can be divided in 

two basic groups. The first group uses only function evaluations (that is, the value of the 

objective fnnction and constraints) to search for the optimum and includes methods such 



as: 

O Raxldom search method 

a Grid search technique 

0 Heuristic method 

The second group uses gradient information of both the objective function and constraints 

as well as function eduations to seek the minimum. In this case the optimization procedure 

involves three steps. In the fist, a strategy is defined to deal with the constraints. This is 

done using any of the following, among others: 

Exterior Penalty Function 

a Interior Penalty Function 

Extended Interior Penalty Function 

Augmented Lagrange Multiplier Method 

Sequential Linear Prograrnming 

The Method of Centres 

a Sequential Quadratic Programming 

In the second step, a search direction is determined using one of the algorithms below: 

a Steepest Descent 

Conjugate Direction Method 

a Variable Metric Methods 

- Davidon-Flet cher-Powell Met hod (D FP ) 

- Broydon- Fletcher- Goldfarb-Shanno Method (BFGS) 

a Newton's Method 

0 The Method of Feasible Directions 



a Gradient Projection Method 

and hally in the third step, the minimum is d e t d n e d  in the search direction using one 

of the following: 

a The Bracketing Method 

a The Golden Section Method 

a Po1ynomia.l approximation 

These are not aU the possible methods applied in structural optimization, but are the 

most frequently used. A brief description of these techniques is presented below . 

2.1 Random Search Technique 

As an example of a random search method, consider the procedure presented by Luus and 

Jaakola [55]. This is a direct search using random numbers combined Mth an i n t e r d  

reduction algorithm. It has four steps: 1 - an initial point and region around this point are 

dehed  in the design space; 2 - a certain nnmber of points (usually 100) are chosen randomly 

in this region; 3 - among these points the one which gives the best design is selected; 4 - a 

new region around the chosen point is defined. The size of this new region is s m d e r  than 

the previous one by pre-defined factor (5 %) and the process is repeated a certain nnmber 

of times (usudy 200 iterations). This procedure has been shown to be efféctive in solving 

nonlinear programming problems. 

2.2 Grid Search Technique 

A special grid search program is described here. Instead of looking at all possible combi- 

nations of design vaziables, the program uses a technique to Save function evaluations. In 

order to explain t his technique, consider the two dimensional problem s hown in Figure 2.2. 

The grid search starts by using a coarse mesh. In t his rnesh, the point in the grid which 

gives the minimum value for the objective function and does not violate the constraints is 

sought. Once this point is found, the grid is subdivided locally and a new search region 

is defined. The mesh is refined in this area and the search starts again seeking the point 



Figure 2.2: The Grid Search Technique 

in this finer grid which minimizes the objective function without violating the constraints. 

This process is repeated until the size of the mesh in the region around the last point found 

is smaller than a specified value. 

To verify if the final point gives the global minimum, the process is restarted, but this 

time the size of the initial mesh is decreased by a half. The same procedure is foliowed 

and at the end the final result is compared wit h the one from the previous iteration. If the 

difference between these two points is s m d e r  than a specified value the search is terminated. 

Otherwise, the process is repeated again. 

2.3 Heuristic Search 

Heuristic search methods have been developed to solve complex combinatorial problems. 

Among these methods, four are worth mentioning: genetic algorithms and neural networks 

have the biological sciences as t heir baickgronnd; simulated aanealing is inspired by the sec- 

ond law of thermodynamics; the remaining one, tabn search, derives from g w d  procedures 

of problem solving. 



2.3.1 Genetic Algorithms 

According to Holland's original work [41], genetic algorithms are based on the idea of creat- 

ing new solutions fiom parent ones. During the biological reproduction process the informa- 

tion stored in chromosomal strings changes so that new generations can adapt favourably 

to the environment. This notion is presented in genetic algorithms through three funda- 

ment al processes: selection, crossover and mutation. Selection uses a ranking technique. 

The designs are f i t  evaluated and sorted in a decreasing order of fitness. The proba- 

bility of a part icdu design t o  be selected is P. and is a function of its rad.  Cm8sover 

allows the parents to transmit some of their characteristics to their offspring. It can be 

accomplished by breaking the chromosomes in one point chosen randomly and exchanging 

parts of strings. There is also a probability associated with crossover (usndy between 60% 

and 100%). Mutation is a stochastic operator, nsnally applied with a low probability. Its 

purpose is to protect against a complete loss of genetic material. Indeed, under the action 

of selection, the variety of deles for any given gene in the population diminishes and the 

chromossomes all tend toward the best known chromosomes. Alleles associated with lower 

fitness individuals are nsually not transmitted to the next generation. Once the population 

is mainly uniform, crossover loses its ability to create new designs and the search stalls. 

Thus, by keeping some genetic diversity in the population, mutation preserves the ability 

of the crossover to find new good designs. 

Based upon the works of McCdoch and Pitts [59] and Rosenblatt [91], the idea of a neural 

network is a model of stimulus/response in which the importance of structural links and rules 

for transmitting signds across these Links are emphasized. The cornerstone of the neural 

network is that it can be artifiudly trained to recognize specific patterns a d  extrapolate 

from these patterns when new information is presented. The network is composed of nenrons 

(single compntational elements) which are connected to others by non-linear functions. One 

of the functions most fiequently used to represent the numer id  behaviour of a single linL 

is the sigmoid function: 
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Figure 2.4: Typicd Neuron 

where 

where Yj is the neuron output and the Xe the inputs. 

Figure 2.3 shows a simple neural network configuration. In this example, there is a 

"twc+elementn input layer, a hidden layer of 8 neurons, and an output layer with a single 

output neuron. 

A t y p i d  nenton is presented in Figure 2.4. The w, coefficients are d e d  weights, and 

a coefficient unique to each neuron is termed the bias. The computational characteristics 

of a nenron are defined by the values of t hese coefficients. 

The number of inputs and outputs of a neural network depends on the design problem 

at hand. The inputs are the design variables and the outputs are the objective function and 

constraints. Usually, hidden layers are required. Determinhg the number of the hidden lay- 



ers is an issue that is currently being addressed in the literature. The hidden layer geometry 

is a function of the design space complexïty to be mapped. When the number of hidden 

layers increases, the design space is better represented, but the cost of this is to inaease 

the training time of the network. This training is the determination of neuron coefficient 

values which is accomplished by using sets of information whose fnnctional relationship is 

to be represented by the neural network. 

2.3.3 Simulated Annealing 

Introduced by Cerny [15] and by Kirkpatrick, Gelatt and Vecchi [48], simulated anneding 

has been heralded as a new and powerful methodology for combinatorid problems, with 

implications for the field of artificial intelligence. The name simulated anneafing derives 

fiom the intent to pattern the approach after the physical process of annealing, which is 

a heat-treatment process which usndy involves a relatively slow cooling after holding the 

material for some time at the anneahg temperature. The purpose is to produce a definite 

microstructure with minimum energy or ground state. 

In the annealing process, the temperature of the heat bath is increased above the re- 

crys t alization temperat ure. Then, the temperat ure is decreased until the particles arrange 

themseives in the ground state of the solid. The ground state is only obtained if the max- 

imum temperature is sufficiently high and the cooling is done sufiuently slowly, dowing 

molecules to reach the lowest energy state. The key to the process is that the thermal 

energy allows molecules to t empordy  move to higher energy states, thus avoiding being 

trapped in local minima. The probabiüty of getting higher energy states decreases with the 

bath temperature, and tends to zero at the minimum temperature dowed.  

In simulated annealing, designs are generated at random in the neighbourhood of a 

current design. Better designs are always accepted, and poorer designs are occepted with 

a probability that depends on an artificial temperature which is gradually reduced during 

the optimization process. At the beginning, when the temperature is high, poorer designs 

are readily accepted. Later on, the probability of accepting poorer designs is reduced. This 

mechanism enables the algorithm to escape local minima and eventudy reach the global 

optimum. 

The dgorithm Metïopolis [61] can be used to describe this process: let S be the set of 

ad possible states of the system, while s is a current state of the system and let ge : S R 



describe an energy fnnction, which is to be minimized. A s m d  perturbation is appEed to s, 

producing a new state 3 , having energy g&). If qh@) < ge(s), then the state a is a better 

estimate of the ground state, and J becomes the current state. If, however, g , ( ~ )  2 g,(s), 

then 3 can be accepted as the current   ta te with probability 

where Te is the temperatare, e is the base of the natural logarithm and tcb is the Boltzmann 

constant. This acceptance value is c d e d  the Metropolis criterion. Typically a number 

p, E [O, 1) is chosen randomly, using a nniform distribution, to whieh 

is compared. If < P(s,  3, Te) then 3 becomes the current state, otherwise the current 

state remains S. 

2.3.4 Tabu Search 

Introduced by Glover [31,32], this method constitutes a meta-procedure that can be com- 

bined with other heuristic procedures to prevent them fiom being trapped at locally optimal 

solutions. Instead of terminating upon reaching a point of local optimality, tabu search en- 

sures that the search operation continues. This is accomplished by forbidding moves with 

certain attributes (making them tabu), and choosing moves from the remaining that an 

embedded heuristic has assigned the highest priority. 

In the Tabu search with random moves, two concepts are involved, the neighbonr of 

a given point and a random move in the neighbour. For a given point x and a given 

step h', its neighbour N ( x ,  h') is defined as N ( r ,  V )  = y : lz - y1 < h'. When a point 

y is generated randomly in a given neighbour N ( z ,  h'), it is called a random move in the 

neighbour N ( z ,  h3. If a random move in a aeighbour satisfies all constraints, i t  is called a 

feasible random move. 

In the tabu search method with random moves, a set of steps hi, Et = {hi ,  4, ..., g) 
is given. For an initial feasible solution x, the search moves are made over a set of active 

neighbours N ( z ,  h:), where h: E Et - T' and 2'' is the tabu list, which is in i t idy empty. 

For each active neighbour one feasible random move is generated. Suppose, for a feasible 



random move y in the neighbour N ( z ,  h:), the cost is less than that of ctlftent solution z, 

then y is saved as the curent solution z, and the corresponding h:, is added to T'. When 

Ht - T' is empty, T' empty is üpdated; otherwise the procedure is repeated. 

2.4 Strategy for Considering the Constraints 

In this step a strategy is defined for d d n g  with the constraints. 

2.4.1 Penalty Methods 

The objective of al1 penalty methods is to convert the original constrained minimization 

problem into a .  ruiconstrained one by creating a pseudo-ob jective fuaction of the form (108): 

@(x, r*) = F(x)  + rpP(x) 

where 

F(x)  : original objective function 

P(x )  : imposed penalty function 

r, : scalar that decides the magnitude of the penalty 

p : index used during unconstrained minimization 

The pseud~objective function is often a source of numerical ill-conditioning; therefore 

penalty methods are chosen maidy for convenience instead of efficiency. One way to deal 

with ill-conditioned problems is to s t z t  the optimization process with a moderate penalty 

(rpP(x)), and solve the unconstrained minimization problems several times. In each solution 

the value of the scalar r is changed (increased for the Exterior Penalty Method a d  decreased 

for the Interior Penalty Method). 

Exterior Penalty Met hod 

For the exterior penalty function method the penalty function, P(x), is defined as 

(Figure 2.5): 



-Feasible region - X 

Figure 2.5: The Exterior Penalty Method 

It shodd be noted that the first derivative of the penalty function is continuous at 

the constraint boundary, which makes this method suitable for use with any other method 

based on gradient information for unconstrained minimization. However, since the second 

derivative is not continuous at the constraint boundary, this method is not recommended 

to be used with second-order methods for unconstrained minimization. In this method rp is 

initially given a small value and after each unconstrained minimization its value is increased. 

One disadvantage of this method is that the optimum is approded  from an infeasible 

region; therefore ail intermediate designs are not usable. 

Interior Penalty Method 

For the interior penalty met hod the penalty function, P(x) ,  is defined as: 

Here, r', is initially a large positive nurnber and after each unconstrained minimization 

ite value is decreased (Figure 2.6). The factor r, is the same as in the exterior penalty 

function method. 

The advantage of the interior over the exterior penalty function method is that the o p  

timum is approôched from the feasible region; dl intermediate designs are therefore usable. 



- Feosible region - X 

Figure 2.6: The hterior Penalty Method 

However, this brings two restrictions: first, the initial design must be feasible and sometimes 

it is difficult to obtain a feasible design; second, all points must be in the feasible domain. 

The last requirement is difficult to satisfy, since approximate analysis methods often cause 

constraint violation [39]. 

Extended Penalty Method 

The extended interior penalty function was developed as a solution for problems rdated 

to infeasible designs in the interior penalty fmction method. It attempts to incorporate 

the best features of the interior and exterior met hods. Further, i t  provides a mechanism 

to recover fiom violations cansed by approximate analyses and permits a infeasible initial 

design. 

Kavlie and Moe [45] presented the first application of t his met hod in engineering design. 

They proposed a linear extended interior penalty function in which the penalty function is 

expressecl as: 



where 

X 

Figure 2.7: The Extended Penalty Method 

Here, E is a transition point between the two constraint functions. 

The linear extended interior penalty fnnction has discontinuous second derivatives at 

the transition point. Because of this a second-order method cannot be used to define the 

search direction. Zn order to overcome this problem, Haftka and Stanies [39] ueated a 

qnadratic extended penalty function of the type (Figure 2.7): 

where 



and 

with C a positive constant. 

The limits on a' guarantee that the penalty fnnction increases when constraints are 

violated, as r', goes to zero. Tt also guarantees that the minimum of the psendo-ob jective 

function is in the quadratic range of the pendty function, where P(x)  6as smoother be- 

haviour than l/gj[x). 

Haftka and Starnes [39] chose rJp so that the penalty function had the same d u e  as the 

objective fnnction at the beginning of the process. 

Augmented Lagrange Multiplier Met hod 

Powell [81] suggested that penalty fnnction methods should indude Lagrange mdti- 

pliers as a prxtical optimization tool. In the augmented Lagrange multiplier method 

(ALM) conditions for optimality are incorporated which use Lagrange multipliers. With 

this method, efficiency and reliability are improved, and dependence on the choice and 

updating of penalty parameters is decreased. 

First consider a problem with equality constraints: 

Minimize: F(x)  

Subject to: hk(x) = O, k = l,.. . , l  

There are three conditions for constrained optimality of a general optimization problem, 

and they are referred to as the Kuhn-Tudrer necessary conditions [5 11. If x* is an optimal 

design, these conditions are satisfied when: 

x* is feasi ble 



where Xj 2 O and Xk+, is westricted in sign. 

So, defining the Lagrangian as 

then the stationary conditions of L(x, A) with the equality constraints give the necessary 

conditions for optimality. 

If an exterior penalty function is added to the Lagrangian, this creates a pseudo objective 

function c d e d  the augmented Lagmngiczn: 

This pseudo objective function h a  some interesting features. First, if ail the Lagrange 

multipliers are set to zero, the usud exterior pendty function is recovered. On the other 

hand, if the optimal values of the multipliers, A*, are specified the correct minimum for the 

constrained problem, for any positive value of r,, is obtained. Therefore, with this method 

precise constraint satisfaction can be achieved, whereas with the exterior penalty function 

approach it cannot. 

The optimal values A* are not known in advance. So at the beginning X is given an 

arbitrary value (usually zero or unity). Then i t is updated after each iteration using 

where rp is increased using the same approach as in the exterior penalty function method. 

Now, consider a problem with inequality constraints: 

Minimize: F ( x )  

Sub ject to: gj(x) O, j = 1,. . . , m 

The f is t  step in solving this problem using the ALM is to convert the constraint to 

equivalent equality constraints, by adding slack variables. Doing so, the constraint equations 

become: 



Figure 2.8: The Linear Programming Method 

and the augmented Lagrangian is: 

Rockafellar [go] proved that this expression is mathematically equivalent to: 

where 

e, = M A X  [ gj(x), -- 2:- 
This process yields a pseudo objective function just as in the case of equality constraint 

problems. 

2.4.2 Sequential Linear Programming Method (SLP) 

The idea of this method, also cded  Kelly's cutting plane method [46], is to linearize the 

optimization problem and solve it by using the lineas progrkmming (LP) (Figure 2.8). 

Having this solution, the problern is linearized at  this new point and the process is repeated, 

u t  il the solution converges to specified tolerance. 



The problem statement is: 

This can be linearized nsing a first-order Taylor series expansion as: 

Minimize: F(x)  == F(&) + vF(x0) .6x 

Subject to: gj(x) gj(x0) + vgj(x0).6x 5 0 ,  j = 1, .. ., m 

hr(x) hk(x0) + vhk(xo).6x = O ,  k = 1,. . ., 1 

X:  5 xi + 6zi < Z: 

where, 6x = x - x, 

The Simplex method [19] is used to solve the linear approximation. The advantage of 

this method is the existence of several reliable LP packages. However, it has three main 

disdvantages. First , it increases the computational cost of the optimization operations, 

since they are repeated several times. This rnakes using this method reasonable only when 

the cost of analysis is small compared to the cost of optimization. Second, limits must be 

set for design change in each iteration; without this the process usudy does not converge. 

Choosing these limits is the most difficult part of the method. Haftka et al. [38] snggested 

that at  the beginning the move limits should be ten percent of a typical d u e  of design 

variable and be shrunk by ten to fifty percent of their previous values after each Linear 

progr;rmming problem. Third, the solution of the linearized problem can give an infeasible 

design. 

The SimpIex Method 

This is a standard solution technique to solve linear programming (LP), posed os 

Minimize: F(x)  = C c j z j  



The h t  step is to put the problem in canonical form by defining artificial variables as 

amrxi + O * -  + amnzn + O + - *  + Zn+m = bm 

zi  for i = n + 1, , m + n are the artificial variables. 

The next step is to h d  a busic jmible solution nsing pivot operations; this is a fmible 

solution (all constraints are satisfied) in which at least n - m of the variables are zero. The 

variables that are not equal to zero in this solution are called h i c  variables. Through 

additional pivot operations a new set of basic variables cas be found, generating another 

basic feasible solution. 

Gass [30] proved that some optimal solution of a Linear programming problem is also a 

basic feasible solution of the problem. In other words, the minimum of the problem can be 

found by going from one basic feasible solution to another. 

In 1948, Dantzig [19] published an iterative method, called the simplez rnethd, that is a 

stepwise procedure that goes from one basic feasible solution to another in such a way that 

the objective function aiways decreases. This is done by appending the objective function 

equation to the canonical form, creating the the simplez tableau, and then eliminating aU the 

basic variables fiom this last equation. The criterion for improving the solution is to bring 

into the basis a variable that has a negative coefficient in the objective function equation 

after it has been cleared of ail the basic variables. 

2.4.3 The Method of Centres 

This method, also known as the method of inscribed hyperspheres, is a SLP technique 

that prodnces a sequence of impmving designs follouing a path dom the centre of the 

design spce [?]. The main idea of this method is to linearize the objective function and 



Figure 2.9: The Method of Centers 

its constraints, then to try to h d  the Iargest hypersphere that fits inside the space definecl 

by the linearized functions (hyperplane). After this, the design variables are moved to 

the centre of this hypersphere. The process is repeated until the solution has converged 

to a specified tolerance. If the initial design is infeasible, the linearized objective is not 

considered in the first iteration so that the next hypersphere will be inside the feasible 

region. 

Consider the point A,, (Figure 2.9), as the centre of the largest hypersphere completely 

inscribed inside the feasible region. The distance from that point to any hyperplaae is given 

by : 

Now let r be a radius of this hypersphere. The fouowing Linear problem is created: 

Maximise: r 

Subject to: vF (x0 ) . s  + IvF(-)lr < O 

vgj (xo)-s  + Ivgj(xo)I+ < 0 



This problem can be solved by the Simplex method. 

2.4.4 Sequential Quadratic Programming Method 

This method is also known as the Projected Lagrangian Method. In this method the search 

direction is determined by solving a quadratic programming problem which is a quadratic 

approximation to the Lapangia. of the objective function and a Linear approximation to 

the inequali ty constraints: 

Minimize: Q(s)  = F ( x )  + v F ( x ) . s  + ) S ~ . B ~ . ~  

where Bh is a positive definite approximation to the Hessian of the Lagrangian function. 

Initially Bh is taken as the identity matrix and it is updated at every iteration; Powell (801 

recommends the BFSG variable metric formula (Section 2.5.4) as an update procedure. 

Having defined the search direction s, the optimum design in this direction is found by 

nsing the exterior penalty method with another approximate Lagrangian function: 

where 

)b = %-1 +as 

uj = l%l  j = 1, . . . , m first iteration 

Uj = MAX [ ( + 1 ,  f (u; + I X ~ ~ ) ]  j = 1, . . . , m subsequent iteration 

and u$ = uj from the previous iteration. Here, A j  are the Lagrange mdtipliers dcuia ted 

in the quadratic p r o g r h n g  problem. 

2.5 Definition of the Search Direction 

Once the strategy for applying the constraint s has been chosen the next step is to determine 

the search direction. In this step a search direction, s, is ca ldated along which the minimum 



Figure 2.10: The Steepest Descent Method 

of the objective function is sought . When this direction is defined, the optimization problem 

of N variables becomes a one Mnable problem, a one-dimensional line searrh: 

where a is a variable of the new problem. 

2.5.1 The Steepest Descent Method 

This approach was first proposed by Cauchy [14] for solving a system of linear equations. 

This method uses the negative gradient of the function as the search direction, s = -vF. 

This method was very popula,r in the mid 1950s. However, since then, it has lost favour as 

i t  can be very slow for functions with large differences in slopes, (Figure 2.10). 

2.5.2 The Conjugate Direction Method 

The convergence rate of the optimization process can be improved considerably with a 

simple modification to the steepest descent method (Figure 2.11). The conjugate direction 

method picks directions that are Q-conjugate to the previous ones, where Q is the Hessian 

of the fuction [27]. Its algorithm begins by first minimizing F dong the steepest descent 

direction, S. = -OF. Then, the next directions are chosen to be Q-conjugates. 



O 

Figure 2.11: S teepest Descent and Conjugate Direction Cornparison. 

where 

Powell's theorem on conjugate direction for quadratic fimctions says that this method 

WU converge in N or fewer iterations, where N is the order of the fnnction. For non quadratic 

functions the Hessian is not a constant matrix and the conjugacy of the direction loses its 

meaning. So the method is not guaranteed to converge in N iterations and it is necessary 

to restart the process after every N steps. The method has two main advantages: it is easy 

to impiement and r e q d  little cornputer storage. 

2.5.3 Newton's Method 

This method makes explkit use of the second derivatives; therefore it is refered to as a 

second-order method. It is based on a second-order Taylor's series expansion of the objective 

fnnction. That is, consider the expansion of F up to the quaciratic terms about some 



reference state +: 

where 

6x = ++i - X, 

A stationary value of this expansion, is obtained fiom the requirement: 

The advantage of Newton's method is the fact that it has a qnadratic rate of convergence. 

However, it presents two serious disadvantages: the need to evaluate the Hessian matrix, 

Q, and to invert it. Both calculations are very numericdy intensive. 

2.5.4 Variable Metric Methods 

In these methods the search direction is defined by: s, = -HvF(x,). H is a metric 

matrix that approximates the inverse of the Hessian rnatrix during the optimization process. 

Therefore these methods have characteristics of convergence sirnilar to Newton's method. 

During this process H must maintain its symrnetric asd positive definiteness properties and 

satisfy the following equation [38]: 

where 



Assuming at  the beginning H = 1, at  the end of each iteration the new H can be 

d d a t e d  from [108]: 

where 

and 

The two most used variable metric met hods are Davidon-Fletcher-Powell (DFP ) (20,261, 

B = 0, and Broydon-Fletcher-Goldfarb-Shanno (BFGS) [lO,28,33,96], 0 = 1. Studies have 

shown that the DFP method works quite well, but its performance deteriorates when the 

accuracy of the line search decreases (671. In a few cases i t breaks down because H becomes 

singular [38]. Numerical experiments have showed that BFGS is the best among al1 known 

variable metric dgorithms [21] . 

2.5.5 The Method of Feasible Directions 

A feasible direction is a search direction snch that at least a s m d  step can be taken along it 

without Ieaving the feasible domain. In this method, a feasible direction, s, that decreases 

the objective fnnction is sought. That is s t v F  < 0. 

To select this direction two criteria must be satisfied: first, the objective function should 

be reduced as quickly as possible; second, the constraint boundary should be avoided as 

much as possible. The problem can be spedied as (Figure 2.12): 

Maximise: P 

Sub ject to: v F ( x ) . s  + /3 O 

vgj(x)*s+ ejp 5 O j E J 

Isl I 1 



X2 

Figure 2.12: The Method of Feasible Directions 

where 

O j -  p w h - 0 8  factor 

9 = O, s is tangent to the constraint boundary 

O + oo, s is tangent to the iine of constant objective function 

O = 1, s roughly bisects the angle between the line of constant 

objective function and the constraint boundary 

J -  set of active constraints 

Vanderplaats and Moses (1061 found that the best value for 8 is given by: 

and nsually 8, = 1. 

One difficulty of this method is defining when a constraint is active. Vanderplaats [108] 

suggests that a constraint should be considered activated if g j ( E)  2 E , where E = -0.1 a t  

the beginning and is reduced to -0.001 near the end of the search process. 
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F -10.6 
E -12.7 
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C -17.0 
B -10.1 
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7 -276 
6 -20.7 
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4 -339 

3 -36.0 
2 -a82 

1 4 . 3  

Figure 2.13: The Gradient Projection Method 

2.5.6 The Gradient Projection Method 

This method defines the search direction, s, as the projection of - v F ( x q )  into the subspace 

tangent to the active constraints [92]. Let N denote the matriw composed of the gradients 

of active constraints at  +, 

N = [vsI(x~), --.Y ~gj(xq)I (2.40) 

where j is the number of active constraints. Then, s can be calculated as: 

s = -PvF 

where P is the orthogonal pmjection operutor, given by, 

If during the search for the minimum dong s, the design variable vector, x, moves 

away fiom the constraint boundary, the process continues as the Steepest Descent Method, 

s = -vF, Figure 2.13. 



Figure 2.14: The Bracketing Method 

2.6 One Directional Search 

Once the seatch direction has been determinecl the minimam in that direction is found. In 

t his step a one-dimensiond line search is executed. It seeks the magnitude of a single scalar, 

a*, which is the distance to be travelled in the given direction, s, from the initial design, 

G, to the optimal design, h,, in that direction. 

2.6.1 The Bracketing Method 

In this method, two points (xi, FI) and (z,, Fu) that bracket the minimum of the objective 

function, F (Figure 2.14) are sought. Consider F to be an unimodal function of the variable 

2. Then choose (zi, Fi) and (zl, Fi), so that is the lower limit of the range in which the 

fnnction is definecl. If FI 2 Fi and the function has a negative dope at zl, then q is an 

npper bound and the solution is complete. If not, choose another point 22 greater than XI. 

If F2 > Fi the solution is complete. Otherwise, zl is a new Iower bound and the process is 

repeated. This process is continned until: Fi+1 is large than F;, which implies the solution is 

complete; or zi+l is greater than upper limit of the range which means there is an unbomd 

solution [108]. 



2.6.2 The Golden Section Method 

This method is a popular line search technique for three main reasons. First, the objective 

fnnction, F, does not need to have continuons derivatives. Second, if F is assumed to be 

unimodal, the rate of convergence is known. Third, it is easily programmed. However, this 

method requires many function evduations. 

In order to describe this algori th ,  fust consider F to be an unimodal fnnction of the 

variable z, and choose (xi, 4) and (zi, Fu) to bracket the minimum of F (Figure 2.15). Now, 

two other points (zl, Fi) and (z2, Fa) between zi and z, are chosen, such that 21 < 22 .  If 

it is assumed that Fr is greater than F2, then 2.1 becomes the new lower bound and with x, 

forms a new set of bounds. Again, choose another point (z3, F3) which is compared to F2 

and the process is repeat as before. This process is continued until the bounds are narrowed 

to a desired value. 

The equations for choosing the interior points are: 

where 

2.6.3 Polynornial Approximation 

This method consists of approximating the objective function with a polynomid whose 

minimum is easily determined. First, several values of the objective function are calcnlated. 

Then, a polynomial is fit to these values (Figure 2.16) and the minimum of the polynomial 

is determined. To check if this point is dose to the trne minimum, the d u e s  of the fnnction 

and the polynomial at this point are compared. If the difference between this two d u e s  is 

not smal the process is repeated by choosing other points around the point determined by 

the previous interpolation. This met hod requires few function evduations, but the accuracy 

of the resdts cannot be guaranteed. 



Figure 2.15: The Golden Section Method 

xl xo 

Figure 2.16: Polynomid Approximation 



2.7 OPREDE 

It is common knowledge that there is no single numerid method capable of solving aii 

structural optimization problems. Because of this, OPREDE (O ptimization PRogram for 

Engineering DEsign) wks devdoped as part of this work. This is a generd-purpose opti- 

mization program for engineering design. This program offers a Mde variety of optimization 

algorit hms for nonlinear constrained (or unconst rained) function minimization. It is based 

on ADS-1 (Automated Design Synthesis), a code deveioped by Vanderplaats [log]. It in- 

corporates several optimization methods, so that one could decide which method works 

best for a particdar daçs of problem, based on past experience or trial and error. This 

program indudes the most frequently used numerical methods in structural optimization. 

The methods available in this p a h g e  are: 

Strategy for considering the constraints 

- Exterior Penalty h c t i o n  

- Intcrior Penalty Eùnction 

- Extended Interior Penalty F'unction 

- Augmented Lagrange Multiplier Method 

- Sequential Linear Programming 

- The Method of Centres 

Definition of the search direction 

- The Steepest Descent 

- The Conjugate Direction Method 

- Variable Metric Methods (DFP & BFGS) 

- The Method of Feasible Directions 

- The Gradient Projection Method 

0 One directional search 

- The Bracketing Method 



Figure 2.17: Optimization Code Flow Chart 

- The Golden Section Method 

- Polynomial approximation 

Figure 2.17 is a schematic diagram of the coupling between both this optimization 

package and the analysis programs described in the next chapter. 



Chapter 3 

Equations of a Composite 

Sandwich Plate 

The objective of this work is to study the optimization of heterogeneous facesheets in 

sandwich plates; the resuit of the analysis is the optimal distribution of the non-uniform 

material density in the facesheets. In order to do so, it is necessary to solve bending and 

vibration problems for these plates. Due to the fact that during the optimization process 

the structure is allowed to have spatially varying stifiess properties, it is not possible to 

obtain a dosed fonn solution. Thus, numerical methods must be used. 

Among the numerical methods available, two are most fiequently applied in optimization 

solutions of composite stnictures: the Finite Element Method - FEM [13,17,22,23,50,68, 

85,97,98] and the Ritz Method [l, 64,103,104] . The Ritz Method was used in this work 

because it  generates a solution that demands less computer time. This is important because 

in the optimization process the equilibrium and dynamic equations have to be solved maay 

times. However, it is known that the FEM gives more flexibility to solve structures with 

di£Férent shapes and boundary conditions. 

This chapter outLines the derivation of the equations to solve the bending and vibration 

problems for anisotropic sandwich plates, using the Ritz Method [95]. Iteissner sandwich 

plate theory was adopted [87]. The following assumptions were used: the facesheets are 

identical anisotropic membranes that can have variable dastic properties and thickness; the 

core is a homogeneous orthotropic slab much thicker than the facesheets, and therefore it  

can be assumed that the in-plane stresses in the facesheets are uniform over the thickness 



of the facesheet; the core resists ody transverse shear stresses; the in-plane displacement 

varies linearly throagh the thickness; the normal displacement is constant with respect to 

the thickness coordinate; planes originally normd to the mid-plane remains straight on 

deformation (no warping), but not necessarily normd to the mid-plane after deformation 

(Reissner-Mindlin Plate Theory [88]); middle-surface stretehing is neglected as the plate is 

assnmed symmetnc about the plate middlesnrface; the materials are a s s d  to be linear 

elastic; and displacements are srnall compared to the dimensions of the plate. 

3.1 Bending Equations 

Considering a three-dimensional solid, the strain energy of deformation is expressecl as 

follows: 

where a is the stress vector; e is the strain vector and V is the volume of the plate. The 

potential energy of the external load is given by 

where B is the body force distribution throughout the volume; u is the displacement vector; 

and T are the surface tractions over part of the boundary, SI, of the plate. Over the 

remaining part of the boundary, S2, the displacement field is prescribed. 

3.1.1 The Strain Energy 

Based on the above assumptions for a sandwich plate with identicd anisotropic facesheets, 

the displacement fields (functions of z, y and z )  are assumed in the form (Reissner-Mindlin 

Plate Theory (881): 



Figute 3.1: Displacements, Rotations and Dimensions of a Sandwich Plate. 

In the above, w is the middle-surfaxe displacement in the z direction, while (' and ( are 

rotation-like variables in the z and y  directions, respectively. Figure 3.1 gives a graphical 

description of the plate and the variables nsed. 

The strain field is derived directly fkom the displacements and is given by: 

Et = - = -  ac' - z- 
OZ ax 

Cu = m - - - z- 
a y  a y  

au+& 
'Yq = - x, 86 - = * ( -  ) ay az a y  8% 

€* = 
m - O az 

au+% - yzz = - - - aw 
a~ a~ < +  ZG 
&+aw  yvz = - - - aw 
âx a y  

- € + - 9  

8~ 
The strain energy is obtained by substituting EQuations 3.4 into Equation 3.1 and using 



the stress-strain relations [44] : 

- 
O 0 8 4 5  Q55 0 
- 
016 g26 O 0 a6 

where the subscript k denotes the kth ply and g, are the transfotmed reduced s t i h s e s .  

After integrating through the t hickness, the strain energy becomes 

where A is the area of the plate. The middle-surface curvature vector K and the transverse 

sheu strain vector 7 are as follows: 

The plate stiffness components are defined by 

where zk-1 and r k  are the lower and upper coordinates of the kth layer relative to the plate 

middie-surface and N is the number of layers. 

The calcnlation of the through-thickness shear stifiess of the sandwich beam based on 

Reissner-Mindlin theory must be done with m e .  The through-thickness shear sti&iess of 

the facesheets is much greater than that of the core and the facesheets are much thinner 

than the core; thus the shear deformation is dominated by the shear of the core. However, 

within Reissner-Mincllin t heory the through-thickness shear strain is constant and thus 

if the contribution of the stiffness from the fxesheets is included in the calculation the 



facesheet s t ihess will dominate and the plate through-thickness shear stiffness will be too 

large. Thus the thon&-thickness shear stifiess is based only on the core stifhess. This 

effectivdy allows different shear strains in the facesheets and the core with the assnmption 

that the facesheet shear stifiess is so large that the only contribution to the total shear 

strain cornes from the core. 

3.1.2 The Work 

The only load considered here is a quasi-static load normal to the plate that represents the 

load generated on the structure when it is subjected to an acceleration in that direction 

(d'Alembert's principle [53, page 2351). It is assnmed that the plate is being modelled 

during the launch of a satellite. Therefore, the work terrn W c m  be written as  

where pk is the density of kth layer and a,, is the acceleration 

the structure is exposed during launch. 

(3.7) 

in the z-direction, to which 

3.1.3 Solution Procedure 

The displacement w and rotations and are approximated by: 

where NT is the number of terms in each silmmation and hn, Ln and e,, are the unknown 

b a i s  fmctions which are specified according to the problem being considered. Making use 

of these expressions, the strain energy becomes 



where (d indicates differentiation with respect to either x or y as is appropriate. Also, h, is 

the core thickness and K is the stifhess matrix written as 

and 



for i = (m - 1) t NT + n and j = (k - 1) +NT + 1. 

Now, using the trid solutions (Equation 3.8) in Equation 3.7, the work becomes 

where F is the force vector and c m  be written as 



and 

The total potential energy for the problem is 

Seeking a stationary value of II with respect to h,, &, and em, yields the following set 

of equilibrium equations 

which gives the solution for the nnknown coefficient vectors c, d and e of the bending 

problem. 

3.2 Vibration Equations 

The equations of motion are obtained using Lagrange's equations: 

where the Lagrangia. L is given by L a T - U, T is the kinetic energy, U is the strain 

energy and q; axe the generalised coordinates. The over dot on qi implies differentiation 

with regard to time. 

3.2.1 The Kinetic Energy 

The kinetic energy expression is 



For a composite sandwich plate, the kinetic energy is obtained by differentiating Equa- 

tions 3.3 with respect to time and then snbstitnting into Eqaation 3.15 and integrating with 

respect to z: 

3.2.2 Solution Procedure 

Since the fiee vibration problem is periodic, the coefficients of the trial functions can be 

written in the fonn 

where k,, &, and e,, are constants to be determined and 52 is the frequency of vibration. 

When Equations 3.8 are differentiated with respect to time and substituted into Equa- 

tion 3.16, the kinetic energy becomes 

where M is the mass matrix written as 



The substitution of the strain (Equation 3.9) and kinetic energy (Equation 3.18) expres- 

sions intc the Lzgrage's Pqcation 3.14 and theo using Equation 3.17 yields the following 

system of equations: 

fiom which the natural fiequencies fl and mode shapes 9 are determined. 

3.3 Numerical Results 

A FORTRAN code was written for two types of plate: a rectangular sandwich plate simply- 

supported on a l l  four boundaries and a rectangular sandwich plate with all boundaries free. 

To verify the code, a series of problems were solved and the results compared with values 

available in lit erature. 

3.3.1 Simply-Supported Sandwich Plate 

For a simply-supported sandwich plate, the bs i s  fuctions used to represent the displace- 

ment and rotations are 



Table 3.1 

Description 

a b (in)] 

[m (in)] 

hf [mm (in)] 

hc [mm (in)] 

: Dimensions of the Isotropie Sandwich Plate. 

Dimension 

1.83 (72.) 

1.22 (48.) 

6.350 (0.25) 

0.406 (0.016) 

These functions are orthogonal, linearly independent, and satisfy the forced boundary con- 

ditions of a simply-supported rectangular plate: 

w = O  

w = O  

These functions also satisQ the natura 

at x = O a n d a  

at y = O and b 

1 boundary condition if the plate is orthotropic. 

A sandwich plate with isotropic facesheets will be considered initially. Tables 3.1 and 

3.2 present the dimensions and the material properties of this plate, respectively. The m a s  

and stiffness matrices are calculated numericdy using Gauss-Legendre quadrature; this 

requires the determination of the appropriate number of integration points. Also, in order 

that these matrices be evaluated accurately the number of terms retained in the series must 

be selected. Both of the  above were based on a meticulous evaluation of the first four natural 

frequencies of this plate. It is noted that for an isotropic plate only one term is necessary to 

determine the first naturd frequency, since the modes are orthogonal. Table 3.3 iliustrates 

the solution convergence. 

Fkom an analysis of Table 3.3, it is possible to conclude that with 3x3 terms in the 

series expansion and 9x9 integration points, the solution converges for the first four natural 

fiequenues. 

Considering the results in Table 3.3, it may be noted that for a hced number of t e r m s  

in the series the calculated natural frequency for a small number of integration points is 

less than the final converged solution which corresponds to a greater number of integration 

points. Furthermore, as the number of integration points is increased, the predicted results 

exhibit a sharp increase and then decrease asymptoticdy to the final converged resdt. It 

is known that the results converge to the exact solution from above, when using the Ritz 



Y2 

Giz [MPa (103 psi)] 

Gzz [MPa (103 psi)] 

p [kg/m3 ( 1 0 ~ ~  lb sec2/in)] 

Table 3.2: Material Properties of th 

Number of 

Terms 

2x2 

2x2 

2x2 

2x2 

2x2 

2x2 

3x3 

3x3 

3x3 

3x3 

3x3 

3x3 

3x3 

4x4 

4x4 

4x4 

4x4 

4x4 

4x4 

4x4 

Number of 

Points 

lat Nat. 

Frequency 

e Isotropic F; 

2d Nat. 

F'requency 

Aluminium 

Honeycomb 

esheet Sandwich 

3rd Nat. 

Frequency 

4th Nat. 

Frequency 

Table 3.3: Convergence for Simply-Supported Isotropic Facesheet Sandwich Plate. 
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Vibration 

Mode 

1 Raville & Ueng [86] 1 
1 Theoretical 1 

( R,esults (Hz) 1 Resdts (Hz) 1 

Present 

Study (Hz) 

Table 3.4: Sandwich Plate with Isotropic Faces hee t s 

Table 3.5: Plate Dimensions: Isotropic Facesheets. 

Dimension 

1.27 (50.) 

0.64 (25.) 

3.18 (0.125) 

2.54(1.) 

B 

technique for the calcdation of natural frequencies . The behaviour of these results is due 

to the fact that the number of integration points are initially ins5cient  to integrate the 

terms in the stiffness matrix accurately ; this error is the source of the anomdous behaviour. 

The convergeci solutions were then compared to experimental results presented by Rav- 

ille and Ueng [86]. In their paper, the authors showed theoret id and experimental results 

for the naturd fkequencies of vibration of a simply supported sandwich plate with thin 

isotropic facings of equal or unequal thicknesses separated by an orthotropic core. For the 

theoretical results, they used the Ritz method by interpolating T,,, TV, and W .  Table 3.4 

shows dose agreement between the results of the present study and those of Raville and 

Ueng. 

The next step to verification of the code was the analysis of a sandwich plate with 

facesheets of laminated materid. The dimensions and material properties of this plate are 

given in Table 3.5 and 3.6, respectively. The facesheets are a two layer laminate [-15O, 

15O]. Table 3.7 presents how the solution converges when the number of series terms and 

integration points increase for this sandwich plate. For this problem, the solution converges 

for 3x3 terms in the series expansion and 10x10 integration points, respectively. 

- - 

Description 

a b (in)] 

b b (in)] 

ht [mm (in)] 

h,[mm(in)] 



Property Graphite Epoxy 

Fibre 

Glass Fabric 

Honey comb 

Eil [GPa (106 psi)] 

[GPa (106 psi)] 

GI2 [GPa (106 psi)] 

v12 

Gzl [MPa (lo3 psi)] 

GÎz [MPa (103 psi)] 

p [kg/m3 (IO-' lb sec2/in)] 

Table 3.6: Material Properties 4 ~f the Composite Sandwich Plate, 

Next, the fùst four natural frequencies for cross-piy and angle-ply sandwich plates were 

calculated and compared with results presented by Ibrahim et al. [42] as  shown in Tables 3.8 

to 3.13. In this paper, they used the Modified Stifbess Method for the dynamic andysis of 

unbdanced anisotropic sandwich plates. 

The analyses of these tables show that both formulations yield similar results. The 

values obtained in the present study are always less than the ones shown by Ibrahim et ai.. 

To veri@ the code for bending problems, the displacements and moments a t  the centre 

of an isotropic and a composite sandwich plate are determined and compared with results 

presented by Khatua & Cheung [47]. In this paper, elements were developed based on 

the finite element displacement method to analyse multi-layer sandwich beam and plate 

structures. The dimensions and material properties of the analysed plates are given in 

Tables 3.14 and 3.15, respectively. These plates are subjected to an uniform distnbuted 

load of 2435. N/rn2 (1. lb/in2). Tables 3.16 and 3.17 show displacement and moment results 

respectively, given by the code using 3x3 terms in the series expansion and 10x10 integration 

points. The results are in dose agreement with those presented by Khatua & Cheung. 

3.3.2 Free-Free Sandwich Plate 

For a free-free sandwich plate the trial functions used to represent the displacement and 
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Number of 

Points 

lbt Nat. 

F'requency 

2nd Nat, 

Freqnency 

208.24 

151.82 

169.36 

167.06 

167.25 

167.24 

167.24 

167.24 

151.30 

169.36 

167.06 

167.25 

167.24 

167.24 

167.24 

167.24 

61.69 

157.86 

163.33 

167.23 

167-24 

167.24 

167.24 

167.24 

3'd Nat. 

F'requency 

4" Nat. 

Frequency 

Table 3.7: Convergence for Cross-Ply Sandwich Plate 



Vibration 

Mode 

' Difference 

(%) 

Ibrahim et al. [42] 

Theoretical Resdts (Hz) 

Table 3.8: Sandwich Plate [oO, 90°, 0°, 0°, 90'1 

Present 

Study (Hz) 

Vibration 

Mode 

- - 

Table 3.9: Sandwich Plate [O0, 90°, 0°, 90°, 0°] 

Ibrahim et al. [42] 

Theoretical Results (Hz) 

146 .O 

196.4 

279.5 

401.1 

Vibration Ibrahim et al. [42] 

Mode i Theoretical Results (Hz) 

Table 3.10: Sandwich Plate [9( 

Present 

Study (Hz) 

142.4696 

185.7885 

254.2777 

383.7216 

Vibration 

Mode 

1 

2 

3 

4 

Difference 

(%) 

-2.42 

-5.40 

-9 .O2 

-4.33 

Ibrahim et al. [42] 

Theoretical Results (Hz) 

Present Difference 

StudJf (Hz) l I 

Present 

Study (Hz) 

Difference 

(%) 

Table 3.11: Sandwich Plate [-15O, 15', oO, -15', 15O] 
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Table 3.12: Sandwich Plate [-30°, 30°, O*, -30°, 30°] 

Vibration 

Mode 

1 

2 

3 

4 

Di fference 

(%) 

-4.83 

-6.87 

-8.11 

-6.66 

Ibrahim et al. (421 

Theoretical Resdts (Hz) 

Vibration 

Mode 

1 

2 

3 

4 

Table 3.13: Sandwich Plate [-45O, 45O, oO, -45O, 45O] 

Present 

Study (Hz) 

Ibrahim et al. [42] 

Theoretical &eaults (Hz) 

152.9 

227.3 

308.6 

382.1 

de 3.14: Dimensions of the Isotropic and Composite Facesheet P 

Difference 

(%) 

Present 

Study (Hz) 

145.5077 

211.6824 

283.5613 

356.6542 

a b (in)] 

b b (in)] 

hf [mm (in)] 

h, [mm (in)] 

Property 

-4.67 

-6.93 

-4.98 

-8.38 

122.6 

209.2 

283.3 

300.4 

0.25 (10.) 

0.25 (10.) 

0.71 (0.028) 

19.05 (0.75) 

Eli [GPa (106 psi)] 

E22 [GPa (log psi)] 

Glz [GPa (106 psi)] 

h2 

Gzl [kPa (lo3 psi)] 

G*, [kPa (103 psi)] 

40 [ N b 2  (lb/in2)1 

116.877 1 

194.7108 

269.1800 

275.2259 

Composite 

Plate 

Table 3.15: Material Properties of the Composite Sandwich Plate. 
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Facesheet 

Isotropic 

Composite 

Table 3.17: Moment at the Centre of the Plate, 

rotations are [60]: 

Table 3.16: Displacement at the Centre of the Plate. 

Khatua & 

Chenng [47] 

7.361~10-' 

1.213~10-~ 

Difference 

(%) 

- 1.67 

-0.39 

Facesheet 

Isotropie 

Composite 

Present 

Stndy 

7.57=0-' 

1.244~10" 

Khatua & 

Cheung[47] 

4.7789 

7.4433 

Difference 

(%) 

2.87 

2.56 

Present 

Study 

4.699 

7.414 



Figure 3.2: Convergence of the Finite Elernent Mesh. 

where Pr is the solution of the transcendental equation cos(/3,l)cosh(~,I) = 1. 

These fnnctions are orthogonal and linearly independent. To check the code, solutions 

were compared with resdts given by MSC/NASTRAN [89], using the QUAD4 element, since 

no solution for free-fiee vibration problem of a sandwich plate was f<iund in the literature. 

The fùst step was to determine the size of the finite element mesh suitable for this problem. 

Figure 3.2 shows how the solution converges for the fust four natural frequencies of a fiee-free 

sandwich plate with isotropic facesheets, when the size of the h i t e  element mesh increases. 

Aom this figure it can be seen that the solution converges for a 32x32 mesh (5253 degrecs 

of fieedom, DOF). 

Table 3.18 shows the compazison between the resdts presented by Raville and Ueng [86] 

and MSC/NASTRAN [89], with this size of mesh, for the h s t  four natural frequencies of a 

simply-supported sandwich plate with isotropic facesheets. This table shows t bat a. 32x32 

mesh size gives good resdts. 

It wks then necessary to determine the number of integration points and terms of the 

series that would be sdcient  to solve a fiee-free vibration problem with the developed 

code. Table 3.19 summaries the convergence study. From this table it can be seen that 



Vibration 

Mode meriment  al 

R.esdts (Hz) 

Theoretical 

Results (Hz) 

23. 

45. 

'il. 

80 

MSC/NASTRAN 

(32x32 mesh) (Hz) 

Table 3.18: Simply-Supported: Isotropie E'acesheet Plate. 

with 6x6 terms in the series expansion and 8x8 integration points in each direction the 

solution converges for the fist four natural frequenues (108 DOF). This converged solution 

was compared with resdts given by MSCfNASTRAN. The results are @ven in Table 3.20. 

Fkom these figures it can be concluded that the codes nsed here are quafied to calculate 

the natural fkeqaencies of simply-snpported and free-free sandwich plates. Now, they can 

be used together with the optimization package, which was described in Chapter 2, to solve 

the optimal design problem of lightweight composite sandwich panels. 



Number of 

Tenns 

- 

Number of 

Points 

lb' Nat. 

E'requency 

14.22 

15.25 

15.25 

15.25 

15.25 

15.25 

14.42 

14.44 

14.45 

14.45 

14.45 

14.44 

14.45 

14.45 

14.45 

14.38 

24.36 

14.37 

14.37 

2nd Nat. 

Frequency 

3Td Nat. 

Frequency 

4th Nat. 

Frequency 

Table 3.19: Convergence for FkeeFree Isotropic Sandwich Plate. 

Table 3.20: Fr-free Isotropic Sandwich Plate. 
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Vibration 

Mode 

1 

2 

3 

4 

MSCINASTRAN 

(Hz) 

14.17 

15.47 

32.58 

36.12 

Present 

S t d y  (HZ) 

14.37 

15.64 

33.34 

36.53 

Difference 

(%) 

1.41 

1.10 

2.33 

0.58 



Chapter 4 

Modelling 

The optimization problem being considered is the minimum mass design of a composite 

sandwich plate whose facesheets have a spatially varying stifFness and density. The spatidy 

va,rying stiffness is modded as a nondform net of fibre strips oriented in the x and y 

directions. Figure 4.1 iliustrates a portion of a facesheet, outlining one of the basic c d s  

which composes this layer. In this figure Ws,, We,, Ws, and We, are the parameters nsed 

to d e h e  the density of the material: Ws, is the width of the strips in x-direction in this 

portion of the plate, and We, is their spacing; Ws, and We, are the same, respectively, 

in y-direction. So, the density (percentage of material) in x-direction is given by FDX = 

Ws,/(Ws, + We,) while the density in y-direction is given by FDY = Ws,/(Ws, + Wev). 

Thus, the f i rst  step of the modelling is to devdop an approximation of the nonuniform net 

as a srnoothed heterogeneons orthotropic continuum. This chapter describes this process 

and its verification against experimental results. 

4.1 Homogenised Continuum Mode1 

The theoretical approach to this problem is refened to as homogenisation theory [6] and 

the resdts of this analysis are homogenised engineering constants. The faicesheet of the 

sandwich plate is composed of a net of fibre strips and is modded by a series of cells as 

shown in Figure 4.1. Since the c d  dimensions are much s m d e r  than the plate dimensions, 

the net is assumed to behave as a continuous sheet. In order to represent a net of fibre 

strips as a continuous orthotropic layer, the homogenised engineering constants ( E : ~ ,  E!~,  

ut,, ut, and G ! ~ )  of the orthotropic layer must be evaluated b a s 4  on the geometric and 



Figare 4.1: Net of Fibre Strips Used as Facesheets of the Composite Sandwich Plate. 

material properties of the net. 

The homogenised engineering constants can be ealctdated using the Fini te Element 

Method. Two approaches are presented here: the first uses a basic cell model and the other 

models part of the fibre-strip net. 

4.1.1 The Basic Ce11 Mode1 Approadi 

Considering the finite element model of a basic c d  presented in Figure 4.2, the procedure 

adopted here is to  apply a boundary condition to this model, and then determine the 

displacements and the strain energy. Making this strain energy equal to the strain energy 

of a homogenised cell under the same boundary condition, i t  is possible to e d u a t e  the 

homogenised engineering constants. An important issue in this procedure is to set the 

boundary conditions on the basic c d  model properly, so that the model M y  represents 

the periodiuty of the structure under a specified load case [99]. 

Determination of EL and ut2 

In order t o  calculate E : ~  and vt2 it is assumed that the structure is very large (x and y 

dimensions are infinite) and the structure is sub jected to a aniform stress in the x-direction 

at  its boundary. It is also assumed that the structure remkins planar under the application 

of in-plane loads. Since the cd structure is periodic in both the x and y directions, it follows 

that under the conditions of a uniform x stress at  infinity that the stress and displacement 



Figure 4.2: The Finite EZement Model of a Basic Cd. 

solutions mnst be periodic and they are periodic over each c d .  Fhrthermore, if lines are 

drawn pardel to the x and y axes forming a rectangular grid and each rectangle of the 

grid contains only one c d  the following may be condnded: 1) The u displacement on lines 

parallel to the y-axis is constant; 2) The v displacement on lines pardel to the x-axis is 

constant. This is so because the displacement solution must be periodic. 

Having noted the above, it is dear what boundary conditions must be applied to model 

a single c d  of this system. These are the following, according the nomenclature presented 

in Figure 4.3: 

the structure remains planar; 

a no u nor v-displacements for Node 1; 

no v-displacement for the nodes on Side 1; 

a no u-displacement for the nodes on Side 2; 

a nnitary u-dispIacement for d nodes on Side 3; 

a a.ll nodes on Side 4 have equal v-displacement. 

Applying these boundary conditions and solving, the strain energy of the model will be 

G. The strain energy Ut generated in the homogenised c d  due to the same boundary 



Figure 4.3: Nomendatnre Used to Define the Boundary Conditions on the Basic Cd. 

conditions is: 

Note that the strain energy adopts this simple form because O: O and r?, O fiom 

the c d  boundary conditions. and 4 are the homogenised stress and strain in the 

x-direction, respectively, and V is the volume of the c d .  Now, using the stress-strain 

equation, O! = (since 0; P O), and knowing that $ = 1/1, and V = ZJ,h j, for a cd 

of thickness h f, then the strain energy is given by 

The hypothesis behind the homogenisation is that the equivalent structure and the 

original one should contain the same strain energy when subjected to the same load. Thns 

setting UE equal to Ut, ~t~ is e d u a t e d  as  

Also, the homogenised Poisson's ratio ut2 is given 



where A: is the c d  extension in the x-direction and Ai is the c d  compression in the 

y-direction, with the applied bonndary conditions. Since A$ = l., then 

Determination of E& and v h  

The determination of E : ~  and dl, follows in exsctly the same manner except that the 

roles of x and y are interchanged. So, the boundary conditions applied to the basic c d  

finite element mode1 are: 

a the structure remains planar; 

a no u nor v-displacements for Node 1; 

O no v-displacement for the nodes on Side 1; 

a no u-displacement for the nodes on Side 2; 

0 al1 nodes on Side 3 have equal u-displacernent ; 

unitary v-displacement for all nodes on Side 4. 

Following the same procedure as used to determined E : ~  and ut2, iTt2 is evaluated as: 

and v& is equal to 

In order to calculate ~t~ it is assumed that the system is sub jected to a uniform shear 

a t  infinity. Again the displacement field and stresses are periodic. Based on this periodicity 

it may be seen that the rectangnlar grid of nndeformed cells is deformed in a periodic 

manner. This implies that the corners of the original grid lie on a grid of pardelogmIIU3. 

The deformation of the edges of a c d  are not straight lines however as the deformation must 

be periodic in both the x and y directions; thus, the deformation on one side of a c d  is equal 

to the deformation a t  the correspondhg location on the opposite side of that c d  plus the 



addition of a factor redt ing fiom the shift of the corners of the cell fiom a rectangular to 

a pardeIogram grid. Thm in the analysis of a single c d  using the finite element technique 

the appropriate boundary conditions which must be imposed are (Figure 4.3): 

a the structure remains planar; 

a no u nor v-displacements for Node 1; 

a all nodes on Side 2 have u and v-displacements equal to the u and v-displacements of 

the correspondent nodes on Side 3; 

a unitary u-displamment for Node 3; 

a a l l  nodes on Side 4 have v-displacement equal to the v-displacement of the corre- 

spondent nodes on Side 1 and u-displacement e q d  to the n-displacement of the 

correspondent nodes on Side 1 plus one. 

Under this boundary conditions, the strain energy in the mode1 will be Uz. For the 

same boundary conditions, the strain energy in the homogenised c d  is: 

where rf, and & are the homogenised shear stress and shear strain, respectively. Substi- 

tuting the stress-strain equation if2 = ~ t ~ ~ t ~  in Equation 4.8, and knowing that 7t2 = 1/1,, 

the strain energy c m  be written as 

Again, Gf2 is determined by setting U z  equal to UF. 

To verify this approach, the mesh illustrated in Figure 4.2 was used with the finite 

element code MSC/NASTRAN (QUADI) [89] to determine the homogenised properties of 

a stmctnre whose geometric and material properties (Ellil = filn = 30 and Elln = ElZl2 

= 10) of its basic c d  are presented by Bends~e and Kikuchi [9]. In this paper Bends~e and 

Kikuchi solve shape optimization problems as material distribution problems by a s s d n g  



Figure 4.4: Deformation of the Basic Cell under Tension Boundary Conditions. 

Reduced 

S tifiesses 

Bendse & 

Kikuchi [9] 

Table 4.1: The Reduced Stiffnesses for a Homogenised Materid: basic c d  approach. 

that the materid has two constituents: substance and void. Then the microscopic optimal 

void distribution is considerd instead of shape optimization. The homogenisation method 

is applied in this methodology to determine macroscopic constitutive equations for the 

material with microscopic materid constituents. 

Figures 4.4 and 4.5 illustrate how this basic c d  is deformed under the tension and 

shear boundary conditions, respectively. Table 4. I shows the reduced s t i f i a ses  for the 

homogenised material obtained by Bendsae and Kiknchi and by the approach described 

here. The results are in close agreement. 



Figuxe 4.5: Deformation of the Basic Ce11 under Shear Boundary Conditions. 

4.1.2 The Fibre-Strip Net Mode1 Approach 

Another way to calcdate the homogenised properties is to model a lcrrge segment of the 

facesheet (the assnmption is that the dimensions of this segment are large compared to the 

c d  dimensions). In this case the boundary conditions and the load applied to the model 

shotdd represent the boundary conditions and load of an equivalent laboratory expriment. 

It is important to note that the intenid nodal forces and displacements are determined on 

the b o u n d q  of the basic c d  closest to the centre of the model. 

Assume that the cell problem has been solved nsing the fini te element technique and that 

the equilibrium solution has been obtained. h thermore let ( u ; , ~ ; )  represent the solution 

of the problem at the nodes on the perimeter of the ce11 closest to the centre of the model, 

where i varies over the perimeter nodes. Also, the interna1 nodal forces may be determined 

and the nodal forces at the perimeter nodes are represented as ( X i , x ) .  

Now in an equiLibrium configuration two times the strain energy equals the work done; 

therefore for the c d  

where Nb, is the number of nodes on the boundary of the basic cell. 



Figure 4.6: Nomenclature Used to  Define the Boundary Conditions on the Fibre-Strip Net 

Model. 

From the point of view of the homogenisation principal it will be imposed that 

Ug = Uf (4.12) 

Determination of E:, and ut, 

To calcdate E:, and ut,, the boundary conditions specified later are appüed on the 

boundary of the model. The description of the boundary conditions is done according to  

the nomenclature presented in Figure 4.6 for the whole model and Figure 4.3 for the basic 

cell closest to the centre of the model. 

a the structure remains planar; 

a no u nor v-displacements for Node 1; 

0 no u-displacement for the nodes on Side 2; 

0 unitazy u-displacement for aJl nodes on Side 3. 

The strain energy of the homogenised basic c d  under these bouadary conditions is: 



In the homogeneous 

and t herefore 

state, the strains are: 

Thns setting the energy expressions (Equation 4.1 1 and Egnktion 4.15) equal yields 

The Poisson's ratio is calcdated using Equation 4.4. Here, Ag and At are assumed 

to be the displacement average of the nodes on Side 3 and 4, respectively. So, u:, can be 

determined by 

where u; are the displacements in the x-direction for the nodes on Side 3 and vi are the 

displacements in the y-direction for the nodes on Side 4, n3 and n4 are the number of nodes 

on Side 3 and 4, respectively, of the basic cd. 

Determination of E& and v& 

The boundary conditions which should be applied to wlcdate E!* and vk, are the 

following : 

the structure remains planax; 

0 no u nor v-displacements for Node 1; 

0 no v-displacement for the nodes on Side 1; 

0 unit- v-displacement for all nodes on Side 4. 

FoIlowing the same procedure us& to determined E:, and ut2, E $ ~  is evalnated as: 



The Poisson's ratio v& is equal to 

where u; are the displacements in the x-direction of the nodes on Side 3 and v; are the 

displamments in the y-direction of the nodes on Side 4. 

Determination of ~k~ 
The G : ~  is determined applying the following bonndary conditions: 

a the structure remains plana; 

i, no a nor v-displacements for Node 1; 

a no v-displacement for ail nodes on Side 1; 

the nodes on Side 2 have u-displacements that vary linearly from zero at Node 1 to 

one at Node 3; 

a the nodes on Side 3 have u-displacements that vary linearly fiom zero at Node 2 to 

one at Node 4; 

no v-displacement and unitazy u-displacement for ail nodes on Side 4. 

The strain energy of the homogenised basic cell under these boundary conditions is: 

In the homogeneous 

and t herefore 

state, the shear strain is: 

Thus setting the energy expression eqnd: U m  = UT, yields 



Figure 4.7: The Finite Element Mode1 of 9 Basic Cells. 

Three finite element meshes were created with 1, 9 and 81 basic cells (Figures 4.2, 4.7 

and 4.8, respectively). These meshes were used with the MSC/NASTRAN code to solve the 

homogenised problem presented before. Figures 4.9 to 4.11 show the deformation of these 

meshes under a uniform stretch condition and Figures 4.12 to 4.14 illustrate the deformation 

of these meshes under uniform shear strain. 

Rom the resdts showed in Table 4.2, it is possible to compare the reduced stifiesses 

for the homogenised material obtained using the three meshes with the values presented by 

Bendsae and Kikuchi. Doing this comparison, it is clear that it is necessary to use at least 

the mesh with 9 basic c d s  to calculate the E:,, E:,, v:, and v& and the mesh with 81 

basic c d s  to determine G$. 

Once the procedure used to determine the homogenised properties of a fibre-strip net 

was verified, it was then used to create tables with values of these homogenised properties 

for different material densities in the x and y directions. During the optimization process, 

the homogenised properties of a specific design are determined by interpolating the d u e s  

kom these tables, 

Using the fhite element model, five tables were generated for E:~ ,  ~ h ,  ut2, G& a d  

homogenised density (Tables 4.3 to 4.7, respectively), varying the material density fiom 

10% to 90% in the x and y-directions and with steps of 10%. Figures 4.15 to 4.19 illustrate 

graphicdy the resdts in these tables. These results show that for a fixed value of materid 



Figure 4.8: The Finite Element Mode1 of 81 Basic Ceiis. 

Figure 4.9: Mesh Deformation of a Basic C d  under Unifonn Stretch Condition. 



Figure 4.10: Mesh Deformation of 9 Basic Cells under Unifonn S tretch Condition. 

Figure 4.11: Mesh Deformation of 81 Basic Ceh under Uniform Stretch Condition. 



Figure 4.12: Mesh Deformation of a Basic C d  under Uniform Shear Strain. 

Figure 4.13: Mesh Deformation of 9 Basic Cells under Unifom Shear S train. 



Figare 4.14: Mesh Deformation of 81 Basic Cells under Uniforru Shear Strain. 

Reduced ( Bends* & ( MSC/NASTR.AN 1 

Fibre-S trip Net m0de1 

Approach 

S ti5esses 

Table 4.2: The Reduced Stifiesses for a Homogenised Material: 

Kikuchi [9] 1 Cell 

11.977 

16.739 

4.863 

1.089 

9 Cds 

12.540 

17.116 

3.299 

3.306 

h h  
E!~f (l - h 2 4  

h h  @dl - ï 2 h )  

G12 

h h  
I I - )  

13.051 

17.552 

2.785 

3.241 



Material Density in X-Direction Material Density 

Y-Direction 

Table 4.3: Homogenised Young's Modulus E ! ~  (GPa). 

density in one direction, the homogenised properties have a smooth behaviour when the 

material density changes in the 0th- direction. Therefore, it  may be concluded that these 

tables with 10% steps yield a satisfactory interpolation of the homogenised properties in 

the range £rom 10% to 90%. 

4.2 Cornparison wit h Experirnental Results 

To validate the process of approximating the net of fibre strips by an equivalent homogenised 

continuum-layer, a free-fiee modal test was completed; the sandwich plate had facesheets 

manufactured from an aluminium net and the core was an aluminium honeycornb. Alu- 

minium was chosen for the facesheets instead of a composite material because it was easier 

to manufacture the net with this material. 

The sandwich plate is a five layer symmetric laminate with length of 406 mm and 

width of 201 mm (Figure 4.20). The outside layers are the aluminium nets with a 0.4 mm 

thicknesses. Figure 4.21 illustrates the layout of the net. The second layers are adhesive 

films, with a 0.12 mm thickness. The core is 4.46 mm thick 3/8-5052-.O07 aluminium 

honeycomb. Table 4.8 presents the mechanical properties of the three materials. 

To simulate the free-free boundary conditions, the plate was suspended by four springs 

located at the midde of the plate edges, which corresponded to the nodes of the first elastic 



Materid Density 

Y-Direction 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

Table 4.4: Homogenised Young's Modulus EZ, (GPa). 

Material Density 

Y-Direction 

Material Density in X-Direction 

Table 4.5: Homogenised Poisson's Ratio vf2. 



Material Density 

Y-Direction 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

Materid Density in X-DUection 

Table 4.6: Homogenised Shear Moddus G:, (GPa). 

Material Density 

Y-Direction 

Materid Density in the X-Direction 

Table 4.7: Homogenised Mass Density (kg/m3). 



Figure 4.15: Homogenised Young's Modulus E : ~  as a Function of the Material Density in 

the x and y Directions. 

Figure 4.16: Homogenised Young's Modulus ~ 2 2  as a hinction of the Material Density in 

the x and y Directions. 



Figure 4.17: Homogenised Poisson Ratio uh as a h c t i o n  of the Material Density in the x 

and y Directions. 

Figare 4.18: Homogenised Shear Modulus G ! ~  as a E'unction of the Material Density in the 

x and y Directions. 



O 2s so n 100 

MATERlM D P s r r Y  IN Y-DIRECTION 

Figure 4.19: Homogenised Mass Density as a Function of the Material Density in the x and 

y Directions. 

Property 

Ell [GPa (106psi)] 

&2 [GPa (lospsi)] 

G I ~  [GPa (106psi)] 

Y2 

GIz [MPa (lo3psi)] 

Gz, [MPa ( l ~ ~ ~ s i ) ]  

p [ k g / r ~ ~ ( l ~ - ~ l b m / i n ~ ) ]  

Aluminium Adhesi ve Film Honeycomb 

Table 4.8: Material properties. 



Figure 4.20: Sandwich Plate with Uniform Net in the Facesheets. 

Figure 4.21: Layout of the Facesheets. 
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Figure 4.22: Plate Ready to be Tested. 

mode. Figure 4.22 illustrates the plate ready to be tested. In this figure the elastic supports, 

accelerometers and cables can be seen. For this test, fifteen accelerometers were bonded to 

the plate (eight Endevco Model 22 and seven Endevco Model 2222C). Their positions are 

sketched in Figure 4.23. Fifteen load amplifiers were connected to the accelerometers. Ln 

addition, an impact hammer instrumented wit h a B & K Model 8200 was comected to the 

load amplifiers. 

The modal test was done using a digital data acquisition and analysis system, GEN- 

RAD 2515 in conjunction with the analysis software SDRC MODAL-PLUS Version 9.2. 

This work was done at the htegration and Test Laboratory (LIT) of the National Insti- 

tute for Space Research (INPE), in Brazil. The first three elastic modes and th& natural 

frequencies are Uustrated in Figures 4.24 to 4.26. 

Since the analysis program deveioped in this research ( s e  Chapter 3) cannot simulate 



8 accelerometer (Endevco Model 22) 
accelcrometer (Endevco Modcl 2222C) 

1 406.0 

Figure 4.23 : Position of the Accelerometers. 

Mode 1: F=96,041 Hz 

Figure 4.24: The First Elastic Mode - Experimental Result. 



Mode 2 :  F462.33 H z  

Figure 4.25: The Second Elastic Mode - Experimental Result. 

Mode 3: F=238.229 Hz 

Figure 4.26: The Third Elastic Mode - Experimental Result. 



Mode 1:  89.904 Hz 

Figure 4.27: The First Elastic Mode - MSC/NASTRAN Resdt with Concentrated Masses. 

concentrated masses due to the accderometers used in the test, the test results were corn- 

pared with numericd resdts obtained from the finite element program MSC/NASTRAN. A 

finite element model of the tested plate was developed, including the concentrated masses of 

the accderometers and cables used in the experiment. In this model, the mechanical prop- 

erties of the alnminium net were calctdated nsing the homogenisation process described in 

the first part of this chapter. Figures 4.27 to 4.29 present the first three elastic modes and 

their frequencies given by this model. These modes are the same as the ones determined in 

the experiment and t hese frequencies are dose to the ones measared in the experiment . 
In a second step, d the concentrated masses are removed fkom the fini te element model 

nsing MSC/NASTR,AN and the results (Figures 4.30 to 4.32) aire compared with the readts 

of the analysis program described in Chapter 3, that uses the process of approximation 

described in the f h t  part of this present chapter (Figures 4.33 to 4.35). Rom Figures 4.30 

to 4.35 and Table 4.9, it is possible to see that the program resdts agree dosely with the 

results of MSC/NASTRAN model without concentrated mass. These results validate the 

process of approximating the net of fibre strips by an equivalent homogenised orthotropic 

cont inuum-layer . 



Mode 2: 168.878 Hz 

Figure 4.28: The Second mastic Mode - MSC/NASTRAN Eksult with Concentrated 

Masses. 

Mode 3: 241 -995 Hz 

Figure 4.29: The Third Elastic Mode - MS~/NAST&AN Resdt with Concentrated Masses. 



Mode 1: 92.584 Hz 

Figure 4.30: The Fiist Elastic Mode - MSC/NASTRAN b u l t  withont Concentrated 

Masses. 

Mode 2: 177.1 54 Hz 

Figure 4.31: The Second Mastic Mode - MSC/NASTRAN Result without Concentrated 

Masses. 



Mode 3: 255.61 8 Hz 

Figure 4.32: The Third Elastic Mode - MSCINASTRAN Result without Concentrated 

Masses. 

T m  flRSf NAflZAAL FRKXIECS=Y: 88.75 kk 

Figure 4.33: The First Elastic Mode - Present Result. 



'THE SECOND NAïWUL FREQCaJCY: f78.08 Hz 

Figure 4.34: The Second Elastic Mode - Present Result. 

Figure 4.35: The Third Elastic Mode - Present Result. 

Present 

Study (Hz) 

88.75 

178.08 

253.38 

Vibration 

Mode 

Table 4.9: Naturd Frequencies fiom the Numerical Modela wit hout Concentrated Masses. 
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Chapter 5 

Met hod of Optimization 

The problem studied here is the minirnization of the m a s  of a composite sandwich plate 

while maintaining the first natual fiequency and some failure loads greater than prescribed 

values. The choice of natural fiequency and failure Ioad constraints is based on design 

requirement~for satellite structures. In this problem, the facesheets are assumed to be 

composed of an orthotropic net of unidirectional composite fibre strips. Thus, the facesheet 

stiffness is altered by changing the width and spacing between these strips. 

This chapter is divided in four sections. The f is t  describes the approaches used to define 

the design variables. Then, the following section presents the failure loads considered in 

this work. The third section explains the sensitivity analysis, while the final section outlines 

the optimization algorithms used. 

5.1 Approaches to Define the Design Variables 

The definition of the design variables is accomplished using two techniques. In the fist,  

an independent design approach, the facesheets are discretized into regions with uniform 

design parameters. In the second, a reduced basis formulation, the design parameter is 

specified by a linear combination of orthogonal basis functions. 

5.1.1 Approach 1: Independent Design 

In this technique the facesheets are discretized into bands in both the z and y-directions. 

The material densities (FDX and FDY) are the design vadables zi and are assumed to be 

constant in each band (Figure 5.1). The optimization procedure for this approach can be 



Subject to : Ri 2 & 

where 

mass of the facesheets 

density of the facesheets 

the it design variable 

thickness of the facesheets 

the f i s t  natural frequency 

specified value for the f i s t  natural frequency. 

stress at  (x,y) position 

the specified value for the jth failme stress 

number of failure modes 

number of design variables 

lower limit for design variables 

upper limit for design v&riables 

This approach is easy to implement . However, it has the disadvantage of allowing sharp 

changes in the design variables from one band to the other. In addition, from a practical 

structural point of view these jumps in properties may induce stress concentrations in the 

structure. 

5.1.2 Approach 2: Reduced Basis Formulation 

In t his approach, the material densi ty of the facesheets is approximated by a Linear combi- 

nation of orthogonal functions superimposed on an initial design. Here, the design variables 



Figure 5.1: Independent Design Approach. 

xi are the coefficients which multiply each orthogonal function. This global description 

enforces a smooth material distribution, but it restricts the optimal design to the dass of 

curves that <an be obtained by a finite number of such functions. Pedersen [75-77) used this 

strategy to obtain the optimal shape design for minimum stress or energy concentration. 

Mathematically, the material distributions in the x and y-directions are given by 

NDV 

FDY = Z N ~ ~ / 2 + ~  + ~ i h ( ~ )  
à=NDV/Z + 2 

where 

fi : the it preselected orthogonal basis function. 

Two sets of orthogonal functions were tested for this approach. These were the odd 

eigenfunctions of a vibrating beam for the two cases of simple supported and f d y  damped 



bonndary conditions. These fanctions are easy to work with and form a complete set. These 

eigenfunctions are 

- For a simply-supported vibrating beam (Approach 2A) 

- For a damped vibrating beam (Approach 2B) 

where a is the length of the beam. The values of kia are obtained fiom the solution of the 

transcendental equation 

The optimization procedure for this approach can be formulated as follows 

Subject to : QI 2 nl 

FDXl  5 FDX 5 FDX,  

w here 

FDXl : lower iimit of the materid density in x-direction (Equation 5.2) 

FDX,  : upper Limit of the material density in x-direction (Equation 5.2) 

FDX : lower Limit of the material density in y-direction (Equation 5.3) 

FDY, : upper Limit of the material density in y-direction (Eqnation 5.3) 



In this approach, besides the constraint which imposes that the f i s t  natural frequency 

must be greater than a specified value, other constraints have to be considered: the material 

density mnst be between the lower and upper limits (FDXl  5 FDX < FDX, and FDX < 
FDY 5 FDY,). One way to define these constraints is to look for the points that have 

the lowest and the highest material density. The lowest material density is constrained to  

be higher than the lower limit and the highest material density is mnstrained to be smd e r  

than the upper b i t .  

However, this procedure can bring some instability to  the numerical solution, since the 

solution can possibly to oscillate between two designs. In this work, some points of the 

plate are selected and lower and upper limits are imposed for the material density a t  these 

points. The positions of these points are related to the peaks of the orthogonaI fnnctions 

used to define the material distribution. 

The advantage of this a p p r o d  is the fact that the design variables change slowly fiom 

one region to another in the structure. 

5.2 Faîlure Load Constraints 

A composite sandwich construction is composed of two thin facesheets that support the 

membrane and bending loads, bonded to a thick core which resists the shear loads. A 

sandwich structure should be designed to meet strength and budding requirementr [I l ,  

22,50,79,111], such as: the strength of the facesheets should be enough to withstand the 

tensile, compressive, and in-plane shear stresses generated by the design load conditions; 

the thickness aad shear modulus of the core should be s a c i e n t  to support the transverse 

shear stresses due to the design loads, and to avoid overd  budding and excessive defiection 

as well as shear failure of the facesheets; the size and density of the core should be snch 

to prevent the monocd buckling (face dimpling); and the normd compressive strength of 

the core and the in-plane tensile strength of the facesheets should be suflicient to prevent 

wrinkling and crimping instability of the facesheets. 

In t his research, besides the fundamental fiequency, t hree failure modes were consid- 

ered as constraints: fibre failure, intercell buckling and wrinkling. These are related to the 

requirements that are Sected by changing the stiffness distribution of the facesheeta, con- 

sidering t hat in the optimization process neit ber the dimensions nor the material properties 



Figure 5.2: Stress Distribution in the Facesheets. 

of the core are changed. 

5.2.1 Fibre Failure Constraint 

This constraint must parantee that the tensile and compressive stresses in the strips of 

the focesheet net are less than the tensile and compressive allowable stresses of the strip 

materid, respectively (Figure 5.2). The stresses in the x and y-directions are given by 

where n(1) and ~(2) are the x and y-curvatures, respectively, and h, is the thickness of the 

core. The strip stresses are determined in the region where tbere is no overlap of strips, 

since in the overlap region the stress level is less. Doing so, ensures that the worst region 

has been considered. 

The constraint equations for this failure mode are 

X C  5 0s s xf x C  5 uv 5 Xt 

where X, is the compression allowable stress and Xt is the tensile allowable stress. 



Figure 5.3: Interceil Buckling Constraint . 

5.2.2 Intercell Buckling Constra.int 

This constraint imposes that, at a point of the plate, the compression stress on the fibre 

strip is less than the stress necessary to cause local buckling of the fibre strip in and out of 

the honeycomb c d .  To determine this critical 

strip on the top of a ce11 is a simply supported 

221: 

buckling stress, it is assumed that the fibre 

beam and its bndrling equation is [12, page 

where s is the honeycomb-core c d  size, Figure 5.3. 

The constraint equations for this failure mode is 

where oz and oy are the compression stress in x and y-directions as dehed in Equations 5.8 

and 5.9, respectively. 

Assnming that the strip buckling length is equal to the honeycomb cd size is in fact a 



Figure 5.4: Face Wrinkling Instability. 

conservative approach, as in most cases the strip is supported by a perpendicular strip in 

the domain of the open honeycomb c d  (see Figure 5.3). 

5.2.3 Wrinkling Constraint 

Wrinkling is a phenornenon in which a facesheet buckles inwardly or ontwardly depending 

on whether there is core compression failure or adhesive bond failure (Figure 5.4). Empirical 

equations for compressive strengt h used for the facesheet wrinkling strengt h evaluation are 

given in [40] a9 

where Ec is the compressive Young's moddus of the core. 

The constra.int equations for this failure mode is 

where a, and C T ~  are the compressive stresses in x and y-directions, respectively. 

5.3 Sensit ivity Analysis 

Information needed for the optimal design process is the way in which the objective function 

and the constraints change with the design variables (the sensi tivity of structural response). 

To obtain this information requires a major computational effort during the optimization 

process. Therefore, efficient computational techniques are essential. 



In a .  the procedures discussed before (Approaches 1 and 2), the derivatives of the 

objective function with respect to the design variables are st raightforward. However , the 

sensitivity derimtives of stress and eigenvalue const raints cannot be determined analytically 

because they are both implicit function of the design variables, so a semi-analytical approach 

is used in which the derivatives are approlcimated by finite difference expressions. 

5.3.1 The Sensitivity Derivatives of Stress 

Using the Direct Method [49], the derivatives of the stress are calcdated using the stress- 

displacement equations 

Implicit differentiation of Equation 5.17 with respect to the design variable x i  yields 

au as au -=-u+S- 
dx; t9xi bz; 

The derivatives of the displacement are cdculated using the displacernent analysis equa- 

tions 

Differentiating of Equation 5.19 with respect to the design variable x ;  yields 

Moving the first tenu of the lefk side to the right side and premultiplying Eguation 5.20 

by K-' yields 

Substituting Equation 5.21 into Equation 5.18 the derivatives of the stresses ean be 

given as 

where aS/dzi  and aK/Bzi are cdculated using forward finite clifferences 



5.3.2 The Sensitivity Derivatives of an Eigenvalue 

The constraint equation for the first natural frequency is given by 

- 
g = QI -RI. (5.25) 

The derivative of this constraint with respect to the design variable xi is given by 

Using the semi-analytical approach, the derivative of the fmst eigenvalue with respect 

to a design variable is given by [38] 

where u is the mode shape correspondhg to the leâst natural frequency. The expression to 

determine aK/axi is given in Equation 5.24 and aM/Bxi  are dculated as  

aM - hr 
hr 

M(zi + Ax;) - M(zi) 
dx; Axi 

5.4 Optimization Algorithm 

M a y  survey artides have been published in the field of structural optimization [2,34,37, 

78,8Z,IOl]. From these papers, it is possible to see that there is no consensus regarding 

the numerical methods that are most suitable to determine an optimal design. Because of 

this, it is necessary to evaluate a number of the available methods on the specific problem 

of interest. 

As mentioned in the Chapter 2, if the designer intends to use a method based on 

gradients of the objective funftion and constraints, it is necessary to consider three related 



procedues. The first d d s  with the constraints, the second defiaes the search direction a d  

the third completes the midirectional search. 

From all the methods discussed in Section 2.7, it is possible to form many combinatiom 

or sets of algorithms to solve the optimization problem. Before choosing some of these sets, 

it is worth reviewing a number of points mentioned in Chapter 2. 

In Section 2.7, there are five strategies for considering the constraints: four penalty 

fimction methods and the method of centres. Since some of the problems presented in this 

work has only one constraint (the fist  natural frequency to be greater than a specified 

value), the method of the centres in not recommended, because in this case the problems 

are underconstrained and the linear approximations are unbounded. Among the penalty 

function rnethods, Poweil[81] emphasized the importance of induding Lagrange multipliers 

in penalty function methods, making the Augmented Lagrange Multiplier Method the most 

recommended pendty function method. Vanderplaats [108, pages 147-1501 show this by 

cornparing the performance of all  four methods when applied to find the optimal design of 

a cantilevered beam under concentrated load a t  its free edge. His results illustrate that for 

this specific problem, the Augmented Lagrange Multiplier Method performs best. 

Five methods are described in Section 2.7 which may be used to define the search direc- 

tion. Figure 2.11 shows dearly that d e s s  the objective function has no slope eccentricity, 

the steepest descent method should not be used to define the search direction. However, it 

has b e n  using as an initial search direction in other algorithms. The gradient projection 

method also has weak points; it has satisfactory performance only when the active con- 

straints (constrkints dose to be violated) are convex, otherwise the solution ean be trapped 

at every point where the active constraint is concave. 

Once the search direction has been defined, Section 2.7 presents two methods for the 

one directional search. The polynornial approximation usuaily requires fewer function eval- 

uations to reach the optimum. Howeve., it can define infeasible designs that results in 

convergence difficulties for some optimization algorit hms. 

Considering ail the above, four sets were chosen to test the constraint enforcement 

strategies. The dimensional characteristics of the plate used to test the four sets are given 

in Table 5.1, while the material properties are presented in Table 5.2. The algorithm sets 

are dehed in Table 5.3. Four different dgorithms were chosen to deal with the constraints: 

Exterior Penalty Function Method, Linear Extended Interior Penalty Eùnction Method, 



Lwich Plate. 

Description 

[m (in11 

b (in)] 

hl [mm (in)] 

h, [mm (in)] 

- 

El1 [GPa (10' psi)] 

fi2 [GPa (lo6 psi)] 

Glz [GPa (lo6 psi)] 

-2 

GZi [MPa (lo3 psi)] 

GzZ [MPa (103 psi)] 

p [kg/m3 (10-~  lbm/in3)] 

Dimension 

1.75 (69.09) 

2.58 (101.61) 

0.15 (0.0059) 

21.70 (0.8543) 

Faces heet 

Table 5.1: Dimensions of the Isotropic Sand 

Core 

Table 5.2: Material Properties of the Composite Sandwich Plate. 

Augmented Lagrange Multiplier Method and Sequential Linear Programming Method. For 

the fist three sets, the Conjugate Directions Method was nsed to d e h e  the search direction. 

The Method of Feasible Directions was included in the fourth set. For all four sets, the 

Golden Section Method was used for the unidirectional search. 

Tables 5.4, 5.5 and 5.6 s ~ ~ a r i s e  the performance of these sets when applied in con- 

junction with Approaches 1, 2A and 2B, respectiveiy. These tables present the optimd 

d u e  of the objective function and the n u b e r  of function evaluations needed to reach the 

optimal design for a diEerent number of design variables (NDV), osing the four presdected 

sets. 

From these tables it is possible to see that Sets 3 and 4 give the best resdts. Set 3 

performs better than Sets 1 and 2. This is in agreement with Powell [81], who noted that 

any Sequential Unconstrained Minimization Technique which does not include Lagrange 

muhipliers is obsolete as a practical optimization tool. However, when the number of 

function evaluations is considered, it can be conduded that Set 4 requires fewer function 

evaluations to reach the optimum (las computer time). For this reason this set was chosen 



SETS 

NDV 

1 

2 

4 

8 

16 

Set 1 Exterior Penalty F'unction 

Conjugate Direction Method 

Golden Section Method 

Set 2 Linear Ektended hiterior Penalty Function Method 

Conjugate Direction Method 

Golden Section Method 

Set 3 Augmented Lagrange Multiplier Method 

Conjugate Direction Method 

Golden Section Method 

Set 4 Sequential Linear Progranunhg 

Met hod of Feasible Direction 

Golden Section Method 

Table 5.3: The Chosen Sets. 

Opt. 

Ob j. 

Func. 

N. 

h c .  

Eval. 

181 

297 

341 

234 

253 

Opt. 

Obj. 

Func. 

1.2905 

1.1995 

1.0413 

1.0848 

1.3761 

N. 

Func. 

Eval. 

335 

610 

737 

718 

650 

Opt. 

Obj. 

h c .  

N. 

Func. 

Eval. 

Opt* 

Obj. 

Func. 

1.2343 

1.1988 

1.0190 

0.9969 

0.9970 

N. 

h c .  

Eval. 

12 

93 

57 

257 

9 

Table 5.4: Performance Using Method 1. 



SETS ( 1 2 1 3 4 

Opt. 

Ob j. 

Fnnc. 

N. 

h c .  

Eval. 

287 

456 

491 

566 

577 

Opt. 

Obj. 

Fùnc. 

1,1756 

1,0830 

1.0240 

1.0241 

1.0004 

N. 

h c .  

Eval. 

Opt. 

Obj. 

h c .  

1.1765 

1.0840 

1.0971 

1.0958 

1.1233 

N. 

h c .  

Eval. 

14 

59 

90 

169 

71 

Opt. 

Ob j. 

h c .  

N. 

h c .  

Eval. 

NDV 

T'able 5.5: Performance Using Method 2. 

SETS 

N. 

h c .  

Eval. 

14 

77 

156 

119 

47 

Obj. Func. 

Func. Eval. -r N. 

Func. 

Ed. 

703 

579 

531 

579 

588 

Opt. 

Obj. 

h c .  

Opt. 

Ob j. 

Func. 

Opt. 

Ob j. 

h c .  

1.2464 

1.0463 

1 .O267 

1 .O290 

1.0233 

NDV 

Eval. 

- - - -  - -  

Table 5.6: Performance Using Method 3. 



to be used in fnture calcdations. 

Comparing convergence of the three approaches as the number of design variables in- 

creases, it may be seen that in some cases the convergence is not uniform as expected. The 

reason for this is that the point dehing the optimal design is on a surface corresponding to 

the natural fieqnency constra.int, Numerically, this surface has an acceptance band; there- 

fore, a point constrained by this surface may violate the constraint (within a prescribed 

tolerance) and be in the infeasible space. Thus, when the number of design variables in- 

creases, the solution is pushed back to the feasible space and sometimes this causes the 

objective function to increase. 

in this chapter the optimization approaches used were investigated and evaluated. The 

objective function, design variables and constraints were also defined and the numerical 

optimization method was chosen. In the next chapter several problems will be solved asing 

these parameters in order to understand their efTects on the optimal design of composite 

sandwich plates. 



Chapter 6 

Composite Sandwich Plate 

Opt imizat ion 

This chapter presents the results of severd optimization studies. The objective is to mini- 

mize the mass of a composite sandwich plate with a prescribed f is t  natural frequency and 

certain failure loads as constraints. The density of the facesheet material is defined as a 

design variable. In this case, the facesheets are assumed to be composed of an orthotropic 

net of unidirectional fibre composite strips. The stiffnesses of the facesheets are altered by 

changing the widths and the spacings between the strips, 

6.1 Rect angular Composite Sandwich Plates 

The ibst structure to be considered is a simple supported square plate with facesheets 

constructed £rom an orthogonal net of unidirectional carbon-fibre/epoxy composite strips. 

The core material is an orthotropic aluminium honeycornb. Figure 6.1 gives an illustration 

of the plate and its geometry as well as providing an exploded view of the orthogonal 

composite net and aluminium honeycornb. The mechanical properties of the composite 

and honeycomb are siimmarised in Table 6.1. in order to provide a reference value for the 

optimization, a calculation was completed with 40% of the unidirection composite in both 

the x any y-directions; the first natural frequency for this design is 21.47 Hz. This natural 

frequency will be used as a lower bound on the fmt natural trequency of the plates in the 

optimization work. 

The optimal composite facesheet distribution for a plate of the same geometry is inves- 



Figure 6.1: Dimensions of the Square Plate. 

Property 

Ell [GPa (lo6 psi)] 

EZ2 [GPa (lo6 psi)] 

G12 [GPa (10' psi)] 

y12 

Gzl [MPa (lo3 psi)] 

G2. [MPa (103 psi)] 

p [kg/m3 (10-~ lbm/in3)] 

Aluminium 

Honeycomb 

Table 6.1: Material Properties of the Square Plate. 
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tigated nsing Approach 1. As describecl in Chapter 5, in this approach the facesheets are 

discretized into bands in both x and y-directions and the design variables are the material 

density in each of this bands. In this problem the mass of the facesheets is minimized and 

the first natnral fiequency of 21.47 Hz is alone considered as a lower bound constraint. 

The optimal layout of the facesheet is investigated when the number of design variables 

increases (the number of bands are augmented). In this problem, the material density in 

each band ranges from 10% to 90%. There axe two main motivations to impose limits on the 

material density: h t ,  for practical design applications, it  is reasonable to have a minimum 

amount of materid so that the solar cell can be laid on it  ; and second, when the material 

density approaches to 0% or 100%, the material properties change rapidly resulting in some 

numaricd instabilities in the optimization process. 

Initially, only one design variable is considered in each direction. Then this number 

is doubled several times until there are sixteen design variables in each direction. Since 

the plate is square, it is assumed that the optimal material distribution of the facesheet is 

symmetric. This means that, when there are N design variables in one direction, the plate 

is divided in 2N bands in that direction and the  materid distribution is symmetric about 

the plate centre line. 

Figures 6.2 to 6.6 present the optimal designs for 2, 4, 8, 16 and 32 bands (1, 2, 4, 8 

and 16 design variables) in each direction, respectively. As may be expected, these results 

show that the optimal design concentrates the material a t  the centre region of the plate, in 

both directions. In this calculation, six terms in the series expansion and thirty integration 

points were used, in both directions. 

Figure 6.7 illustrates the changes in the objective function as the number of design 

variables increases. The m a s  of the facesheets for the first optimal design (two design 

&ables) is 2.52 kg. When the number of design variables is increased to 32, the mass of 

the facesheets decreoses to 2.23 kg. This means a 12% saving in the mass of the facesheets. 

Another factor investigated in this problem is the idueace of the aspect ratio (ajb) on 

the optimal design. Tables 6.3 to 6.6 present the optimal design for plates with different 

aspect ratios using 2, 4, 8 and 16 design variables. The results presented in these tables 

are in accordance with the sketch shown in Figure 6.8. To determine the values of the first 

natural fiequency to be applied as a lower limit constraint for each aspect ratio problem, the 

first naturd frequency of sandwich plates with these aspect ratios and a uniform material 



Figure 6.2: Optimal Design with 2 Design Variables. 

Figure 6.3: Optimal Design with 4 Design Variables. 



Figure 6.4: Optimd Design with 8 Design Variables. 

Figure 6.5: Optimal Design with 16 Design Variables. 



Figure 6.6: Optimal Design with 32 Design Variables. 

2.00 
10 15 20 25 30 B 

CnIMBER OF DESIGN VARIABLES 

Figure 6.7: Convergence of the ObMtive hnction with the Number of Design Vktiables 

Using Approach 1. 
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Figure 6.8: Sketch for the Results Presented in Tables 6.2 to 6.6. 

distribution were calculated. These reference solutions have, as in the fùst case, facesheets 

with a 40% material density in both directions (Table 6.2). 

Rom these results, it is possible to  observe that even a s m d  variation in the aspect 

ratio ( a / b  5 0.90) causes large changes on the layout of the gptimal plate design. The 

optimal design h a  ody the minimum amonnt of material dowed (10%) oriented in the 

long dimension of the plate. As consequence of this, as the aspect ratio decreases the 

weight saving increases, as shown in Table 6.7. This provides a simple but usefd guideline 

for designers. 

Another interesting observation fiom these resdts is that as the aspect ratio decreases, 

instead of concentrating al l  the material in the centre region of the plate, the optimizer starts 

to accumulate material in several regions dong the long side of the plate. The spacing of 

these bands are regular and have the appearance of stiffeners. 

All the results given so far were obtained applying Approach 1. Now, the optimal 

designs nsing Approaches 2A and 2B are presented and comparecl with the results obtained 

nsing Approach 1. 

As described in Chapter 5, Approaches 2A and 2B are reduced basis formulations in 

which the material density is specified by a linear combination of orthogonal basis functions. 

Figure 6.9 and 6.10 show the change in material density distribution as the number of design 

variables increases using Approaches 2A and 2B, respectively. In the calculation of the first 



Aspect Ratio 

W b )  

First Natural 

Frequency (Hz) 

Table 6.2: Lower Limit for the Fint Natural Frequency Constraint. 

Aspect 

Ratio 

( a m  

Material Distribution (%) 
-- - 

Band in X-Direction Band in Y-Direction 

Table 6.3: Aspect Ratio Study: 2 Design Variables 



Aspect 

Ratio 

(a/b) 

1.00 

O .95 

0.90 

0.85 

0.80 

0.75 

0.50 

0.25 

Aspect 

Ratio 

(a lb)  

Material Distribution (%) 

Bands in X-Direction Bands in Y-Direction 

Table 6.4: Aspect Ratio Stndy: 4 Design Variables 

Material Distribution (%) 
- - 

Bands in X-Direction Bands in Y-Direction 

Table 6.5: Aspect Ratio Study: 8 Design Variables 
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Aspect Ratio Band 

Direction 

Material Distribution (%) 

Table 6.6: Aspect Ratio Study: 16 Design Vaxiables 

Aspect Ratio 

( a b )  

Weight Initial 

Design 

- -  - -  

Weight Optimal 

Design 

Weight Saving 

(%) 

Table 6.7: Weight Savings for Different Aspect Ratios. 
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Figure 6.9: Change of Material Distribution Along the One Direction as the Number of 

Design Variables Increases: Approach 2A. 

natural frequency with different facesheet layouts, the analysis snbroutine used six tenns in 

the series expansions and twenty-seven int egration points in each direction. 

The final step is to compare the final optimal designs obtained with the three methods; 

this cornparison is illustrated in Figure 6.11. These results indicate that a l l  t h  methods 

converge to similar material distributions. However, the plot of ob jective function (mass 

of the facesheets) as a function of number of design variables (Figure 6.12) shows that 

Approaches 2A and 2B converge to the similar values, but Approaich 1 defines a lighter 

structure. This happens because the solutions given by Approaches 2A and 2B are restricted 

to the clam of curves obtainable by a set of preselected functions. Another conclusion 

resulting from these calculations is that Approach 2A is preferable to Approach SB. That 

is, both methods give almost the same resnlts, but the set of orthogonal functions used in 

Approach 2B requires more computer time for processing. 

In order to overcome the possibility of the optimal solution been trapped in a local mini- 

mum, the following procedure was adopted for the three methods. For the simplest problem 

(two design variables), the initial design was chosen with high material aensity (a feasible 

design). Then, for each new optimization problem, with an increased number of design . 
variables, the chosen initial design was the optimal design of the previous problem (with 

less design variables). This procedure was verifieà by searchîng for the optimal solution 



Figure 6.10: Change of Materid Distribution Along the One Direction as the Number of 

Design Variables hcreases: Approach 2B. 

Figure 6.1 1: Material Distribution Given by the Three Approaches. 



Figure 6.1 .2: Convergence of the Objective Function using the Three Approaches. 

baçed on an initial design in which aU strips had the maximum dowed material density. 

The results of these calcdation were that, the optimal objective functions were equal or 

higher than the objective functions determined using the procedure previously described. 

Another strategy was used when the optimal design had any design variable out of the 

feasible space, (becanse of the prescribed tolerance for the constraints); in such case the 

design variables were increased by 1% and the optimization search restarted. This procedure 

was repeated until aU design variables were feasible or until the number of restarted processes 

reached a predehed limit ; in both cases the resulting design was accepted. 

One way to determine the efficiency of a method is to d e t d n e  the number of tirnes that 

the objective function and the constraints are evaluated, during a run. This count varies 

as function of the initial design, the number of design variables and other optimization 

parameters such as the constra.int tolerances. A cornparison of this numerical effort for the 

three methods is presented in Figure 6.13. This figure summarises the number of objective 

function and constra.int evaluations as a function of the number of design variables. It c m  

be seen that Approaich 1 requires many more fnnction evaluations than Approaches 2A and 

2B. 



Figure 6.13: The Number of Function Evalnation as Fùnction of the Nurnber of Design 

Variables. 

6.2 Structural Support for Satellite Solar Array 

Consider now the composite sandwich plate used as strnctural support for the solar array 

of the China-Brazil Earth Resources Satellite - CBERS (Figure 1.1). This remote sensing 

satellite has been developed in a joint program between the Brazilian and Chinese govern- 

ments. This sandwich plate has facesheets composed of carbon fibre/epoxy nets and core 

of aluminium honeycomb (Figure 1.2). The panel schema with its dimensions are given in 

Figure 1.3. Also, Table 6.8 presents the mechanical properties of the carbon fibrefepoq 

stnps (M40Jepoxy) and the aluminium honeycomb (318 5056-,001). These values originate 

fiom the CBERS initial design. During the project some of these dimensions were altered. 

In the optimization of this panel, the mass of the facesheets is the objective function, 

because the dimensions and material properties of the core are kept constant. In addition, 

considering only the mass of the facesheets makes the objective function more sensitive to 

changes in the design variables. The stiflims constraint is defined by the lower bound of 

the first naturd frequency, which is 36.87 Hz (the first n a t d  fiequency of the onginal 

panel 1 
This problem will also be used t o  compare the performance of the three methods de- 

scribed in Chapter 5 (Approaches l, 2A and 2B). Figures 6.14 t o  6.16 present the optimal 



Property 

Ell [GPa (10% psi)] 

fi2 [GPa (106 psi)] 

G12 [GPa (106 psi)] 

h 2  

Gzl [MPa (103 psi)] 

Gzr [MPa (lo3 psi)] 

p [kg/m3 (10-~ lbm/in3)] 

Aluminium 

Honeycomb 

Table 6.8: Material Properties of the Solar Array Support. 

material distribution in the x-direction using the three approaches. Based on the aspect 

ratio results of the previous section, it was açsumed that the optimal design would have 

the minimum material volume dowed in the y-direction (10%). Therefore, only the mate- 

rial distribution in the x-direction is considered. These figures Uustrate how the material 

distribution changes when the number of design variables increases for the three methods. 

F'rom Figure 6.17 it can be seen that the results of a l l  methods converge to  essentially 

the same design. However, the optimal material distributions obtained from Approaches 2A 

and 2B are smoother than the distributions obtained fiom Approach 1, which is felt to be 

a desirable resdt. 

Figure 6.18 shows how the optimal mass changes when the number of design variables 

increases. Different fkom the previous problem, now ail the methods converge t o  the same 

value. In this problem the objective function decreased fkom 1.34 kg to 1.06 kg, which 

represents a 20.9% saving in the mass of the facesheets (7.0 % in the overall mass of the 

plate). Since the reference design is an actual piece of space hardware this is considered to 

be a signifiant irnprovement. 

In order to obtain a more realistic design, the next problem to be presented considers 

three failure modes: fibre failure, intercd bnckling and wrinkling instabiiity. 
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Figure 6.14: Optimal Material Distribution in the Solar Array Support Given by Ap- 

proach 1. 

X-DIRECTION 

Figure 6.15: Materid Distribution in the Solar h a y  Support Given by Approach 2A. 



Figure 6.16: Material Distribution in the Solar Array Support Given by Approach 2B. 

Figure 6.17: Cornparison of the Approaches. 



Figure 6.18: Objective function versus NDV for the Solar Array Support. 

6.3 Rect angular Plat es wit h Failure Const raint s 

The optimal design of the square composite sandwich plate is investigated again, but, 

this time, besides the first nataral frequency constra.int, thtee failure load constraints are 

considered: fibre failure, intercell budding and wrinkling instability. As described in Section. 

5.3, these failure constraint s are related to the strength and buckling requirements that 

a composite sandwich plate must fuifiIl and that are afZected by chaoging the stiffness 

distribution of the facesheets. 

In order to determine a set of reference stresses and strains in the panel, it is assurned 

that the panel is sub jected to a 20 g (196.20 m/s2) acceleration in a direction perpendidar 

to the panel. This acceleration d u e  is reasonable for a satellite structure launched by a 

solid fuel rocket [94] and represents a worse case scenario. 

For the same reason that some points have to be selected to verify the material density 

limit constraints for Approaches 2A and 2B (Section 5.1.2), another set of points is cho- 

sen to verify the failure load constraints. In Approaeh 1, these points are dehed at  the 

intersection of the mesh formed by the borders of the bands with uniform materid density. 

In Approaches 2A and 2B, these points are selected in positions related to the nodes and 

peaks of the orthogonal functions specifying the rnaterial distribution. 

The dimensions, material properties and the first natural frequency constraint for tbis 

problem were presented in Section 6.1. The dowable stresses for carbon f i b r e l e p o ~  com- 

posite are given in Table 6.9. In this table: Xt is the axial strength in tension; Xc is the 



1 Description 1 Carbon Fibre 1 

Table 6.9: Carbon Fibre Composite Strength AUowable- 

I I 

Figure 6.19: Optimal Design with 2 Design Variables. 

axial strength in compression; and S is the shear strength allowable. 

The optimal design of the plate is analysed following the same procedure described in 

Section 6.1. Figures 6.19 to 6.23 present the optimal design for 2, 4, 8, 16 and 32 design 

variables, respectively. The figures illustrate that, as before, the optimal design concentrates 

materid at the centre of the plate, but the change in material density from one band to 

another is smoother this time. Another interesting result is the fact that as the nnmber of 

design variables increases, the optimal design has Iess material at the border and more at  

the centre of the plate. However, if the number of design variables is further increased and 

the amount of material at the centre of the plate reaches an upper b i t ,  materid is moved 

from the quarter-point region of the pIate and placed at the border. As may be seen by 

comparing Figares 6.22 and 6.23. 

To understand which set of constraints drives the optimal design, Figures 6.24 to 6.38 

show the values of the three failnre load constraints for different numbers of design variables. 



Figure 6.20: Optimal Design with 4 Design Variables. 

Figure 6.21: Optimal Design with 8 Design Variables. 



Figure 6.22: Optimal Design with 16 Design Variables. 

Figure 6.23: Optimal Design with 32 Design Variables. 
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Figure 6.24: Fibre Stress Constraint for Optimal Design with 2 Design Variables. 

These figures present only the first quadrant of the plate (O 5 x 5 a/2 and O 5 y 5 b / 2 ) ,  

since the plate has four fold symmetry about the centre Lines. The table appearing in the 

figures gives the value of the constraints the way that is considered by the optimization 

code: 

where g is the value of the constraint and it should be less or equal to zero, a is the actuai 

stress at a point of the plate and nadrn is the allowable stress. So, when g > O means that 

the constraint is violated. 



INERCELL BUCKLlffi CONSfRAlNT IN X-01RECT1ON INTERCXLL BUCKLING CONÇTRAINT IN Y-DIRECTION 

0.25 0.50 0.75 1.00 125 0.25 050 0.75 1.M 1.25 

Figure 6.25: Interceil Buckling Constraint for Optimal Design with 2 Design Variables. 

FACE SHEET WRJHÉLING CONSTRUNT IN X-DIRECTION FACE SHEET WRINCLINû CONSTRAINT IN Y-DIRECTION 

Figure 6.26: Facesheet Wrinkling Constra.int for Optimal Design with 2 Design Variables. 



0.25 0.50 0-75 1.00 125 0.25 030 0.75 l.W 1.25 

Figure 6.27: Fibre Stress Constraint for Optimal Design with 4 Design Variables. 

INTERCELL BUCKLING CONSTFUJNT IN X-DIRECTTON IMERCEtL BUCKLlffi CONSTRUNT IN Y-DIRECTION 

Figure 6.28: InterceIi Bucküng Constraint for Optimal Design with 4 Design Variables. 



FACE SHeT W R I M I N G  CQMTRAINT IN X-DIRECTION FACE SlQET WRINCLING CONSTRAlKl IN Y-DIRECTION 

0.25 O.% O 1.00 125 0.25 OS0 0.75 1.00 7.25 

Figure 6.29: Facesheet Wrinkling Constraint for Optimal Design with 4 Design Variables. 
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Figure 6.30: Fibre Stress Constraint for Optimal Design with 8 Design Variables. 



FACE SHEET WRINYLING m T R â I N T  IN Y-DIRECTCMI 

Figure 6.32: Facesheet Wrinkiing Comtra.int for Optimal Design with 8 Desi@ Vdables. 



FIBRE STRESS COMTRAINT IN X-DIRECTION FI- STRESS COMTRAlKT IN Y-DiRECflON 

Figure 6.33: Fibre Stress Constraint for Optimal Design with 16 Design Variables. 

IKERCELL BUCKLlNG CONSTRAlNT IN X-DIRECTION INTERCELL BUCKLING COHÇTRAINT IN Y-DIRECTION 

Figure 6.34: Interceli Buckling Constraint for Optimal Design with 16 Design Variables. 



FACE SHEET WRlWLlffi COPETRAINT IN X-DIRECTION FACE SHEET WRIH(L1ffi CONSTRAINT IN Y-DIRECTION 

Figure 6.35: Facesheet Wrinkling Constraint for Optimal Design with 16 Design Variables. 

Number of Design 

Variables 

First Natural 

Frequency (Hz) 

Table 6.10: The First Naturd Frequency for Different Number of Design Variables. 

From these figures and from Table 6.10, which gives the first natural frequency of the 

optimal design for different numbers of design variables, it cm be conduded that intercd 

buckling is the only active constraint for al1 cases and therefore drives the optimal designs. 

This is a result of the particular honeycomb core used; the conclusion might change if other 

core materials were considered. 

Figure 6.39 displays how the mass of the facesheets decreases when the number of design 

variables increases. For 2 design variables, the value of the objective function is 5.60 kg. 

When the number of design variables increases to 32, the m a s  of the facesheets falls to 

3.84 kg. This is a saving of 32% of the facesheet mass and a saving of 19% of the total plate 

m a s .  



FIBRE STRESS CONSTRAINT IN X-DiRECTIOIY RsRE STRESS COWTRAlNT IN Y-DIRECTION 

0.25 0.50 0.75 1.00 125 0.25 050 0.75 1.25 

Figure 6.36: Fibre Stress constra.int for Optimal Design with 32 Design Variables. 

INTERCELL BUCKLlNG COWTRAIHT IN X-DiRECTION INTERCELL BUCKLlffi COWTRAINT IN Y-DIRECTION 

0.25 0.50 0.75 1.00 125 0.25 030 0.75 1 .O0 

Figure 6.37: htercell Buckhg constra.int for Optimal Design with 32 Design Variables. 



FACE SHEET WRIHSLlffi CONSTRANT IN X-OIRECTION FACE SHEET WRINCLIffi CONSTRAM IN Y-DIRECTION 

0.25 0.50 0.75 1.00 125 0.25 0.50 0.7s 1.00 1.25 

Figure 6.38: Facesheet Wrinkling Constraint for Optimal Design wit h 32 Design Variables. 
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Figure 6.39: Convergence of the Objective Fitnction with the Number of Design Variables. 



Aspect 

Ratio 

( a b )  

1.00 

0.95 

0.90 

0.85 

0.80 

0-75 

0.50 

0.25 

Material Distribution (%) 

Band in X-Direction 

Table 6.11: Aspect Ratio Study: 2 Design Variables 

The next step is to investigate the effect of the aspect ratio ( a / b )  on the optimal design 

for different numbers of design variables. Tables 6.11 to 6.14 present the optimal design for 

plates with different aspect ratios using 2, 4, 8 and 16 design variables. Again, the results 

presented in these tables are in accordance with the sketch shown in Figure 6.8. Looking at  

these r d t s  and comparing them with the resdts presented in Section 6.1 two factors can 

be noted. The first is that, when the failure load is included there is not an abrupt change 

in the optimal design for a s m d  variation on the aspect ratio, rather the design is modified 

g r d u d y  as a function of aspect ratio. The other one is that only for a small aspect ratio 

(al6 x 0.25) the the minimum dowed amount of materid is in the long dimension of the 

plate. 

Following the sequence of Section 6.1, Approaches 2A and 2B were also applied to solve 

this problem. Prescribed points in the plute were selected to check the material density 

constraints and other points were chosen to check the failure load constraints. Figure 6.40 

and 6.41 present the material density change when the number of design variables increasea. 

These figures show that Approaches 2A and 2B methods converge to essentially the same 

design. 

In order to determine which constraint leads to the optimal design, Figure 6.42 to 

6.44 present the value of the f d u r e  load constraints when Approach 2A is applied whik 

Figures 6.45 to 6.47 do the same for Approach 2B, for eighteen design variables. Examining 



Material Distribution (%) Aspect 

Ratio 

( a b )  

1 .O0 

0.95 

0.90 

0.85 

0.80 

0.75 

0.50 

0.25 

Bands in X- Direction Bands in Y-Direction 

Table 6.12: Aspect Ratio Study: 4 Design Variables 
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Table 6.13: Aspect Ratio Study: 8 Design Variables 
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Material Distribution (96) 

Table 6.14: Aspect Ratio Study: 16 Design Variables 



Figure 6.40: Change in Material Distribution with Namber of Design Variables: A p  

proach 2A. 

Figure 6.41: Change in Material Distribution with Number of Design Variables: Ap- 

proach 2B. 



FiBRE STRESS CONSTRAlNT IN X-DIRECllON FIBRE STRESS COHSTRAlNT IN Y-DIRECTION 

Figure 6.42: Fibre Stress Constraint for Optimal Design with 18 Design Variables: Ap- 

proach 211. 

these figures it is concluded that intercell buckling is the constraint which drives the optimal 

design. 

Comparing the t hree met hods (Figure 6.48), i t is possible to verify t hat a,ll t hree met hods 

converge essentially to the same solution. Figure 6.49 shows how the objective function 

decreases as a function of the number of d e s i p  variables. 

From the results presented certain conclusions can be drawn. First, the two techniques 

(independent design approach and reduced basic formulation) work weU to yield an optimal 

design. As may be expected, Approaches 2A and 2B produce very similar results. However, 

the orthogonal functions used in Approach 2B are more complex (they use hyperbolic 

functions) and demand more computer time to be calculated. Therefore, Approach 2A is 

preferred over Approach 2B. The design provided by Approaches 2A and 2B bas a smoother 

change in material density, which may be a desirable factor. The inclusion of the failure 

loads rnakes the optimal design more realiçtic, and results in a redistribution of materid 

compared to the andysis, in Section 6.1, without failure constraints. The most important 

result is that it is possible t o  considerably reduce mass by defining a nonuniform material 

distribution in the facesheets. 



tNERCBL BUCKUffi CONSTRAINT IN X-DiRECTION INTER- BUCKLlffi CONSTRAINT IN Y-DIRECTION 

Figure 6.43: Intercell Buckling Constra.int for Optimal Design with 18 Design Variables: 

Approach 2A. 

FACE SHEET WRIWLING CONSTRAINT IN X-DIRECTION FACE SHEET WRlNKLlNG COHSTRAINT IN Y-DIRECTION 

Figure 6.44: Facesheet Wrinkiing Constta.int for Optimal Design with 18 Design Variables: 

Approach 2A. 



Fi- STRESS CONSTRAINT IN X-DIRfZTIW fl eRE STRESS COHSTRAINT IN Y-DIRECTION 

Figure 6.45: Fibre Stress Constraint for Optimal Design with 18 Design Variables: Ap- 

proach 2B. 

INTERCELL BUCKLING CONSTRAINT IN X-DIRECTION INTERCELL BUCKLIS CONSTRAINT IN Y-DIRECTION 

Figure 6.46: IntercelI Buckling Constraint for Optimal Design with 18 Design Variables: 

Approach 2B. 



F A E  SEET WRIWLIffi CONSfRAlNT IN X-DIRECTION FACE SHEET WWNKLING COHSTRAINT IN Y-DIRECTION 

Figure 6.47: Facesheet Wrinkling constra.int for Optimal Design with 18 Design Variables: 

Approach SB. 

Figure 6.48: Material Distribution. 
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Figure 6.49: Convergence of the Objective h c t i o n  using the Three Approadres. 

6.4 Solar Array Support wit h Failure Const raints 

Here, the optimal design of the structural support for the solar array of the CBERS is 

studied regarding the first natural fiequency and the failure modes (fibre failure, intercell 

bnckling and w-rinkling instability) as constraints. The dimensions, material properties and 

constraints for this problem were given in Section 6.2. The dowable stresses for the carbon 

fibre/epoxy composite are presented in Table 6.9. It is assumed that the panel is subjected 

to a 20 g acceleration in a direction perpendicular to the panel. 

The first r e d t s  to be shown are the optimd designs given by the thme methods as the 

number of design variables increases. Figures 6.50 to 6.54 present the optimal solution when 

Approach 1 was used. Different from the results displayed in Section 6.2, in this problem 

the optimal layouts have nonuniform material distribution in both directions. 

The optimal solutions obtained using Approaches 2A and 2B are illustrated in Fig- 

ures 6.55 to 6.56 and 6.57 to 6.58, respectively. The cornparison of the final optimal designs 

given by the three methods is shown in Figure 6.59 and 6.60. Once again, the three meth- 

ods yield similar solutions. Figure 6.61 illustrates how the mass of the facesheets decreases 

when the number of design variables increases using the three methods. 

In order to identiQ which failure load constraints are active, Figures 6.62 to 6.70 present 

the failure load constraints in the first quadrant of the plate for the optimal designs obtained 





Figure 6.52: Solar Array Support Optimal Design with 8 Design Variables: Approach 1. 

Figure 6.53: Solar Array Support Optimal Design with 16 Design Variables: Approach 1. 



Figure 6.54: Solar Array Support Optimal Design with 32 Design Variables: Approach 1. 

Figure 6.55: Change of Matenal Distribution Along the X-Direction for the Solar Array 

Support as the Number of Design Variables Increases: Approach 2A. 



Figure 6.56: Change of Material Distribution Along the Y-Direction for the Solar Array 

Support as the Number of Design Variables Increases: Approach 2A. 

Figure 6.57: Change of Material Distribution Along the X-Direction for the Solar Array 

Support as the Number of Design Variables hcreases: Approach 2B. 



Figure 6.58: Change of Materid Distribution AIong the Y-Direction for the Solar Anay 

Support as the Number of Design Variables hcreases: Approaich 2B. 

Figure 6.59: Materid Distribution Along X-Direction Given by the Three Approoches for 

the Solar Array Support. 



Y-DIRECTION 

Figure 6.60: Material Distribution Along Y-Direction Given by the Three Approaches for 

the Solar Array Support. 

Figure 6.61: Convergence of the Objective F'unction using the Three Approaiches for the 

Solar Array Support. 



flE STRESS COPIÇTRAJNT IN X-DIFECTION FIBRE STr(ESS CONSTRUNT IN Y-DIRECTION 

Figure 6.62: Fibre Stress Constraint for Optimal Design with 32 Design Variables of the 

Solar Array Support: Approach 1. 

using the three methods. From these figures, i t  is clear that intercell buckling is the failure 

mode that drives the optimd design. 

From the results presented, three points should be mentioned. First, all results follow 

the same pattern as those of the previous problem. Second, the optimal design with uniforrn 

material distribution (two design miables)  is heavier than the initial design of the CBERS 

solar array support, Figure 1.3. The reason for this is that CBERS has b e n  designed to 

be launched by liquid fuel rocket, so the design load is srnaller, around 12 g acceleration. 

Third, the facesheet mass decreased from 2.35 kg to 1.78 kg as the number of design variables 

increases, this represents a 24% mass saving, which gives a 12% saving in the overall mass 

of the sandwich panel. 



INTERCELL BUCKLlffi CONSTRAIHT IN X-DIRECTION I N T E R E U  BUCKUffi m T R U N T  IN Y-DIRECTION 

Figure 6.63: Interceil Budding Constraint for Optimal Design with 32 Design Variables of 

the Solar Array Support: Approach 1. 
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Figure 6.64: Facesheet Wrinkling Constraint for Optimal Design with 32 Design Variables 

of the Solar Array Support: Approach 1. 



fleRE STRESS COHSTRAINT IN X-DIRECTION FIBRE STRESS CONGTRAINT IN Y-DIRECTION 
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Figure 6.65: Fibre Stress Constraint for Optimal Design with 20 Design Variables of the 

Solar Array Support: Approach 2A. 

INTERGELL BUCKLING CONSTRAINT IN X-DIRECTION INTERCEU BUCKLING CONS1 RAIHT IN Y-DIRECTION 

Figure 6.66: Interce11 Buckling Constraint for Optimal Design with 20 Design Variables of 

the Solar Array Support: Approach 2A. 
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Figure 6.67: Facesheet Wrinkling Constra.int for Optimal Design with 20 Design Variables 

of the Sohr Array Support: Approach 2A. 

FIBRE STRESS CONSTRAIHT IN X-OIFIECTION FIBRE STRESS WNSTRAINT IN Y-DIRECTION 

Figure 6.68: Fibre Stress Constra.int for Optimal Design with 20 Design Variables of the 

Solar Array Support: Approach 2B. 



INTER-L BUCKLlffi CONSTRAINT IN X-DIRECTION 

Figure 6.69: Intercell Buckling Constraint for Optimal Design with 20 Design Variables of 

the Solar Array Support: Approach 2B. 

FACE SHEET WRlNKLlNG CONSTRAlM IN X-DIRECTtON FACE SHEET WRlNKLlffi CONSTRAlNT IN Y-DIRECTION 

Figure 6.70: Facesheet WrinkIing Constraint for Optimal Design with 20 Design Variables 

of the Solar Array Support: Approach 2B. 



Chapter 7 

Summary and Conclusions 

This thesis has examined the optimal design of sandwich plates with spatidy heterogeneous 

composite facesheets. The essential idea in the work has been to  determine the optimal, 

spat idy Msying stifiness of the composite facesheets which yields a minimum weight design. 

The work is primarily oriented tuwud the design of aeronautical and aerospace stmctures 

in which weight saving results in significant advantages either in the form an increased 

pay-load or improved vehicle performance. The curent  work represents an advance over 

previons sandwich plate optimization as previons work was restricted to designs with a 

homogeneous stiffness distribution of the facesheet S. 

The specific design considered was the minimization of the facesheet m as  while satisfy- 

ing constraints on the plate f is t  naturd fiequency and certain facesheet stress levels. The 

stress constraints were based on =tual design f d u r e  criteria for honeycomb-core composite 

facesheet sandwich plates used in typical spacecraft . In the work, the facesheets are assnmed 

to be composed of an orthotropic net of unidirectional composite fibre strips; the optimal 

design (the least mass design) is obtained by changing the strip widths and the spacing 

between them over the domain of the plate. 

This chapter presents a summaty of what was developed in this dissertation and hi&- 

Iights the results and contributions. 

Summary 

This work f is t  presents an overview of the research in the field of structural optimization. 

This is followed by a review of the analysis and optimization of sandwich plates. 



In Chapter 2 a sammary and description of commody d numerical methods appüed 

to structnral optimization waa given. The chapter ends with the description of a cornputer 

code and the corresponding flow chart which was developed as part of this work and which 

is based on the numerid methods described in the beginning of the chapter. Chapter 3 

presents the background necessary to devdop a cornputer code for the evahation of faeesheet 

stresses and nat mal fiequemies of composite sandwich plates wi t h het erogeneous composite 

facesheets. The developed code was verified by comparison to numerical and experirnental 

resdts pnblished in the literature as well as finite elexnent resdts fiom a MSC/NASTRAN. 

Since the sandwich plates considered have facesheets mmufactured from a carbon fi- 

bre/epoxy composite net, i t  was necessary to approximate the nets as a heterogeneous 

ort hotropic continuum. Two procedures were developed to achieve this approximation. In 

the first, a single basic c d  of the net was modeiled using the finite element method. Bound- 

ary conditions for the c d  were determined to represent the periodicity of the structural 

response under simple load conditions. By determining the strain energy of the model and 

equating this energy to the strain energy of a continuum c d  (referred to as a homogenised 

cell) under the same b o u n d q  conditions, it was possible to evaluate the homogenised en- 

gineering constants of this equivalent continuum. In the second procedure, a large segment 

of the facesheet net is modded by a finite element mesh, and then boundary conditions 

and loads are applied to this modd in order to simulate the boundary conditions and loads 

of an equivalent laboratory test. The work done by the nodal forces octing on a basic 

cd closest to the centre of the model is calculated and set equal to the strain energy of a 

homogenised cell under the same boundary conditions; the homogenised engineering con- 

stants were thereby determined. The second approach was then used to generate tables 

of homogenised engineering constants for different material densities in both the x and y 

directions. In order to validate the concept of homogenised dastic constants a sandwich 

plate with facesheets made of an aluminium nets was designed and manufactnred. This 

plate was tested in the laboratory and the fkst three natural frequencies detennined; these 

results were compared to the numerical results predicted using the homogenised b a s 4  nu- 

merical model. An excellent comparison was obtained between the experirnental results and 

numerical prediction. 

Chapter 5 addresses a number of issues related to the implementation of the numerid 

optimization. During the optimization, two techniques were nsed to represent the material 



density in terxns of usefui numerical design vanables. In the first, an independent design 

approach, the face sheets are discretized into regions with uniform design parameters. In the 

second, a reduced ba i s  formulation, the materid density is specified as a linear combination 

of orthogonal, complete, basis fimctions. The next issue d d t  Mt h t hree failmes loads (fibre 

failure, intercell bucküng and wrinkling) which were induded as constraints. Among all the 

design requirements that a composite sandwich plate should meet, these failure loads are 

the ones affecteci by changes in the distribution of material in the face sheets. That ie, these 

failure constraints are the only aspect dtered during the optimization process. This lead to 

the next issue of the sensitivity analysis. In order to accelerate the optiniization process, a 

semi-analytical approach was applied to determine the sensitivity of the constraints, since no 

simple andytical expressions can be obtained. The final issue discussed involves the choice of 

optimization algorithm. Therefore, before proceeding, it was necessary to determine which 

combination of numerical optimization methods would best solve the specific problems of 

interest. The methods available in the optimization code previously developed were tested 

and a choice of algorithms was made. 

The may results of this work are contained in Chapter 6. This involves two composite 

sandwich plate studies: in the first, a square one and thea a series of rectangular plates with 

varying aspect ratios are considered while in the second a plate with the dimensions and 

material properties of an actual remote sensing satellite solar m a y  support is analysed. In 

both studies the analysis proceeds as a two step process. In the fist step, the optimization 

process was applied considering only the first natural frequency as a constra.int and nsing 

the two techniques to define the design variables. Two important issues were examined: 

first, the effect of the number of design variables on the optimal solution; second, how the 

representation of the design variables affects the optimal solution. The second step induded 

both natural fiequency and failure load constraints and the same issues were investigated 

how the failure loads affect the optimal solution. 

7.2 General Findings 

The two models (for freefree and simply-supported composite sandwich plates) developed to 

determine the natural frequencies and failure loads of composite sandwich plates perf'ormed 

well. They were verified in comparison to experimental results, results from the literature 



and numerical results fiom MSC/NASTRAN a commercial finite elernent code 

The two approaches used to evaluate the homogenised engineering constants gave ex- 

cellent results. The caldateci values were found to be in dose agreement with values data 

in the literature and with experimental results. Since the approach using only one basic 

c d  is easier to implement aad numerically less demanding it should be nsed rather than 

the approach that models part of facesheet net. 

Arnong all the combinations of numericd optimization methods used, the set composed 

of sequential linear programming, the met hod of feasi ble directions and the golden section 

method gave the best performance. The combination of these methods was found to mach 

the optimal design with the least number of objective function and constraint evaluations. It 

should dso be noted that the golden section method is one of the simplest one-dimensional 

search technique available and in addition, it was the most stable for the solution of the 

current problem. 

An important by-product of this thesis is the idea of machining aluminium sheet to 

be used as facesheets of sandwich plates. It is possible to rnannfacture almost any design 

defined by a optimization package using a numerically controlled milling machine. To 

our knowledge this technology has never been employed in this context and seems most 

promising. 

When the two approaches proposed to d e h e  the design variables were applied to solve 

the optimization problem, it was found that Approach 1 (an independent design approach) 

usually gives the least mass design. However, it requires more design variables and its solu- 

tion h a .  sharp changes in the material density from one region to the other. Approaches 2A 

and 2B (reduced basis formulation) give similar solutions; however, since the buis  functions 

used in Approach 2B are more complex (it uses hyperbolic functions) and demand more 

cornputer time to be evaluated numericdy, Approach 2A is preferred over Approach 2B. 

From the aspect ratio studies and when using Approach 1 with only the first naturd 

frequency as a constraint, i t  may be conduded that a s m d  variation on the aspect ratio 

(a /b  5 0.90) causes a rapid change in the optimal design. Furthermore, the material density 

oriented in the longer plate dimension drops to the minimum dowed. When failure loads are 

included in the constraint, this transition is smoothed out. In general, the optimal deaigns 

obtained when the failnre loads are considered as constraints present a much smoother 

material density distribution than the solution with only the first natural frequency as 



constraint. It is interesting that the only failure load constraint that is active in determining 

the optimal design is interceil buckling; this result is of course o d y  valid for the honeycomb 

cell dimensions considered here and should not be generalised indiscriminately. An addition 

point and one that may be considered as a bit of an aside, is that the inclusion of the fdu re  

constraints seems to bnng some stability to the numerical aspects of problem. 

7.3 Signincance of the Present Study 

A number of stuàies have been completed concerning the optimization of composite sand- 

wich plates; these works considered the thicknesses of the facesheet layers and the core 

and/or the direction of fibres in the facesheet laminate as design variables. The present 

study extends the research by considering variation of material density in different parts 

of the plate. This dissertation developed an approach for the optimization of light-weight 

composite sandwich plates. The plate facesheets are constructed using a net of composite 

fibre-strip in which the strip widths and spacing are variabIe; this variability defines the 

nonuniform material density distri bution in the facesheets. The specification and solution 

of this probIem has been not addressed before. 

In order to solve this problem many questions had to be asked and answered. These 

include: among the numerical optimization methods used in structural optimization, which 

one b a t  solve this problem? What is a suitable procedure to represent the composite- 

strip net as a smoothed heterogeneous orthotropic continuum? What is a reasonable way 

to define the design variables for this problem? This study solved the problem proposed. 

The results of this work demonstrate dearly that a variation in material density leads to 

important design advantages. Furt hermore, the optimal design shows significant changes 

in material density; typical optimal designs exhibit a factor of nine in density variations. 

That is over the f d  range permissible material densities fiom 10% to 90% is used in the 

design. The results obtained are also impressive from the point of view of the gains that 

are possible; typical calculations showed that the mass of the facesheets can be reduced 10 

to 50% depending on plate aspect ratio. It is also worth adding that the solutions obtained 

are conceptuaüy straightforward to manufacture and therefote could lead to significant 

performance improvements wit h little cost penalty. 



7.4 Recommendat ions 

As possible extensions of this work, it is of great interest to  investigate the effkct of 0 t h  

boundary conditions on the optimal design; the current study is limit ed t O simply-supported 

plates. Also, it is important to consider the thickness and density of the core, and the 

orientation of the net as design variables. When the properties of the core are assumed 

design variables, other failure modes such as shear crimping and interlaminar stress should 

ais0 be considered in the problem specification. When o d y  the f i s t  natural frequency wa 

considered as constra.int, the present work showed that the optimal solution concentrates 

material in well defined local areas of the plate; this suggests that the use of stiffeners cari 

improve the design. In such a formulation, the shape, number and position of the stiffeners 

shouid be investigated. 

Regarding optimization algori thms, heuristic methods, such as genetic algorithms and 

simulated annealing, seem to present some advant ages when compared t O gradient- based 

methods. These daims should be investigated by using these methods to solve the problems 

presented here and t heir performance compared wit h the performance of gradient- based 

met hods presented in t his work. 

F i n d y  i t  is important to build and test the optimal designs obtained. It seems clear 

that the present optimization results fit very naturdy with computer controlled milling of 

metallic facesheets or computer controlled weaving of fibre reinforced composites. These 

designs present interesting challenges fiom a rnanufacturing point of view; however, the 

challenge seems to be an extremely worthwhile undertaking. For, the potentiai weight 

savings are truly significaat and therefore the gamble in the undertaken could pay signifiant 

dividends. 
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