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Abstract

Minimum weight design is an important criterion in aircraft and spacecraft because it
allows either an increased pay-load or higher performance. As a result, the use of composite
sandwich panels has grown due to their light weight and high rigidity. In order to further
increase the efficiency of these structures, designers have used different materials in different
shapes in the facesheets and in the core. One of the most recent innovations has been the
use of a uniform net of carbon fibre/epoxy as the facesheets.

In the present study, the optimal design of sandwich plates with heterogeneous face-
sheets is treated. The plate mass is minimized, considering the first natural frequency and
certain failure loads as constraints. Weight reduction is obtained by defining a nonuniform
distribution of composite material in the facesheets. Initially, the facesheets are assumed to
be constructed of composite strips in a regular pattern. During the optimization process,
both the widths of the strips and the spacing between them are varied to decrease the
amount of material used. Such a design is conceptually straightforward to manufacture
and, therefore, would lead to improved performance with little cost penalty.

In order to solve this problem, it is first necessary to develop a computer code to
determine the natural frequencies and the stresses in these plates. The bending and vi-
bration problems for sandwich plates with heterogeneous facesheets are solved using the
Ritz Method in conjunction with the assumptions formulated by Reissner for sandwich
plates. Since the sandwich plate considered in this study has facesheets constructed of nets
and the computer code was developed to analyse laminates with heterogeneous continu-
ous layers, it was necessary to use a procedure to approximate the nonuniform net as a
smoothed orthotropic heterogeneous continuum. The smoothing process is accomplished
using the theory of homogenisation and the material coefficients were calculated using the
Finite Element Method. Two approaches were considered to define the design variables
of the problem: an independent design approach, in which the facesheets are discretized
into regions with uniform design parameters; and a reduced basis formulation, in which the
design is specified by a linear combination of orthogonal basis functions.

This study solved the problem proposed. It has been demonstrated that variation in
density is important and can lead to significant design improvement. Across of the face of
the optimally designed plate, the density varies by a factor of 9. Also, the problems solved

showed that the mass of the facesheets can be reduced up to 50%.
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Eq Young’s modulus in the direction normal to the fibre.
f Preselected orthogonal basic function.

F Ob jective function.

F Force vector.

FDX Material density in x-direction.

FDY  Material density in y-direction.

Fy Critical buckling stress.

Fye Critical wrinkling stress.

FS Specified failure stress.



Fue Facesheet wrinkling strength.

g Inequality constraints.

g Penalty function: extended penalty method.

Je Energy function: simulated annealing method.

G12 Shear modulus.

h Equality constraints.

h' Given step: tabu method.

H Metric matrix that approximates the inverse of the Hessian.
H, Set of steps: tabu method.

h. Core thickness.
hy Facesheet thickness.

h; Distance from the centre of the hypersphere to the jth linearised constrain.
h, Distance from the centre of the hypersphere to the linearised objective function.
K Stiffness matrix.
l Number of equality constraints.
Length of the basic cell.
L Lagrangian.
Length of the fibre-strip net model.
m Number of inequality constraints.
M Mass matrix.

M,s Mass of the facesheets.

N Matrix of the active constraint gradients.

N, Number of nodes on the boundary of the basic cell.
NDV  Number of design variables.

NFM Number of failure modes.

NT Number of terms in the series expansion.

ng Number of nodes on Side 1 of the basic cell.

ng Number of nodes on Side 2 of the basic cell.

n3 Number of nodes on Side 3 of the basic cell.

ng Number of nodes on Side 4 of the basic cell.

P Index used during unconstrained minimization.
P Imposed penalty function.



O o =

Orthogonal projection operator.

Probability to be selected: genetic algorithm.

Scalar factor: exterior penalty method.

Scalar factor: interior penalty method.

Generalised coordinates.

Hessian matrix.

Transformed reduced stiffness.

Search direction.

Matrix that relates displacements with stresses.

Part of the boundary with prescribed forces.

Part of the boundary with prescribed displacements.

Kinetic energy.

Surface traction vector.

Tabu list: tabu method.

Temperature: simulated annealing method.

Displacement in x-direction.

Displacement vector.

Strain energy.

Strain energy in the FEM model due to an unitary displacement in x-direction.
Strain energy in the homogenised cell due to an unitary displ. in x-direction.
Strain energy in the FEM model due to an unitary displacement in y-direction.
Strain energy in the homogenised cell due to an unitary displ. in y-direction.
Strain energy in the FEM model due to an unitary shear deformation.
Strain energy in the homogenised cell due to an unitary shear deformation.
Displacement in y-direction.

Displacement in z-direction.

External work.

Weight coefficients: neural network.

Spacing of the strip.

Width of the strip.

Design variables vector.

Internal nodal force in the x-direction.



X New design variables vector.

x* Optimal design variables vector.

X. Compression allowable stress.

Xi; Neuron inputs: neural network.

x! Lower limit for design variables vector.

X, Initial design variables vector.

X, Design variables vector at the qth iteration.
X Tension allowable stress.

x¥ Upper limit for design variables vector.

Y Internal nodal force in the y-direction.

Yi; Neuron output: neural network.

z Slack variable: augmented Lagrange multiplier method.
Greek

a Distance to be travelled in a given direction.
Bp Probability of a new design to be accepted: simulated annealing method.
v Transverse shear strain.

€ Transition point: extended penalty method.
€ Strain vector.

¢ Rotation in y-direction.

0 Push-off factor: method of feasible directions.
K Middle-surface curvature.

K Boltzmann constant.

A Lagrange multiplier.

A* Optimal Lagrange multiplier.

2 Poisson’s ratio.

vn Poisson’s ratio.

3 Rotation in x-direction.

II Total potential energy.

p Density.

o Stress vector.



T Shear stress.

wem(z) Basis functions for displacement w.
¢en(y) Basis functions for displacement w.
@dm(z) Basis functions for rotation ¢.
wdn(y) Basis functions for rotation (.
@em(z) Basis functions for rotation £.

@en(y) Basis functions for rotation &.

P Equivalent equality constraint: augmented Lagrange method.
v Mode shape.
AZ Cell extension in x-direction due to an unitary displacement in x-direction.
AY Cell compression in x-direction due to an unitary displacement in y-direction.
A7 Cell compression in y-direction due to an unitary displacement in x-direction.
AY Cell extension in y-direction due to an unitary displacement in y-direction.
Q Frequency of vibration.
(N The first natural frequency.
[' Specified first natural frequency.
Subscript
c Compression.
Core.
f Facesheet.
h Homogenised.
l Lower limit.
m Finite Element Model.
o Initial.
q q"h iteration.
t Tension.
u Upper limit.
z x-direction.
y y-direction.
z z-direction.



1 1-direction.

2 2-direction.
Superscript

h Homogenised.
l Lower limit.
u Upper limit.
z x-direction.

y y-direction.

* optimal value.



Chapter 1

Introduction

1.1 Motivation

Minimum weight is an important criterion in aircraft and spacecraft design as it allows
either an increased pay-load or higher performance. As a result, the use of composite
sandwich panels has grown due to their light weight and high rigidity. These panels are
manufactured as a three layer structure. The external layers, the facesheets, usually consist
of thin laminates of high-stiffness material. The central layer, the core, is a slab of low
stiffness and density. This type of panel has an efficient structural geometry, because it
places the stiff material away from the neutral plane thereby increasing the flexural rigidity.
In order to further increase the efficiency of these structures, designers have used different
materials in different shapes in the facesheets and in the core. One of the most recent
innovations has been the use of a uniform net of carbon fibre/epoxy as the facesheets.

The idea for this work came from a satellite project called CBERS (China-Brazil Earth
Resource Satellite), Figure 1.1. This is a remote sensing satellite developed in a joint
program between the Brazilian and Chinese governments. This satellite has an appendage
composed of three sandwich panels; these panels covered with solar cells which generate
power during operation in space. The sandwich panels have facesheets composed of carbon
fibre/epoxy nets and a core of aluminium honeycomb. The goal of this thesis is to undertake
an optimization study related to these panels where the objective is to obtain a minimum
weight design.

In the next section, a brief history and status of structural optimization will be pre-

sented. Then a literature review related to the analysis and optimization of sandwich panels



China-Brazil Earth Resources Satellite.
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will be completed. Following this, the objectives of this dissertation are explained and then

the outline of the thesis is given.

1.2 History and Status of Structural Optimization

This section presents a brief overview of structural optimization. A more complete pre-
sentation may be found in the paper published by Venkayya [110] or in any number of
publications dealing with structural optimization [8,49,71].

Research in the area of structural optimization goes back as far as Galileo Galilei, 1638.
His strongest cantilever beam in bending and constant shear formulation can be considered
an optimal design for minimum weight under a uniform stress constraint [65]. However, the
development of mathematical optimization started only after the introduction of calculus by
Newton and/or Leibniz at the end of the 17th century. This was followed by the development
of the calculus of variations in the 17th and 18th centuries.

The development of high-speed digital computers in the 1950s and the subsequent com-
puter revolution have had an immeasurable impact in the field of engineering. Increased
computational power has resulted in calculation capabilities never seen before for the so-
lution of complex mathematical and engineering problems. The computer has led to the
development of powerful numerical methods such as the finite element and finite difference
techniques; these techniques have as their main feature the characteristic that they reduce
the differential field equations of solid and fluid mechanics to algebraic form. Algebraic
equations of almost any order are easily solvable by modern digital computers.

Also during the 1950s, the simplex method was introduced by Dantzig [19]. It is a
simple and versatile method which is very attractive for solving linearized constrained opti-
mization problems. This work also led to the development of many nonlinear programming
methods known today, such as: gradient projection, feasible directions, and penalty func-
tions, as examples. In 1960, Schmit [93] developed an idea that was critical in bringing
these techniques to the attention of the researchers in the area of structural mechanics.

The cost and lack of robustness when numerical search techniques are applied to large-
scale problems, revived discrete optimality research during the 1960s and 1970s. In the
1980s, Vanderplaats [107] implemented the feasible direction methods (CONMIN); currently

these are probably the most widely used techniques in structural optimization. It was also



at this time that structural optimization started to become accepted as one of the design
tools in practical structural design. This happened not only because designers had gained
confidence, but also because large-scale software tools for production applications started
appearing in the latter half of the 1980s. Duysinx & Fleury (24] and Johnson [43] present
a broad survey of structural optimization tools that have been developing in Europe and
North America, respectively.

Some topics in structural optimization which have recently received the attention of
researchers include: sensitivity analysis, multidisciplinary design, heuristic methods, opti-
mization by decomposition and shape optimization. Sensitivity analysis is being increas-
ingly investigated because of the recognition of the power and broad range of applicability
of sensitivity derivatives. These ideas have been applied to approximate analysis, analytical
model improvement, and assessment of design trends. Haber et. al. [35], Choi [18] and
Arora & Lee [4] have recently presented a comprehensive review of the latest publications
in this topic.

Although there has been considerable progress in the field of multidisciplinary de-
sign [83], there remains a great deal to be done. The principal difficulty is that the
combination of individually complicated disciplines leads to even more complex discipline
interactions; these complex interactions are serious impediments to further developments.
On the other hand, practical applications of optimization algorithms to multidisciplinary
design problems are expected to advance with the increasingly more powerful computers.

Heuristic search methods have been developed to solve complex combinatoric problems.
They are powerful tools for locating optimal solutions for difficult problems, since they do
not require gradient calculations. Among these methods, four are most commonly used:
genetic algorithms [41] and neural networks [15,48] have the biological sciences as their
background; simulated annealing is inspired by the second law of thermodynamics; while
tabu search results from attractive procedures for problem solving.

Large optimization problems considered intractable due to their large number of design
variables and constraints can be treated through optimization by decomposition [100]. In
this case, a large problem is transformed in a set of coordinated smaller subproblems. This
approach is well-suited to an engineering team, where each member concentrates on different
parts of a project.

One important area of structural optimization explored recently is shape optimiza-



tion [8,66] (geometry and topology of a structural layout). The reason for focusing on this
problem is that it has a great impact on the performance of the structures. The standard
approach to shape optimization is to introduce boundary variations for a given topology
of the structure. This methodology can now be considered mature for planar structures;
however, there is still developments remaining regarding boundary shape optimization for
three-dimensional solids. This results from the complexity of geometrical representations
and the associated automatic finite element mesh generation methods in these structures.
Recently a homogenisation method [6] for generating optimal topologies of structural ele-
ments has appeared in the literature. This method predicts grid- and truss-like structures

for planar structures.

1.3 Structural Analysis of Sandwich Plate

A considerable number of papers have been published concerning the analysis of sandwich
plates. These papers can be divided in three main categories: analytical, numerical and
experimental. This work is now discussed.
- Analytical Work

One of the earliest analytical papers concerning sandwich plates was due to Reissner [87].
He presented the basic differential equations for finite transverse deflections of sandwich
plates under the assumptions that in-plane stresses in the core and variation of the stress
over the thickness of the facesheets are negligible. After that, Yu [113] published several
papers treating one-dimensional flexural vibration of sandwich plates. In the early 1960s,
Habip [36] presented a survey of the analysis of sandwich structures. Liaw & Little [54]
developed the governing equations for bending of multi layered sandwich plates; in their
model the plate is considered to be a multi layer sandwich with n membranes and (n-1)
orthotropic cores. In 1970, Pagano [69] published a three-dimensional elasticity solution
for rectangular laminates with pinned edges. Since then, this paper has been used as a
reference for verifying numerical methods to solve sandwich plate problems. Pearce &
Webber (73] presented a method to determine the overall buckling and local wrinkling loads
of sandwich panels with honeycomb cores and laminated angle-ply faces; their work was
based on the assumption that the facesheets have a sufficient number of layers so as they

may be considered to be orthotropic sheets. Using generalised harmonic analysis, Kulkarni



et. al. [52] have investigated the displacement response of orthotropic sandwich plates
subjected to ideal white noise. Frostig & Baruch [29] present a high-order theory for the
bending behaviour of a sandwich panel with flexible core to study localised load effects.
Their theory uses classical thin-plate theory to model the skin and a three-dimensional
elasticity representation of the core material. They used this model to study the effect of
the plate aspect ratio on the deformations, internal resultants, and stresses at skin-core
interfaces.
- Numerical Work

Among papers published concerning numerical methods applied to sandwich plate anal-
ysis, one of the first was written by Bacon & Bert [5]. They used the Rayleigh-Ritz technique
to determine both the axisymmetric and unsymmetric vibrational characteristics of arbi-
trary open-ended sandwich shells of revolution. The facing and core materials can be either
orthotropic or isotropic. Chan & Cheung [16] used the finite element strip method to solve
bending and vibration problems of multi-layered sandwich plates. Khatua & Cheung [47]
formulated beam and plate elements of the displacement type for bending and vibration
analysis of multi layer sandwich beams and plates. In the formulation of these elements
the bending stiffness of the face layers and independent shear deformation of the core and
facesheets were considered. Monforton & Ibrahim [63] studied the effect of coupling in the
static structural response of sandwich plates constructed with an orthotropic core and lami-
nated faces. They considered simply supported sandwich plates under lateral loads in which
the faces are antisymmetric cross-ply laminated plates. Using an accurate hybrid-stress fi-
nite element, Rao & Mayer-Piening [84] performed bending analyses of thick angle-ply
composite sandwich plates and concluded that these plates are very sensitive to various in-
herent parameters such as the relative thicknesses of face and core, fibre orientation of the
facesheets and boundary conditions. Argyris & Tenek [3] developed a three-node layered
triangular element based on the natural mode method for bending analysis of isotropic,
anisotropic and hybrid plates. This element is free of shear locking, has zero strains under
rigid body motion and converges to the true state of deformation.
- Experimental Work

Most of the papers in the literature reporting experimental results for sandwich plates
deal with stability experiments. However, Raville & Ueng [86] described vibration tests of
a simply-supported sandwich plate. Sullins ef. al. [102] presented an extended study on



stability of sandwich plates, including some experimental results. Later, Pearce & Web-
ber [74] conducted experiments to determine overall buckling and facesheet wrinkling loads
for sandwich plates with carbon fibre composite facesheets and honeycomb cores. These

experimental results are compared with the analytical results they presented in [73].

1.4 Optimization of Sandwich Structures

In the past sixty years many studies have been completed investigating sandwich-structure
optimization problems. Vinson [111] discussed these studies up to 1964. Here, the more
recent research in this area is discussed. The sandwich-structure optimization problems
described below are divided in three groups, according to the type of structure being opti-
mized: beams, plates or shells.

- Optimization of Sandwich Beams

Paydar & Park [72] studied the minimum weight design of sandwich beams that have
variable facing and core thicknesses. They presented a small deflection theory that deter-
mines the stresses and deformations for this type of beam. The design variables are the
parameters that define the thicknesses of the facesheets and the core. The constraints are
the upper limits on the maximum stresses in the facesheet and core and the displacement at
the end of the beam. In order to solve the optimization problem, the Recursive Quadratic
Programming Algorithm was used.

- Optimization of Sandwich Plates

Vinson [111] presented closed-form solutions for the analysis and design of minimum
weight sandwich plates with hex-cell and square cell cores. He considered overstressing,
overall buckling, core shear instability, face wrinkling, and monocell buckling as constraints.
Later, Vinson [112] developed analytical solutions to determine optimal stacking sequences
of minimal weight design of sandwich panels sub jected to various in-plane loads (compressive
and shear).

Ueng & Liu [105] investigated the least-weight problem of a sandwich panel with light-
weight core made from a superplastic sheet. The modified Fletcher-Powell method in con-
junction with the golden section searching technique was used to solve the sequence of
unconstrained minimization problems.

Kodiyalam et. al. [50] used the genetic search method for tailoring composite material



structures, including a satellite solar array substrate. In this problem the objective fanction
was the weight of the panel with constraints on the fundamental frequency, ply strength,
and sandwich local buckling failore margins of safety. The design variables used were
the ply thicknesses and ply angle orientation. Using a linear least-squares approximation
procedure, they concluded that the genetic search method they implemented required too
many function evaluations.

Malott et. al. [57] compared the performance of three genetic algorithm topologies when
used to determine the optimal layup (orientation and number of plies in the top and bottom
facesheets) of a cantilever sandwich plate (an idealisation of an airfoil). They minimized
the weight of the structure while maximising the twist in the direction opposite to the one
caused by the loading. Stiffness, strength and ply clustering were considered as constraints.
- Optimization of Sandwich Shells

Min & de Charentenay [62] developed a code to determine the minimum weight of
a sandwich cylinders with orthotropic facings and core. The design variables were the
facesheet ply-fibre angles and the facesheet and core thicknesses. The constraints are quite
general and relate to local buckling (dimpling and wrinkling) and the strength of the com-
posite material under the combined action of axial compression, bending moment and trans-
verse shear. The variable metric method for constrained optimization was used to find the
optimal design; multiple starting points were used.

Ding [22] optimized the weight of sandwich construction by viewing thicknesses of the
face and the core as design variables. The constraints were different failure modes: facesheet
tension failure, core shear failure, general buckling, facesheet wrinkling, shear crimping, and
facesheet dimpling. the stresses in the face and in the core were determined using a six-node
triangular sandwich shell element. Later, Ding [23] extended this work by considering cell
wall thickness and the diameter of an inscribed circle in a honeycomb cell as additional
design variables.

Ostwald [68] solved the problem of minimum weight design for sandwich cylindrical
shells under axial compression and external pressure. The shell facesheets were constructed
of aluminium alloy and the core was a foamed plastic; the thickness of the layers were the
design variables. He considered stability and material strength as constraints. The stability

problem is solved using the Bubnov-Galerkin method.



1.5 Objective

Lightweight composite sandwich panels have been designed for space applications such as
satellite solar panels. In these structures, the fibre reinforced composite material of the
facesheets are arranged in a net configuration composed of fibre strips interwoven in a per-
pendicular fashion. This facesheet configuration has been used in the CBERS solar array
support (Figure 1.2), as well as in other satellite sandwich panels. A typical detail illustrat-
ing the CBERS design is shown in Figure 1.3. In the present study, the optimal design of
this type of structure is treated. The mass of the sandwich plates with orthotropic facesheets
and core is minimized, considering the first natural frequency and certain failure loads as
constraints. Weight reduction is obtained by permitting a nonuniform distribution of com-
posite material in the facesheets. Initially, the facesheets are assumed to be constructed of
strips in a regular pattern. During the optimization process, both the widths of the strips
and the spacing between them are varied to decrease the amount of material used. Such a
design is conceptually straightforward to manufacture and therefore could lead to improved
performance with little cost penalty.

In order to solve this problem, it is first necessary to develop a computer code to de-
termine the natural frequencies and the stresses of these plates when they are subjected
to a specified load condition. The bending and vibration problems for anisotropic sand-
wich plates was solved using the Ritz Method; the assumptions formulated by Reissner for
sandwich plates were adopted, [87).

Since the sandwich plate considered in this study has facesheets constituted of nets
and the computer code was developed to analyse laminates with heterogeneous continu-
ous layers, it was necessary to use a procedure to approximate the nonuniform net as a
smoothed orthotropic heterogeneous continuum. The smoothing process was accomplished
using the theory of homogenisation and the material coefficients are calculated using the
Finite Element Method.

The next step is to define the design variables of the problem. Two approaches were
considered: an independent design approach, in which the facesheets are discretized into
regions with uniform design parameters; and a reduced basis formulation, in which the
design is specified by a linear combination of orthogonal and complete basis functions.

The last step was to determine from among all the numerical optimization methods
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which one functions best for the solution of this problem. A computer package was created
based on a range of numerical methods which have been used in structural optimization
problems. These methods were evaluated by solving example sandwich plate problems and

then the most efficient algorithm was chosen.

1.6 Thesis Outline

Chapter 2 presents a description of the most common numerical optimization methods used
to solve structural optimization problems. This chapter reports on a computer package
which was developed using some of these methods.

A comprehensive description of the numerical models developed in this study to deter-
mine stresses and natural frequencies of composite sandwich platesis presented in Chapter 3.
Two numerical models were generated: one for a simply-supported and another for a free-
free composite sandwich plate. These models were verified by comparing their results with
results available in the literature or with results from a commercial Finite Element code
(MSC/NASTRAN).

Chapter 4 describes the procedure used to determine the homogenised engineering con-
stants of an anisotropic layer that models the composite net. These properties were calcu-
lated using the Finite Element Method and the boundary conditions of the finite element
model used are specified in this chapter as well. At the end of the chapter the verification
of the procedure adopted is presented, in which a sandwich plate with facesheets formed
from a net was built, and tested; the experimental results were compared with numerical
results obtained using these homogenised engineering constants.

Two approaches were developed to define the design variables in these optimization
problems. These approaches are described in Chapter 5. In addition, the failure modes
considered and the sensitivity analysis are described. The final part of this chapter outlines
the process of choosing the optimization algorithm.

Chapter 6 presents optimal solutions for composite sandwich plates with facesheets of
carbon fibre/epoxy nets. In these problems, the effect of the approach used to define the
design variable, the plate aspect ratio and failure modes are presented.

Finally, in Chapter 7, the conclusion of this work are presented as well as some recom-

mendations for future work.
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Chapter 2

Numerical Methods for Structural

Optimization

Before describing some of the numerical methods used in structural optimization, it is
necessary to define the terminology utilized in this area. The property of the structure to
be minimised or maximised (weight, cost, stiffness, strength, etc.) is called the objective
function. In this study, only the minimization problem is considered, since the maximization
problem can be obtained simply by multiplying the objective function by minus one. The
objective function depends on a number of parameters called design variables, such as
dimensional parameters and material properties; each design variable is defined within
a particnlar range. All these ranges delimit a region of all possible designs, the design
space. The structure to be optimized is typically subjected to some constraints, such as
maximum weight, minimum stiffness, etc. The constraints set boundaries to the design
space, thus specifying the feasible space; a space of all possible designs which do not violate
the constraints.

A typical procedure in the search for the optimal design begins with the selection of an
initial design; this is arbitrary but must be within the design space. A search direction, is
then specified starting from this design and the minimum of the objective function in this
direction is sought; such a minimizing point is called an intermediate design. This process
is repeated until a minimum of the objective function is found. Such a design represents
a global minimum or optimal design if the feasible space is convex. Figure 2.1 illustrates

schematically all the aforementioned nomenclature.

12



; &
J
=7/

-30
[ Conetraint
-60 f=
golassal, s — ressld S B PR |
90 60 -30 0 30 60 80 120
Dasign variable 1

Figure 2.1: Nomenclature of Structural Optimization

In general, a structural optimization problem can be formulated as follows:

Minimize : F(x)
Subject to : g;(x)< O j=1m
hi(x)=0 k=11

i<z <z} i=1n

(2.1)

where

x — vector of design variables
z; — design variables
F(x) - objective function
gi(x) — inequality constraints
hi(x) — equality constraints

z! and z¥ ~ side constraints (design space)

There are many possible approaches to solve this problem and they can be divided in
two basic groups. The first group uses only function evaluations (that is, the value of the

objective function and constraints) to search for the optimum and includes methods such

13



o Random search method
e Grid search technique

e Heuristic method

The second group uses gradient information of both the objective function and constraints
as well as function evaluations to seek the minimum. In this case the optimization procedure
involves three steps. In the first, a strategy is defined to deal with the constraints. This is

done using any of the following, among others:
o Exterior Penalty Function
e Interior Penalty Function
o Extended Interior Penalty Function
® Augmented Lagrange Multiplier Method
® Sequential Linear Programming
® The Method of Centres

e Sequential Quadratic Programming
In the second step, a search direction is determined using one of the algorithms below:

e Steepest Descent
® Conjugate Direction Method

e Variable Metric Methods

— Davidon-Fletcher-Powell Method (DFP)
— Broydon-Fletcher-Goldfarb-Shanno Method (BFGS)

e Newton’s Method

e The Method of Feasible Directions

14



e Gradient Projection Method

and finally in the third step, the minimum is determined in the search direction using one

of the following:

e The Bracketing Method
e The Golden Section Method

¢ Polynomial approximation

These are not all the possible methods applied in structural optimization, but are the

most frequently used. A brief description of these techniques is presented below.

2.1 Random Search Technique

As an example of a random search method, consider the procedure presented by Luus and
Jaakola [55]. This is a direct search using random numbers combined with an interval
reduction algorithm. It has four steps: 1 - an initial point and region around this point are
defined in the design space; 2 - a certain number of points (usually 100) are chosen randomly
in this region; 3 - among these points the one which gives the best design is selected; 4 - a
new region around the chosen point is defined. The size of this new region is smaller than
the previous one by pre-defined factor (5 %) and the process is repeated a certain number
of times (usually 200 iterations). This procedure has been shown to be effective in solving

nonlinear programming problems.

2.2 Grid Search Technique

A special grid search program is described here. Instead of looking at all possible combi-
nations of design variables, the program uses a technique to save function evaluations. In
order to explain this technique, consider the two dimensional problem shown in Figure 2.2.

The grid search starts by using a coarse mesh. In this mesh, the point in the grid which
gives the minimum value for the objective functior and does not violate the constraints is
sought. Once this point is found, the grid is subdivided locally and a new search region
is defined. The mesh is refined in this area and the search starts again seeking the point

15
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Figure 2.2: The Grid Search Technique

in this finer grid which minimizes the ob jective function without violating the constraints.
This process is repeated until the size of the mesh in the region around the last point found
is smaller than a specified value.

To verify if the final point gives the global minimum, the process is restarted, but this
time the size of the initial mesh is decreased by a half. The same procedure is followed
and at the end the final result is compared with the one from the previous iteration. If the
difference between these two points is smaller than a specified value the search is terminated.

Otherwise, the process is repeated again.

2.3 Heuristic Search

Heuristic search methods have been developed to solve complex combinatorial problems.
Among these methods, four are worth mentioning: genetic algorithms and neural networks
have the biological sciences as their background; simulated annealing is inspired by the sec-
ond law of thermodynamics; the remaining one, tabu search, derives from good procedures

of problem solving.
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2.3.1 Genetic Algorithms

According to Holland’s original work [41], genetic algorithms are based on the idea of creat-
ing new solutions from parent ones. During the biological reproduction process the informa-
tion stored in chromosomal strings changes so that new generations can adapt favourably
to the environment. This notion is presented in genetic algorithms through three funda-
mental processes: selection, crossover and mutation. Selection uses a ranking technique.
The designs are first evaluated and sorted in a decreasing order of fitness. The proba-
bility of a particular design to be selected is P, and is a function of its rank. Crossover
allows the parents to transmit some of their characteristics to their offspring. It can be
accomplished by breaking the chromosomes in one point chosen randomly and exchanging
parts of strings. There is also a probability associated with crossover (usually between 60%
and 100%). Mutation is a stochastic operator, usually applied with a low probability. Its
purpose is to protect against a complete loss of genetic material. Indeed, under the action
of selection, the variety of alleles for any given gene in the population diminishes and the
chromossomes all tend toward the best known chromosomes. Alleles associated with lower
fitness individuals are usually not transmitted to the next generation. Once the population
is mainly uniform, crossover loses its ability to create new designs and the search stalls.
Thus, by keeping some genetic diversity in the population, mutation preserves the ability

of the crossover to find new good designs.

2.3.2 Neural Networks

Based upon the works of McCulloch and Pitts [59] and Rosenblatt [91], the idea of a neural
network is a model of stimulus/response in which the importance of structural links and rules
for transmitting signals across these links are emphasized. The cornerstone of the neural
network is that it can be artificially trained to recognize specific patterns and extrapolate
from these patterns when new information is presented. The network is composed of neurons
(single computational elements) which are connected to others by non-linear functions. One
of the functions most frequently used to represent the numerical behaviour of a single link

is the sigmoid function:

(2.2)
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Hidden Layer

Figure 2.4: Typical Neuron

where

N
B; = Y (Wi Xi; — ©;) (2.3)

i=1
where Y; is the neuron output and the X;; the inputs.

Figure 2.3 shows a simple neural network configuration. In this example, there is a
“two-element” input layer, a hidden layer of 8 neurons, and an output layer with a single
output neuron.

A typical neuron is presented in Figure 2.4. The w;; coefficients are called weights, and
a coefficient unique to each neuron is termed the bias. The computational characteristics
of a neuron are defined by the values of these coefficients.

The number of inputs and outputs of a neural network depends on the design problem
at hand. The inputs are the design variables and the outputs are the ob jective function and

constraints. Usually, hidden layers are required. Determining the number of the hidden lay-
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ers is an issue that is currently being addressed in the literature. The hidden layer geometry
is a function of the design space complexity to be mapped. When the number of hidden
layers increases, the design space is better represented, but the cost of this is to increase
the training time of the network. This training is the determination of neuron coefficient
values which is accomplished by using sets of information whose functional relationship is

to be represented by the neural network.

2.3.3 Simulated Annealing

Introduced by Cerny [15] and by Kirkpatrick, Gelatt and Vecchi [48], simulated annealing
has been heralded as a new and powerful methodology for combinatorial problems, with
implications for the field of artificial intelligence. The name simulated annealing derives
from the intent to pattern the approach after the physical process of annealing, which is
a heat-treatment process which usually involves a relatively slow cooling after holding the
material for some time at the annealing temperature. The purpose is to produce a definite
microstructure with minimum energy or ground state.

In the annealing process, the temperature of the heat bath is increased above the re-
crystalization temperature. Then, the temperature is decreased until the particles arrange
themselves in the ground state of the solid. The ground state is only obtained if the max-
imum temperature is sufficiently high and the cooling is done sufficiently slowly, allowing
molecules to reach the lowest energy state. The key to the process is that the thermal
energy allows molecules to temporarily move to higher energy states, thus avoiding being
trapped in local minima. The probability of getting higher energy states decreases with the
bath temperature, and tends to zero at the minimum temperature allowed.

In simulated annealing, designs are generated at random in the neighbourhood of a
current design. Better designs are always accepted, and poorer designs are accepted with
a probability that depends on an artificial temperature which is gradually reduced during
the optimization process. At the beginning, when the temperature is high, poorer designs
are readily accepted. Later on, the probability of accepting poorer designs is reduced. This
mechanism enables the algorithm to escape local minima and eventually reach the global
optimum.

The algorithm Metropolis [61] can be used to describe this process: let § be the set of

all possible states of the system, while s is a current state of the system and let g. : § = R
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describe an energy function, which is to be minimized. A small perturbation is applied to s,
producing a new state 3, having energy g.(3). If g.(3) < g.(s), then the state 3 is a better
estimate of the ground state, and 3 becomes the current state. If, however, g.(3) > g.(s),

then 3 can be accepted as the current state with probability

- |ge§§2 — gef-?)]
P(s,3,T.)=e Kple (2.4)

where T, is the temperature, e is the base of the natural logarithm and x; is the Boltzmann
constant. This acceptance value is called the Metropolis criterion. Typically a number
Bp € [0,1) is chosen randomly, using a uniform distribution, to which

_ [ge!:?! — g’e§32|
e Kple (2.5)

is compared. If 8, < P(s,5,T.) then 3 becomes the current state, otherwise the current

state remains s.

2.3.4 Tabu Search

Introduced by Glover [31, 32], this method constitutes a meta-procedure that can be com-
bined with other heuristic procedures to prevent them from being trapped at locally optimal
solutions. Instead of terminating upon reaching a point of local optimality, tabu search en-
sures that the search operation continues. This is accomplished by forbidding moves with
certain attributes (making them tabu), and choosing moves from the remaining that an
embedded heuristic has assigned the highest priority.

In the Tabu search with random moves, two concepts are involved, the neighbour of
a given point and a random move in the neighbour. For a given point z and a given
step A', its neighbour N(z,h’) is defined as N(z,k’) = y:|z—y| <h’. When a point
y is generated randomly in a given neighbour N(z,k’), it is called a random move in the
neighbour N(z, k). If a random move in a neighbour satisfies all constraints, it is called a
feasible random move.

In the tabu search method with random moves, a set of steps h}, H: = {h},h3,...,hl}
is given. For an initial feasible solution z, the search moves are made over a set of active
neighbours N(z,h!), where h: € H, — T' and T is the tabu list, which is initially empty.

For each active neighbour one feasible random move is generated. Suppose, for a feasible
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random move y in the neighbour N(z,A!), the cost is less than that of current solution z,
then y is saved as the current solution z, and the corresponding hij is added to T’. When
H, — T' is empty, T' empty is updated; otherwise the procedure is repeated.

2.4 Strategy for Considering the Constraints

In this step a strategy is defined for dealing with the constraints.

2.4.1 Penalty Methods

The objective of all penalty methods is to convert the original constrained minimization

problem into an unconstrained one by creating a pseudo-ob jective function of the form [108]:

®(x,rp) = F(x) + rpP(x) (2.6)

where

F(x) : original objective function
P(x) : imposed penalty function
Tp scalar that decides the magnitude of the penalty

p : index used during unconstrained minimization

The pseudo-ob jective function is often a source of numerical ill-conditioning; therefore
penalty methods are chosen mainly for convenience instead of efficiency. One way to deal
with ill-conditioned problems is to start the optimization process with a moderate penalty
(rpP(x)), and solve the unconstrained minimization problems several times. In each solution
the value of the scalar r is changed (increased for the Exterior Penalty Method and decreased
for the Interior Penalty Method).

Exterior Penalty Method
For the exterior penalty function method the penalty function, P(x), is defined as

(Figure 2.5):

m 1
P(x) = Y {MAX[0, g;(x)]}* + D _[hx(x)]? (2.7)

i=1 k=1
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Figure 2.5: The Exterior Penalty Method

It should be noted that the first derivative of the penalty function is continuous at
the constraint boundary, which makes this method suitable for use with any other method
based on gradient information for unconstrained minimization. However, since the second
derivative is not continuous at the constraint boundary, this method is not recommended
to be used with second-order methods for unconstrained minimization. In this method r, is
initially given a small value and after each unconstrained minimization its value is increased.

One disadvantage of this method is that the optimum is approached from an infeasible

region; therefore all intermediate designs are not usable.

Interior Penalty Method
For the interior penalty method the penalty function, P(x), is defined as:

m

+7p Z [hi(x)]? (2.8)

P =Y syt
Here, ry, is initially a large positive number and after each unconstrained minimization
its value is decreased (Figure 2.6). The factor r, is the same as in the exterior penalty
function method.
The advantage of the interior over the exterior penalty function method is that the op-

timum is approached from the feasible region; all intermediate designs are therefore usable.
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Figure 2.6: The Interior Penalty Method

However, this brings two restrictions: first, the initial design must be feasible and sometimes
it is difficult to obtain a feasible design; second, all points must be in the feasible domain.
The last requirement is difficult to satisfy, since approximate analysis methods often cause

constraint violation [39].

Extended Penalty Method

The extended interior penalty function was developed as a solution for problems related
to infeasible designs in the interior penalty function method. It attempts to incorporate
the best features of the interior and exterior methods. Further, it provides a mechanism
to recover from violations caused by approximate analyses and permits a infeasible initial
design.

Kavlie and Moe [45] presented the first application of this method in engineering design.
They proposed a linear extended interior penalty function in which the penalty function is

expressed as:

P(x) = Zy‘j(x) (2.9)

i=1
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Figure 2.7: The Extended Penalty Method

where

g;(x) = “5® if gi(x)<e
70 = -250 i g >e

Here, € is a transition point between the two constraint functions.

The linear extended interior penalty function has discontinuous second derivatives at
the transition point. Because of this a second-order method cannot be used to define the
search direction. In order to overcome this problem, Haftka and Starnes [39] created a
quadratic extended penalty function of the type (Figure 2.7):

Px) = 3 7,(x) (2.10)

=1

where

500 =~ if six<e

7;(x) = —%{[M]z -3 [g’i—x) +3]} if gi(x)>e¢

£
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and

e=-Clry)* 3<d<3

with C a positive constant.

The limits on a’ guarantee that the penalty function increases when constraints are
violated, as rj, goes to zero. It also guarantees that the minimum of the psendo-objective
function is in the quadratic range of the penalty function, where P(x) has smoother be-
haviour than 1/g;(x).

Haftka and Starnes [39] chose r} so that the penalty function had the same value as the

objective function at the beginning of the process.

Augmented Lagrange Multiplier Method

Powell [81] suggested that penalty function methods should include Lagrange multi-
pliers as a practical optimization tool. In the augmented Lagrange multiplier method
(ALM) conditions for optimality are incorporated which use Lagrange multipliers. With
this method, efficiency and reliability are improved, and dependence on the choice and
updating of penalty parameters is decreased.

First consider a problem with equality constraints:

Minimize: F(x) (2.11)
Subject to: hi(x)=0, k=1,...,]
There are three conditions for constrained optimality of a general optimization problem,

and they are referred to as the Kuhn-Tucker necessary conditions [51]. If x* is an optimal

design, these conditions are satisfied when:

x* is feasible (2.12)
Aigi(x") =0 j=1m Ai20 (2.13)
m l
VFE)+ DA 78i(x") + D Meym T hi(x™) =0 (2.14)
j=1 k=1
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where A; > 0 and Agym is unrestricted in sign.

So, defining the Lagrangian as

!
L(x,A) = F(x)+ >_ Ache(x) (2.15)
k=1

then the stationary conditions of L(x, ) with the equality constraints give the necessary
conditions for optimality.

If an exterior penalty function is added to the Lagrangian, this creates a pseudo objective
function called the augmented Lagrangian:

l
Au(x,2,1p) = F(x) + Y_{Mehi(x) + rp[hi(x)]*} (2.16)
k=1

This pseudo objective function has some interesting features. First, if all the Lagrange
multipliers are set to zero, the usual exterior penalty function is recovered. On the other
hand, if the optimal values of the multipliers, A*, are specified the correct minimum for the
constrained problem, for any positive value of r;, is obtained. Therefore, with this method
precise constraint satisfaction can be achieved, whereas with the exterior penalty function
approach it cannot.

The optimal values A* are not known in advance. So at the beginning A is given an

arbitrary value (usually zero or unity). Then it is updated after each iteration using

APFL = AP 9r i (xP) E=1,...,1 (2.17)

where r, is increased using the same approach as in the exterior penalty function method.

Now, consider a problem with inequality constraints:

Minimize: F(x) (2.18)

Subject to: gj(x) <0, j=1,...,m

The first step in solving this problem using the ALM is to convert the constraint to
equivalent equality constraints, by adding slack variables. Doing so, the constraint equations
become:

gi(x)+ 2} =0 i=l...,m (2.19)
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Figure 2.8: The Linear Programming Method

and the augmented Lagrangian is:

{
A(x, Mz,75) = F(x) + 30 {u(g500) + 22) + m5lg;0x) + 2%} (2:20)
k=1

Rockafellar [90] proved that this expression is mathematically equivalent to:

!
A(x, A, mp) = F(x) + Y _{A¥; + r,¥?} (2.21)

=1

where

¥; = MAX [g,-(x), —2%] (2.22)

This process yields a pseudo objective function just as in the case of equality constraint

problems.

2.4.2 Sequential Linear Programming Method (SLP)

The idea of this method, also called Kelly’s cutting plane method [46], is to linearize the
optimization problem and solve it by using the linear programming (LP) (Figure 2.8).
Having this solution, the problem is linearized at this new point and the process is repeated,

until the solution converges to specified tolerance.
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The problem statement is:

Mirimize: F(x) (2.23)
Subject to: gj(x)<0, j=1,....m
he(x)=0, k=1,...,1

i<z < z¥

This can be linearized using a first-order Taylor series expansion as:

Minimize: F(x) ~ F(x,) + VF(x,).6x (2.24)
Subject to: g;(x) ~ gj(x,) + V9i(%,).6x <0, j=1,...,m
he(x) 2 he(x0) + Vhi(Xx,).6x =0, k=1,...,1

z! < i + 6z < z¥

where, §x =x — X,

The Simplex method [19] is used to solve the linear approximation. The advantage of
this method is the existence of several reliable LP packages. However, it has three main
disadvantages. First, it increases the computational cost of the optimization operations,
since they are repeated several times. This makes using this method reasonable only when
the cost of analysis is small compared to the cost of optimization. Second, limits must be
set for design change in each iteration; without this the process usually does not converge.
Choosing these limits is the most difficult part of the method. Haftka et al. [38] suggested
that at the beginning the move limits should be ten percent of a typical value of design
variable and be shrunk by ten to fifty percent of their previous values after each linear
programming problem. Third, the solution of the linearized problem can give an infeasible

design.

The Simplex Method
This is a standard solution technique to solve linear programming (LP), posed as

Minimize: F(x) = Ec_,-z,- (2.25)

i=1
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z; 20 j=1,--n

The first step is to put the problem in canonical form by defining artificial variables as

anzy + -+ 4+ @1pZn + Zpyr + -0+ 0 = b

@Gm1Z1 + °* + GmaZn + 0 + -0+ Zngm = bm
z; fori=n+1,---,m + n are the artificial variables.

The next step is to find a basic feasible solution using pivot operations; this is a feasible
solution (all constraints are satisfied) in which at least n — m of the variables are zero. The
variables that are not equal to zero in this solution are called basic variables. Through
additional pivot operations a new set of basic variables can be found, generating another
basic feasible solution.

Gass [30] proved that some optimal solution of a linear programming problem is also a
basic feasible solution of the problem. In other words, the minimum of the problem can be
found by going from one basic feasible solution to another.

In 1948, Dantzig [19] published an iterative method, called the simplez method, that is a
stepwise procedure that goes from one basic feasible solution to another in such a way that
the objective function always decreases. This is done by appending the objective function
equation to the canonical form, creating the the simplez tableau, and then eliminating all the
basic variables from this last equation. The criterion for improving the solution is to bring
into the basis a variable that has a negative coefficient in the objective function equation

after it has been cleared of all the basic variables.

2.4.3 The Method of Centres

This method, also known as the method of inscribed hyperspheres, is a SLP technique
that produces a sequence of improving designs following a path down the centre of the

design space [7]. The main idea of this method is to linearize the objective function and
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Figure 2.9: The Method of Centers

its constraints, then to try to find the largest hypersphere that fits inside the space defined
by the linearized functions (hyperplane). After this, the design variables are moved to
the centre of this hypersphere. The process is repeated until the solution has converged
to a specified tolerance. If the initial design is infeasible, the linearized objective is not
considered in the first iteration so that the next hypersphere will be inside the feasible
region.

Consider the point A,, (Figure 2.9), as the centre of the largest hypersphere completely

inscribed inside the feasible region. The distance from that point to any hyperplane is given

by:

_ VF(xo)-S
hi = TIGFG) (2.26)
o __9i(x0) + Vg;(%,).8
h o= 795 (%) (2.27)

Now let r be a radius of this hypersphere. The following linear problem is created:

Maximise: r (2.28)
Subject to: VF(X,).8 + |[VF(x,)jr <0

V9i(X0)-8 + |[7gi(X0)lr < 0
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This problem can be solved by the Simplex method.

2.4.4 Sequential Quadratic Programming Method

This method is also known as the Projected Lagrangian Method. In this method the search
direction is determined by solving a quadratic programming problem which is a quadratic
approximation to the Lagrangian of the ob jective function and a linear approximation to

the inequality constraints:

Minimize: Q(s) = F(x)+ VF(x).s+ 1sT.By.s (2.29)

Subject to: vg;(x).s + g;(x) <0, ji=1,...,m

where By, is a positive definite approximation to the Hessian of the Lagrangian function.

Initially By is taken as the identity matrix and it is updated at every iteration; Powell [80]

recommends the BFSG variable metric formula (Section 2.5.4) as an update procedure.
Having defined the search direction s, the optimum design in this direction is found by

using the exterior penalty method with another approximate Lagrangian function:

Minimize: & = F(x)+ z u; MAX][0, g;(x)] (2.30)
=1
where
Xg = Xg-1tas
u; = |Aj ji=1,...,m first iteration
u; = MAX [IA,-L% (u; + Iz\,l)] j=1,...,m subsequent iteration

and u; = u; from the previous iteration. Here, A; are the Lagrange multipliers calculated

in the quadratic programming problem.

2.5 Definition of the Search Direction

Once the strategy for applying the constraints has been chosen the next step is to determine

the search direction. In this step a search direction, s, is calculated along which the minimum
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Figure 2.10: The Steepest Descent Method

of the objective function is sought. When this direction is defined, the optimization problem

of N variables becomes a one variable problem, a one-dimensional line search:

Xmin = X, + s (2.31)

where a is a variable of the new problem.

2.5.1 The Steepest Descent Method

This approach was first proposed by Cauchy [14] for solving a system of linear equations.
This method uses the negative gradient of the function as the search direction, s = — Q@ F.
This method was very popular in the mid 1950s. However, since then, it has lost favour as

it can be very slow for functions with large differences in slopes, (Figure 2.10).

2.5.2 The Conjugate Direction Method

The convergence rate of the optimization process can be improved considerably with a
simple modification to the steepest descent method (Figure 2.11). The conjugate direction
method picks directions that are Q-conjugate to the previous ones, where Q is the Hessian
of the function [27]. Its algorithm begins by first minimizing F' along the steepest descent

direction, s, = —7F. Then, the next directions are chosen to be Q-conjugates.
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Figure 2.11: Steepest Descent and Conjugate Direction Comparison.

8g+1 = —~VFy41 + Bsq (2.32)
where
ﬁ = IVFQ+1‘2
|V Fy|?

Powell’s theorem on conjugate direction for quadratic functions says that this method
will converge in N or fewer iterations, where N is the order of the function. For non quadratic
functions the Hessian is not a constant matrix and the conjugacy of the direction loses its
meaning. So the method is not guaranteed to converge in N iterations and it is necessary
to restart the process after every N steps. The method has two main advantages: it is easy

to implement and requires little computer storage.

2.5.3 Newton’s Method

This method makes explicit use of the second derivatives; therefore it is refered to as a
second-order method. It is based on a second-order Taylor’s series expansion of the ob jective

function. That is, consider the expansion of ¥ up to the quadratic terms about some
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reference state Xg:

F(x) = F(x) + VF(x,).6% + %u‘qax (2.33)

where

8% = Xg41 — Xq

A stationary value of this expansion, is obtained from the requirement:

bx = ~Q\(8x, )V F(x) (2.34)

or

Xg41 = Xy — Q7H(X,)VF(%,) (2.35)

The advantage of Newton’s method is the fact that it has a quadratic rate of convergence.
However, it presents two serious disadvantages: the need to evaluate the Hessian matrix,

Q, and to invert it. Both calculations are very numerically intensive.

2.5.4 Variable Metric Methods

In these methods the search direction is defined by: s, = —HYF(x,). H is a metric
matrix that approximates the inverse of the Hessian matrix during the optimization process.
Therefore these methods have characteristics of convergence similar to Newton’s method.
During this process H must maintain its symmetric and positive definiteness properties and

satisfy the following equation [38]:

Hq+qu = Pg (2.36)

where

Pq = Xq = Xg-1

¥q = VF(xq) — VF(x4-1)
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Assuming at the beginning H = I, at the end of each iteration the new H can be
calculated from [108]:

where
o+ 6r -1 9
Dy = P PP‘ + p qu(qu)t - ;[qupt + p(qu)‘]
and
c=py
T=y'Hy

The two most used variable metric methods are Davidon-Fletcher-Powell (DFP) [20,26],
6 = 0, and Broydon-Fletcher-Goldfarb-Shanno (BFGS) [10,28,33,96], 8 = 1. Studies have
shown that the DFP method works quite well, but its performance deteriorates when the
accuracy of the line search decreases {67]. In a few cases it breaks down because H becomes
singular [38]. Numerical experiments have showed that BFGS is the best among all known
variable metric algorithms [21].

2.5.5 The Method of Feasible Directions

A feasible direction is a search direction such that at least a small step can be taken along it
without leaving the feasible domain. In this method, a feasible direction, s, that decreases
the objective function is sought. That is s*7F < 0.

To select this direction two criteria must be satisfied: first, the objective function should
be reduced as quickly as possible; second, the constraint boundary should be avoided as
much as possible. The problem can be specified as (Figure 2.12):

Maximise: B (2.38)
Subject to: YF(x)s+8<0
V9i(x).s+8;,<0 jeJ

Is| <1
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Figure 2.12: The Method of Feasible Directions
where
0;— push-off factor
=0, s istangent tothe constraint boundary
@ — 00, s is tangent to the line of constant ob jective function
=1, s roughly bisects the angle between the line of constant
objective function and the constraint boundary
J- set of active constraints
Vanderplaats and Moses [106] found that the best value for 8 is given by:
g;()]?
0; = [l - ] b, (2.39)

and usually 6, = 1.
One difficulty of this method is defining when a constraint is active. Vanderplaats [108]
suggests that a constraint should be considered activated if gj(Z) > € , where ¢ = —0.1 at

the beginning and is reduced to —0.001 near the end of the search process.
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Figure 2.13: The Gradient Projection Method

2.5.6 The Gradient Projection Method

This method defines the search direction, s, as the projection of —<7F(x,) into the subspace
tangent to the active constraints [92]. Let N denote the matrix composed of the gradients

of active constraints at xg,

N = [Va1(xg), ---, Vg;3(Xg)] (2.40)

where j is the number of active constraints. Then, s can be calculated as:

8 = —PVF (2.41)

where P is the orthogonal projection operator, given by,

P = {I- N(NTN)-INT} (2.42)

If during the search for the minimum along s, the design variable vector, x, moves
away from the constraint boundary, the process continues as the Steepest Descent Method,

s = = F, Figure 2.13.
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2.6 One Directional Search

Once the search direction has been determined the minimum in that direction is found. In
this step a one-dimensional line search is executed. It seeks the magnitude of a single scalar,
a*, which is the distance to be travelled in the given direction, s, from the initial design,

X,, to the optimal design, Xmin, in that direction.

2.6.1 The Bracketing Method

In this method, two points (z;, £7) and (z., Fy) that bracket the minimum of the objective
function, F’ (Figure 2.14) are sought. Consider F' to be an unimodal function of the variable
z. Then choose (z;, F;) and (z1, F1), so that z; is the lower limit of the range in which the
function is defined. If F; > F; and the function has a negative slope at z;, then z, is an
upper bound and the solution is complete. If not, choose another point z, greater than z;.
If F> > F; the solution is complete. Otherwise, z; is a new lower bound and the process is
repeated. This process is continued until: F;y, is large than F;, which implies the solution is
complete; or z;4 is greater than upper limit of the range which means there is an unbound

solution [108].
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2.6.2 The Golden Section Method

This method is a popular line search technique for three main reasons. First, the objective
function, F', does not need to have continuous derivatives. Second, if F' is assumed to be
unimodal, the rate of convergence is known. Third, it is easily programmed. However, this
method requires many function evaluations.

In order to describe this algorithm, first consider F to be an unimodal function of the
variable z, and choose (z;, Fi) and (z4, F,,) to bracket the minimum of F' (Figure 2.15). Now,
two other points (z1, F1) and (z2, F2) between z; and z, are chosen, such that z; < z3. If
it is assumed that F} is greater than F5, then z; becomes the new lower bound and with z,
forms a new set of bounds. Again, choose another point (z3, F3) which is compared to F;
and the process is repeat as before. This process is continued until the bounds are narrowed
to a desired value.

The equations for choosing the interior points are:

2y =1 —-7)zi+ 7124 (2.43)
zo =121+ (1 - T)zy (2.44)

where

2.6.3 Polynomial Approximation

This method consists of approximating the objective function with a polynomial whose
minimum is easily determined. First, several values of the ob jective function are calculated.
Then, a polynomial is fit to these values (Figure 2.16) and the minimum of the polynomial
is determined. To check if this point is close to the true minimum, the values of the function
and the polynomial at this point are compared. If the difference between this two values is
not small the process is repeated by choosing other points around the point determined by
the previous interpolation. This method requires few function evaluations, but the accuracy

of the results cannot be guaranteed.
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Figure 2.15: The Golden Section Method

Figure 2.16: Polynomial Approximation
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2.7 OPREDE

It is common knowledge that there is no single numerical method capable of solving all
structural optimization problems. Because of this, OPREDE (Optimization PRogram for
Engineering DEsign) was developed as part of this work. This is a general-purpose opti-
mization program for engineering design. This program offers a wide variety of optimization
algorithms for nonlinear constrained (or unconstrained) function minimization. It is based
on ADS-1 (Automated Design Synthesis), a code developed by Vanderplaats [109]. It in-
corporates several optimization methods, so that one could decide which method works
best for a particular class of problem, based on past experience or trial and error. This

program includes the most frequently used numerical methods in structural optimization.

The methods available in this package are:
e Strategy for considering the constraints

— Exterior Penalty Function

— Intcrior Penalty Function

— Extended Interior Penalty Function

— Augmented Lagrange Multiplier Method
— Sequential Linear Programming

—~ The Method of Centres
e Definition of the search direction

— The Steepest Descent

— The Conjugate Direction Method

— Variable Metric Methods (DFP & BFGS)
— The Method of Feasible Directions

— The Gradient Projection Method
e One directional search

~ The Bracketing Method
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Figure 2.17: Optimization Code Flow Chart

— The Golden Section Method

— Polynomial approximation

Figure 2.17 is a schematic diagram of the coupling between both this optimization
package and the analysis programs described in the next chapter.
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Chapter 3

Equations of a Composite

Sandwich Plate

The objective of this work is to study the optimization of heterogeneous facesheets in
sandwich plates; the result of the analysis is the optimal distribution of the non-uniform
material density in the facesheets. In order to do so, it is necessary to solve bending and
vibration problems for these plates. Due to the fact that during the optimization process
the structure is allowed to have spatially varying stiffness properties, it is not possible to
obtain a closed form solution. Thus, numerical methods must be used.

Among the numerical methods available, two are most frequently applied in optimization
solutions of composite structures: the Finite Element Method - FEM [13,17,22, 23,50, 68,
85,97,98] and the Ritz Method [1,64,103,104] . The Ritz Method was used in this work
because it generates a solution that demands less computer time. This is important because
in the optimization process the equilibrium and dynamic equations have to be solved many
times. However, it is known that the FEM gives more flexibility to solve structures with
different shapes and boundary conditions.

This chapter outlines the derivation of the equations to solve the bending and vibration
problems for anisotropic sandwich plates, using the Ritz Method [95]. Reissner sandwich
plate theory was adopted [87]. The following assumptions were used: the facesheets are
identical anisotropic membranes that can have variable elastic properties and thickness; the
core is a homogeneous orthotropic slab much thicker than the facesheets, and therefore it

can be assumed that the in-plane stresses in the facesheets are uniform over the thickness
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of the facesheet; the core resists only transverse shear stresses; the in-plane displacement
varies linearly through the thickness; the normal displacement is constant with respect to
the thickness coordinate; planes originally normal to the mid-plane remains straight on
deformation (no warping), but not necessarily normal to the mid-plane after deformation
(Reissner-Mindlin Plate Theory [88]); middle-surface stretching is neglected as the plate is
assumed symmetric about the plate middle-surface; the materials are assumed to be linear

elastic; and displacements are small compared to the dimensions of the plate.

3.1 Bending Equations

Considering a three-dimensional solid, the strain energy of deformation is expressed as

follows:

L[,
_2/‘,0' edV 3.1)

where o is the stress vector; € is the strain vector and V is the volume of the plate. The

potential energy of the external load is given by

W= f BTudV + [ TTuds (3.2)

where B is the body force distribution throughout the volume; u is the displacement vector;
and T are the surface tractions over part of the boundary, §,, of the plate. Over the

remaining part of the boundary, 52, the displacement field is prescribed.

3.1.1 The Strain Energy

Based on the above assumptions for a sandwich plate with identical anisotropic facesheets,
the displacement fields (functions of z, y and z) are assumed in the form (Reissner-Mindlin

Plate Theory [88]):

u(z,y,2t) z ((z,u;t)
u= | %z,y,2t) | = | z&(zv;t) (33)
w(z,y,zt) w(z,y;t)
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Figure 3.1: Displacements, Rotations and Dimensions of a Sandwich Plate.

In the above, w is the middle-surface displacement in the z direction, while { and £ are

rotation-like variables in the z and y directions, respectively. Figure 3.1 gives a graphical

description of the plate and the variables used.

The strain field is derived directly from the displacements and is given by:

€z

€y

Yzy

€z

Yzz

Yyz

il

ou
oz
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dy
gt , Ov
oyt oz
aw
0z
gu  Ow
9: "oz
gv , ow
dz 8y
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“3x

(3:4)
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E+ay-

The strain energy is obtained by substituting Equations 3.4 into Equation 3.1 and using
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the stress-strain relations [44]:

' Oz \ | @n @z O 0 Qe 11 €& \
oy Quz @z 0 0 Qo €y
§ Tuz b = 0 0 Qu Qs O 1 Yz (3.5)
Tez 0 0 Q4 Qs O Yzz
L T2y ), _616 Qs O 0 Gss_k\’lzvjk

where the subscript & denotes the kth ply and —Q:-J- are the transformed reduced stiffnesses.

After integrating through the thickness, the strain energy becomes

D | o K
U=/%[,;T | ..,';r] R P S (3.6)
A

o | A Yz
where A is the area of the plate. The middle-surface curvature vector k and the transverse

shear strain vector 4y are as follows:

T . [9 . ¥ . & ﬁ}
~ _{ax’ay’6y+ax
T _ AL B_W}

72_{<+ax!6+ay

The plate stiffness components are defined by

N
Dy = LY @n(H-5); 4i=1,26
k=1
N
D (@i (zk = zk-1); 3,5 =4,5
k=1

if

P

where z;_; and z; are the lower and upper coordinates of the kth layer relative to the plate

middle-surface and N is the number of layers.

The calculation of the through—thickness shear stiffness of the sandwich beam based on
Reissner-Mindlin theory must be done with care. The through-thickness shear stiffness of
the facesheets is much greater than that of the core and the facesheets are much thinner
than the core; thus the shear deformation is dominated by the shear of the core. However,
within Reissner-Mindlin theory the through-thickness shear strain is constant and thus
if the contribution of the stiffness from the facesheets is included in the calculation the
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facesheet stiffness will dominate and the plate through—thickness shear stiffness will be too
large. Thus the through-thickness shear stiffness is based only on the core stiffness. This
effectively allows different shear strains in the facesheets and the core with the assumption
that the facesheet shear stiffness is so large that the only contribution to the total shear

strain comes from the core.

3.1.2 The Work

The only load considered here is a quasi-static load normal to the plate that represents the
load generated on the structure when it is subjected to an acceleration in that direction
(d’Alembert’s principle [53, page 235]). It is assumed that the plate is being modelled

during the launch of a satellite. Therefore, the work term W can be written as

N
W = Z/ Prac, wdV (3.7
=17V

where pi is the density of kth layer and a., is the acceleration in the z-direction, to which

the structure is exposed during launch.

3.1.3 Solution Procedure

The displacement w and rotations { and £ are approximated by:

NT NT

w = )Y cmnPem()pen(y)

m=1n=1
NT NT

¢ = Z Z dmnPdm (Z)Pan(Yy) (3.8)

m=1 n=1

NT NT

§ = Zzemnﬂom(z)ﬁom(y)-

m=1 n=1
where NT is the number of terms in each summation and ¢y, dmn and e, are the unknown
coefficients to be determined. Also, Yon(Z), Pen(¥)) Pdm(z), Pdn(Y); Pem(z) and pen(y) are
basis functions which are specified according to the problem being considered. Making use

of these expressions, the strain energy becomes

1 — NT NT 2
U = 5[4 Ass Z z (dmn‘tadm(todn + Cmnwémgom)]

=1n=1
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__ [NT NT 2
+hcA44 E Z (Cmn‘Pem?’en + cmn‘Pan‘P::n)]
=1n=1
NT NT 2 NT NT 2
+Dyy [ Y den({’ﬁm‘Pdn] +Da | Y Zemnﬁpemﬂ'm]
=1n=1 =1 n=1
FNT NT NT NT
s2Du |30 5 a,,.,,gp:,,,,%] [z ):emsomzp;]
Lm=1n=1 m=1n=1
T NT NT NT NT
+2D16 | . D dmnse’&mwn] [Z Y- (drnPam®in + emnsr"mqﬁm)]
lm=1 n=1 m=1n=1
*NT NT NT NT
+2D2 Z E (dmnPdmPan + emn‘Plgmﬂam)} Z z emn‘Pem‘P'en]
lm=1n=1 =1 n=1

NT NT 2
+ Des Z Z (dmn‘Pdm‘P’dn + emn‘P'gm(Pen)] dA

=1 n=1
Cc
_ %[TdTeT]K d
e

(3.9)

where ¢’ indicates differentiation with respect to either x or y as is appropriate. Also, A, is

the core thickness and K is the stiffness matrix written as

Uz Usgy Ujs
K = Uss? Uy Ugs
Uss? UgsT Uss

and

Uas(i,7) = A /A (Ass@ PP Pen
+ APk PyPemPen ) A

Uss(i,5) = hcfA (As5PdkPdlPlm Pen ) dA

U35(‘v.7) = th (L‘Pckﬁoclpcm(P:m) dA
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Us(8,5) = jA [hczssspwpamm%n
+ D11 P Pl P g Pn
+ D16 ($akPsPlimPdn
+ Pap Pt PdmPyn)
DesPar Py PdmPin] dA

Uss(i,5) = _/A [ D12Pek Pl 1PimPdn
+ D160k PelPlin Pin
+D26Pek PP im Pin
+ De6fl i PelPdm Pyn | dA

Ussid) = [ [heAuperspetpenten
+D22Pek o PemPen
+D26 (Pek et Pem Pen
+ Pk PelPemPen)
+Des Pl PeiPem Pen] dA

for i=(m—1)*NT+n and j=(k-1)« NT + 1.

Now, using the trial solutions (Equation 3.8) in Equation 3.7, the work becomes

N NT NT
W = E-/ Pklc, (Z Zcmn‘Pcm(Pm) dav
k=1 4 m=1 n=1
Cc
= FT d
e

where F is the force vector and can be written as

Va
F= Vi
Vs
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and

N

Vi = Z:/ Pk@:PcmPendV
=1V

Ve = 0

Vi =0

The total potential energy for the problem is

I=U-W. (3.12)

Seeking a stationary value of Il with respect to ¢mpn, dmn and em, yields the following set

of equilibrium equations

[
K< d =F (3.13)

o

which gives the solution for the unknown coefficient vectors ¢, d and e of the bending
problem.
3.2 Vibration Equations

The equations of motion are obtained using Lagrange’s equations:

d /0L oL .
E(a—q_')—-az—o 1_1,2,---,n (3‘14)

where the Lagrangian I is given by L = T — U, T is the kinetic energy, U is the strain
energy and ¢; are the generalised coordinates. The over dot on ¢; implies differentiation

with regard to time.

3.2.1 The Kinetic Energy

The kinetic energy expression is

T = l/ puTadv (3.15)
2Jv
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For a composite sandwich plate, the kinetic energy is obtained by differentiating Equa-
tions 3.3 with respect to time and then substituting into Equation 3.15 and integrating with

respect to z:

NI ¢y o
T = é{%ﬁm [wf(zk-zk_1)+(cz+£2)&—3"—l)- dA}. (3.16)

3.2.2 Solution Procedure

Since the free vibration problem is periodic, the coefficients of the trial functions can be

written in the form

cmn(t) = Cmneiﬂt
dnn(t) = dmne™ (3.17)
emn(t) = emne™

where ¢mn, dmn and em,, are constants to be determined and Q is the frequency of vibration.
When Equations 3.8 are differentiated with respect to time and substituted into Equa-

tion 3.16, the kinetic energy becomes

N NT NT )2

T = Z{-;—/Apk{(h.-“—h;)(z Y mnemPen

k=1 m=1n=1

R3, . —h3 NT NT
+(_il'3—“) [(Z E‘Lnn‘Pdm‘Pdn)

m=1 n=1

+ (gf gém%mtpm) 2] } dA } (3.18)

m=1n=1

2

é
= -;-[&T&TéT]M d
é

where M is the mass matrix written as

Ts; O 0
M = 0 T O (3.19)
0 0 Tss
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and the matrix Tas, T44 and Tss are given by

N
Tss3(i,3) = D pe(hiv1 — he) / PekPcdPemPen A
k=1 4
N 3 3
hi,, -k
Tu(i,j) = Zpk(—%‘l / PdkPdPdmPan dA
k=1 A
N

C N (hRe1 — RR)
Tss(i,j) = Epk—3——— PdkPdIPdmPdn(y) dA
k=1 A

The substitution of the strain (Equation 3.9) and kinetic energy (Equation 3.18) expres-

sions into the Lagrange’s Equation 3.14 and then using Equation 3.17 yields the following

system of equations:

Cmn
(K- 9?M){ dma ¢ =0, (3.20)

emn

from which the natural frequencies {2 and mode shapes ¥ are determined.

3.3 Numerical Results

A FORTRAN code was written for two types of plate: a rectangular sandwich plate simply-
supported on all four boundaries and a rectangular sandwich plate with all boundaries free.
To verify the code, a series of problems were solved and the results compared with values

available in literature.

3.3.1 Simply-Supported Sandwich Plate

For a simply-supported sandwich plate, the basis functions used to represent the displace-

ment and rotations are

Pen(2) = sin (72Z) penly) = sin ()
$Pdm(z) = cos (T—n?) win(y) = sin (%)
Pem(z) = 8in (%) Pen(y) = cos (E%) .
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Description Dimension
a [m (in)] 1.83 (72.)
b [m (in)] 1.22 (48.)
hy [mm (in)] | 6.350 (0.25)
h¢ [mm (in)] | 0.406 (0.016)

Table 3.1: Dimensions of the Isotropic Sandwich Plate.

These functions are orthogonal, linearly independent, and satisfy the forced boundary con-
ditions of a simply-supported rectangular plate:

w=0 at z=0anda

w=0 at y=0andb

These functions also satisfy the natural boundary condition if the plate is orthotropic.

A sandwich plate with isotropic facesheets will be considered initially. Tables 3.1 and
3.2 present the dimensions and the material properties of this plate, respectively. The mass
and stiffness matrices are calculated numerically using Gauss-Legendre quadrature; this
requires the determination of the appropriate number of integration points. Also, in order
that these matrices be evaluated accurately the number of terms retained in the series must
be selected. Both of the above were based on a meticulous evaluation of the first four natural
frequencies of this plate. It is noted that for an isotropic plate only one term is necessary to
determine the first natural frequency, since the modes are orthogonal. Table 3.3 illustrates
the solution convergence.

From an analysis of Table 3.3, it is possible to conclude that with 3x3 terms in the
series expansion and 9x9 integration points, the solution converges for the first four natural
frequencies.

Considering the results in Table 3.3, it may be noted that for a fixed number of terms
in the series the calculated natural frequency for a small number of integration points is
less than the final converged solution which corresponds to a greater number of integration
points. Furthermore, as the number of integration points is increased, the predicted results
exhibit a sharp increase and then decrease asymptotically to the final converged result. It

is known that the results converge to the exact solution from above, when using the Ritz
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Property Aluminium Aluminium
Sheet Honeycomb

E1; [GPa (108 psi)] 68.95 (10)

"2 0.3

G1: [MPa (10° psi)] 134.4 (19.50)

Ga: [MPa (10° psi)) 51.71 ( 7.50)

p [kg/m3 (1075 Ib sec2/in)] | 2767. (0.1) | 121.79 (0.0044)

Table 3.2: Material Properties of the Isotropic Facesheet Sandwich Plate.

Number of | Number of | 1% Nat. | 2™ Nat. | 37¢ Nat. | 4% Nat.
Terms Points Frequency | Frequency | Frequency | Frequency
2x2 4x 4 23.35 43.14 68.84 85.26
2x2 5x 5 23.33 44.94 70.50 92.02
2x2 6x 6 23.33 44.69 70.28 91.00
2x2 =<7 23.33 44.71 70.30 91.08
2x2 8x 8 23.33 44.71 70.30 91.07
2x2 9x 9 23.33 44.71 70.30 91.07
3x3 4x 4 23.17 43.08 68.84 85.26
3x3 5x 5 23.33 44.94 70.50 75.42
3x3 6x 6 23.33 44.69 70.28 81.32
3x3 =7 23.33 44.71 70.30 79.80
3x3 8x 8 23.33 44.71 70.30 80.01
3x3 9x 9 23.33 44.71 70.30 79.99
3x3 10x10 23.33 44.71 70.30 79.99
4x4 4x 4 23.17 33.13 33.28 39.14
4x4 5x 5 23.33 43.92 63.52 75.42
4x4 6x 6 23.33 44.68 70.19 81.32
4x4 ™7 23.33 44.71 70.30 79.80
4x4 8x 8 23.33 44.711 70.30 80.01
4x4 9x 9 23.33 44.71 70.30 79.99
4x4 10x10 23.33 44.71 70.30 79.99

Table 3.3: Convergence for Simply-Supported Isotropic Facesheet Sandwich Plate.
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Vibration Raville & Ueng [86] Present
Mode | Experimental | Theoretical | Study (Hz)
Results (Hz) | Results (Hz)
1 — 23. 23.33
2 45. 45. 44.71
3 69. 71. 70.30
4 78. 80. 79.99

Table 3.4: Sandwich Plate with Isotropic Facesheets

Description Dimension
a [m (in)] 1.27 (50.)
b [m (in)] 0.64 (25.)
‘ hy [mm (in)] | 3.18 (0.125)
h. [mm (in)] | 2.54 (1.)

Table 3.5: Plate Dimensions: Isotropic Facesheets.

technique for the calculation of natural frequencies . The behaviour of these results is due
to the fact that the number of integration points are initially insufficient to integrate the
terms in the stiffness matrix accurately; this error is the source of the anomalous behaviour.

The converged solutions were then compared to experimental results presented by Rav-
ille and Ueng [86]. In their paper, the authors showed theoretical and experimental results
for the natural frequencies of vibration of a simply supported sandwich plate with thin
isotropic facings of equal or unequal thicknesses separated by an orthotropic core. For the
theoretical results, they used the Ritz method by interpolating 7;, 7y. and w. Table 3.4
shows close agreement between the results of the present study and those of Raville and
Ueng.

The next step to verification of the code was the analysis of a sandwich plate with
facesheets of laminated material. The dimensions and material properties of this plate are
given in Table 3.5 and 3.6, respectively. The facesheets are a two layer laminate [-15°,
15°]. Table 3.7 presents how the solution converges when the number of series terms and
integration points increase for this sandwich plate. For this problem, the solution converges

for 3x3 terms in the series expansion and 10x10 integration points, respectively.
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Property Graphite Epoxy | Glass Fabric
Fibre Honeycomb

Ey; [GPa (10° psi)] 207. (30.)

E2; [GPa (10° psi)] 5.17 (0.75)

G12 [GPa (10 psi)] 5.17 (0.75)

12 0.25

Gz [MPa (103 psi)] 117. (17.)

G2. [MPa (103 psi)] 241. (35.)

p [kg/m3 (105 1b sec?/in)] 1604. (0.15) | 2354. (0.22)

Table 3.6: Material Properties of the Composite Sandwich Plate.

Next, the first four natural frequencies for cross-ply and angle-ply sandwich plates were
calculated and compared with results presented by Ibrahim et al. [42] as shown in Tables 3.8
to 3.13. In this paper, they used the Modified Stiffness Method for the dynamic analysis of
unbalanced anisotropic sandwich plates.

The analyses of these tables show that both formulations yield similar results. The
values obtained in the present study are always less than the ones shown by Ibrahim et al..

To verify the code for bending problems, the displacements and moments at the centre
of an isotropic and a composite sandwich plate are determined and compared with results
presented by Khatua & Cheung [47]. In this paper, elements were developed based on
the finite element displacement method to analyse multi-layer sandwich beam and plate
structures. The dimensions and material properties of the analysed plates are given in
Tables 3.14 and 3.15, respectively. These plates are subjected to an uniform distributed
load of 2435. N/m? (1.1b/in?). Tables 3.16 and 3.17 show displacement and moment results
respectively, given by the code using 3x3 terms in the series expansion and 10x10 integration

points. The results are in close agreement with those presented by Khatua & Cheung.

3.3.2 Free-Free Sandwich Plate

For a free-free sandwich plate the trial functions used to represent the displacement and
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Number of | Number of | 1% Nat. | 2"¢ Nat. | 37 Nat. | 4t Nat.
Terms Points Frequency | Frequency | Frequency | Frequency
2x 2 3x 3 85.61 208.24 251.75 486.77
2x 2 4x 4 87.41 151.82 187.97 233.11
2x 2 5x 5 87.32 169.36 193.41 262.41
2x 2 6x 6 87.32 167.06 192.75 258.25
2x 2 Tx 7 87.32 167.25 192.80 258.60
2x 2 8x 8 87.32 167.24 192.80 258.57
2x 2 9x 9 87.32 167.24 192.80 258.58
2x 2 10x10 87.32 167.24 192.80 258.58
3x3 4x 4 85.95 151.30 187.37 233.11
3x 3 5x 5 87.30 169.36 192.61 193.38
3x 3 6x 6 87.32 167.06 192.75 258.25
3x 3 <7 87.32 167.25 192.80 249.97
3x 3 8x 8 87.32 167.24 192.80 252.53
3x 3 9x 9 87.32 167.24 192.80 252.25
3x 3 10x10 87.32 167.24 192.80 252.27
3x 3 11x11 87.32 167.24 192.80 252.27
4x 4 4x 4 46.20 61.69 75.68 85.95
4x 4 5x 5 87.30 157.86 168.05 192.61
4x 4 6x 6 87.32 163.33 192.26 206.69
4x 4 ™7 87.32 167.23 192.79 249.97
4x 4 8x 8 87.32 167.24 192.80 252.53
4x 4 9x 9 87.32 167.24 192.80 252.25
4x 4 10x10 87.32 167.24 192.80 252.27
4x 4 11x11 87.32 167.24 192.80 252.27

Table 3.7: Convergence for Cross-Ply Sandwich Plate
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Vibration Ibrahim et al. {42] Present | Difference
Mode | Theoretical Results (Hz) | Study (Hz) (%)
1 152.6 146.7374 -3.84
2 197.6 187.6823 -5.02
3 273.7 254.6068 -6.98
4 422.7 390.3775 -7.65

Table 3.8: Sandwich Plate {09, 90°, 0°, 0°, 90°]

Vibration Ibrahim et al. [42] Present | Difference
Mode | Theoretical Results (Hz) | Study (Hz) (%)
1 146.0 142.4696 -2.42
2 196.4 185.7885 -5.40
3 279.5 254.2777 -9.02
4 401.1 383.7216 -4.33

Table 3.9: Sandwich Plate [0°, 90°, 0°, 90°, 0°]

Vibration Ibrahim et al. {42] Present | Difference
Mode | Theoretical Results (Hz) | Study (Hz) (%)
1 159.3 150.5499 -5.49
2 199.2 189.1329 -5.05
3 268.7 254.4242 -5.31
4 4443 396.0267 -10.87

Table 3.10: Sandwich Plate [90°, 0°, 0°, 0°, 90°]

Vibration Ibrahim et al. [42] Present | Difference
Mode | Theoretical Results (Hz) | Study (Hz) (%)
1 90.60 87.3237 -3.62
2 179.4 167.2388 -6.78
3 199.9 192.7994 -3.55
4 275.0 252.2724 -8.26

Table 3.11: Sandwich Plate [-15°, 15°,0°, —15°, 15°]
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Vibration Ibrahim et al. [42] Present | Difference
Mode | Theoretical Results (Hz) | Study (Hz) (%)
1 122.6 116.8771 -4.67
2 209.2 194.7108 -6.93
3 283.3 269.1800 -4.98
4 300.4 275.2259 -8.38

Table 3.12: Sandwich Plate {—30°, 30°, 0°, —-30°, 30°]

Vibration Ibrahim et al. [42] Present Difference
Mode | Theoretical Results (Hz) | Study (Hz) (%)
1 152.9 145.5077 -4.83
2 227.3 211.6824 -6.87
3 308.6 283.5613 -8.11
4 382.1 356.6542 -6.66

Table 3.13: Sandwich Plate [-45°, 45°, 0°, —45°, 459]

Table 3.14:

Description Dimension

a [m (in)] 0.25 (10.)

b [m (in)] 0.25 (10.)

hy fmm (in)] | 0.71 (0.028)

he [mm (in)] | 19.05 (0.75)
Dimensions of the Isotropic and Composite Facesheet Plate.
Property Isotropic Composite

Plate Plate

Ey; [GPa (10° psi)] | 689. (100.) | 689. (100.)
Ej; [GPa (108 psi)] | 689. (100.) | 276. (40.)
G12 [GPa (106 psi)] | 265. (38.46) | 12.9 (1.875)
V12 0.3 0.3
G [kPa (102 psi)] | 206. (30.) | 206. (30.)
G2 [kPa (10° psi)] | 206. (30.) 82. (12.)
go [N/m? (Ib/in?)] | 2435. (1.) | 2435. (1.)

Table 3.15: Material Properties of the Composite Sandwich Plate.
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Facesheet | Khatua & Present | Difference
Cheung [47] Study (%)
Isotropic | 7.361x10~* | 7.572x10~* 2.87
Composite | 1.213x10~3 | 1.244x1073 2.56

Table 3.16: Displacement at the Centre of the Plate.

rotations are [60]:

peo(z) = 1

Facesheet | Khatua & | Present | Difference
Cheung [47] | Study (%)
Isotropic 4.7789 4.699 -1.67
Composite 7.4433 7.414 -0.39

Table 3.17: Moment at the Centre of the Plate.

pa(z) = (z - %)

weo(y) = 1

va(y) = (v - %)

Yem(z) = [cos(Bra) — cosh(Bra)l[sin(B z) + sinh(B,z)]
—[sin(Bra) — sinh(B,a)][cos(Brz) + cosh(Srz)]
Pen(z) = [cos(Bb) — cosh(B,b)][sin(Bry) + sink(B,y)]
—[sin(B,b) — sinh(B,b))[cos(Bry) + cosh(B.y)]
Pao(z) = 1 pao(y) =1

ea1(z) = (z - %) ea1(y) = (.’l - %)

Pam(z) = [cos(Bra) — cosh(Bra)][cos(Brz) + cosh(frz)]
~[sin(Bra) — sinh(B,a)][—sin(f,z) + sinh(B.z)]

Pan(z) =  [cos(B;b) — cosh(B;b)][sin(Bry) + sinh(B,y)]
—[sin(B,b) — sinh(B,b)]l[cos(Bry) + cosh(B-y)]

Peo(z) = 1 peo(y) =1

¢er(z) = (z - 9) pa(y) = (v- §)

Pem(z) = [cos(Bra) — cosh(Bra)l[cos(Brz) + cosh(B,z))
—[sin(B,a) — sinh(B.a)][—sin(B,z) + sinh(S.z))

Pen(z) =  [cos(Brb) — cosh(B.b)][cos(Bry) + cosh(B,y)]

—[sin(B,b) ~ sinh(B,b)][—sin(Bry) + sinh(Bry)]
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Figure 3.2: Convergence of the Finite Element Mesh.

where (3, is the solution of the transcendental equation cos(B.l)cosh(B,1) = 1.

These functions are orthogonal and linearly independent. To check the code, solutions
were compared with results given by MSC/NASTRAN [89], using the QUAD4 element, since
no solution for free-free vibration problem of a sandwich plate was found in the literature.
The first step was to determine the size of the finite element mesh suitable for this problem.
Figure 3.2 shows how the solution converges for the first four natural frequencies of a free-free
sandwich plate with isotropic facesheets, when the size of the finite element mesh increases.
From this figure it can be seen that the solution converges for a 32x32 mesh (5253 degrees
of freedom, DOF).

Table 3.18 shows the comparison between the results presented by Raville and Ueng [86)
and MSC/NASTRAN [89], with this size of mesh, for the first four natural frequencies of a
simply-supported sandwich plate with isotropic facesheets. This table shows that a 32x32
mesh size gives good results.

It was then necessary to determine the number of integration points and terms of the
series that would be sufficient to solve a free-free vibration problem with the developed

code. Table 3.19 summaries the convergence study. From this table it can be seen that
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Vibration

Mode

Raville & Ueng [86]

Experimental | Theoretical
Results (Hz) | Results (Hz)

MSC/NASTRAN
(32x32 mesh) (Hz)

1
2
3
4

— 23.
45. 45.
69. 71.
78. 80

23.01
43.99
70.01
79.08

Table 3.18: Simply-Supported: Isotropic Facesheet Plate.

with 6x6 terms in the series expansion and 8x8 integration points in each direction the
solution converges for the first four natural frequencies (108 DOF). This converged solution
was compared with results given by MSC/NASTRAN. The results are given in Table 3.20.
From these figures it can be concluded that the codes used here are qualified to calculate
the natural frequencies of simply-supported and free-free sandwich plates. Now, they can

be used together with the optimization package, which was described in Chapter 2, to solve

the optimal design problem of lightweight composite sandwich panels.
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Number of | Number of | 17 Nat. | 2"¢ Nat. | 3¢ Nat. | 4% Nat.
Terms Points Frequency | Frequency | Frequency | Frequency
3x3 3x3 14.22 15.42 31.26 34.06
3x3 4x4 15.25 15.75 35.27 36.80
3x3 5x5 15.25 15.78 34.86 36.79
3x3 6x6 15.25 15.78 34.89 36.80
3x3 =7 15.25 15.78 34.88 36.80
3x3 8x8 15.25 15.78 34.88 36.80
4x4 4x4 14.42 15.75 34.35 36.80
4x4 5x5 14.44 15.78 33.97 36.79
4x4 6x6 14.45 15.78 34.02 36.80
4x4 =7 14.45 15.78 34.01 36.80
4x4 8x8 14.45 15.78 34.01 36.80
5x5 5x5 14.44 15.42 32.07 35.40
5x5 6x6 14.45 15.64 33.42 36.46
5x5 =7 14.45 15.64 33.43 36.53
5x5 8x8 14.45 15.64 33.43 36.53
6x6 6x6 14.38 15.64 33.33 36.46
6x6 <7 14.36 15.64 33.31 36.53
6x6 8x8 14.37 15.64 33.34 36.53
6x6 9x9 14.37 15.64 33.34 36.53

Table 3.19: Convergence for Free-Free Isotropic Sandwich Plate.

Vibration | MSC/NASTRAN | Present | Difference
Mode (Hz) Study (Hz) (%)
1 14.17 14.37 1.41
2 15.47 15.64 1.10
3 32.58 33.34 2.33
4 36.12 36.53 0.58

Table 3.20: Free-free Isotropic Sandwich Plate.
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Chapter 4

Modelling

The optimization problem being considered is the minimum mass design of a composite
sandwich plate whose facesheets have a spatially varying stiffness and density. The spatially
varying stiffness is modelled as a nonuniform net of fibre strips oriented in the x and y
directions. Figure 4.1 illustrates a portion of a facesheet, outlining one of the basic cells
which composes this layer. In this figure Ws;, We., Ws, and We, are the parameters used
to define the density of the material: Ws, is the width of the strips in x-direction in this
portion of the plate, and We; is their spacing; Ws, and We, are the same, respectively,
in y-direction. So, the density (percentage of material) in x-direction is given by FDX =
W /(W sy + We,) while the density in y-direction is given by FDY = Ws, /(Ws, +We,).
Thus, the first step of the modelling is to develop an approximation of the nonuniform net
as a smoothed heterogeneous orthotropic continuum. This chapter describes this process

and its verification against experimental results.

4.1 Homogenised Continuum Model

The theoretical approach to this problem is referred to as homogenisation theory [6] and
the results of this analysis are homogenised engineering constants. The facesheet of the
sandwich plate is composed of a net of fibre strips and is modelled by a series of cells as
shown in Figure 4.1. Since the cell dimensions are much smaller than the plate dimensions,
the net is assumed to behave as a continuous sheet. In order to represent a net of fibre
strips as a continuous orthotropic layer, the homogenised engineering constants (E};, E},,

vly, vh and G%,) of the orthotropic layer must be evaluated based on the geometric and
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Figure 4.1: Net of Fibre Strips Used as Facesheets of the Composite Sandwich Plate.

material properties of the net.

The homogenised engineering constants can be calculated using the Finite Element
Method. Two approaches are presented here: the first uses a basic cell model and the other
models part of the fibre-strip net.

4.1.1 The Basic Cell Model Approach

Considering the finite element model of a basic cell presented in Figure 4.2, the procedure
adopted here is to apply a boundary condition to this model, and then determine the
displacements and the strain energy. Making this strain energy equal to the strain energy
of a homogenised cell under the same boundary condition, it is possible to evaluate the
homogenised engineering constants. An important issue in this procedure is to set the
boundary conditions on the basic cell model properly, so that the model fully represents
the periodicity of the structure under a specified load case [99].

Determination of Ef} and v},

In order to calculate Ef, and v}, it is assumed that the structure is very large (x and y
dimensions are infinite) and the structure is subjected to a uniform stress in the x-direction
at its boundary. It is also assumed that the structure remains planar under the application
of in-plane loads. Since the cell structure is periodic in both the x and y directions, it follows

that under the conditions of a uniform x stress at infinity that the stress and displacement
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Figure 4.2: The Finite Element Model of a Basic Cell.

solutions must be periodic and they are periodic over each cell. Furthermore, if lines are
drawn parallel to the x and y axes forming a rectangular grid and each rectangle of the
grid contains only one cell the following may be concluded: 1) The u displacement on lines
parallel to the y-axis is constant; 2) The v displacement on lines parallel to the x~axis is
constant. This is so because the displacement solution must be periodic.

Having noted the above, it is clear what boundary conditions must be applied to model

a single cell of this system. These are the following, according the nomenclature presented

in Figure 4.3:
® the structure remains planar;
@ no u nor v-displacements for Node 1;
® no v-displacement for the nodes on Side 1;
¢ no u-displacement for the nodes on Side 2;
e unitary u-displacement for all nodes on Side 3;

o all nodes on Side 4 have equal v-displacement.

Applying these boundary conditions and solving, the strain energy of the model will be

UZ. The strain energy U7 generated in the homogenised cell due to the same boundary
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Figure 4.3: Nomenclature Used to Define the Boundary Conditions on the Basic Cell.

conditions is:

UF = % /V cherdv (4.1)

Note that the strain energy adopts this simple form because a!’,‘ =0 and r,f}v = 0 from
the cell boundary conditions. o} and e} are the homogenised stress and strain in the
x-direction, respectively, and V is the volume of the cell. Now, using the stress-strain
equation, o = Ef, e} (since of = 0), and knowing that €& = 1/I; and V = Ll h, for a cell
of thickness hy, then the strain energy is given by

1 1 1,1

2
Ug = EE{E (Z) l=1vh! = 2 11ih! (4.2)

The hypothesis behind the homogenisation is that the equivalent structure and the
original one should contain the same strain energy when subjected to the same load. Thus
setting UZ equal to UF, E}, is evaluated as

l

h z _'T 4.
Ell 2Umlyhf ( 3)

Also, the homogenised Poisson’s ratio v, is given by

A=/l
— L A 4.
V12 Ag/’z ( 4)
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where AZ is the cell extension in the x-direction and A7 is the cell compression in the

y-direction, with the applied boundary conditions. Since AZ = 1., then

Azl
Vi‘z = - ;’
v

(4.5)

Determination of E}, and v},

The determination of Ef, and v, follows in exactly the same manner except that the
roles of x and y are interchanged. So, the boundary conditions applied to the basic cell
finite element model are:

e the structure remains planar;
e no u nor v-displacements for Node 1;

e no v-displacement for the nodes on Side 1;

no u-displacement for the nodes on Side 2;
e all nodes on Side 3 have equal u-displacement;

e unitary v-displacement for all nodes on Side 4.
Following the same procedure as used to determined Efy and v},, Ef, is evaluated as:

ly

EY =2uy Th; (4.6)
and v}, is equal to
A¥l
Vi = —‘Tzl (4.7)
L4

Determination of G%,

In order to calculate G%, it is assumed that the system is subjected to a uniform shear
at infinity. Again the displacement field and stresses are periodic. Based on this periodicity
it may be seen that the rectangular grid of undeformed cells is deformed in a periodic
manner. This implies that the corners of the original grid lie on a grid of parallelograms.
The deformation of the edges of a cell are not straight lines however as the deformation must
be periodic in both the x and y directions; thus, the deformation on one side of a cell is equal

to the deformation at the corresponding location on the opposite side of that cell plus the
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addition of a factor resulting from the shift of the corners of the cell from a rectangular to
a parallelogram grid. Thus in the analysis of a single cell using the finite element technique
the appropriate boundary conditions which must be imposed are (Figure 4.3):

¢ the structure remains planar;
¢ no u nor v-displacements for Node 1;

e all nodes on Side 2 have u and v-displacements equal to the u and v-displacements of

the correspondent nodes on Side 3;
¢ unitary u-displacement for Node 3;

e all nodes on Side 4 have v-displacement equal to the v-displacement of the corre-
spondent nodes on Side 1 and u-displacement equal to the u-displacement of the

correspondent nodes on Side 1 plus one.

Under this boundary conditions, the strain energy in the model will be UZ¥. For the

same boundary conditions, the strain energy in the homogenised cell is:

U = 5 [ rhokav (4.8)

where r,’,‘v and '72,, are the homogenised shear stress and shear strain, respectively. Substi-
tuting the stress-strain equation %, = G%7}, in Equation 4.8, and knowing that v}, = 1/,

the strain energy can be written as
1 1)?
Uy = -2-sz (E) Ilhy = G12 1 (4.9)

Again, G%, is determined by setting UZ¥ equal to U;Y.

Iy
I:hf

To verify this approach, the mesh illustrated in Figure 4.2 was used with the finite
element code MSC/NASTRAN (QUAD4) [89] to determine the homogenised properties of

Gh, = 2U%v (4.10)

a structure whose geometric and material properties (E1111 = F2222 = 30 and F1122 = Fh212
= 10) of its basic cell are presented by Bendsge and Kikuchi [9]. In this paper Bendsge and

Kikuchi solve shape optimization problems as material distribution problems by assuming
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Figure 4.4: Deformation of the Basic Cell under Tension Boundary Conditions.

Reduced Bendsge & | MSC/NASTRAN
Stiffnesses Kikuchi [9] 1 Cell
EN /(1 = vivd) 13.051 12.981
ER (1 —vivd) 17.552 17.526
G12 2.785 2.758
v En /(1 - vivdy) 3.241 3.223

Table 4.1: The Reduced Stiffnesses for a Homogenised Material: basic cell approach.

that the material has two constituents: substance and void. Then the microscopic optimal
void distribution is considered instead of shape optimization. The homogenisation method
is applied in this methodology to determine macroscopic constitutive equations for the
material with microscopic material constituents.

Figures 4.4 and 4.5 illustrate how this basic cell is deformed under the tension and
shear boundary conditions, respectively. Table 4.1 shows the reduced stiffnesses for the
homogenised material obtained by Bendsge and Kikuchi and by the approach described

here. The results are in close agreement.
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Figure 4.5: Deformation of the Basic Cell under Shear Boundary Conditions.

4.1.2 The Fibre-Strip Net Model Approach

Another way to calculate the homogenised properties is to model a large segment of the
facesheet (the assumption is that the dimensions of this segment are large compared to the
cell dimensions). In this case the boundary conditions and the load applied to the model
should represent the boundary conditions and load of an equivalent laboratory experiment.
It is important to note that the internal nodal forces and displacements are determined on
the boundary of the basic cell closest to the centre of the model.

Assume that the cell problem has been solved using the finite element technique and that
the equilibrium solution has been obtained. Furthermore let (u;,v;) represent the solution
of the problem at the nodes on the perimeter of the cell closest to the centre of the model,
where ¢ varies over the perimeter nodes. Also, the internal nodal forces may be determined
and the nodal forces at the perimeter nodes are represented as (X;,Y;).

Now in an equilibrium configuration two times the strain energy equals the work done;

therefore for the cell

Nic
2UZ =) (Xiui + Yivy) (4.11)

=1

where N, is the number of nodes on the boundary of the basic cell.
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Figure 4.6: Nomenclature Used to Define the Boundary Conditions on the Fibre-Strip Net
Model.

From the point of view of the homogenisation principal it will be imposed that

Uz = UF (4.12)

Determination of E}, and v,

To calculate E}; and v}, the boundary conditions specified later are applied on the
boundary of the model. The description of the boundary conditions is done according to
the nomenclature presented in Figure 4.6 for the whole model and Figure 4.3 for the basic

cell closest to the centre of the model.

e the structure remains planar;
e no u nor v-displacements for Node 1;
e no u-displacement for the nodes on Side 2;

e unitary u-displacement for all nodes on Side 3.

The strain energy of the homogenised basic cell under these boundary conditions is:
z_ 1 [ ha 1 h (hy2
Uh = E Vax ::dV = E VEll( ::) v (4'13)
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In the homogeneous state, the strains are:

1 g' 01}3
&= = b= (4.14)

and therefore

T 1 1)?
Up = '2'E11 (r; Izlyhy (4.15)

Thus setting the energy expressions (Equation 4.11 and Equation 4.15) equal yields

A 2 Ny
Ef = (m) ;(X."u,‘ + Yiv;) (4.16)

The Poisson’s ratio is calculated using Equation 4.4. Here, A7 and A} are assumed
to be the displacement average of the nodes on Side 3 and 4, respectively. So, v}, can be

determined by

AZ[L, (5 6) ] (naly)
v = ~REL = TR w)  (el) (4.17)

where u; are the displacements in the x-direction for the nodes on Side 3 and v; are the

displacements in the y-direction for the nodes on Side 4, nz and n4 are the number of nodes
on Side 3 and 4, respectively, of the basic cell.
Determination of Ef, and v

The boundary conditions which should be applied to calculate EX, and v are the

following:
® the structure remains planar;
e no u nor v-displacements for Node 1;
¢ no v-displacement for the nodes on Side 1;

e unitary v-displacement for all nodes on Side 4.

Following the same procedure used to determined E}; and v}, EL, is evaluated as:

A
E3, = (m) g(X.-u,- + Y;v;) (4.18)

73



The Poisson’s ratio v, is equal to

_ (an; ;) / (nals)
i = (S w0 () (419)

where u; are the displacements in the x-direction of the nodes on Side 3 and v; are the

displacements in the y-direction of the nodes on Side 4.

Determination of G,

The G%, is determined applying the following boundary conditions:

o the structure remains planar;
® no u nor v-displacements for Node 1;
® no v-displacement for all nodes on Side 1;

® the nodes on Side 2 have u-displacements that vary linearly from zero at Node 1 to

one at Node 3;

@ the nodes on Side 3 have u-displacements that vary linearly from zero at Node 2 to

one at Node 4;

® no v-displacement and unitary u-displacement for all nodes on Side 4.
The strain energy of the homogenised basic cell under these boundary conditions is:

1 1
Up = 3 [ hrhav = 5 [ Ghh)rev (4.20)

In the homogeneous state, the shear strain is:

A 1
= — 21
T =T (4.21)
and therefore
1 1)’
U = 36 (L—u) Ilyhy (4.22)
Thus setting the energy expression equal: UZ¥ = UyY, yields
L2 Ny
Gl = | 7%= | Y (Xiui + Yiwg) (4.23)
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Figure 4.7: The Finite Element Model of 9 Basic Cells.

Three finite element meshes were created with 1, 9 and 81 basic cells (Figures 4.2, 4.7
and 4.8, respectively). These meshes were used with the MSC/NASTRAN code to solve the
homogenised problem presented before. Figures 4.9 to 4.11 show the deformation of these
meshes under a uniform stretch condition and Figures 4.12 to 4.14 illustrate the deformation
of these meshes under uniform shear strain.

From the results showed in Table 4.2, it is possible to compare the reduced stiffnesses
for the homogenised material obtained using the three meshes with the values presented by
Bendsge and Kikuchi. Doing this comparison, it is clear that it is necessary to use at least
the mesh with 9 basic cells to calculate the Ef, ER v% and v}, and the mesh with 81
basic cells to determine G%,.

Once the procedure used to determine the homogenised properties of a fibre-strip net
was verified, it was then used to create tables with values of these homogenised properties
for different material densities in the x and y directions. During the optimization process,
the homogenised properties of a specific design are determined by interpolating the values
from these tables.

Using the finite element model, five tables were generated for Ef,, Ef;, viy, G%, and
homogenised density (Tables 4.3 to 4.7, respectively), varying the material density from
10% to 90% in the x and y-directions and with steps of 10%. Figures 4.15 to 4.19 illustrate
graphically the results in these tables. These results show that for a fixed value of material
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Figure 4.8: The Finite Element Model of 81 Basic Cells.

pote

Figure 4.9: Mesh Deformation of a Basic Cell under Uniform Stretch Condition.
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Figure 4.10: Mesh Deformation of 9 Basic Cells under Uniform Stretch Condition.

Figure 4.11: Mesh Deformation of 81 Basic Cells under Uniform Stretch Condition.
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Figure 4.12: Mesh Deformation of a Basic Cell under Uniform Shear Strain.

Figure 4.13: Mesh Deformation of 9 Basic Cells under Uniform Shear Strain.
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Figure 4.14: Mesh Deformation of 81 Basic Cells under Uniform Shear Strain.

Reduced Bendsge & MSC/NASTRAN
Stiffnesses Kikuchi [9] | 1 Cell { 9 Cells | 81 Cells
E} /(1 - viyuk) 13.051 | 11.977 | 12.540 | 12.852
EX/(1 - viul) 17.552 | 16.739 | 17.116 | 17.477
e 2.785 4.863 | 3.299 | 2.800
vi By /(1-vivd) | 3.241 1.089 | 3.306 | 3.371

Table 4.2: The Reduced Stiffnesses for a Homogenised Material: Fibre-Strip Net Model
Approach
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Material Density Material Density in X-Direction
Y-Direction 10% 20% 30% 40% 50% 60% 70% 80% 90%
10% 21.606 | 43.186 | 64.769 | 86.355 | 107.94 | 129.54 | 151.13 | 172.73 | 194.33
20% 21.754 | 43.410 | 65.069 | 86.731 | 108.40 | 130.07 | 151.74 | 173.41 | 195.06
30% 21.949 | 43.683 | 65.419 | 87.158 | 108.90 | 130.65 | 152.39 | 174.12 | 195.80
40% 22.195 | 44.007 | 65.821 | 87.638 | 109.46 | 131.27 | 153.08 | 174.84 | 196.54
50% 22.496 | 44.386 | 66.278 | 88.171 | 110.06 | 131.94 | 153.79 | 175.58 | 197.28
60% 22.856 | 44.823 | 66.790 | 88.753 | 110.70 | 132.63 | 154.51 | 176.31 | 198.02
70% 23.275 | 45.317 { 67.353 | 89.378 | 111.38 | 133.34 | 155.24 | 177.05 | 198.77
80% 23.755 | 45.866 | 67.963 | 90.038 | 112.08 | 134.06 | 155.97 | 177.89 | 199.51
90% 24.297 | 46.469 | 68.615 | 90.729 | 112.80 | 134.80 | 156.71 | 178.53 | 200.25

Table 4.3: Homogenised Young’s Modulus E}; (GPa).

density in one direction, the homogenised properties have a smooth behaviour when the
material density changes in the other direction. Therefore, it may be concluded that these
tables with 10% steps yield a satisfactory interpolation of the homogenised properties in
the range from 10% to 90%.

4.2 Comparison with Experimental Results

To validate the process of approximating the net of fibre strips by an equivalent homogenised
continuum-layer, a free-free modal test was completed; the sandwich plate had facesheets
manufactured from an aluminium net and the core was an aluminium honeycomb. Alu-
minium was chosen for the facesheets instead of a composite material because it was easier
to ma.nufact.ure the net with this material.

The sandwich plate is a five layer symmetric laminate with length of 406 mm and
width of 201 mm (Figure 4.20). The outside layers are the aluminium nets with a 0.4 mm
thicknesses. Figure 4.21 illustrates the layout of the net. The second layers are adhesive
films, with a 0.12 mm thickness. The core is 4.46 mm thick 3/8-5052-.007 aluminium
honeycomb. Table 4.8 presents the mechanical properties of the three materials.

To simulate the free-free boundary conditions, the plate was suspended by four springs

located at the middle of the plate edges, which corresponded to the nodes of the first elastic
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Material Density

Material Density in X-Direction

Y-Direction 10% 20% 30% 40% 50% 60% 70% 80% 90%
10% 21.606 | 21.754 | 21.949 | 22.195 | 22.496 | 22.856 | 23.275 | 23.755 | 24.297
20% 43.186 | 43.410 | 43.683 | 44.007 | 44.386 | 44.823 | 45.317 | 45.866 | 46.469
30% 64.769 | 65.069 | 65.419 | 65.821 | 66.278 | 66.790 | 67.353 | 67.963 | 68.615
40% 86.355 | 86.731 | 87.158 | 87.638 | 88.171 | 88.753 | 89.378 | 90.038 | 90.729
50% 107.94 | 108.40 | 108.90 | 109.46 | 110.06 | 110.70 | 111.38 | 112.08 | 112.80
60% 129.54 | 130.07 | 130.65 | 131.27 | 131.94 | 132.63 | 133.34 | 134.06 | 134.80
70% 151.13 | 151.74 | 152.39 | 153.08 | 153.79 | 154.51 | 155.24 | 155.97 | 156.71
80% 172.73 | 173.41 | 174.12 | 174.84 | 175.58 | 176.31 | 177.05 | 177.89 | 178.53
90% 194.33 | 195.06 | 195.80 | 196.54 | 197.28 | 198.02 | 198.77 | 199.51 | 200.25

Table 4.4: Homogenised Young’s Modulus E, (GPa).
Material Density Material Density in X-Direction

Y-Direction 10% | 20% 30% 0% | 50% | 60% | 70% | 80% | 90%
10% 27E-2 | .,57E-2 | .92E-2 | .13E-1 | .18E-1 | .23E-1 | .29E-1 | .35E-1 | .42E-1
20% 28E-2 | .,53E-2 | .81E-2 | .11E-1 | .14E-1 | .18E-1 | .22E-1 | .26E-1 | .30E-1
30% 31E-2 | .54E-2 | .76E-2 | .10E-1 | .13E-1 | .16E-1 | .19E-1 | .23E-1 | .26E-1
40% 34E-2 | .57E-2 | .78E-2 | .10E-1 | .12E-1 | .15E-1 | .18E-1 | .20E-1 | .23E-1
50% 38E-2 | .60E-2 | .81E-2 | .10E-1 | .12E-1 | .14E-1 | .17E-1 | .19E-1 | .21E-1
60% 41E-2 | .63E-2 | .84E-2 | .10E-1 | .12E-1 | .14E-1 | .16E-1 | .18E-1 | .20E-1
70% 45E-2 | .66E-2 | .87E-2 | .10E-1 | .12E-1 | .14E-1 | .15E-1 | .17E-1 | .19E-1
80% 48E-2 | .70E-2 | .89E-2 | .10E-1 | .12E-1 | .14E-1 | .15E-1 | .17E-1 | .18E-1
90% 53E-2 | .72E-2 | .91E-2 | .10E-1 | .12E-1 | .14E-1 | .15E-1 | .17E-1 | .18E-1

Table 4.5: Homogenised Poisson’s Ratio vf,.
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Material Density Material Density in X-Direction
Y-Direction 10% 20% 30% 40% 50% 60% 70% 80% 90%
10% 2.3790 | 3.3156 | 4.2522 | 5.3963 | 6.6333 | 7.9354 | 9.2760 | 10.663 | 12.145
20% 3.3156 | 6.0623 | 7.1388 | 8.2965 | 9.5156 | 10.780 | 12.083 | 13.436 | 14.894
30% 4.2522 | 7.1388 | 9.4849 | 10.651 | 11.863 | 13.113 | 14.397 | 15.728 | 17.160
40% 5.3963 | 8.2965 | 10.651 | 12.619 | 13.827 | 15.071 | 16.348 | 17.671 | 19.089
50% 6.6333 | 9.5156 | 11.863 | 13.827 | 15.409 | 16.656 | 17.937 | 19.262 | 20.678
60% 7.9354 | 10.780 | 13.113 | 15.071 | 16.656 | 17.905 | 19.199 | 20.535 | 21.957
70% 9.2760 | 12.083 | 14.397 | 16.348 | 17.937 | 19.199 | 20.191 | 21.545 | 22.978
80% 10.663 | 13.436 | 15.728 | 17.671 | 19.262 | 20.535 | 21.545 | 22.358 | 23.806
90% 12.145 | 14.894 | 17.160 | 19.089 | 20.678 | 21.957 | 22.978 | 23.806 | 24.523
Table 4.6: Homogenised Shear Modulus G2, (GPa).
Material Density Material Density in the X-Direction
Y-Direction 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
10% 330. | 495. | 660. | 825. | 990. | 1155. | 1320. | 1485. | 1650.
20% 495. | 660. | 825. | 990. | 1155. | 1320. | 1485. | 1650. | 1815.
30% 660. | 825. | 990. | 1155. | 1320. | 1485. | 1650. | 1815. | 1980.
40% 825. | 990. | 1155. | 1320. | 1485. | 1650. | 1815. | 1980. | 2145.
50% 990. | 1155. | 1320. | 1485. | 1650. | 1815. | 1980. | 2145. | 2310.
60% 1155. | 1320. | 1485. | 1650. | 1815. | 1980. | 2145. | 2310. | 2475.
70% 1320. | 1485. | 1650. ( 1815. | 1980. | 2145. | 2310. | 2475. | 2640.
80% 1485. | 1650. | 1815. | 1980. | 2145. | 2310. | 2475. | 2640. | 2805.
90% 1650. | 1815. | 1980. | 2145. | 2310. | 2475. | 2640. | 2805. | 2970.

Table 4.7: Homogenised Mass Density (kg/m?).
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Figure 4.15: Homogenised Young’s Modulus E, as a Function of the Material Density in

the x and y Directions.
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Figure 4.16: Homogenised Young’s Modulus E%, as a Function of the Material Density in

the x and y Directions.
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G1: [MPa (10%psi))
G2: [MPa (10%psi)]
p [kg/m3(10~%1bm /in%)]

2800. (101.16)

1110. (40.10)

Property Aluminium | Adhesive Film | Honeycomb
Ey; [GPa (10°%psi)] 72.4 (12.26) 11.00 (1.86)

E;; [GPa (108psi)] 72.4 (12.26) 11.00 (1.86)

G12 [GPa (10%psi)] 27.2 (4.60) 3.92 (0.66)

M2 0.33 0.40

82.74 (14.01)
48.28 (8.17)
16.018 (0.58)

Table 4.8: Material properties.
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Figure 4.20: Sandwich Plate with Uniform Net in the Facesheets.
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Figure 4.21: Layout of the Facesheets.
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Figure 4.22: Plate Ready to be Tested.

mode. Figure 4.22 illustrates the plate ready to be tested. In this figure the elastic supports,
accelerometers and cables can be seen. For this test, fifteen accelerometers were bonded to
the plate (eight Endevco Model 22 and seven Endevco Model 2222C). Their positions are
sketched in Figure 4.23. Fifteen load amplifiers were connected to the accelerometers. In
addition, an impact hammer instrumented with a B & K Model 8200 was connected to the
load amplifiers.

The modal test was done using a digital data acquisition and analysis system, GEN-
RAD 2515 in conjunction with the analysis software SDRC MODAL-PLUS Version 9.2.
This work was done at the Integration and Test Laboratory (LIT) of the National Insti-
tute for Space Research (INPE), in Brazil. The first three elastic modes and their natural
frequencies are illustrated in Figures 4.24 to 4.26.

Since the analysis program developed in this research (see Chapter 3) cannot simulate
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Figure 4.23: Position of the Accelerometers.

Mode 1: F=96.041 Hz

Figure 4.24: The First Elastic Mode - Experimental Result.
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Mode 2: F=162.33 Hz

Figure 4.25: The Second Elastic Mode - Experimental Result.

Mode 3: F=238.229 Hz

Figure 4.26: The Third Elastic Mode - Experimental Result.
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Mode 1: 89.904 Hz

Figure 4.27: The First Elastic Mode - MSC/NASTRAN Result with Concentrated Masses.

concentrated masses due to the accelerometers used in the test, the test results were com-
pared with numerical results obtained from the finite element program MSC/NASTRAN. A
finite element model of the tested plate was developed, including the concentrated masses of
the accelerometers and cables used in the experiment. In this model, the mechanical prop-
erties of the aluminium net were calculated using the homogenisation process described in
the first part of this chapter. Figures 4.27 to 4.29 present the first three elastic modes and
their frequencies given by this model. These modes are the same as the ones determined in
the experiment and these frequencies are close to the ones measured in the experiment.

In a second step, all the concentrated masses are removed from the finite element model
using MSC/NASTRAN and the results (Figures 4.30 to 4.32) are compared with the results
of the analysis program described in Chapter 3, that uses the process of approximation
described in the first part of this present chapter (Figures 4.33 to 4.35). From Figures 4.30
to 4.35 and Table 4.9, it is possible to see that the program results agree closely with the
results of MSC/NASTRAN model without concentrated mass. These results validate the
process of approximating the net of fibre strips by an equivalent homogenised orthotropic

continuum-layer.
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Mode 3: 241.995 Hz

The Third Elastic Mode - MSC/NASTRAN Result with Concentrated Masses.

Figure 4.29
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THE SECOND NATURAL FREQUENCY: 178.08 Hz

Figure 4.34: The Second Elastic Mode - Present Result.

THE THIRD NATURAL FREQUENCY: 253.38 Hz

Figure 4.35: The Third Elastic Mode - Present Result.

Vibration | MSC/NASTRAN | Present
Mode Results (Hz) Study (Hz)
1 92.58 88.75
2 177.15 178.08
3 255.62 253.38

Table 4.9: Natural Frequencies from the Numerical Models without Concentrated Masses.
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Chapter 5

Method of Optimization

The problem studied here is the minimization of the mass of a composite sandwich plate
while maintaining the first natural frequency and some failure loads greater than prescribed
values. The choice of natural frequency and failure load constraints is based on design
requirementsfor satellite structures. In this problem, the facesheets are assumed to be
composed of an orthotropic net of unidirectional composite fibre strips. Thus, the facesheet
stiffness is altered by changing the width and spacing between these strips.

This chapter is divided in four sections. The first describes the approaches used to define
the design variables. Then, the following section presents the failure loads considered in
this work. The third section explains the sensitivity analysis, while the final section outlines

the optimization algorithms used.

5.1 Approaches to Define the Design Variables

The definition of the design variables is accomplished using two techniques. In the first,
an independent design approach, the facesheets are discretized into regions with uniform
design parameters. In the second, a reduced basis formulation, the design parameter is

specified by a linear combination of orthogonal basis functions.

5.1.1 Approach 1: Independent Design

In this technique the facesheets are discretized into bands in both the z and y-directions.
The material densities (FDX and FDY) are the design variables z; and are assumed to be
constant in each band (Figure 5.1). The optimization procedure for this approach can be
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formulated as follows

Minimize : My, = 2 /A p(z:)hsdA (5.1)
Subjectto : ;>
o(z,y) < FS; j=1,.---,NFM

T <z; < Ty t1=1,---,NDV

where

My, : mass of the facesheets
p(z;) : density of the facesheets
z; : the ith design variable
hy : thickness of the facesheets
Q; : the first natural frequency
Q: : specified value for the first natural frequency.
o(z,y) : stress at (x,y) position
FS; : the specified value for the 7B failure stress
NFM : number of failure modes
NDV : number of design variables

z; : lower limit for design variables

z, : upper limit for design variables

This approach is easy to implement. However, it has the disadvantage of allowing sharp
changes in the design variables from one band to the other. In addition, from a practical
structural point of view these jumps in properties may induce stress concentrations in the

structure.

5.1.2 Approach 2: Reduced Basis Formulation

In this approach, the material density of the facesheets is approximated by a linear combi-

nation of orthogonal functions superimposed on an initial design. Here, the design variables
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Figure 5.1: Independent Design Approach.

z; are the coefficients which multiply each orthogonal function. This global description
enforces a smooth material distribution, but it restricts the optimal design to the class of
curves that can be obtained by a finite number of such functions. Pedersen [75-77] used this
strategy to obtain the optimal shape design for minimum stress or energy concentration.

Mathematically, the material distributions in the z and y-directions are given by

NDV/2
FDX = z+ Y w:fi(y) (52)
=2
NDV
FDY = zypvpaqrt+ 9,  zifi(z) (5.3)
i=NDV/2+42

where

fi @ the ith preselected orthogonal basis function.

Two sets of orthogonal functions were tested for this approach. These were the odd

eigenfunctions of a vibrating beam for the two cases of simple supported and fully clamped
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boundary conditions. These functions are easy to work with and form a complete set. These

eigenfunctions are

- For a simply-supported vibrating beam (Approach 2A)
fi(z) = sin (1’;—3> (5.4)

- For a clamped vibrating beam (Approach 2B)

fi(z) = cosh(k;z) — cos(kiz) —

e b (ki) — sin(ki) 69

where a is the length of the beam. The values of k;a are obtained from the solution of the

transcendental equation

cos(k;a) cosh(kia) = 1. (5.6)

The optimization procedure for this approach can be formulated as follows

Minimize : M, =2Lp(z;)h/dA (5.7
Subjectto : ;>
o(z,y) < FS; j=1,---,NFM
FDX, < FDX £ FDX,
FDY, < FDY < FDY,

where

FDX; : lower limit of the material density in x-direction (Equation 5.2)
FDXy : upper limit of the material density in x-direction (Equation 5.2)
FDY; : lower limit of the material density in y-direction (Equation 5.3)

FDY, : upper limit of the material density in y-direction (Equation 5.3)
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In this approach, besides the constraint which imposes that the first natural frequency
must be greater than a specified value, other constraints have to be considered: the material
density must be between the lower and upper limits (FDX; < FDX < FDX, and FDY; <
FDY < FDY,). One way to define these constraints is to look for the points that have
the lowest and the highest material density. The lowest material density is constrained to
be higher than the lower limit and the highest material density is constrained to be smaller
than the upper limit.

However, this procedure can bring some instability to the numerical solution, since the
solution can possibly to oscillate between two designs. In this work, some points of the
plate are selected and lower and upper limits are imposed for the material density at these
points. The positions of these points are related to the peaks of the orthogonal functions
used to define the material distribution.

The advantage of this approach is the fact that the design variables change slowly from

one region to another in the structure.

5.2 Failure Load Constraints

A composite sandwich construction is composed of two thin facesheets that support the
membrane and bending loads, bonded to a thick core which resists the shear loads. A
sandwich structure should be designed to meet strength and buckling requirements [11,
22,50,79,111}, such as: the strength of the facesheets should be enough to withstand the
tensile, compressive, and in-plane shear stresses generated by the design load conditions;
the thickness and shear modulus of the core should be sufficient to support the transverse
shear stresses due to the design loads, and to avoid overall buckling and excessive deflection
as well as shear failure of the facesheets; the size and density of the core should be such
to prevent the monocell buckling (face dimpling); and the normal compressive strength of
the core and the in-plane tensile strength of the facesheets should be sufficient to prevent
wrinkling and crimping instability of the facesheets.

In this research, besides the fundamental frequency, three failure modes were consid-
ered as constraints: fibre failure, intercell buckling and wrinkling. These are related to the
requirements that are affected by changing the stiffness distribution of the facesheets, con-

sidering that in the optimization process neither the dimensions nor the material properties
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Figure 5.2: Stress Distribution in the Facesheets.

of the core are changed.

5.2.1 Fibre Failure Constraint

This constraint must guarantee that the tensile and compressive stresses in the strips of
the facesheet net are less than the tensile and compressive allowable stresses of the strip

material, respectively (Figure 5.2). The stresses in the x and y-directions are given by

0 = Ey (hf+%) x(1) (5.8)

o = En(hy+5)n) (5.9)

where k(1) and x(2) are the x and y-curvatures, respectively, and k. is the thickness of the
core. The strip stresses are determined in the region where there is no overlap of strips,
since in the overlap region the stress level is less. Doing so, ensures that the worst region

has been considered.

The constraint equations for this failure mode are

Xc S Uz S Xt Xc s 0,, S Xt (5-10)

where X, is the compression allowable stress and X is the tensile allowable stress.
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MNP

Figure 5.3: Intercell Buckling Constraint.

5.2.2 Intercell Buckling Constraint

This constraint imposes that, at a point of the plate, the compression stress on the fibre
strip is less than the stress necessary to cause local buckling of the fibre strip in and out of
the honeycomb cell. To determine this critical buckling stress, it is assumed that the fibre
strip on the top of a cell is a simply supported beam and its buckling equation is [12, page
22):

7"2E{‘1 hy 2

L= T (B 5.11

Fi, D (3) (5.11)
m2ER he\2

Fa, = —5° (?’) (5.12)

where s is the honeycomb-core cell size, Figure 5.3.

The constraint equations for this failure mode is

0z 2 —Fy, oy > —Fa, (5.13)

where o, and o, are the compression stress in x and y-directions as defined in Equations 5.8
and 5.9, respectively.
Assuming that the strip buckling length is equal to the honeycomb cell size is in fact a
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Figure 5.4: Face Wrinkling Instability.

conservative approach, as in most cases the strip is supported by a perpendicular strip in

the domain of the open honeycomb cell (see Figure 5.3).

5.2.3 Wrinkling Constraint

Wrinkling is a phenomenon in which a facesheet buckles inwardly or outwardly depending
on whether there is core compression failure or adhesive bond failure (Figure 5.4). Empirical
equations for compressive strength used for the facesheet wrinkling strength evaluation are

given in [40] as

1/2
h
Fye. = 0.82E} ( g,f hf ) (5.14)
11l
1/2
h
Fu, = 082EL ( gﬁz L ) (5.15)
22/1c
where E, is the compressive Young’s modulus of the core.
The constraint equations for this failure mode is

where 0. and o, are the compressive stresses in x and y-directions, respectively.

5.3 Sensitivity Analysis

Information needed for the optimal design process is the way in which the objective function
and the constraints change with the design variables (the sensitivity of structural response).
To obtain this information requires a major computational effort during the optimization

process. Therefore, efficient computational techniques are essential.
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In all the procedures discussed before (Approaches 1 and 2), the derivatives of the
objective function with respect to the design variables are straightforward. However, the
sensitivity derivatives of stress and eigenvalue constraints cannot be determined analytically
because they are both implicit function of the design variables, so a semi-analytical approach

is used in which the derivatives are approximated by finite difference expressions.

5.3.1 The Sensitivity Derivatives of Stress

Using the Direct Method [49], the derivatives of the stress are calculated using the stress-

displacement equations

o = Su (5.17)

Implicit differentiation of Equation 5.17 with respect to the design variable z; yields

do 0S Ou

The derivatives of the displacement are calculated using the displacement analysis equa-

tions

Ku=F (5.19)

Differentiating of Equation 5.19 with respect to the design variable z; yields

K du JF
3z, " X5z, = oa;

Moving the first term of the left side to the right side and premultiplying Equation 5.20
by K~ yields

(5.20)

(5.21)

ou _ (BF K )
53_; =K az.' - 3:5,'“
Substituting Equation 5.21 into Equation 5.18 the derivatives of the stresses can be

given as

oo _ 8S L (OF BK
5o = v+ 5K (55 - o) (5.22)

where 8S/0z; and 0K /9z; are calculated using forward finite differences
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as - S(z: + Az;) — S(z:)

Bz; Az (5.23)
JK _ K(zi+ Az;) - K(z:)
dz; Az; (6.24)
5.3.2 The Sensitivity Derivatives of an Eigenvalue
The constraint equation for the first natural frequency is given by
g = ﬁl - Ql. (5.25)
The derivative of this constraint with respect to the design variable z; is given by
3g _ 391
9z, = Gz (5.26)

Using the semi-analytical approach, the derivative of the first eigenvalue with respect
to a design variable is given by [38]

2&3 i ul (BK/B:!.'.' ;Q’BM/@::;) u

dz; 20 u’Mu

where u is the mode shape corresponding to the least natural frequency. The expression to

(5.27)

determine K /dz; is given in Equation 5.24 and dM/8z; are calculated as

oM M(z; + Az;) — M(z:)

5.4 Optimization Algorithm

Many survey articles have been published in the field of structural optimization (2,34, 37,
78,82,101]. From these papers, it is possible to see that there is no consensus regarding
the numerical methods that are most suitable to determine an optimal design. Because of
this, it is necessary to evaluate a number of the available methods on the specific problem
of interest.

As mentioned in the Chapter 2, if the designer intends to use a method based on

gradients of the objective function and constraints, it is necessary to consider three related
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procedures. The first deals with the constraints, the second defines the search direction and
the third completes the unidirectional search.

From all the methods discussed in Section 2.7, it is possible to form many combinations
or sets of algorithms to solve the optimization problem. Before choosing some of these sets,
it is worth reviewing a number of points mentioned in Chapter 2.

In Section 2.7, there are five strategies for considering the constraints: four penalty
function methods and the method of centres. Since some of the problems presented in this
work has only one constraint (the first natural frequency to be greater than a specified
value), the method of the centres in not recommended, because in this case the problems
are underconstrained and the linear approximations are unbounded. Among the penalty
function methods, Powell [81] emphasized the importance of including Lagrange multipliers
in penalty function methods, making the Augmented Lagrange Multiplier Method the most
recommended penalty function method. Vanderplaats [108, pages 147-150] show this by
comparing the performance of all four methods when applied to find the optimal design of
a cantilevered beam under concentrated load at its free edge. His results illustrate that for
this specific problem, the Augmented Lagrange Multiplier Method performs best.

Five methods are described in Section 2.7 which may be used to define the search direc-
tion. Figure 2.11 shows clearly that unless the objective function has no slope eccentricity,
the steepest descent method should not be used to define the search direction. However, it
has been using as an initial search direction in other algorithms. The gradient projection
method also has weak points; it has satisfactory performance only when the active con-
straints (constraints close to be violated) are convex, otherwise the solution can be trapped
at every point where the active constraint is concave.

Once the search direction has been defined, Section 2.7 presents two methods for the
one directional search. The polynomial approximation usually requires fewer function eval-
uations to reach the optimum. However, it can define infeasible designs that results in
convergence difficulties for some optimization algorithms.

Considering all the above, four sets were chosen to test the constraint enforcement
strategies. The dimensional characteristics of the plate used to test the four sets are given
in Table 5.1, while the material properties are presented in Table 5.2. The algorithm sets
are defined in Table 5.3. Four different algorithms were chosen to deal with the constraints:
Exterior Penalty Function Method, Linear Extended Interior Penalty Function Method,
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Description Dimension
a [m (in)] 1.75 (69.09)
b (m (in)] 2.58 (101.61)
hy [mm (in)] | 0.15 (0.0059)
ke [mm (in)] | 21.70 (0.8543)

Table 5.1: Dimensions of the Isotropic Sandwich Plate.

Property Facesheet Core
E1 [GPa (108 psi)] 200. (31.18)

E3, [GPa (10° psi)) 7.03 (1.02)

G112 [GPa (10° psi)] 4.48 (0.65)

2 0.3

Gz (MPa (102 psi)] 138. (20.)
G2 [MPa (10 psi)] 82.7 (12.)
p [kg/m3 (10~3 1bm/in?)] | 1650. (59.61) | 25.6 (0.9259)

Table 5.2: Material Properties of the Composite Sandwich Plate.

Augmented Lagrange Multiplier Method and Sequential Linear Programming Method. For
the first three sets, the Conjugate Directions Method was used to define the search direction.
The Method of Feasible Directions was included in the fourth set. For all four sets, the
Golden Section Method was used for the unidirectional search.

Tables 5.4, 5.5 and 5.6 summarise the performance of these sets when applied in con-
junction with Approaches 1, 2A and 2B, respectively. These tables present the optimal
value of the objective function and the number of function evaluations needed to reach the
optimal design for a different number of design variables (NDV), using the four preselected
sets.

From these tables it is possible to see that Sets 3 and 4 give the best results. Set 3
performs better than Sets 1 and 2. This is in agreement with Powell [81], who noted that
any Sequential Unconstrained Minimization Technique which does not include Lagrange
multipliers is obsolete as a practical optimization tool. However, when the number of
function evaluations is considered, it can be concluded that Set 4 requires fewer function

evaluations to reach the optimum (less computer time). For this reason this set was chosen
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Set 1

Exterior Penalty Function

Conjugate Direction Method

Golden Section Method

Set 2

Linear Extended Interior Penalty Function Method

Conjugate Direction Method

Golden Section Method

Set 3

Augmented Lagrange Multiplier Method

Conjugate Direction Method

Golden Section Method

Set 4 | Sequential Linear Programming
Method of Feasible Direction
Golden Section Method
Table 5.3: The Chosen Sets.
SETS 1 2 3 4
Opt. N. Opt. N. Opt. N. Opt. N.
NDV | Obj. | Func. | Obj. | Func. | Obj. | Func. | Obj. | Func.
Func. | Eval. | Func. | Eval. | Func. | Eval. | Func. | Eval.
1 1.2903 | 181 | 1.2905| 335 | 1.2904 | 146 | 1.2343 12
2 1.1989 | 297 | 1.1995| 610 | 1.1989 | 241 | 1.1988 93
4 1.0201 | 341 | 1.0413 | 737 | 1.0207 | 480 | 1.0190 57
8 1.0223 | 234 | 1.0848 | 718 | 1.0193| 381 | 0.9969 | 257
16 1.0222 | 253 | 13761 | 650 | 1.0174 | 357 | 0.9970 9

Table 5.4: Performance Using Method 1.
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SETS 1 2 3 4
Opt. N. Opt. N. Opt. N. Opt. N.
NDV | Obj. | Func. | Obj. | Func. | Obj. | Func. | Obj. | Func.
Func. | Eval. | Func. | Eval. | Func. | Eval. | Func. | Eval.
1 1.1763 | 287 | 1.1765| 489 | 1.1763 | 106 | 1.1756 14
2 1.0839 | 456 | 1.0840 | 551 | 1.0838 | 701 | 1.0830 59
3 1.0251 | 491 | 1.0971 | 397 | 1.0258 | 650 | 1.0240 90
4 1.0286 § 566 | 1.0958 | 402 | 1.0244 | 1254 | 1.0241 | 169
5 1.0423 | 577 | 1.1233 | 418 | 1.0080 | 1135 | 1.0004 71
Table 5.5: Performance Using Method 2.
SETS 1 2 3 4
Opt. N. Opt. N. Opt. N. Opt. N.
NDV | Obj. | Func. | Obj. | Func. | Obj. | Func. | Obj. | Func.
Func. | Eval. | Func. | Eval. | Func. | Eval. | Func. | Eval.
1 1.2881 | 661 | 1.3051 | 703 | 1.2497 | 476 | 1.2464 14
2 1.0475 | 501 | 1.0476 | 579 | 1.0473| 706 | 1.0463 | 77
3 1.0279 | 479 | 1.0352 | 531 | 1.0269 | 1424 | 1.0267 | 156
4 1.0278 | 581 | 1.0215 | 579 | 1.0223| 440 | 1.0290 | 119
5 1.0345 | 539 | 1.0265 | 588 | 1.0142| 519 | 1.0233 47

Table 5.6: Performance Using Method 3.
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to be used in future calculations.

Comparing convergence of the three approaches as the number of design variables in-
creases, it may be seen that in some cases the convergence is not uniform as expected. The
reason for this is that the point defining the optimal design is on a surface corresponding to
the natural frequency constraint. Numerically, this surface has an acceptance band; there-
fore, a point constrained by this surface may violate the constraint (within a prescribed
tolerance) and be in the infeasible space. Thus, when the number of design variables in-
creases, the solution is pushed back to the feasible space and sometimes this causes the
objective function to increase.

In this chapter the optimization approaches used were investigated and evaluated. The
objective function, design variables and constraints were also defined and the numerical
optimization method was chosen. In the next chapter several problems will be solved using
these parameters in order to understand their effects on the optimal design of composite

sandwich plates.

109



Chapter 6

Composite Sandwich Plate

Optimization

This chapter presents the results of several optimization studies. The ob jective is to mini-
mize the mass of a composite sandwich plate with a prescribed first natural frequency and
certain failure loads as constraints. The density of the facesheet material is defined as a
design variable. In this case, the facesheets are assumed to be composed of an orthotropic
net of unidirectional fibre composite strips. The stiffnesses of the facesheets are altered by

changing the widths and the spacings between the strips.

6.1 Rectangular Composite Sandwich Plates

The first structure to be considered is a simple supported square plate with facesheets
constructed from an orthogonal net of unidirectional carbon—fibre/epoxy composite strips.
The core material is an orthotropic aluminium honeycomb. Figure 6.1 gives an illustration
of the plate and its geometry as well as providing an exploded view of the orthogonal
composite net and aluminium honeycomb. The mechanical properties of the composite
and honeycomb are summarised in Table 6.1. In order to provide a reference value for the
optimization, a calculation was completed with 40% of the unidirection composite in both
the x any y-directions; the first natural frequency for this design is 21.47 Hz. This natural
frequency will be used as a lower bound on the first natural frequency of the plates in the
optimization work.

The optimal composite facesheet distribution for a plate of the same geometry is inves-
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Figure 6.1: Dimensions of the Square Plate.

Property Carbon Aluminium
Fibre/Epoxy | Honeycomb

E;1 [GPa (106 psi)] 215. (36.4)
E2; [GPa (10° psi)] 7. (1.02)
G112 [GPa (108 psi)] 4.50 (0.65)
V12 0.3
Gz [MPa (103 psi)] 138. (20.)
G2: [MPa (102 psi)] 138. (20.)

p [kg/m3 (1072 lbm/in3)]

1650. (59.61)

25.6 (0.9259)

Table 6.1: Material Properties of the Square Plate.
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tigated using Approach 1. As described in Chapter 5, in this approach the facesheets are
discretized into bands in both x and y-directions and the design variables are the material
density in each of this bands. In this problem the mass of the facesheets is minimized and
the first natural frequency of 21.47 Hz is alone considered as a lower bound constraint.
The optimal layout of the facesheet is investigated when the number of design variables
increases (the number of bands are augmented). In this problem, the material density in
each band ranges from 10% to 90%. There are two main motivations to impose limits on the
material density: first, for practical design applications, it is reasonable to have a minimum
amount of material so that the solar cell can be laid on it; and second, when the material
density approaches to 0% or 100%, the material properties change rapidly resulting in some
numerical instabilities in the optimization process.

Initially, only one design variable is considered in each direction. Then this number
is doubled several times until there are sixteen design variables in each direction. Since
the plate is square, it is assumed that the optimal material distribution of the facesheet is
symmetric. This means that, when there are N design variables in one direction, the plate
is divided in 2N bands in that direction and the material distribution is symmetric about
the plate centre line.

Figures 6.2 to 6.6 present the optimal designs for 2, 4, 8, 16 and 32 bands (1, 2, 4, 8
and 16 design variables) in each direction, respectively. As may be expected, these results
show that the optimal design concentrates the material at the centre region of the plate, in
both directions. In this calculation, six terms in the series expansion and thirty integration
points were used, in both directions.

Figure 6.7 illustrates the changes in the objective function as the number of design
variables increases. The mass of the facesheets for the first optimal design (two design
variables) is 2.52 kg. When the number of design variables is increased to 32, the mass of
the facesheets decreases to 2.23 kg. This means a 12% saving in the mass of the facesheets.

Another factor investigated in this problem is the influence of the aspect ratio (a/b) on
the optimal design. Tables 6.3 to 6.6 present the optimal design for plates with different
aspect ratios using 2, 4, 8 and 16 design variables. The results presented in these tables
are in accordance with the sketch shown in Figure 6.8. To determine the values of the first
natural frequency to be applied as a lower limit constraint for each aspect ratio problem, the

first natural frequency of sandwich plates with these aspect ratios and a uniform material
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Figure 6.2: Optimal Design with 2 Design Variables.
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Figure 6.3: Optimal Design with 4 Design Variables.
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Figure 6.4: Optimal Design with 8 Design Variables.
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Figure 6.8: Sketch for the Results Presented in Tables 6.2 to 6.6.

distribution were calculated. These reference solutions have, as in the first case, facesheets
with a 40% material density in both directions (Table 6.2).

From these results, it is possible to observe that even a small variation in the aspect
ratio (a/b < 0.90) causes large changes on the layout of the optimal plate design. The
optimal design has only the minimum amount of material allowed (10%) oriented in the
long dimension of the plate. As consequence of this, as the aspect ratio decreases the
weight saving increases, as shown in Table 6.7. This provides a simple but useful guideline
for designers.

Another interesting observation from these results is that as the aspect ratio decreases,
instead of concentrating all the material in the centre region of the plate, the optimizer starts
to accumulate material in several regions along the long side of the plate. The spacing of
these bands are regular and have the appearance of stiffeners.

All the results given so far were obtained applying Approach 1. Now, the optimal
designs using Approaches 2A and 2B are presented and compared with the results obtained
using Approach 1.

As described in Chapter 5, Approaches 2A and 2B are reduced basis formulations in
which the material density is specified by a linear combination of orthogonal basis functions.
Figure 6.9 and 6.10 show the change in material density distribution as the number of design
variables increases using Approaches 2A and 2B, respectively. In the calculation of the first
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Aspect Ratio | First Natural
(a/b) Frequency (Hz)
1.00 21.47
0.95 22.64
6.90 24.05
0.85 25.76
0.80 27.85
0.75 30.43
0.50 58.56
0.25 215.2

Table 6.2: Lower Limit for the First Natural Frequency Constraint.

Aspect Material Distribution (%)
Ratio | Band in X-Direction | Band in Y-Direction
(a/b) 1 1

1.00 40. 40.
0.95 46. 29.
0.90 61. 10.
0.85 56. 10.
0.80 51. 10.
0.75 41. 10.
0.50 36. 10.
0.25 32. 10.

Table 6.3: Aspect Ratio Study: 2 Design Variables
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Aspect Material Distribution (%)

Ratio | Bands in X-Direction | Bands in Y-Direction
(a/b) 1 2 1 2
1.00 10. 61. 10. 61.
0.95 10. 88. 10. 23.
0.90 10. 87. 10. 10.
0.85 10. 77. 10. 10.
0.80 10. 70. 10. 10.
0.75 10. 63. 10. 10.
0.50 10. 47. 10. 10.
0.25 27. 37. 10. 10.

Table 6.4: Aspect Ratio Study: 4 Design Variables

Aspect Material Distribution (%)

Ratio Bands in X-Direction Bands in Y-Direction
(a/b) 1 2 3 4 1 2 3 4
1.00 10. 10. 43. 77. 10. 10. 43. 77.
0.95 10. 10. 90. 90. 10. 10. 10. 31.
0.90 10. 10. 85. 90. 10. 10. 10. 10.
0.85 10. 10. 63. 90. 10. 10. 10. 10.
0.80 10. 10. 46. 90. 10. 10. 10. 10.
0.75 10. 10. 33. 90. 10. 10. 10. 10.
0.50 10. 10. 47. 47. 10. 10. 10. 10.
0.25 10. 39. 28. 35. 10. 10. 10. 10.

Table 6.5: Aspect Ratio Study: 8 Design Variables
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Aspect Ratio | Band Material Distribution (%)
(a/b) Direction| 1 | 2 | 3| 4| 5|6 | 7]8
1.00 X 10. | 10. | 10. | 10. | 10. | 43. | 90. | 90.
Y 10. | 10. | 10. | 10. | 10. | 43. | 90. | 90.
0.95 X 10. | 10. | 10. | 10. | 90. | 90. | 90. | 90.
Y 10. | 10. | 10. | 10. | 10. | 10. | 11. | 52.
0.90 X 10. | 10. | 10. | 10. | 80. | 90. | 90. | 90.
Y 10. | 10. | 10. | 10. | 16. | 10. | 10. | 10.
0.85 X 10. | 10. | 10. | 10. | 42. | 82. | 90. | 90.
Y 10. | 10. | 10. | 10. | 10. | 10. | 10. | 10.
0.80 X 10. | 10. | 10. | 10. | 10. | 78. | 90. | 90.
Y 10. | 10. | 10. | 10. | 10. | 10. | 10. | 10.
0.75 X 10. | 10. | 10. | 10. | 10. | 69. | 82. | 82.
Y 10. | 10. | 10. | 10. | 10. | 10. | 10. | 10.
0.50 X 10. | 10. | 10. | 10. | 22. | 81. | 54. | 29.
Y 10. | 10. | 10. { 10. | 10. | 10. | 10. | 10.
0.25 X 10. | 10. | 20. | 61. | 27. | 16. | 54. | 24.
Y 10. | 10. { 10. | 10. | 10. | 10. | 10. | 10.

Table 6.6: Aspect Ratio Study: 16 Design Variables

Aspect Ratio | Weight Initial | Weight Optimal | Weight Saving
(a/b) Design Design (%)
1.00 2.52 2.23 -12
0.95 2.39 2.04 -15
0.90 2.27 1.74 -23
0.85 2.14 1.48 -31
0.80 2.02 1.28 -37
0.75 1.89 1.12 -41
0.50 1.26 0.63 -50
0.25 0.63 0.31 -51

Table 6.7: Weight Savings for Different Aspect Ratios.
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Figure 6.9: Change of Material Distribution Along the One Direction as the Number of

Design Variables Increases: Approach 2A.

natural frequency with different facesheet layouts, the analysis subroutine used six terms in
the series expansions and twenty-seven integration points in each direction.

The final step is to compare the final optimal designs obtained with the three methods;
this comparison is illustrated in Figure 6.11. These results indicate that all three methods
converge to similar material distributions. However, the plot of objective function (mass
of the facesheets) as a function of number of design variables (Figure 6.12) shows that
Approaches 2A and 2B converge to the similar values, but Approach 1 defines a lighter
structure. This happens because the solutions given by Approaches 2A and 2B are restricted
to the class of curves obtainable by a set of preselected functions. Another conclusion
resulting from these calculations is that Approach 2A is preferable to Approach 2B. That
is, both methods give almost the same results, but the set of orthogonal functions used in
Approach 2B requires more computer time for processing.

In order to overcome the possibility of the optimal solution been trapped in alocal mini-
mum, the following procedure was adopted for the three methods. For the simplest problem
(two design variables), the initial design was chosen with high material density (a feasible
design). Then, for each new optimization problem, with an increased number of design
variables, the chosen initial design was the optimal de:sign of the previous problem (with

less design variables). This procedure was verified by searching for the optimal solution
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Figure 6.11: Material Distribution Given by the Three Approaches.
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Figure 6.12: Convergence of the Objective Function using the Three Approaches.

based on an initial design in which all strips had the maximum allowed material density.
The results of these calculation were that, the optimal objective functions were equal or
higher than the objective functions determined using the procedure previously described.

Another strategy was used when the optimal design had any design variable out of the
feasible space, (because of the prescribed tolerance for the constraints); in such case the
design variables were increased by 1% and the optimization search restarted. This procedure
was repeated until all design variables were feasible or until the number of restarted processes
reached a predefined limit; in both cases the resulting design was accepted.

One way to determine the efficiency of 2 method is to determine the number of times that
the objective function and the constraints are evaluated, during 2 run. This count varies
as function of the initial design, the number of design variables and other optimization
parameters such as the constraint tolerances. A comparison of this numerical effort for the
three methods is presented in Figure 6.13. This figure summarises the number of objective
function and constraint evaluations as a function of the number of design variables. It can
be seen that Approach 1 requires many more function evaluations than Approaches 2A and
2B.
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Variables.

6.2 Structural Support for Satellite Solar Array

Consider now the composite sandwich plate used as structural support for the solar array
of the China-Brazil Earth Resources Satellite - CBERS (Figure 1.1). This remote sensing
satellite has been developed in a joint program between the Brazilian and Chinese govern-
ments. This sandwich plate has facesheets composed of carbon fibre/epoxy nets and core
of aluminjium honeycomb (Figure 1.2). The panel schema with its dimensions are given in
Figure 1.3. Also, Table 6.8 presents the mechanical properties of the carbon fibre/epoxy
strips (M40/epoxy) and the aluminium honeycomb (3/8 5056-.001). These values originate
from the CBERS initial design. During the project some of these dimensions were altered.

In the optimization of this panel, the mass of the facesheets is the objective function,
because the dimensions and material properties of the core are kept constant. In addition,
considering only the mass of the facesheets makes the objective function more sensitive to
changes in the design variables. The stiffness constraint is defined by the lower bound of
the first natural frequency, which is 36.87 Hz (the first natural frequency of the original
panel).

This problem will also be used to compare the performance of the three methods de-
scribed in Chapter 5 (Approaches 1, 2A and 2B). Figures 6.14 to 6.16 present the optimal
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Property Carbon Aluminium
Fibre/Epoxy { Honeycomb

Ey11 [GPa (108 psi)] 215. (36.4)
E2; {GPa (10° psi)] 7. (1.02)
Gr2 [GPa (106 psi)] 4.50 (0.65)
a2 0.3
G.1 [MPa (103 psi)) 138. (20.)
G2, [MPa (10 psi)) 138. (20.)
p [kg/m® (10~2 lbm/in3)] | 1650. (59.61) | 25.6 (0.9259)

Table 6.8: Material Properties of the Solar Array Support.

material distribution in the z-direction using the three approaches. Based on the aspect
ratio results of the previous section, it was assumed that the optimal design would have
the minimum material volume allowed in the y-direction (10%). Therefore, only the mate-
rial distribution in the x-direction is considered. These figures illustrate how the material
distribution changes when the number of design variables increases for the three methods.

From Figure 6.17 it can be seen that the results of all methods converge to essentially
the same design. However, the optimal material distributions obtained from Approaches 2A
and 2B are smoother than the distributions obtained from Approach 1, which is felt to be
a desirable result.

Figure 6.18 shows how the optimal mass changes when the number of design variables
increases. Different from the previous problem, now all the methods converge to the same
value. In this problem the objective function decreased from 1.34 kg to 1.06 kg, which
represents a 20.9% saving in the mass of the facesheets (7.0 % in the overall mass of the
plate). Since the reference design is an actual piece of space hardware this is considered to
be a significant improvement.

In order to obtain a more realistic design, the next problem to be presented considers

three failure modes: fibre failure, intercell buckling and wrinkling instability.
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Figure 6.17: Comparison of the Approaches.
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Figure 6.18: Objective function versus NDV for the Solar Array Support.

6.3 Rectangular Plates with Failure Constraints

The optimal design of the square composite sandwick plate is investigated again, but,
this time, besides the first natural frequency constraint, three failure load constraints are
considered: fibre failure, intercell bucklirg and wrinkling instability. As described in Section
5.3, these failure constraints are related to the strength and buckling requirements that
a composite sandwich plate must fulfill and that are affected by changing the stiffness
distribution of the facesheets.

In order to determine a set of reference stresses and strains in the panel, it is assumed
that the panel is subjected to a 20 g (196.20 m/s?) acceleration in a direction perpendicular
to the panel. This acceleration value is reasonable for a satellite structure launched by a
solid fuel rocket [94] and represents a worse case scenario.

For the same reason that some points have to be selected to verify the material density
limit constraints for Approaches 2A and 2B (Section 5.1.2), another set of points is cho-
sen to verify the failure load constraints. In Approach 1, these points are defined at the
intersection of the mesh formed by the borders of the bands with uniform material density.
In Approaches 2A and 2B, these points are selected in positions related to the nodes and
peaks of the orthogonal functions specifying the material distribution.

The dimensions, material properties and the first natural frequency constraint for this
problem were presented in Section 6.1. The allowable stresses for carbon fibre/epoxy com-

posite are given in Table 6.9. In this table: Xy is the axial strength in tension; Xc is the
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Description Carbon Fibre
X [MPa (2103 psi)] | 310. (49.0)
Xc [MPa (2103 psi)] | 310. (49.0)
S [MPa (z10° psi)] | 155. (24.5)

Table 6.9: Carbon Fibre Composite Strength Allowable.

| 8S% |

83X

Figure 6.19: Optimal Design with 2 Design Variables.

axial strength in compression; and S is the shear strength allowable.

The optimal design of the plate is analysed following the same procedure described in
Section 6.1. Figures 6.19 to 6.23 present the optimal design for 2, 4, 8, 16 and 32 design
variables, respectively. The figures illustrate that, as before, the optimal design concentrates
material at the centre of the plate, but the change in material density from one band to
another is smoother this time. Another interesting result is the fact that as the number of
design variables increases, the optimal design has less material at the border and more at
the centre of the plate. However, if the number of design variables is further increased and
the amount of material at the centre of the plate reaches an upper limit, material is moved
from the quarter-point region of the plate and placed at the border. As may be seen by
comparing Figures 6.22 and 6.23.

To understand which set of constraints drives the optimal design, Figures 6.24 to 6.38

show the values of the three failure load constraints for different numbers of design variables.
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Figure 6.21: Optimal Design with 8 Design Variables.
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Figure 6.24: Fibre Stress Constraint for Optimal Design with 2 Design Variables.
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These figures present only the first quadrant of the plate (0 < z < ¢/2 and 0 < y < b/2),
since the plate has four fold symmetry about the centre lines. The table appearing in the

figures gives the value of the constraints the way that is considered by the optimization

code:

g
= -1 6.1
9= (6.1)

where g is the value of the constraint and it should be less or equal to zero, o is the actual

stress at a point of the plate and o,4,, is the allowable stress. So, when g > 0 means that

the constraint is violated.
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Figure 6.25: Intercell Buckling Constraint for Optimal Design with 2 Design Variables.
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Figure 6.26: Facesheet Wrinkling Constraint for Optimal Design with 2 Design Variables.
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Figure 6.27: Fibre Stress Constraint for Optimal Design with 4 Design Variables.
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Figure 6.28: Intercell Buckling Constraint for Optimal Design with 4 Design Variables.
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Figure 6.29: Facesheet Wrinkling Constraint for Optimal Design with 4 Design Variables.
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Figure 6.30: Fibre Stress Constraint for Optimal Design with 8 Design Variables.
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Figure 6.32: Facesheet Wrinkling Constraint for Optimal Design with 8 Design Variables.
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Figure 6.33: Fibre Stress Constraint for Optimal Design with 16 Design Variables.
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Figure 6.34: Intercell Buckling Constraint for Optimal Design with 16 Design Variables.
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Figure 6.35: Facesheet Wrinkling Constraint for Optimal Design with 16 Design Variables.

Number of Design | First Natural
Variables Frequency (Hz)

2 26.07

4 25.81

8 25.55

16 25.46

32 25.36

Table 6.10: The First Natural Frequency for Different Number of Design Variables.

From these figures and from Table 6.10, which gives the first natural frequency of the
optimal design for different numbers of design variables, it can be concluded that intercell
buckling is the only active constraint for all cases and therefore drives the optimal designs.
This is a result of the particular honeycomb core used; the conclusion might change if other
core materials were considered.

Figure 6.39 displays how the mass of the facesheets decreases when the number of design
variables increases. For 2 design variables, the value of the objective function is 5.60 kg.
When the number of design variables increases to 32, the mass of the facesheets falls to
3.84 kg. This is a saving of 32% of the facesheet mass and a saving of 19% of the total plate

mass.
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Figure 6.36: Fibre Stress Constraint for Optimal Design with 32 Design Variables.
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Figure 6.37: Intercell Buckling Constraint for Optimal Design with 32 Design Variables.
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Figure 6.38: Facesheet Wrinkling Constraint for Optimal Design with 32 Design Variables.
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Figure 6.39: Convergence of the Objective Function with the Number of Design Variables.
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Aspect Material Distribution (%)
Ratio | Band in X-Direction | Band in Y-Direction
(a/b) 1 1

1.00 85. 85.
0.95 87. 76.
0.90 87. 66.
0.85 86. 56.
0.80 83. 47.
0.75 80. 39.
0.50 52. 21.
0.25 32. 10.

Table 6.11: Aspect Ratio Study: 2 Design Variables

The next step is to investigate the effect of the aspect ratio (a/b) on the optimal design
for different numbers of design variables. Tables 6.11 to 6.14 present the optimal design for
plates with different aspect ratios using 2, 4, 8 and 16 design variables. Again, the results
presented in these tables are in accordance with the sketch shown in Figure 6.8. Looking at
these results and comparing them with the results presented in Section 6.1 two factors can
be noted. The first is that, when the failure load is included there is not an abrupt change
in the optimal design for a small variation on the aspect ratio, rather the design is modified
gradually as a function of aspect ratio. The other one is that only for a small aspect ratio
(a/b =~ 0.25) the the minimum allowed amount of material is in the long dimension of the
plate.

Following the sequence of Section 6.1, Approaches 2A and 2B were also applied to solve
this problem. Prescribed points in the plite were selected to check the material density
constraints and other points were chosen to check the failure load constraints. Figure 6.40
and 6.41 present the material density change when the number of design variables increases.
These figures show that Approaches 2A and 2B methods converge to essentially the same
design.

In order to determine which constraint leads to the optimal design, Figure 6.42 to
6.44 present the value of the failure load constraints when Approach 2A is applied while
Figures 6.45 to 6.47 do the same for Approach 2B, for eighteen design variables. Examining
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Aspect Material Distribution (%)
Ratio | Bands in X-Direction | Bands in Y-Direction
(a/b) 1 2 1 2

1.00 61. 87. 60. 86.
0.95 62. 89. 54. 77.
0.90 63. 89. 47. 67.
0.85 63. 88. 40. 57.
0.80 62. 85. 35. 48.
0.75 60. 82. 30. 42.
0.50 44. 53. 17. 23.
0.25 27. 35. 10. 10.

Table 6.12: Aspect Ratio Study: 4 Design Variables

Aspect Material Distribution (%)

Ratio Bands in X-Direction Bands in Y-Direction
(a/b) | 1 2 3 4 1 2 3 4
1.00 33. 62. 82. 89. 33. 62. 82. 89.
0.95 34. 62. 85. 90. 29. 55. 73. 90.
0.90 33. 63. 83. 90. 25. 48. 64. 89.
0.85 35. 64. 90. 90. 22. 40. 52. 58.
0.80 35. 63. 82. 88. 20. 36. 46. 50.
0.75 34. 62. 78. 83. 18. 32. 41. 44.
0.50 28. 45. 52. 53. 10. 18. 23. 25.
0.25 17. 33. 33. 34. 10. 10. 10. 10.

Table 6.13: Aspect Ratio Study: 8 Design Variables

1
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Aspect Ratio [ Band Material Distribution (%)
(a/b) Direction | 1 | 2 | 3 | 4 | 53| 6 | 7 | 8
1.00 X 19. | 33. | 49. 1 62. | 74. | 86. | 90. | 90.
Y 19. 1 33.149. | 62. | 74. | 89. | 90. | 90.
0.95 X 29.|33.{48.162.| 75.] 90. | 90. | 90.
Y 21. | 29. | 43. | 55. | 65. | 90. | 90. | 90.
0.90 X 30. | 33. | 48. | 62. | 90. | 90. | 90. | 90.
Y 23.| 25. | 37. | 48. | 57. | 63. | 86. | 90.
0.85 X 17. 1 34. | 50. | 63. | 85. | 90. | 90. | 90.
Y 12. | 23. | 33. [ 41. | 48. | 54. | 57. | 87.
0.80 X 18. | 35. | 51. | 65. | 75. | 83. | 88. | 89.
Y 11. | 22. | 30. | 37. | 43. | 48. | 50. | 50.
0.75 X 17.135.|50. | 63. | 72. | 79. | 84. | 85.
Y 10. | 19. | 27. | 34. | 39. | 42. | 44. | 45.
0.50 X 15.129. | 39. | 46. | 50. | 52. | 54. | 54.
Y 10. | 11. | 15. | 19. | 22. | 24. | 25. | 26.
0.25 X 10. | 17. | 19. | 56. | 30. { 22. | 32. | 40.
Y 10. | 10. | 10. | 10. | 10. ] 10. | 10. | 10O.

Table 6.14: Aspect Ratio Study: 16 Design Variables
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Figure 6.40: Change in Material Distribution with Number of Design Variables: Ap-

proach 2A.
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Figure 6.41: Change in Material Distribution with Number of Design Variables: Ap-

proach 2B.
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Figure 6.42: Fibre Stress Constraint for Optimal Design with 18 Design Variables: Ap-
proach 2A.

these figures it is concluded that intercell buckling is the constraint which drives the optimal
design.

Comparing the three methods (Figure 6.48), it is possible to verify that all three methods
converge essentially to the same solution. Figure 6.49 shows how the objective function
decreases as a function of the number of design variables.

From the results presented certain conclusions can be drawn. First, the two techniques
(independent design approach and reduced basic formulation) work well to yield an optimal
design. As may be expected, Approaches 2A and 2B produce very similar results. However,
the orthogonal functions used in Approach 2B are more complex (they use hyperbolic
functions) and demand more computer time to be calculated. Therefore, Approach 2A is
preferred over Approach 2B. The design provided by Approaches 2A and 2B has a smoother
change in material density, which may be a desirable factor. The inclusion of the failure
loads makes the optimal design more realistic, and results in a redistribution of material
compared to the analysis, in Section 6.1, without failure constraints. The most important
result is that it is possible to considerably reduce mass by defining a nonuniform material

distribution in the facesheets.
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Figure 6.43: Intercell Buckling Constraint for Optimal Design with 18 Design Variables:
Approach 2A.
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Figure 6.44: Facesheet Wrinkling Constraint for Optimal Design with 18 Design Variables:
Approach 2A.
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Figure 6.45: Fibre Stress Constraint for Optimal Design with 18 Design Variables: Ap-

proach 2B.

INTERCELL BUCKLING CONSTRAINT IN X-DIRECTION INTERCELL BUCKLING CONSTRAINT IN Y-DIRECTION

1.00
Q.75
0.50

0.25

X 0.00
0.00 023 0.50 0.7% 1.00 1.2% 0.00 028 0.50 0.75 1.00 1.2§

Figure 6.46: Intercell Buckling Constraint for Optimal Design with 18 Design Variables:
Approach 2B.
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Figure 6.47: Facesheet Wrinkling Constraint for Optimal Design with 18 Design Variables:

Approach 2B.
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Figure 6.48: Material Distribution.
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Figure 6.49: Convergence of the Objective Function using the Three Approaches.
6.4 Solar Array Support with Failure Constraints

Here, the optimal design of the structural support for the solar array of the CBERS is
studied regarding the first natural frequency and the failure modes (fibre failure, intercell
buckling and wrinkling instability) as constraints. The dimensions, material properties and
constraints for this problem were given in Section 6.2. The allowable stresses for the carbon
fibre/epoxy composite are presented in Table 6.9. It is assumed that the panel is subjected
to a 20 g acceleration in a direction perpendicular to the panel.

The first results to be shown are the optimal designs given by the three methods as the
number of design variables increases. Figures 6.50 to 6.54 present the optimal solution when
Approach 1 was used. Different from the results displayed in Section 6.2, in this problem
the optimal layouts have nonuniform material distribution in both directions.

The optimal solutions obtained using Approaches 2A and 2B are illustrated in Fig-
ures 6.55 to 6.56 and 6.57 to 6.58, respectively. The comparison of the final optimal designs
given by the three methods is shown in Figure 6.59 and 6.60. Once again, the three meth-
ods yield similar solutions. Figure 6.61 illustrates how the mass of the facesheets decreases
when the number of design variables increases using the three methods.

In order to identify which failure load constraints are active, Figures 6.62 to 6.70 present
the failure load constraints in the first quadrant of the plate for the optimal designs obtained
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Figure 6.52: Solar Array Support Optimal Design with 8 Design Variables: Approach 1.
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Figure 6.53: Solar Array Support Optimal Design with 16 Design Variables: Approach 1.
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Figure 6.54: Solar Array Support Optimal Design with 32 Design Variables: Approach 1.
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Figure 6.55: Change of Material Distribution Along the X-Direction for the Solar Array
Support as the Number of Design Variables Increases: Approach 2A.
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Figure 6.56: Change of Material Distribution Along the Y-Direction for the Solar Array
Support as the Number of Design Variables Increases: Approach 2A.
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Figure 6.57: Change of Material Distribution Along the X-Direction for the Solar Array
Support as the Number of Design Variables Increases: Approach 2B.
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Figure 6.58: Change of Material Distribution Along the Y-Direction for the Solar Array
Support as the Number of Design Variables Increases: Approach 2B.
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Figure 6.59: Material Distribution Along X-Direction Given by the Three Approaches for
the Solar Array Support.
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Figure 6.60: Material Distribution Along Y-Direction Given by the Three Approaches for

the Solar Array Support.
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Figure 6.61: Convergence of the Objective Function using the Three Approaches for the

Solar Array Support.
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Figure 6.62: Fibre Stress Constraint for Optimal Design with 32 Design Variables of the
Solar Array Support: Approach 1.

using the three methods. From these figures, it is clear that intercell buckling is the failure
mode that drives the optimal design.

From the results presented, three points should be mentioned. First, all results follow
the same pattern as those of the previous problem. Second, the optimal design with uniform
material distribution (two design variables) is heavier than the initial design of the CBERS
solar array support, Figure 1.3. The reason for this is that CBERS has been designed to
be launched by liquid fuel rocket, so the design load is smaller, around 12 g acceleration.
Third, the facesheet mass decreased from 2.35 kg to 1.78 kg as the number of design variables
increases, this represents a 24% mass saving, which gives a 12% saving in the overall mass

of the sandwich panel.
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Figure 6.63: Intercell Buckling Constraint for Optimal Design with 32 Design Variables of
the Solar Array Support: Approach 1.
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Figure 6.64: Facesheet Wrinkling Constraint for Optimal Design with 32 Design Variables
of the Solar Array Support: Approach I.
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Figure 6.65: Fibre Stress Constraint for Optimal Design with 20 Design Variables of the
Solar Array Support: Approach 2A.

INTERCELL BUCKLING CONSTRAINT IN X-DIRECTION INTERCELL BUCKLING CONSTRAINT IN Y-DIRECTION

1.25

1.00

0.75 0.7%

0.50 050

025 0.25

0.00 0.00
0.00 0.25 0.50 0.7% 1.00 1.28 0.00 0.25 0.50 0.75 1.00 1.28

Figure 6.66: Intercell Buckling Constraint for Optimal Design with 20 Design Variables of
the Solar Array Support: Approach 2A.
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Figure 6.67: Facesheet Wrinkling Constraint for Optimal Design with 20 Design Variables

of the Solar Array Support: Approach 2A.
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Figure 6.68: Fibre Stress Constraint for Optimal Design with 20 Design Variables of the

Solar Array Support: Approach 2B.
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Figure 6.69: Intercell Buckling Constraint for Optimal Design with 20 Design Variables of

the Solar Array Support: Approach 2B.
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Figure 6.70: Facesheet Wrinkling Constraint for Optimal Design with 20 Design Variables

of the Solar Array Support: Approach 2B.
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Chapter 7

Summary and Conclusions

This thesis has examined the optimal design of sandwich plates with spatially heterogeneous
composite facesheets. The essential idea in the work has been to determine the optimal,
spatially varying stiffness of the composite facesheets which yields a minimum weight design.
The work is primarily oriented toward the design of aeronautical and aerospace structures
in which weight saving results in significant advantages either in the form an increased
pay-load or improved vehicle performance. The current work represents an advance over
previous sandwich plate optimization as previous work was restricted to designs with a
homogeneous stiffness distribution of the facesheets.

The specific design considered was the minimization of the facesheet mass while satisfy-
ing constraints on the plate first natural frequency and certain facesheet stress levels. The
stress constraints were based on actual design failure criteria for honeycomb—core composite—
facesheet sandwich plates used in typical spacecraft. In the work, the facesheets are assumed
to be composed of an orthotropic net of unidirectional composite fibre strips; the optimal
design (the least mass design) is obtained by changing the strip widths and the spacing
between them over the domain of the plate.

This chapter presents a summary of what was developed in this dissertation and high-

lights the results and contributions.

7.1 Summary

This work first presents an overview of the research in the field of structural optimization.

This is followed by a review of the analysis and optimization of sandwich plates.
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In Chapter 2 a summary and description of commonly used numerical methods applied
to structural optimization was given. The chapter ends with the description of a computer
code and the corresponding flow chart which was developed as part of this work and which
is based on the numerical methods described in the beginning of the chapter. Chapter 3
presents the background necessary to develop a computer code for the evaluation of facesheet
stresses and natural frequencies of composite sandwich plates with heterogeneous composite
facesheets. The developed code was verified by comparison to numerical and experimental
results published in the literature as well as finite element results from a MSC/NASTRAN.

Since the sandwich plates considered have facesheets manufactured from a carbon fi-
bre/epoxy composite net, it was necessary to approximate the nets as a heterogeneous
orthotropic continuum. Two procedures were developed to achieve this approximation. In
the first, a single basic cell of the net was modelled using the finite element method. Bound-
ary conditions for the cell were determined to represent the periodicity of the structural
response under simple load conditions. By determining the strain energy of the model and
equating this energy to the strain energy of a continuum cell (referred to as a homogenised
cell) under the same boundary conditions, it was possible to evaluate the homogenised en-
gineering constants of this equivalent continuum. In the second procedure, a large segment
of the facesheet net is modelled by a finite element mesh, and then boundary conditions
and loads are applied to this model in order to simulate the boundary conditions and loads
of an equivalent laboratory test. The work done by the nodal forces acting on a basic
cell closest to the centre of the model is calculated and set equal to the strain energy of a
homogenised cell under the same boundary conditions; the homogenised engineering con-
stants were thereby determined. The second approach was then used to generate tables
of homogenised engineering constants for different material densities in both the x and y
directions. In order to validate the concept of homogenised elastic constants a sandwich
plate with facesheets made of an aluminium nets was designed and manufactured. This
plate was tested in the laboratory and the first three natural frequencies determined; these
results were compared to the numerical results predicted using the homogenised based nu-
merical model. An excellent comparison was obtained between the experimental results and
numerical prediction.

Chapter 5 addresses a number of issues related to the implementation of the numerical

optimization. During the optimization, two techniques were used to represent the material
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density in terms of useful numerical design variables. In the first, an independent design
approach, the face sheets are discretized into regions with uniform design parameters. In the
second, a reduced basis formulation, the material density is specified as a linear combination
of orthogonal, complete, basis functions. The next issue dealt with three failures loads (fibre
failure, intercell buckling and wrinkling) which were included as constraints. Among all the
design requirements that a composite sandwich plate should meet, these failure loads are
the ones affected by changes in the distribution of material in the face sheets. That is, these
failure constraints are the only aspect altered during the optimization process. This lead to
the next issue of the sensitivity analysis. In order to accelerate the optimization process, a
semi-analytical approach was applied to determine the sensitivity of the constraints, since no
simple analytical expressions can be obtained. The final issue discussed involves the choice of
optimization algorithm. Therefore, before proceeding, it was necessary to determine which
combination of numerical optimization methods would best solve the specific problems of
interest. The methods available in the optimization code previously developed were tested
and a choice of algorithms was made.

The may results of this work are contained in Chapter 6. This involves two composite
sandwich plate studies: in the first, a square one and then a series of rectangular plates with
varying aspect ratios are considered while in the second a plate with the dimensions and
material properties of an actual remote sensing satellite solar array support is analysed. In
both studies the analysis proceeds as a two step process. In the first step, the optimization
process was applied considering only the first natural frequency as a constraint and using
the two techniques to define the design variables. Two important issues were examined:
first, the effect of the number of design variables on the optimal solution; second, how the
representation of the design variables affects the optimal solution. The second step included
both natural frequency and failure load constraints and the same issues were investigated

how the failure loads affect the optimal solution.

7.2 General Findings

The two models (for free-free and simply-supported composite sandwich plates) developed to
determine the natural frequencies and failure loads of composite sandwich plates performed

well, They were verified in comparison to experimental results, results from the literature
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and numerical results from MSC/NASTRAN a commercial finite element code

The two approaches used to evaluate the homogenised engineering constants gave ex-
cellent results. The calculated values were found to be in close agreement with values data
in the literature and with experimental results. Since the approach using only one basic
cell is easier to implement and numerically less demanding it should be used rather than
the approach that models part of facesheet net.

Among all the combinations of numerical optimization methods used, the set composed
of sequential linear programming, the method of feasible directions and the golden section
method gave the best performance. The combination of these methods was found to reach
the optimal design with the least number of ob jective function and constraint evaluations. It
should also be noted that the golden section method is one of the simplest one-dimensional
search technique available and in addition, it was the most stable for the solution of the
current problem.

An important by-product of this thesis is the idea of machining aluminium sheet to
be used as facesheets of sandwich plates. It is possible to manufacture almost any design
defined by a optimization package using a numerically controlled milling machine. To
our knowledge this technology has never been employed in this context and seems most
promising.

When the two approaches proposed to define the design variables were applied to solve
the optimization problem, it was found that Approach 1 (an independent design approach)
usually gives the least mass design. However, it requires more design variables and its solu-
tion has sharp changes in the material density from one region to the other. Approaches 2A
and 2B (reduced basis formulation) give similar solutions; however, since the basis functions
used in Approach 2B are more complex (it uses hyperbolic functions) and demand more
computer time to be evaluated numerically, Approach 2A is preferred over Approach 2B.

From the aspect ratio studies and when using Approach 1 with only the first natural
frequency as a constraint, it may be concluded that a small variation on the aspect ratio
(a/b < 0.90) causes a rapid change in the optimal design. Furthermore, the material density
oriented in the longer plate dimension drops to the minimum allowed. When failure loads are
included in the constraint, this transition is smoothed out. In general, the optimal designs
obtained when the failure loads are considered as constraints present a much smoother

material density distribution than the solution with only the first natural frequency as
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constraint. It is interesting that the only failure load constraint that is active in determining
the optimal design is intercell buckling; this result is of course only valid for the honeycomb
cell dimensions considered here and should not be generalised indiscriminately. An addition
point and one that may be considered as a bit of an aside, is that the inclusion of the failure

constraints seems to bring some stability to the numerical aspects of problem.

7.3 Significance of the Present Study

A number of studies have been completed concerning the optimization of composite sand-
wich plates; these works considered the thicknesses of the facesheet layers and the core
and/or the direction of fibres in the facesheet laminate as design variables. The present
study extends the research by considering variation of material density in different parts
of the plate. This dissertation developed an approach for the optimization of light-weight
composite sandwich plates. The plate facesheets are constructed using a net of composite
fibre-strip in which the strip widths and spacing are variable; this variability defines the
nonuniform material density distribution in the facesheets. The specification and solution
of this problem has been not addressed before.

In order to solve this problem many questions had to be asked and answered. These
include: among the numerical optimization methods used in structural optimization, which
one best solve this problem? What is a suitable procedure to represent the composite-
strip net as a smoothed heterogeneous orthotropic continuum? What is a reasonable way
to define the design variables for this problem? This study solved the problem proposed.
The results of this work demonstrate clearly that a variation in material density leads to
important design advantages. Furthermore, the optimal design shows significant changes
in material density; typical optimal designs exhibit a factor of nine in density variations.
That is over the full range permissible material densities from 10% to 90% is used in the
design. The results obtained are also impressive from the point of view of the gains that
are possible; typical calculations showed that the mass of the facesheets can be reduced 10
to 50% depending on plate aspect ratio. It is also worth adding that the solutions obtained
are conceptually straightforward to manufacture and therefore could lead to significant

performance improvements with little cost penalty.
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7.4 Recommendations

As possible extensions of this work', it is of great interest to investigate the effect of other
boundary conditions on the optimal design; the current study is limited to simply-supported
plates. Also, it is important to consider the thickness and density of the core, and the
orientation of the net as design variables. When the properties of the core are assumed as
design variables, other failure modes such as shear crimping and interlaminar stress should
also be considered in the problem specification. When only the first natural frequency was
considered as constraint, the present work showed that the optimal solution concentrates
material in well defined local areas of the plate; this suggests that the use of stiffeners can
improve the design. In such a formulation, the shape, number and position of the stiffeners
should be investigated.

Regarding optimization algorithms, heuristic methods, such as genetic algorithms and
simulated annealing, seem to present some advantages when compared to gradient-based
methods. These claims should be investigated by using these methods to solve the problems
presented here and their performance compared with the performance of gradient-based
methods presented in this work.

Finally it is important to build and test the optimal designs obtained. It seems clear
that the present optimization results fit very naturally with computer controlled milling of
metallic facesheets or computer controlled weaving of fibre reinforced composites. These
designs present interesting challenges from a manufacturing point of view; however, the
challenge seems to be an extremely worthwhile undertaking. For, the potential weight
savings are truly significant and therefore the gamble in the undertaken could pay significant

dividends.
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