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Abstract 

Biological techniques for the removal of gaseous pollutants such as hydrogen sulfide have 

proved to be effective, environmentally friendly and economically viable. However, when high 

concentrations of hydrogen sulfide are treated the process is severely restricted by the oxygen 

deficit in the liquid phase. Thus, when the oxygen concentration is below the stoichiometric 

requirement, elemental sulfur is formed and accumulates in the packing material, increasing 

operating costs and, in extreme cases, requiring the bioreactor to be shut down. In this study the 

oxygen transfer efficiency provided by a membrane diffuser is evaluated under typical pressure 

and salinity conditions used for the biological treatment of hydrogen sulfide in biogas. The aim 

was to determine the optimal operating parameters for enhanced oxygen transfer. The addition 

of pure oxygen with a membrane diffuser to increase the oxygen transfer rate and the use of a 

non-aqueous phase to improve oxygen transfer in a bioscrubber system are also evaluated. 

Key-words: oxygen transfer, biofiltration, membrane diffuser, non-aqueous phase, pressure 
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1.Introduction 

The recovery of energy-rich gases has grown in importance in recent years. European directive 

1999/31/CE on landfill of waste stipulates that all landfill sites storing biodegradable waste 

must make provision for collecting and treating the biogas emitted for subsequent reuse as an 

energy source. Harnessing the biogas generated during anaerobic digestion processes at 

municipal landfills and wastewater treatment plants has therefore become a promising means of 

obtaining energy and reducing the emission of pollutant gases into the atmosphere. However, 

biogas contains hydrogen sulfide (H2S) at concentrations of 1000−4000 ppmv [1], which is 

sufficient to corrode processing equipment and, when released into the atmosphere, is an acid 

rain precursor. Cogeneration motors, used to generate electric and thermal energy, require H2S 

concentrations of less than 500 ppmv. Biological techniques have proved to be an effective and 

environmentally friendly solution for removing large quantities of hydrogen sulfide and are less 

costly than physicochemical techniques [2]. 

The most common systems for biological removal of hydrogen sulfide are biotrickling filters 

and bioscrubbers [3]. A bioscrubber consists of two operational components: a gas-liquid 

column (where contaminant transfer occurs) and an aeration tank. Instead, in a biotrickling 

filter, the pollutant is absorbed and removed in a packed column, being the liquid phase 

continuously recirculated from the bottom of the reactor [4]. 

The biological oxidation of H2S occurs in two stages according to reactions 1 and 2. In the first 

step the hydrogen sulfide is oxidized into elemental sulfur, in the second stage the elemental 

sulfur is oxidized into sulfate. [5, 6]: 

HS
-
 + 0.5 O2 + H

+
→ S

0
 + H2O    (1) 

S
0
 + H2O + 1.5 O2 → SO4

2- 
+ 2H

+
   (2) 

When high concentrations of dissolved oxygen (DO) are present, hydrogen sulfide is oxidized 

to sulfate, which can be removed by purging the liquid phase. However, when DO levels are 

insufficient, microorganisms can only oxidize the H2S to elemental sulfur an insoluble solid that 

builds up in the packing material of the biofilter, increasing pressure drop, raising pumping 

costs and potentially requiring equipment to be shut down so that the packing material can be 

cleaned or replaced [7]. In standard processes, the contribution of oxygen to the biological 

process is achieved by injecting air together with the biogas. In this type of aeration system, 

oxygen transfer occurs throughout the biofilter. Oxygen has a low solubility in water of 8.37 mg 

l-1 (air at 25 0C and 1 atm) [8], meaning that oxygen limitation is a common problem when 

treating large amounts of hydrogen sulfide. As such, one possible strategy for obtaining the 

biological oxygen demand required to oxidize hydrogen sulfide to sulfate is to optimize the air-

to-water oxygen transfer. 
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Despite its importance in the biological removal of H2S, optimization of oxygen transfer has 

received little attention in the literature. Despite its importance in the biological removal of H2S, 

optimization of oxygen transfer has received little attention in the literature. Alcantara et al. 

(2004) studied the relevance of dissolved oxygen in the liquid phase for a bioscrubber to remove 

hydrogen sulfide at different oxygen/sulfide ratios [9]. Authors observed that at flowrate ratios 

below 0.5 the hydrogen sulfide oxidation is incomplete producing mainly elemental sulfur. On 

the contrary, at flowrate ratios above 2 the oxidation is complete to sulfate. Similarly, Charnnok 

et al. (2012) underlined the importance of oxygen transfer to achieve high hydrogen sulfide 

removal in biogas sweetening at extreme acidic conditions [10]. In this study the use of 

membrane diffusers to transfer oxygen directly into the liquid phase is proposed. As described 

above, biological oxidation of hydrogen sulfide generates sulfate that accumulates in the liquid 

phase. It is therefore of interest to examine the effect of sulfate on oxygen transfer. In addition, 

the biogas is often stored above atmospheric pressure, so it is also important to determine the 

possible effect of the working pressure in the system. 

Also the addition of a non-aqueous phase to optimize oxygen transfer in a bioscrubber system is 

proposed. The use of more than one phase has mainly been studied in two-phase partitioning 

bioreactors, where the presence of the non-aqueous phase has been found to increase the mass 

transfer rate [11]. Recently the use of solid inert polymers has been studied due their low cost, 

easy separation and recycling possibilities [12, 13]. 

According to the stated above, main parameters that affect the gas-liquid oxygen transfer by 

means of membrane diffusers were tested under common biofiltration conditions. In addition 

the improvements that can be achieved through direct injection of oxygen and the use of a non-

liquid phase (NLP) as mass transfer vector were also studied. 

 

2.Materials and methods 

Oxygen transfer experiments were carried out using the equipment described in Rodriguez et al. 

(2012), which consists of a 200 l tank (114.4 cm height and 50 cm of inner diameter) and a 31 

cm fine bubble diffuser (Roediger ROEFLEX, Sacede) mounted near the tank bottom [14]. The 

variables measured were the liquid phase DO concentration and temperature (CellOx 325 probe, 

WTW), the supplied air flowrate (PT-313-0400 variable area flowmeter, Tecfluid), the tank 

pressure (ZSE40/ISE40 high-precision digital pressure switch, SMC) and the sulfate 

concentration (ICS-1000 ion chromatography system, DIONEX). 

Experiments were conducted at a constant temperature of 22±3 0C and at atmospheric pressure, 

except for those experiments in which the tank was pressurized, which were conducted at 

relative pressures in the range 0−0.5 bar. The reagents were nitrogen (99.99%, Abelló Linde), 

oxygen (99.95%, Abelló Linde) and sodium sulfate (99%, Scharlab). The transfer vector used 
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was Desmopan® (DP9370A, 3×3 mm cylinders, polyurethane of poly(oxytetramethylene)glycol 

and methyldiisocyanate, Bayer), as NLP. 

For data acquisition a SCADA system in LabWindows
TM 

was used. The DO sensor was 

connected to an inoLab740 meter (WTW) linked to the computer via a RS-232 interface. 

The mass transfer coefficient was calculated from a mass balance model according to the 

standardized ASCE/EWRI 2-06 equation, 2007 [15], under dynamic conditions: 

( )LSL
L CCaK

dt

dC
−⋅=   (3) 

Equation (3) was solved by the fminsearch algorithm in Matlab using the Simplex search 

method at initial conditions t = 0 and CL = CL(0). 

The mass transfer coefficient values obtained give a reference temperature of 20 
0
C, which can 

be corrected using Equation (4): 

( )T
LL aKaK

−
Θ⋅=

20

20    (4) 

The amount of oxygen transferred to the liquid phase was determined using Equation (5), where 

SOTR is the standard oxygen transfer rate, expressed in Kg O2 h
-1

: 

TSL VCaKSOTR ⋅⋅= 20   (5) 

Before each experiment, the liquid phase was deoxygenated with nitrogen to a concentration of 

2−3 mg l
-1 

DO. The coefficient measurement error was 10%, below the maximum allowed error 

of 15% established in ASCE/EWRI 2-06 [15]. 

As stated in the literature, sensor response times below 1/KLa can be disregarded when 

calculating the mass transfer coefficient [16]. Here, the sensor response time was determined 

using the method proposed by Vandu et al. (2004) [17], and a value of less than 1/KLa was 

obtained. 

 

3.Results and discussion 

3.1.Effect of air flowrate 

Taking as a reference the biofilter described by Tomàs et al. (2009) [18], the stoichiometric 

oxygen requirement for treating up to 1500 ppmv of H2S with a biogas flowrate of 40 m3 h-1 will 

be in the range 1−7 m
3
 h

-1 
of air (0.3-2.1 kg O2 h

-1
). Consequently, experiments were conducted 

with supplied air flowrates from the diffuser in the range 1.2−6.7 m3 h-1 at atmospheric pressure. 

Figure 1 shows the air flowrates in the range 2.3−6.7 m
3
 h

-1
, a linear relationship is observed 

between SOTR and the gas flowrate; when the air supply is increased, the oxygen transfer rates 

rises. These results are consistent with those obtained by Cachaza et al. (2008) [19] in a bubble 

column reactor, using a perforated plate to introduce air into the system. 

Doubling the air flow from 1.2 to 2.34 m
3
 h

-1
 increased oxygen transfer by 59% (which 

graphically corresponds to a value of 0.026 kg O2 mair
-3). When the supplied air flowrate is 

Page 4 of 17

Wiley-VCH

Chemical Engineering & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

increased until 6.7 m
3
 h

-1
, the oxygen transfer further improved by up to 118% (0.021 kg O2 mair

-

3). These results clearly indicate that the supplied air flowrate has a strong effect on the amount 

of oxygen transferred. 

3.2.Addition of pure oxygen 

Figure 2 shows the SOTR obtained in experiments with addition of oxygen according to the 

supplied oxygen flowrate. Flows in the range 0.24−0.48 m3 h-1 were used, which supply an 

equivalent volume of oxygen to air flowrates of 1.2−2.4 m
3
 h

-1
. As can be seen in Figure 2, 

lower oxygen transfer rates are achieved when pure oxygen is added to the system. If the same 

volumetric flowrates were used for pure oxygen and air, rather than an equivalent oxygen 

flowrate, oxygen transferred would be higher with the addition of pure oxygen. Using an 

equivalent oxygen flowrate ensures that the hydrodynamic conditions are comparable (same 

mass transfer coefficient) but the mass transferred is enhanced due to a higher driving force for 

oxygen pure in comparison to air. 

At oxygen flowrates of 0.24−0.48 m3 h-1, the total gas-liquid contact area is considerably 

smaller than that at the equivalent air flowrates (considering the bubbles size is kept constant at 

the flowrates range tested) and, what it is more important, the decrease of the turbulence at 

lower flowrates decrease significantly the oxygen transfer rate. In addition, when working with 

pure oxygen, the partial pressure of oxygen in the gas phase increases, raising the driving force 

of oxygen transfer. However, as can be seen in Figure 2, when pure oxygen is added at an 

equivalent oxygen flowrate to that achieved by the addition of air, the resulting oxygen transfer 

rate is higher. This is corroborated by discontinuous stirred-tank reactor experiments carried out 

by Pinelli et al. (2010) [20], who noted that the increase in kL does not compensate for the 

reduction of the specific area, relating it to a decrease in gas hold-up. In addition, it is important 

to note that oxygen addition requires less energy consumption than the addition of air: the 

values of oxygen transfer as a function of energy supplied (measured as standard aeration 

efficiency, SAE, in kg O2 h
-1 kW-1) are 0.62 and 3.31 kg O2 h

-1 kW-1 for the addition of air and 

pure oxygen, respectively. However, the oxygen production entails an additional cost not 

accounted when air is used. 

 

3.3.Effect of pressure 

Figure 3 shows the oxygen transfer rate at relative pressures inside the tank in the range 0−0.5 

barg, with an air flowrate of 1.2 m
3
 h

-1 
supplied by the diffuser. The pressure range used in these 

experiments reproduces the working pressure conditions of the biogas storage system for the 

Manresa and St. Joan de Vilatorrada (Barcelona, Spain) wastewater treatment plant [18]. 

Contrary to the expected outcome, the oxygen transfer rate showed a slight decreasing trend as 

the relative pressure in the system increased (a total decrease in oxygen transfer of 8.3% was 

observed over the relative pressure range studied). However, considering the error associated 
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with SOTR measurements is 10%, and according to an ANOVA statistical test performed, this 

differences were not statistically different at 5% level of significance. 

Bubble diameter should be smaller at higher working pressures. Smaller bubbles provide a 

larger total mass transfer area, meaning that the transfer rate should be higher in pressurized 

systems. Experiments were conducted to dismiss possible DO sensor errors caused by the 

increase in working pressure in the system (data not shown). 

The literature is inconclusive regarding the effect of pressure increase on mass transfer 

coefficients. Han and Al-Dahhan (2007) [21] found that kL remained constant or decreased 

slightly at higher pressures because the liquid properties varied only slightly in the pressure 

range tested (1.4−10.0 barg). Letzel and Stankiewicz (1999) [22], who used a pressure range of 

1−13 barg in a bubble column, observed that kLa increased with pressure. This outcome was 

explained by the fact that the higher pressure increases the gas density, reducing the stability of 

the bubbles and lowering the coalescence rate. By contrast, Yoshida and Arakawa (1968) [23] 

found that kLa decreased at higher pressures, particularly with a low agitation rate, which was 

related to the surface renewal rate or degree of interfacial turbulence, arguing that the increase 

in pressure changes the surface tension and causes the gas-liquid interface to become rigid. The 

results presented in this study are in agreement with those reported by Heijnen et al. (1980) and 

Masutani and Stenstrom (1991) [24, 25]. 

 

3.4.Effect of sulfate concentration 

Figure 4 shows the evolution of oxygen transfer at sulfate concentrations in the aqueous phase 

from 0 to 1000 mg l-1. The chosen range of concentrations was designed to ensure that bacterial 

activity is not inhibited, an effect that is observed at a sulfate concentration of 1900 mg l
-1

, 

according to Jin et al. (2005) [26] and 5000 mg l-1 according to Ramirez et al. (2009) [27]. 

Experiments were conducted with air flowrates of 1.2, 1.8 and 2.4 m
3
 h

-1
. Oxygen transfer 

increased with sulfate concentration in the aqueous phase, with a total increase in SOTR of 34% 

over the concentration range 0−1000 mg l-1. 

Similarly, Jamnongwong et al. (2010) [28] studied the effect of salt content on mass transfer 

coefficients in a bubble column reactor equipped with a membrane diffuser. They concluded 

that the addition of salt increases the surface tension of the water—a phenomenon known as the 

Marangoni effect—to generate greater interfacial turbulence, raising the interface renewal rate 

and leading to increased oxygen transfer. Bubble column experiments conducted by 

Painmanakul and Hebrard (2008) [29] showed that higher salt concentrations reduce bubble 

coalescence, thereby increasing the mass transfer area and leading to a higher rate of oxygen 

transfer. 
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3.5.Effect of non-liquid phase addition 

In biofiltration systems containing poorly water soluble compounds, if an immiscible second 

phase is added, the total oxygen transfer from the gas phase to the aqueous phase is the sum of 

the oxygen transferred from the gas to the non-aqueous phase and the oxygen transferred from 

the non-aqueous to the aqueous phase [30]. According to Muñoz et al. (2007) [31], the overall 

mass transfer in multiphase systems is controlled by transfer from the gas to the non-aqueous 

phase. 

Figure 5 shows the oxygen transfer rate at air flows of 3.0, 4.2 and 6.6 m3 h-1 with NLP 

concentrations of 0, 1, 3, 5, 7 and 9% v/v. The oxygen transfer rate increased with NLP 

concentration at all three of the air flowrates tested, up to a concentration of 3% v/v. These 

results are consistent with those obtained by Quijano et al. (2010a) and (2010b) [32, 33], who 

experimented with the use of multiphase systems for removal of ethanol and toluene, 

respectively. However, when the NLP concentration was increased to above 3% v/v, oxygen 

transfer fell at the 3.0 and 4.2 m3 h-1 air flowrates. This abrupt drop in oxygen transfer at higher 

second-phase concentrations was also witnessed by Quijano et al. (2009) [34], who used 

silicone oil as a mass transfer vector at concentrations of 0−50% v/v. At silicone oil 

concentrations above 10%, the global mass transfer coefficient decreased. 

In their study with bubble column using hollow glass spheres as NLP, Mena et al. (2011) 

observed a mass transfer increase until 2-3% v/v de NLP. For expandable polystyrene the 

results are quite different; in this case the mass transfer decreases with the addition of the non-

liquid phase. In agreement with the results obtained in this study, the experiments of Albal et al. 

(1983) showed that for solid particles concentration less than 5% v/v the mass transfer increased 

and for concentrations higher than 5% the mass transfer decreased [36].  

The reduction in mass transfer may be related to an increase in the apparent viscosity, since at 

higher viscosities the liquid turbulence decreases, leading to lower mass transfer rates [37]. 

At the highest air flowrate, oxygen transfer increased up to a NLP concentration of 5% v/v, 

which indicates that the optimal proportion depends on the air flowrate supplied, since 

increasing the air flowrate increases the liquid phase turbulence. The addition of a non-aqueous 

phase at a concentration of 3% v/v led to an average increase in oxygen transfer of 32%. 

 

4.Conclusions 

The experiments described above show that the typical working conditions of a biological 

desulfurization process are compatible with the addition of a fine bubble membrane diffuser and 

can in fact contribute to improving oxygen transfer rates. It was found that when pure oxygen is 

added instead of the equivalent oxygen volume in air, the rate of mass transfer is lowered due to 

the smaller available mass transfer area. Increasing the working pressure from 0 to 0.5 barg does 

not have a significant effect on oxygen transfer, but a 34% improvement in SOTR is observed 
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when sulfate concentration is increased from 0 to 1000 mg l
-1

. The addition of a 3% v/v non-

aqueous phase increased oxygen transfer by an average of 32%. The addition of a transfer 

vector is a possible means of improving oxygen transfer, up to a certain concentration of the 

non-aqueous phase. This study demonstrates that oxygen transfer is largely insensitive to 

working pressure but responds strongly to the supplied air flowrate. 
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6.Nomenclature 

a = Specific contact area, m
2
 m

-3
 

CL = Dissolved oxygen concentration at the liquid phase, kg m-3 

CS = Dissolved oxygen concentration at saturation, kg m
-3

 

DO = Dissolved oxygen 

KL = Global mass transfer coefficient, s
-1 

kL= Liquid side mass transfer coefficient, m s-1 

KLa20 = Volumetric mass transfer coefficient corrected at 20 
0
C and pressure of 1 atm, s

-1
 

NLP = Non-liquid phase 

QG = Gas flowrate, m
3
 s

-1 

SAE = Standard Aeration Efficiency, kg O2 kW-1 h-1 

SOTR =Standard Oxygen Transfer Rate, kg O2 h
-1

 

t= experimental time, s 

T = Temperature, 
0
C 

VT = Volume of the tank, m3 

Θ = empirical temperature correction factor, 1.024, dimensionless 

H = Henry coefficient, dimensionless  
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Figure 1: SOTR with air flowrates in the range 1.4−6.7 m
3
 h

-1
. 

Figure 2: SOTR and flowrate for the addition of pure oxygen (QO2) and equivalent air (QAir). 

Figure 3: SOTR and relative pressure inside the tank for an air flowrate of 1.2 m
3
 h

-1
 

Figure 4: SOTR and sulfate concentration in the aqueous phase for air flows of 1.2, 1.8 and 2.4 

m
3
 h

-1
 

Figure 5: SOTR and NLP concentration, for air flowrates of 3.0, 4.2 and 6.6 m3 h-1. 
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Text for the Table of Contents 

The effect of different operating variables on the oxygen mass transfer process has been tested 

in a pilot plant using a membrane diffuser as intensive gas-liquid contactor. Tests performed 

simulated those conditions found in the biofiltration of H2S at high loads for biogas sweetening. 

Results showed interesting effects on the mass transfer process when increasing the solution 

ions concentration and with the addition of a non-liquid phase (NLP).    
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