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Optimization of phase modulation formats for

suppression of

stimulated Brillouin scattering in optical fibers
Achar V. Harish, Member, IEEE,and Johan Nilsson

Abstract—We theoretically investigate nonlinear optimization
of periodic phase modulation for suppression of stimulated
Brillouin scattering (SBS) in single-mode optical fibers. We use
nonlinear multi-parameter Pareto optimization to find modula-
tions that represent the best trade-off between SBS and optical
linewidth, as measured by its RMS value. The optimization uses a
temporal-amplitude-domain finite-difference Brillouin solver with
noise initiation to find the best phase modulation patterns in the
presence of coherent so-called cross-interactions. These can be
important in short fibers, when the period is large enough to
make the frequency-domain separation of the modulated signal
comparable to, or smaller than, the Brillouin gain linewidth.
We calculate the SBS threshold for the optimized modulation
patterns and find that smaller spectral line-spacing improves the
SBS threshold for the same linewidth. By contrast, whereas the
maximum modulation depth and modulation frequency influences
the range of accessible linewidths, they do not significantly alter
the threshold for a given linewidth. We investigate the dependence
on fiber length and find that while shorter fibers have a higher
threshold, the increase is smaller than the often-assumed inverse
dependence on length. Furthermore, we find that optimized
formats are superior in terms of SBS threshold as well as in
terms of linewidth control, compared to random modulation.

Keywords—Nonlinear optics, Optical fiber amplifiers, Stimulated
Brillouin scattering

I. INTRODUCTION

Stimulated Brillouin scattering (SBS) is the lowest-threshold
nonlinear effect in optical fibers in case of continuous-wave
light at narrow linewidth (e.g., below 1 GHz) [1]. Such light,
which is often the desired signal or laser output of an optical
fiber, will act as a Brillouin pump in the SBS process. This
is an acousto-optic effect in which the Brillouin pump wave
scatters off an electrostrictively driven acoustic wave into
a Brillouin Stokes wave, which is counter-propagating and
down-shifted by the Brillouin frequency shift, relative to the
pump wave. Once the Brillouin pump power and thus the
associated Brillouin gain becomes sufficiently high, the Stokes
wave builds up from noise and cannibalizes the power in
the Brillouin pump (i.e., the desired signal of the system).
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This limits the power of systems such as the single-frequency
MOPA (master oscillators - power amplifier), in which the
output from a so-called single-frequency seed laser, which
operates on a single longitudinal mode (SLM), is boosted in
a fiber amplifier [2], [3]. SBS can then take place in the gain
fiber itself or in a subsequent delivery fiber.

The SBS threshold at which the pump depletion becomes
significant increases for linewidths larger than the SBS gain
bandwidth. Therefore, the output from a SLM seed laser
(linewidth typically narrower than 1 MHz) is often spectrally
broadened before it is amplified or delivered in a fiber, to allow
for higher output powers. In silica fiber at wavelengths around
1 µm, the Stokes shift is around 16 GHz or 0.06 nm and the
SBS gain bandwidth is around 35 MHz (full-width at half-
maximum, FWHM). This assumes the linewidth is limited by
the phonon lifetime of ∼ 4.6 ns. Although it can be broadened,
e.g., as a result of acoustic waveguide engineering [4] and
thermal effects [3], [5], [6], [7], we will not consider such
broadening here.

Also the optical spectrum of the laser can be broadened.
While it is straightforward to broaden it sufficiently for SBS
to be suppressed, at the same time, it is often desirable to use
pure phase modulation in order to keep the power constant in
time and thus minimize the peak power for a given average
power, and, crucially, to keep the linewidth within limits set
by the intended application.

Different modulation approaches to broaden the optical
spectrum to satisfy these conflicting requirements have been
investigated, periodic as well as random non-periodic (e.g.,
Gaussian white noise) ones. In case of periodic modulation, the
resulting spectrum is discrete. If the period of the modulation
is sufficiently short and thus the discrete lines are sufficiently
far apart, relative to the Brillouin linewidth, then the discrete
lines make essentially independent contributions to the overall
Brillouin gain spectrum, with the peak gain approximately
determined by the maximum power in a single spectral line. In
order to minimize the peak gain within a fixed total bandwidth,
it is then desirable to have equal power in each line within that
bandwidth, but no power outside. However, phase modulation
is a nonlinear transformation, and it is not possible to achieve
a strictly bandwidth-limited optical spectrum with bandwidth-
limited pure phase modulation. Nevertheless, nonlinear opti-
mization has been used to find phase modulation waveforms
that create spectra close to this target. For example, a single-
line laser was broadened to 0.5 GHz with 15 spectral lines
where the peak spectral amplitude was 0.9 dB higher than the
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average of those 15 lines, which contained more than 90% of
the total laser power [8].

The earliest work on optimizing periodic waveforms for
phase modulation are found in Refs. [9] and [10]. Korotky sug-
gested to use multi-tone sinusoids to drive the phase modulator
with judiciously chosen phase and amplitude of the sine waves
[11]. Several sinusoids with varying frequency and amplitude
was used in Ref. [12] for SBS suppression in fiber optic
parametric amplifier (FOPA). Later, use of arbitrary periodic
waveforms optimized for SBS suppression was suggested in
Ref. [13]. Here the authors refer to “non-sinusoidal modula-
tion” formats that are optimized focusing on getting best SBS
suppression with minimum linewidth. Phase modulation using
pseudo-random binary sequences (PRBS) has also been used
to suppress SBS in optical fibers [14]. Here, the authors have
optimized the PRBS pattern length for best SBS suppression
in fibers of different length [15] Experimentally, however, SBS
suppression often rely on modulation formats with randomness
[16] rather than using a deterministic signal optimized for SBS
suppression. For example, Ref. [17] employs both frequency-
hopped chirping and a noise source. The phase modulator is
driven deeply up to 6 pi rad giving good SBS suppression in
FOPA. However such randomness is unlikely to provide the
best tradeoff between SBS suppression and linewidth.

Despite the importance of Brillouin suppression in optical
fibers these are only a handful of publications in which the
phase modulation has been optimized. Furthermore, numerical
optimization examples consider the case when the spectral
lines contribute independently to the Brillouin gain, i.e., when
they are spectrally far apart. However, a smaller line spacing
corresponds to a longer temporal trace, and it is intuitively
clear that a properly optimized trace with period which is,
longer, say, by a factor-of-two, will perform at least as well as
a shorter-period trace, and may be better. As the line spacing
decreases, coherent cross-interactions between spectral lines
need to be considered, and thus their phase differences. The
Brillouin gain then needs to be calculated and minimized
with equations that account for such cross-interactions, which
increase the SBS, irrespective of if a temporal-domain or a
spectral-domain model is considered.

Fig. 1. Block diagram for linewidth broadening of single-frequency laser
with optimized waveform generated by arbitrary waveform generator.

In this paper we use numerical simulations to investigate
and optimize periodic phase modulation waveforms when
the Brillouin cross-interactions become important. We aim to

find the best trade-off between two conflicting objectives: to
minimize the Brillouin Stokes power and to minimize the
laser linewidth. For this we use genetic-algorithm-based Pareto
multi-objective nonlinear optimization. We then calculate the
Brillouin threshold power for the optimized waveforms. We
explore the effects of line spacing, modulation depth, modula-
tion frequency, and fiber length. Furthermore, we compare the
optimized patterns with noise-modulation of the phase, which
is often used to suppress SBS.

Figure 1 shows a schematic of the set-up we consider.
This paper is restricted to the modulation and SBS in the
passive fiber and does not consider the effect of the amplifier.
The amplifier is not needed, conceptually, but we believe the
schematic in Fig. 1, with a fiber amplifier, represents the most
realistic hardware configuration. Whereas the amplifier can
perhaps distort the phase-modulated Brillouin pump-wave, we
assume the amplification is ideally linear. Any deviations from
this would complicate the relation between the modulation
waveform from the AWG and the lightwave launched into
the passive fiber. There is also the possibility of SBS in the
amplifier, and of interaction between SBS in the passive fiber
and the amplifier, which we disregard. In a real system, it may
be possible to avoid these effects by having a short amplifier
fiber, disjoint Brillouin spectra in the different fibers, and by
having an isolator.

The phase modulation patterns are limited in amplitude
and bandwidth. Consequently, they can be represented by a
number of discrete samples and readily be realized with an
arbitrary waveform generator (AWG), which then drives a
phase modulator. This is exactly the same as in Ref. [8], except
that we then did not consider cross-interactions. We consider
single-mode passive fiber, but we believe the methods and
issues are relevant also for fiber amplifiers.

The paper is arranged as follows: firstly, we describe the
equations and the finite-difference method we use to simulate
SBS. The section thereafter describes the nonlinear optimiza-
tion procedure. Then we look at the numerical optimization
results. Finally, we compare the optimized periodic phase
modulation patterns with random white-noise-like modulation.

II. STIMULATED BRILLOUIN SCATTERING MODEL

An optical fiber can act as an SBS generator where the
Stokes wave is seeded by spontaneous Brillouin scattering off
thermally excited acoustic noise waves and, to a much lesser
extent, by optical quantum noise. In this work we use the
model given by Ref. [18] for the initiation of SBS in optical
fibers. The Brillouin pump and the Stokes waves are counter-
propagating in a fiber with length L. The acoustic wave thus
couples the pump and Stokes waves. Following noise initiation,
the pump and Stokes waves drive the acoustic wave through
electrostriction. The Brillouin pump wave propagating in posi-
tive z direction is given as EP (z, t) =

1
2AP (z, t)e

i(kP z−ωLt)+
c.c., where c.c. represents the complex conjugate. The Stokes
wave propagating in the negative z direction is given as
ES(z, t) =

1
2AS(z, t)e

i(kSz+ωSt) + c.c.. Here, ωL and ωS are
the angular frequency and kP and kS are the wavenumbers
of the Brillouin pump and Stokes waves. Both waves are
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assumed linearly polarized along the same direction. The
acoustic wave is assumed to be longitudinal (a pressure wave).
It is represented by the variation in the density of the medium
with amplitude given by Q(z, t) = 1

2Q
0(z, t)ei(kQz−Ωt) + c.c.

where the acoustic angular frequency Ω = ωL − ωS . The
acoustic wavenumber (kQ) equals the sum of the Brillouin
pump and Stokes wavenumbers (kP + kS). It is related to the
acoustic angular frequency as Ω = kQv where v is the speed of
the acoustic wave. The Brillouin pump and Stokes waves are
coupled to each other as described by the following equations

∂EP

∂z
+

n

c

∂EP

∂t
=

iγωL

4ρ0nc
QES (1)

∂ES

∂z
−

n

c

∂ES

∂t
= −

iγωS

4ρ0nc
Q∗EP (2)

where γ is the electrostrictive constant, ρ0 is the mean density
and n is the refractive index of the medium. For the driven
acoustic wave, we ignore the effects of the phonon propagation
and use the slowly varying envelope approximation:

∂Q

∂t
+

1

2
ΓBQ =

iγk2Q
16πΩ

EPE
∗

S + f (3)

where f is the thermal noise source in the medium which
initiates SBS. According to Eq. 3 the acoustic wave decays
exponentially in the absence of driving terms. This results in
the well-known Lorentzian-shaped gain spectrum. The phase
modulation is introduced through the boundary condition for
the Brillouin pump wave as EP (0, t) =

1
2E

0
P (0, t)e

[i(−ωP t)]+
c.c., where E0

P (0, t) = Ein
P eiφ(t). Here Ein

P is a constant
and φ(t) denotes the waveform used for phase-modulating the
Brillouin pump. We numerically integrated (1)-(3) using the
method of characteristics [19] along the characteristic lines
z = tc/n.

In the time domain, the amplitude of the backscattered
Stokes wave fluctuates randomly on a sub-microsecond time
scale. This behavior stems from the noise initiation of the
Stokes wave [18]. Thus, the integration never reaches a true
steady state. Nevertheless, plausible calculations of the aver-
age Stokes power with steady-state or periodic pumping are
possible if the integration window is sufficiently long. Twenty
transit times is good for obtaining plausible solutions [18].
Whereas it is in principle possible to evaluate, for example, a
sliding average and from that determine if a reliable average
value has been reached, this was too time-consuming for use in
our optimization loop. Rather, we used pre-determined time-
window durations where we calculated the average Stokes
power after dropping the initial values in the evaluated arrays
equivalent to four transit times through the fiber plus the
phonon life-time to calculate the average Stokes power. This
approach is designed to make the result independent of the
initial conditions. We started our evaluations from ”cold”.
Specifically, for the pump wave the evaluation is started from
“cold”, with acoustic noise but without any lightwaves inside
the fiber.

For the Stokes wave the initial and boundary conditions
are ES(L, t) = ES(z, 0) = 0. Thus we neglect seeding by
optical quantum noise. The initial condition and boundary

condition for the acoustic wave are given by Q(0, t) = Q′

0

and Q(z, 0) = Q′

0, where Q′

0 =
√

nρ′

cΓB
Ri,j . Here Ri,j is a

discretized complex Gaussian distribution function with zero
mean and unit variance, and i, j represent the grid points
of intersection along the three characteristics in space and
time, respectively. The spatial grid is determined from the
same characteristic ∆z = c

n∆t. Unless otherwise stated the
time step in our finite difference model is set to 0.2 ns.
We used a wavelength of 1060 nm for our simulations. The
intrinsic Brillouin gain bandwidth ΓB is taken as 35 MHz.
The refractive index was 1.46. The values of other physical
parameters are, γ = 1.95, ρ0 = 2700 Kg/m3, v = 5900 m/s
were taken from Ref. [19]. The effective core area was 78.5
µm2 and Ω was 10.1×1010 rad/s. This corresponds to 16.1
GHz. With these parameters, the commonly-used Brillouin
gain coefficient (gB) becomes 47 pm/W.

We represent our modulation waveform by a finite num-
ber of phase samples, to be optimized. For constructing the
modulation signal we use a simple model for the arbitrary
waveform generator (AWG), which converts the sampled phase
points into a smooth continuous modulation waveform [20].
Mathematically, if φn are the phase samples which are to be
optimized then the reconstructed phase signal φ(t) for even
numbers of samples is given by,

φ(t) =

N−1
∑

n=0

φn

sin(π(t−nTs)
Ts

)cot(π(t−nTs)
T )

N
(4)

Here Ts is the separation of the phase samples (2 ns in our
case), T is the modulation period and N is the number of
phase samples. There is a corresponding expression for odd
numbers of samples. The reconstruction of the waveform with
Eq. 4 results in a modulation waveform which is bandwidth-
limited to half the sampling frequency. Since phase modulation
is a nonlinear transformation the modulation function needs
to be sampled at a higher frequency to be well represented.
The grid used for solving the Brillouin equations determines
the lightwave sampling, which is in all cases denser than the
modulation sampling. Note also that it is only the pump input
wave that is periodic in our calculations. All other quantities
vary without any absolute periodicity, including the acoustic
noise seeding which varies randomly for all points in time and
space.

III. MULTI-OBJECTIVE PARETO OPTIMIZATION

PROCEDURE

Multi-objective Pareto-optimization [21] offers a way for us
to find the modulation patterns (represented by phase samples)
that lead to the best Stokes power vs. linewidth characteristics.
This is known as the Pareto front, which is characterized by
that the optimization routine found no solutions that were
better in both Stokes power and linewidth. It is different from
conventional optimization, which requires us to use a single-
valued merit function. We then need to trade off linewidth
vs. threshold, or alternatively specify a linewidth. This is not
needed in case of Pareto optimization, and instead, the system
designer is free to choose the best tradeoff. It is numerically
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efficient, since each solution of the SBS equations contributes
to the calculation of the Pareto front as a whole. Numerical effi-
ciency is important, because solving the SBS equations is time-
consuming, the nonlinear nature of the optimization makes it
more difficult to find an optimum solution, and because we
may have a long modulation period with a large number of
phase samples. We used Pareto multi-objective minimization
from the Matlab optimization toolbox [22]. This is a black-box
module based on genetic algorithm. The optimization results
depend on the details of the SBS process, the physical limits
of the modulation (modulation frequency and amplitude), the
fiber length, and the period of the modulation.

Our problem has two Pareto parameters to be optimized.
The Brillouin threshold power (Pth) would be a natural choice
for one of these. However, calculation of the Brillouin thresh-
old power requires several simulations with different pump
powers for each phase modulation waveform evaluated in the
optimization. Therefore, we instead minimized the Brillouin
Stokes power (PS) for a given pump power. For the second
Pareto parameter we choose the RMS Brillouin pump linewidth
(∆νp) evaluated as the second moment of the power spectrum
from the average frequency f0, calculated as,

∆νp = 2×

√

√

√

√

√

√

√

√

√

N/2−1
∑

k=−N/2

Pk(fk − f0)2

N/2−1
∑

k=−N/2

Pk

(5)

Here Pk is the power of the pump in the spectral component
with frequency fk and N is the number of spectral components
(if N is even). The Pareto front for ∆νp and PS is then
calculated in the Matlab optimization module. We run these
simulations without parallelization on a personal computer.
Run times for a Pareto-front calculation are around 30 minutes
for five phase samples and a few hours for 20 phase samples.

An issue with optimizing Brillouin Stokes power instead of
threshold power is the choice of pump power. This was set to
result in approximately 70% Brillouin backscatter (Brillouin
Stokes power/input pump power) in the unmodulated case.
The Brillouin scattering is then much lower for the modulated
waveforms, but still enough for stimulated Brillouin scattering
to dominate over spontaneous Brillouin-scattering, which is a
linear effect and therefore cannot be used for optimization. Al-
ternatively, one may want to first calculate the pump linewidth
according to (5) and then increase the pump power according
to a guess of the effect of the pump linewidth on the Stokes
power.

IV. NUMERICAL OPTIMIZATION RESULTS AND

DISCUSSION

We initially consider 10 phase samples with 0.5 GHz sample
rate and a 2.5 m long fiber. Thus, we reconstructed the phase
modulation waveform from 10 phase samples and resampled
it on the numerical grid of the equation solver with 0.2 ns
spacing (5 GHz sampling rate). The original 10 phase samples
were constrained to be within π and -π. The period of the

phase modulation of the pump becomes 20 ns and its spectral
line spacing becomes 50 MHz. While this is larger than the
Brillouin linewidth, the slow decay of the Lorentzian line-
shape of SBS means there are still cross-interactions. We use
a total temporal window of 0.26 µs, which corresponds to
13 × 20 ns of the phase modulation period and 20.8 fiber
transit times. The Brillouin pump power was 200 W. Figure 2a
shows Pareto optimization results. Each point corresponds to
a specific optimized waveform, which fulfills the criterion that
we found no other waveform which resulted in both a narrower
linewidth and a lower Stokes power. For the same optimized
modulation waveforms we calculated the corresponding Bril-
louin threshold power (Pth), also shown in Fig. 2a. We define
this as the power that leads to 1% Brillouin back-scattering.
The threshold for an unmodulated laser is 41.8 W.

In Fig. 2a, we also plot a line extrapolated from the
unmodualted threshold according to,

Pth =
kAeff

gBLeff
(1 +

∆νp
ΓB

) (6)

The dependence of the SBS threshold on the linewidth is
sometimes approximated by this equation [23], which can be
viewed as an ideal upper limit on the threshold. This line is
drawn in Fig. 2a along with the threshold values.

The acoustic noise that seeds SBS was kept constant for
every run in the optimization. This removes random fluctua-
tions between runs, which otherwise can create problems for
the optimization. Although the optimized modulation formats
work well with that particular noise seeding, it is possible that
it would be far worse with another random noise seeding. To
assess this, we used the same modulation formats with fifty
different cases of random noise seeding for seven optimized
formats and calculated the resulting Brillouin threshold. Figure
2b shows the result. We see a maximum of 7% variation in
Pth with random seeding. The fact that our optimization is
over several periods, each with different random noise seeding,
reduces the scope for the waveform to be exceptionally well
suited to a specific pattern of the random noise, and less well
suited to others.

Like other approach to nonlinear optimization, the Pareto-
optimization of phase samples is not guaranteed to find the
best solutions. To investigate this we select some of the
modulation formats in Fig. 2a and add random values within a
certain range to the corresponding phase samples. We then
plot the resulting threshold and RMS linewidth on top of
the data from Fig. 2a. Figure 3 shows the results. For most
points, it is not possible to significantly improve the threshold
without increasing the linewidth. This means that the Pareto-
optimization worked well. However, at fixed linewidth of 672
MHz in Fig. 3b we find that better optimized results can lead
up to 10% enhanced threshold.

We next exemplify the Pareto optimization results for two
linewidths from Fig. 2. Figure 4a shows the optimized sampled
phase points and the resulting continuous modulation wave-
form we calculated for 10 phase samples for an RMS linewidth
of 676.9 MHz. The phase occasionally stretches beyond the
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Fig. 2. (a) Pareto multi-objective optimization with 10 phase sample points
of Stokes power vs. ∆νp calculated according to Eq. 5 on the right axis and
plot of corresponding Brillouin threshold power calculated at 1% back-scatter
on the left axis along with theoretical extrapolations according to Eq. (6) and
(b) Brillouin threshold power for fifty different cases of noise seeding for
seven modulation formats of Fig. 2a.

range of −π to π radians. This is because even though the
sampled phase points are constrained within the (−π,+π)
range, the continuous reconstructed signal can go beyond the
range of the samples.

Figure 4b shows the resulting optical power spectrum of
the Brillouin pump (shifted to the baseband) along with the
Brillouin Stokes spectrum in Fig. 4c. Note that the FWHM
linewidth of the pump becomes 1.4 GHz, which is larger than
the RMS linewidth by a factor of 2.1. Fig. 4 d-f repeat the
graphs of Fig. 4 a-c, but for a linewidth of 197.8 MHz. In this
case, the FWHM linewidth becomes 340 MHz, although this
value depends significantly on whether certain spectral lines
are slightly larger or slightly smaller than 50% of the peak line.
Note also that even though the input pump spectra consist of
discrete lines, the Stokes spectra are continuous (the spectral
sampling of 3.85 MHz is only an artefact of our numerical
grid, and is small compared to the Brillouin linewidth as well

Fig. 3. (a) Effect on the threshold values and RMS linewidth when 50
different set of random changes within a range of ±0.1 radians are added to
each of 5 different optimized phase samples of Fig. 2a, (b) same as (a) with
error range of ±0.5 radians.

as the 50 MHz spacing of the pump).
Larger phase modulation amplitude increases the Brillouin

threshold as well as the linewidth. Therefore, it is not obvious
what effect a larger allowed phase amplitude will have on the
Pareto front. Since it relaxes the constraints, some improve-
ment is possible, but this may be small. Fig. 5a compares the
results obtained with permissible phase modulation amplitudes
of ±π and ±2π. The theoretical line extrapolation according
to Eq. 6 is also shown for comparison in Fig. 5a. With ±2π
allowable phase amplitude we see a 13.4 dB increase in the
highest SBS threshold power with 1.3 GHz linewidth. It is
interesting to note that this is getting close to the threshold for
stimulated Raman scattering, which with a Raman gain coeffi-
cient of 40 fm/W becomes ∼1 kW for 1% Stokes power. This
suggests that with optimization beyond this level of linewidth
broadening, SBS is no longer the primary nonlinearity. The
increase in threshold can also be compared to the 11.3 dB
increase obtained with 672.5 MHz linewidth for ±π phase
amplitude. However, larger maximum modulation amplitude
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Fig. 4. (a) Phase modulation signal generated with 10 optimized phase
samples for a pump linewidth of 676.9 MHz. (b) Corresponding Brillouin
pump spectrum as launched into the fiber, (c) Brillouin Stokes spectrum
calculated at the pump input end of the fiber. (d) Phase modulation signal
generated with 10 optimized phase samples for a pump linewidth of 197.8
MHz. (e) Corresponding Brillouin pump spectrum and (f) Corresponding
Brillouin Stokes spectrum.

does not lead to any clear increase in the SBS threshold
at a given linewidth. In some cases, it even decreases. We
attribute this to imperfect optimization. Presumably, the higher
the range of allowed phase values for optimization, the higher
is the probability of shortfalls in the calculations of the Pareto
front. Although we have not made any direct attempts to assess
how well the Pareto optimization and subsequent calculation
of the threshold works, this and other graphs suggest that
threshold improvements of up to 15% may be possible in
some cases with more thorough optimization. Although this
is significant, the availability of nearby data points makes it
possible to identify points that seem less reliable and thus asses
a curve on the whole with adequate confidence.

The sampling frequency of the modulation signal is also
an important factor. The considerations are similar as for the
modulation amplitude. Fig. 5b compares the results of the
Pareto optimization for sampling frequencies of 5 GHz (as
in Fig. 2) and 2.5 GHz, wherein we optimized 10 and 5 phase
samples (to keep the period the same), respectively. As for the
case of an increase in the maximum amplitude, an increase
in the modulation frequency increases the attainable threshold
by increasing the attainable linewidth. However for similar
linewidths the difference in threshold is small and may well

Fig. 5. (a) Plot of Brillouin threshold power vs. RMS linewidth for two
different ranges of the phase modulation amplitudes where the 10 phase
samples are constrained within ±π in one case and ±2π in another case for
2.5 m fiber length. (b) Plot of Brillouin threshold power vs. RMS linewidth
for two different sampling frequencies of 5 GHz and 2.5 GHz for the same
period (20 ns) and fiber length (2.5 m).

be caused by imperfect optimization.

Next, to investigate the influence of the fiber length, we
optimized 10 phase samples for 1 m, 1.5 m, 2.5 m, and 5 m
fiber lengths with phase samples limited to ±π and with 20 ns
period (spectral line spacing 50 MHz). The fiber transit time
varies between 5 and 25 ns in these simulations, and the time
window is 500 µs in order to reach 20 transit times also for
the 5 m fiber. The corresponding Brillouin threshold power
vs. linewidth characteristics are plotted in Fig. 6a. For small
linewidths, Pth is largely inversely proportional to the fiber
length, and the difference between 1 m and 5 m becomes 6.1
dB. This is close to the 7-dB suggested by the length ratio.
For larger linewidths the difference becomes smaller than 6.1
dB, down to only 4.2 dB for 500 MHz. Fig. 6b plots Pth ×L
values against the ∆νp. We see that longer fibers show higher
Pth ×L values than shorter fibers. We believe that the reason
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Fig. 6. (a) Plot of SBS threshold power vs. RMS linewidth for four different
fiber lengths of 1 m, 1.5 m, 2.5 m and 5m calculated with Pareto optimization
of 10 phase samples and modulation depth of ±π and (b) plot of Pth × L

values vs. linewidth for fiber lengths of 1 m, 1.5 m, 2.5 m and 5 m showing
enhanced values of the product of SBS threshold and length for longer fibers.

is that the shorter fibers are too short for the phase relations
between the spectral components of the interacting waves to
be averaged as they propagate down the fiber. Thus, the phase
relations are sometimes favorable for SBS. This lowers the
threshold values due to additive cross-interactions. A similar
behavior was observed in simulations by Zeringue et al. [19]
and it was suggested that they had experimental data which
was in agreement.

The period of the phase modulation signal (T ) decides the
spectral spacing of the frequency components, which is also
a primary parameter of interest. Next we compare modulation
periods ranging from 80 ns (12.5 MHz spectral spacing) to 10
ns (100 MHz spectral spacing) for a fiber length of 2.5 m. The
sample frequency is kept at 5 GHz in all these cases. Hence,
for 10 ns period we optimize 5 phase samples whereas for 80
ns period we optimize 40 phase samples. We keep the total
temporal range to at least 20 transit times in all cases. The
corresponding trace lengths for 10, 20, 40 and 80 ns periods

are therefore 210, 260, 280, and 320 ns.

Fig. 7. (a) SBS threshold power against linewidth for different modulation
periods, T = 10, 20, 40 and 80 ns with corresponding spectral spacing of 100
MHz, 50 MHz, 25 MHz and 12.5 MHz and (b) plot showing the threshold
power against the linewidth divided by spectral line spacing approximating
the number of lines within the RMS linewidth.

Figure 7a shows the results, i.e., Pth vs. ∆νp. The longest
period of 80 ns performs better than the shorter modulation
periods with larger spectral spacing. Figure 7b plots the SBS
threshold against the RMS linewidth divided by the spectral
line spacing. This is a measure of the number of spectral lines
within the RMS linewidth. For the same number of spectral
lines, a larger line-spacing gives a higher threshold power than
a smaller spacing does. This is expected, because of the smaller
overlap between the gain spectra of adjacent lines and the
concomitant reduction of cross-interactions.

Figure 8a shows how the (threshold×length) product de-
pends on the line-spacing of the pump spectrum for RMS
linewidths of 525 MHz for two fiber lengths, 1 and 2.5 m.
The data for the fiber length of 2.5 m is extracted from Fig.
7a. According to basic theory, this product should be the same
for both fiber lengths (at least for an unmodulated case), but
it is significantly different for smaller line-spacings. However
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the difference decreases for larger line spacings, as the cross-
interactions become less important. Furthermore, the product
improves for smaller line-spacings, i.e. for longer periods.

It is actually clear that a longer period must be at least as
good as a shorter one, if the sample rate is the same, at least if
the longer period is an integer multiple of the shorter one. The
reason is that the longer period can then exactly reproduce any
waveform of the shorter period, so the longer period cannot
be worse if the optimization works well.

It is still theoretically possible that the optimum waveform of
a, say, 80 ns waveform is (nearly) the same as four cascaded 20
ns waveforms. In this case, the actual line-spacing becomes 50
MHz (inverse of 20 ns rather than of 80 ns), with intermediate
lines (nearly) void of power. To investigate this possibility,
Fig. 8b-e plots the input spectra of the phase-modulated pump
corresponding to the points in Fig. 7a, for the 2.5 m fiber. The
spectral filling of the optimized points does increase for longer
periods, and we conclude that with the optimized waveforms,
the benefits of the increased spectral filling outweigh the
disadvantages of the cross-interactions.

It is interesting to compare the improvements in threshold
we achieve to those of other approaches. Alternative phase
modulation formats used for SBS suppression employ white
noise source (WNS) [16], multi-frequency sine-waves [9] and
pseudo-random binary sequences (PRBS) [24]. Here, modula-
tion with multi-frequency sine-waves is similar to modulation
with an AWG, and can be identical if the sine-waves are multi-
ples of a common base frequency and have controlled phases.
If not, we expect that multi-frequency sinewave modulation is
worse, due to the uneven line-spacing, and/or lack of phase
control.

For noise modulation, and this in a typical experimental
setup, random white noise is filtered through a low pass filter,
amplified in an RF amplifier, and used to drive the electro-
optic phase modulator [16],[25]. We next compare the increase
in SBS threshold resulting from phase modulation with WNS
with the Pareto-optimized results of Fig. 2, for a fiber length
of 2.5 m.

To simulate SBS suppression with WNS modulation, we
generate WNS with a sampling frequency of 5 GHz. We use
130 noise samples at 2 ns sample period to reconstruct the
noise modulation signal yielding the same temporal range of
0.26 µs as used for Fig. 2. The amplitude distribution of the
noise samples depends on the details of the noise generator
and any RF amplifier that is used. Here we assume that they
result in phase samples that are uniformly distributed in the
interval (−π,+π), when used to drive the phase modulator.
The interval can be controlled by the settings of the RF
amplifier. This noise modulation signal is used to drive the
phase modulator. We determine the values of Pth and the
optical RMS-linewidth ∆νp for these 130 samples, in the
same way as we did for the optimized modulation waveforms.
We perform this simulation for 1000 different random noise
modulation waveforms, which, if we were to combine them,
would add up to a total duration of 0.26 ms. Since the
waveforms are random we get different results for each trial.
Figure 9 shows a scatter-plot of the resulting data pairs. The

Fig. 8. (a) Plot of Pth × L against the spectral spacing at a linewidth of
525 MHz for fiber lengths of 2.5 m and 1 m and (b)-(e) pump power spectra
for different spectral spacing of 12.5, 25, 50 and 100 MHz for the same RMS
linewidth of 525 MHz in case of 2.5 m fiber legnth.
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average ∆νp for WNS modulation evaluates to 511.4 MHz and
the average Pth evaluates to 257.9 W. For comparison, we also
re-plot the optimized Pth vs. ∆νp characteristics from Fig. 2b.

Fig. 9. Scatter plot of Pth vs. ∆νp for 1000 trials of WNS modulation
for fiber length of 2.5 m along with the results of the optimized formats and
theoretical line included for comparison.

Unsurprisingly, the optimized waveforms are far better than
the random ones in several ways. First of all, no random
waveform qualifies for inclusion on the Pareto front (as re-
evaluated from Stokes power to threshold power). This means
that for each random waveform, there is an optimized wave-
form which is better in both threshold power and linewidth.
Furthermore, at the average linewidth of 511.4 MHz for the
random waveforms, the optimized threshold becomes 434.8 W.
This is 1.6 times higher than the average threshold power for
the random waveforms of 257.9 W, and 4.1 times higher than
the minimum threshold power for the random waveforms of
107.2 W (within a total time of 0.26 ms). In order to avoid
potentially disastrous SBS-spikes with random modulation, the
power should be kept below this minimum threshold power.
However, with optimization, the same threshold power is
reached already with a linewidth of 100.1 MHz. Although
points outlying in linewidth are typically a smaller concern
than those outlying in threshold power, we also note that the
random modulation occasionally leads to linewidths of 696.9
MHz, which is 6.9 times larger than 100.1 MHz.

Fig. 10 shows distribution functions of Pth and ∆νp, each
divided into 100 bins, for the 1000 random modulations. These
plots show a standard deviation of 105.8 W for Pth and
112.2 MHz for the linewidth. As it comes to the variation
in linewidth, there is 8% probability for the linewidth (as
evaluated in 0.26 s) to exceed 600 MHz and 22.8% proba-
bility to exceed 500 MHz. Note also that the variations are
much larger than those resulting from the random acoustic
noise variation in Fig. 2c. These variations are crucial when
we want to operate the laser with desired specifications in
applications like coherent beam combining. In this regard the
optimized phase modulation formats seem far superior to noise
modulation.

Pseudo-random binary sequences (PRBS) with π phase

Fig. 10. (a) Plot of number of counts in 100 bins from 0 to 570 W against
the Brillouin threshold power for 1000 trials with WNS modulation for fiber
length of 2.5 m. (b) similar plot of number of counts in 100 bins from 0 to
676.9 MHz against the ∆νp.

shifts have also been studied extensively for SBS suppression
[24]. The bit sequences are chosen randomly which is unlikely
to be the best solution. It is however quite possible that through
optimization, PRBS can yield comparable performance, but
this is beyond the scope of this work. PRBS modulation is
attractive in that suitable drivers are cheaper than an AWG for
the same sample frequency, although it is likely that a higher
PRBS sampling frequency would be required to compensate
for the higher freedom of an AWG. Having said that, the 500
MHz sampling frequency we typically used is far from state-
of-the art, and even AWGs would be relatively inexpensive.

Even if we disregard the possibility of alternative modula-
tion approaches, the parameter space is very large. We have
only investigated a small sample, dictated in part by limits in
computers and software we have used. For example, higher
sample frequencies and longer modulation periods would be
interesting to investigate, as well as if the curves in Fig. 5c
would converge for longer fibers, as we believe they should.

While RMS linewidth is a convenient measure, other can be
more appropriate, for example beam-combination efficiency or
“power-in-bucket” (e.g., power within a certain linewidth). A
problem with these measures is that they introduce additional
parameters of interest. In case of power-in-bucket, the power
and the spectral width of the “bucket” are both of interest.
Combined with the Brillouin threshold power, this then creates
a three-dimensional Pareto front. Although more dimensions
are more difficult or impossible to illustrate, the increase
in the computational burden can be more modest, which is
a key attraction of Pareto optimization. Most important for
run-times are the number of phase-samples to be optimized
and the numerical solution of the Brillouin equations. Power-
in-bucket Pareto optimization calls for lengthier processing
of each solution of the Brillouin equations, but it does not
necessarily require us to increase the number of times we
solve the equations. Therefore, the increase in run-times can
be modest.

Finally, a major point of the work presented here is that
we use a passive fiber (e.g. a delivery fiber) to find optimized
formats. We expect that fiber amplifiers will lead to significant
differences in the optimized waveforms.
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V. CONCLUSION

We theoretically investigated suppression of SBS in single-
mode optical fibers through periodic phase-modulation. This
leads to a broadened optical spectrum with discrete lines. The
spectral lines are sufficiently close together for coherent cross-
interactions between the lines to be important. Therefore, their
relative phase matters, and because the fibers are short (1-5 m),
the phase relations are not fully averaged along the fiber. We
use a time-domain finite difference solver to account for these
factors in the SBS process.

More broadening leads to better suppression. We used
multi-parameter Pareto optimization to find modulations that
represent the best trade-off between SBS suppression and the
optical linewidth, as measured by its RMS value. Our modeling
assumes an arbitrary waveform generator connected to a phase
modulator, and the optimization finds sample values for the
phase that maximizes the suppression. We discussed the influ-
ence of the maximum phase modulation depth and sampling
frequency, fiber length, spectral-line spacing and random noise
seeding. Although shorter fibers have a higher threshold, the
increase is smaller than the often-assumed inverse dependence
on length. Although larger maximum modulation depth and
sampling frequency allow for higher SBS threshold, this is
only insofar as the linewidth is increased. On the other hand,
with proper optimization, a closer line spacing does improve
the SBS suppression for a given linewidth. We also find that
the optimized formats are superior in terms of SBS threshold
as well as in terms of linewidth control, compared to random
modulation.

This work does not take into account the mechanisms of an
optical fiber amplifier. This may be studied as a future work
along with exploring cost function formulation that lead to
better optimized results.
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