
49

Optimization of Polynomial Datapaths Using
Finite Ring Algebra

SIVARAM GOPALAKRISHNAN and PRIYANK KALLA

University of Utah

This article presents an approach to area optimization of arithmetic datapaths at register-transfer

level (RTL). The focus is on those designs that perform polynomial computations (ADD, MULT) over

finite word-length operands (bit-vectors). We model such polynomial computations over m-bit vec-

tors as algebra over finite integer rings of residue classes Z2m . Subsequently, we use the number-

theoretic and algebraic properties of such rings to transform a given datapath computation into

another, bit-true equivalent computation. We also derive a cost model to estimate, at RTL, the area

cost of the computation. Using the transformation procedure along with the cost model, we devise

algorithmic procedures to search for a lower-cost implementation. We show how these theoretical

concepts can be applied to RTL optimization of arithmetic datapaths within practical CAD settings.

Experiments conducted over a variety of benchmarks demonstrate substantial optimizations using

our approach.

Categories and Subject Descriptors: B.5.1 [Register-Transfer-Level Implementation]: De-

sign—Datapath design

General Terms: Algorithms

Additional Key Words and Phrases: High-level synthesis, polynomial datapaths, arithmetic data-

paths, modulo arithmetic, finite ring algebra

ACM Reference Format:
Gopalakrishnan, S. and Kalla, P. 2007. Optimization of polynomial datapaths using finite ring

algebra. ACM Trans. Des. Automat. Electron. Syst. 12, 4, Article 49 (September 2007), 30 pages.

DOI = 10.1145/1278349.1278362 http://doi.acm.org/10.1145/1278349.1278362

1. INTRODUCTION

RTL descriptions of integer datapaths that implement polynomial arithmetic
are found in many practical applications, such as digital signal processing (DSP)
for audio, video, and multimedia applications [Mathews and Sicuranza 2000;

This work has been supported in part by a grant from the US National Science Foundation Faculty

Early Career (CAREER) Development Award, CCF-546859.

Authors’ address: S. Gopalakrishnan and P. Kalla, Department of Electrical and Computer Engi-

neering, University of Utah, 50 S. Central Campus Dr., Rm. 3280 MEB, Salt Lake City, UT 84112;

email: {sgopalak, kalla}@ece.utah.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/09-ART49 $5.00 DOI 10.1145/1278349.1278362 http://doi.acm.org/

10.1145/1278349.1278362

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:2 • S. Gopalakrishnan and P. Kalla

Fig. 1. Typical design flow for arithmetic datapath-intensive applications

Peymandoust and DeMicheli 2003]. The growing market for such applications
requires sophisticated CAD support for design, optimization, and synthesis.

Arithmetic datapath, intensive designs implement a sequence of ADD, MULT

type of algebraic computations over bit-vectors; hence they are generally mod-
eled at RTL or behavioral-level as multivariate polynomials of finite degree
[Peymandoust and DeMicheli 2003; Smith and DeMicheli 2001]. In such de-
signs, the bit-vectors have prespecified, finite word-lengths. For efficient and
correct modeling of these designs, it is important to account for the effect of bit-
vector size on the resulting computation. For example, the largest (unsigned)
integer value that a bit-vector of size m represents is 2m − 1; implying that the
bit-vector represents integer values reduced modulo 2m (mod 2m).

This suggests that bit-vector arithmetic can be efficiently modeled as algebra
over finite integer rings, where the bit-vector size m dictates the cardinality of
the ring Z2m . This article exploits the number-theoretic and algebraic properties
of these rings to engineer a high-level optimization technique for lower-cost area
implementation of polynomial datapaths.

Let us introduce the context in which the synthesis problems appear, and
give a glimpse of the type and nature of these problems. Figure 1 depicts a
typical design flow to realize arithmetic-intensive applications. Initial algorith-
mic specifications (such as a MATLAB or C model) of such systems represent the
data in floating-point format. However, they are often implemented with fixed-
point architectures (finite precision) in order to optimize the area-, delay-, and
power-related costs of the implementation. Automatic conversion utilities are
available for this purpose [Menard et al. 2002]. Subsequently, the fixed-point
model is translated into an RTL description by using automatic conversion util-
ities, such as Groute and Keane [2000]. The resulting RTL is then synthesized
into a circuit using high-level synthesis tools such as Synopsys [2007].

High-level synthesis has seen extensive research over the years. Various al-
gorithmic techniques have been devised, and CAD tools developed, that are
quite adept at capturing the hardware description language (HDL) models
and mapping them into control/data-flow graphs (CDFGs), performing schedul-
ing and resource allocation, sharing, binding, and retiming [DeMicheli 1994].
However, these tools lack the mathematical wherewithal to perform sophisti-
cated algebraic manipulation for arithmetic datapath-intensive designs. While
symbolic algebra-based manipulations have been used in high-level synthesis
[Smith and DeMicheli 2001; Peymandoust and DeMicheli 2003; Verma and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:3

Ienne 2006], they often neglect the effect of bit-vector size (m) on the com-
putations while performing the optimization. This article demonstrates that
polynomial manipulation while keeping the bit-vector size (m) in mind of-
fers further potential for optimization. We develop an integrated approach to
high-level synthesis that shows how bit-vector word-lengths can be used to de-
vise new algebraic transformations for polynomial datapath optimization at
RTL.

1.1 Motivation

Due to a large number of ADD, MULT operations in datapath designs, designers
often employ ingenious strategies to control datapath size. In many cases, the
design choice is that of a single, uniform system word-length for the compu-
tations [Kum and Sung 1998]. In such designs, m-bit adders and multipliers
produce an m-bit output; only the lower m-bits of the outputs are used and the
higher-order bits are ignored. Usually, such computations require appropriate
scaling of coefficients and/or signals such that “overflow” can be avoided/ignored
and standard fixed-point arithmetic can be implemented.

When the datapath size (m) over the entire design is kept constant, then
fixed-size bit-vector arithmetic manifests itself as polynomial algebra over finite
integer rings of residue classes Z2m ; integer addition and multiplication is closed
within the finite set of integers 0, . . . , 2m−1. Over such finite rings, symbolically
distinct polynomials (those with different degrees and coefficients) can become
computationally (bit-true) equivalent. This suggests that concepts from finite
ring algebra can be exploited to transform a given polynomial computation into
another, equivalent one for efficient hardware implementation.

Example 1 (Arithmetic with Fixed-Size Bit-Vectors). Consider the 5th-
degree polynomial implementation of a polynomial filter used in image
processing applications, shown in Eq. (1) [Jeraj 2005]. This filter is imple-
mented as a uniform 16-bit RTL datapath.

F1[15 : 0] = 16384 ∗ (X [15 : 0])5 + 19666 ∗ (X [15 : 0])4 +
38886 ∗ (X [15 : 0])3 + 16667 ∗ (X [15 : 0])2 +

52202 ∗ X [15 : 0] + 1 (1)

Another implementation of the same polynomial is given by

F2[15 : 0] = 3282 ∗ (X [15 : 0])4 + 22502 ∗ (X [15 : 0])3 +
283 ∗ (X [15 : 0])2 + 52202 ∗ X [15 : 0] + 1. (2)

The polynomials F1 and F2 have different degrees and coefficients. However, be-
cause of fixed-size implementation, they are computationally equivalent. Math-
ematically speaking, F1 �= F2 but it can be shown that F1[15 : 0] ≡ F2[15 : 0] or
F1 mod 216 ≡ F2 mod 216. Moreover, F1 requires 15 MULT and 5 ADD operations,
whereas F2 requires only 10 MULT and 4 ADD operations. When synthesized by
the Synopsys module compiler [Synopsys 2007] using components from the De-
signWare library, F2 indeed occupies less area (28,840 sq.units) than F1 (42,910
sq.units).

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:4 • S. Gopalakrishnan and P. Kalla

In the previous example, F2 has a lower degree and fewer monomial terms
than F1. Intuitively, this “reduction” accounts for fewer ADD, MULT operations in
F2, and hence the lower implementation cost. So, given a fixed-bit-width (m)
arithmetic computation F [m − 1 : 0], how can we derive a bit-true equivalent
computation G[m − 1 : 0] with a lower implementation cost (if one exists)?

Example 2 (Arithmetic with Composite Moduli). The fixed-size datapath
problem is somewhat restrictive. Often, datapaths contain multiple word-
length operands. For example, consider the computation performed by a digital
image rejection/separation unit that takes as two input signals: a 12-bit
vector A[11 : 0] and another 8-bit vector B[7 : 0]. These signals are outputs of
a mixer wherein one signal emphasizes on the image signal and the other on
the desired one. The design produces a 16-bit output Y1. The computation
performed by the design is described in RTL as shown in Eq. (3). Because of the
specified bit-vector sizes, the computation can be equivalently implemented as
another polynomial Y2, as shown in Eq. (4).

input A[11 : 0], B[7 : 0];
output Y1[15 : 0], Y2[15 : 0];

Y1 = 16384 ∗ (A4 + B4) + 64767 ∗ (A2 − B2) + A

− B + 57344 ∗ A ∗ B ∗ (A − B) (3)

Y2 = 24576 ∗ A2 ∗ B + 15615 ∗ A2 + 8192 ∗ A ∗ B2

+ 32768 ∗ A ∗ B + A + 17153 ∗ B2 + 65535 ∗ B (4)

Once again, the polynomials are symbolically distinct (Y1 �= Y2), as they
have different degrees and coefficients. However, because of the specified word
lengths of the input and output operands, Y1[15 : 0] ≡ Y2[15 : 0]. Such arith-
metic datapaths with multiple word-length architectures can be analyzed as
polynomial functions from Z2n1 × Z2n2 × · · · × Z2nd to Z2m [Chen 1996]. So,
given an arithmetic computation with specified input/output bit-vector sizes,
how do we derive an equivalent computation with a lower implementation
cost?

This article addresses the preceding problems by integrating finite ring al-
gebra and number theory within a CAD-based high-level synthesis framework.

1.2 Contributions

Contemporary symbolic algebra systems provide a variety of polynomial manip-
ulation engines, such as decomposition, factorization, ideal membership test-
ing (Gröbner’s bases), etc., and have been employed for hardware optimization
[Peymandoust and DeMicheli 2003; Smith and DeMicheli 2001]. However, such
transformations are well defined over infinite fields such as reals (R), frac-
tions (F), integral domains (Z), prime rings (Zp), and/or Galois (finite) fields
GF(pm); these are collectively called the unique factorization domains (UFDs).
In contrast, the finite integer ring Z2m (formed by m-bit vectors) is a non-UFD
because the bit-vectors lack multiplicative inverses and correspondingly, due

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:5

to the presence of zero divisors (e.g., 4 �= 2 �= 0 but 4 · 2 = 0 mod 8). This
disallows the use of some fundamental algebra techniques, such as Euclidean
division and factorization [Allenby 1983] and Gröbner’s bases (as applied in
Peymandoust and DeMicheli [2003]).

On the other hand, commutative algebra and algebraic geometry offer
a qualitative study of polynomials with coefficients in rings with many
nilpotent elements (an element x of a ring is nilpotent if xn = 0 for some
positive integer n), such as Z2m . Therefore, we exploit some results from
these areas [Singmaster 1974; Hungerbuhler and Specker 2006; Chen 1996,
1995] and apply them to the problem at hand. We study these problems from
the very basic, fundamental perspective of polynomial functions over finite
rings, particularly those of the type Z2m . We view non-UFD (Z2m) not as a
liability, but as a resource that offers potential for optimization of bit-vector
arithmetic.

Problem Modeling. We model arithmetic datapaths over fixed-size bit-vectors
as polynomial functions over finite rings of residue classes Z2m . Let x1, x2, . . . , xd

denote the d -variables (bit-vectors) in the design. Let n1, n2, . . . , nd denote the
size of the corresponding bit-vectors. Therefore, x1 ∈ Z2n1 , x2 ∈ Z2n2 , . . . , xd ∈
Z2nd . Specifically, Z2n corresponds to the finite set of integers {0, 1, . . . ,
2n − 1}. Let m correspond to the size of the output bit-vector f , hence f ∈ Z2m .
Subsequently, we model the arithmetic datapath computation as a polynomial
function from Z2n1 × Z2n2 × · · · × Z2nd to Z2m [Chen 1996]. Here Za × Zb

represents the Cartesian product of Za and Zb. In other words, the computa-
tion is modeled as a multivariate polynomial f (x1, . . . , xd) mod 2m, where each
xi ∈ Z2ni and f is computed mod 2m.

When n1 = n2nd = m, that is, when all input and output bit-vectors are of
the same size m, the polynomial function reduces to that of f : Z2m[x1, . . . , xd]
→ Z2m . Moreover, when d = 1, it becomes the case of a univariate polynomial
function from Z2m → Z2m . Typically, elementary functions such as sin(x),
cos(x), cot(x), etc., are implemented as univariate polynomials where x is the
input bit-vector.

Approach. Using the concept of polynomial reducibility [Hungerbuhler and
Specker 2006; Singmaster 1974; Chen 1996, 1995] over finite integer rings,
we derive a step-by-step algorithmic procedure to reduce a given polynomial
to a unique, minimal, reduced form. This reduced form is, in fact, a canonical
representation of polynomial functions over finite integer rings. Moreover, we
also derive an analytical model to estimate the implementation area of the
datapath computation at polynomial level, by accounting for the degree of the
polynomial (multipliers), the number of terms (additions), as well as the coef-
ficients (logic simplification due to constant propagation). Subsequently, using
this estimate along with the polynomial reduction procedure, we select the
least-cost polynomial for implementation. Two algorithmic search procedures
have been implemented for this purpose. Final synthesis results show average
savings of around 23% over nonoptimized instances using our approach.
Our finite-ring-algebra based approach fits seamlessly within contemporary

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:6 • S. Gopalakrishnan and P. Kalla

high-level synthesis methodology and provides an extra degree of freedom in
datapath optimization.

Article Organization. The next section presents related work in this area.
In Section 3, we briefly review some preliminaries and also introduce the ba-
sic concept for the polynomial optimization presented in this work. In Sec-
tion 4, we present a systematic reduction procedure for polynomials imple-
mented over Z2n1 × Z2n2 × · · · Z2nd to Z2m . Section 5 presents a cost model
to estimate the implementation area at a polynomial level. In Section 6, we
present an algorithm to further optimize the search procedure while perform-
ing the polynomial reduction. Section 7 presents the experimental results with
an application and Section 8 concludes the article with some pointers to future
work.

2. RELATED WORK
Contemporary high-level synthesis tools are quite adept in extracting
control/data-flow graphs (CDFGs) from given RTL descriptions, and also in
performing scheduling, resource-sharing, retiming, and control synthesis. How-
ever, they are limited in their capability to employ sophisticated algebraic
manipulations to reduce the cost of the implementation [Peymandoust and
DeMicheli 2003]. To overcome this limitation, there has been increasing interest
in exploring the use of algebraic manipulation for RTL synthesis of arithmetic
datapaths. The works of Smith and DeMicheli [1998] and Smith and DeMicheli
[1999] derive new polynomial models of complex computational blocks for ef-
ficient synthesis. In Peymandoust and DeMicheli [2003], symbolic computer
algebra tools are used to search for a decomposition of a given polynomial ac-
cording to available library elements, using a Gröbner’s bases-based approach.
However, the derived polynomial models represent the computations over fields
of reals (R), fractions (Q), or over the integral domain (Z), collectively called the
unique factorization domains (UFDs). This often results in a polynomial approx-
imation [Smith and DeMicheli 2001], without properly accounting for the effect
of bit-vector size (m) on the resulting computation. Moreover, Buchberger’s algo-
rithm on Gröbner’s bases, which has been used in Peymandoust and DeMicheli
[2003], operates only on UFDs and cannot be directly ported over non-UFDs of
the type Z2m . While the work of Constantinides et al. [2001] does account for
datapath size for allocation, it operates directly on the original (given) arith-
metic expression, thus limiting the degree of freedom in searching for a better
implementation.

Other algebraic transforms have also been explored for efficient hardware
synthesis: factorization and common subexpression elimination [Hosangadi
et al. 2005, 2004] exploiting the structure of arithmetic circuits [Verma and
Ienne 2004], term rewriting [Arvind and Shen 1998], etc. However, these tech-
niques employ straightforward algebraic transforms and also overlook the effect
of bit-vector size on the given computation.

In the area of logic optimization, various spectral transforms of Boolean
functions have been derived for efficient synthesis of arithmetic circuits [Thorn-
ton et al. 2001]. Similar polynomial models for random logic circuits have also

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:7

been derived over Galois fields GF(2m) [Pradhan 1978; Rajaprabhu et al. 2004;
Pradhan et al. 2003], so that polynomial-algebra-based manipulation can be
employed for logic optimization. While these works find application at the
circuit-netlist level, they are not scalable enough to address polynomial bit-
vector computations.

Note that our approach does not preclude some of the aforementioned synthe-
sis procedures [Hosangadi et al. 2005, 2004; Constantinides et al. 2001]; it can
be combined with these approaches as an additional optimization step. Modulo
arithmetic has also been applied to the task of circuit/RTL verification [Huang
and Cheng 2001]. The concept of polynomial functions over finite rings has also
been applied to the equivalence verification of arithmetic datapaths in Shekhar
et al. [2006, 2005]. This article demonstrates its application to optimization of
arithmetic datapaths.

3. PRELIMINARIES

In this section, the material is mostly referred from Allenby [1983].

Definition 3.1. An Abelian group is a set G and a binary operation “ + ”
satisfying:

—Closure: For every a, b ∈ G, a + b ∈ G.

—Associativity: For every a, b, c ∈ G, a + (b + c) = (a + b) + c.

—Commutativity: For every a, b ∈ G, a + b = b + a.

—Identity: There is an identity element 0 ∈ G such that for all a ∈ G, a+0 = a.

—Inverse: If a ∈ G, then there is an element a−1 ∈ G such that a + a−1 = 0.

The set of integers Z , for instance, forms an Abelian group under addition.

Definition 3.2. A commutative ring with unity is a set R and two binary
operations “+” and “ ·” as well as two distinguished elements 0, 1 ∈ R such that
R is an Abelian group with respect to addition with additive identity element
0, and the following properties are satisfied:

—Multiplicative closure: For every a, b ∈ R, a · b ∈ R.

—Multiplicative associativity: For every a, b, c ∈ R, a · (b · c) = (a · b) · c.

—Multiplicative commutativity: For every a, b ∈ R, a · b = b · a.

—Multiplicative identity: There is an identity element 1 ∈ R such that for all
a ∈ R, a · 1 = a.

—Distributivity: For every a, b, c ∈ R, a · (b + c) = a · b + a · c holds for all
a, b, c ∈ R.

The set Zn = {0, 1, . . . , n−1}, where n ∈ N , also forms a commutative ring with
unity. It is called the residue class ring, where addition and multiplication are
defined modulo n (mod n) according to the rules to follow. For our application,
n = 2m.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:8 • S. Gopalakrishnan and P. Kalla

(a + b) mod n = (a mod n + b mod n) mod n (5)

(a · b) mod n = (a mod n · b mod n) mod n (6)

(−a) mod n = (n − a mod n) mod n (7)

Definition 3.3. Integers x, y are called congruent modulo n (x ≡ y mod n)
if n is a divisor of their difference: n|(x − y).

Definition 3.4. A zero divisor is a nonzero element x of a ring R, for which
x · y ≡ 0, where y is some other nonzero element of R and the multiplication
x · y is defined according to Eq. (6).

As an example, consider the nonzero integers 2 and 4 in the ring Z8. Since
2 · 4 ≡ 0 mod 8, 2 and 4 are zero divisors of each other. A commutative ring
that has no zero divisors is known as an integral domain. The set of integers Z
is an example.

Definition 3.5. A field F is a commutative ring with unity where every
element in F , except 0, has a multiplicative inverse. In other words, for all a ∈
F − {0}, there exists an â ∈ F such that a · â = 1.

The system Zn forms a field if and only if n is prime [Allenby 1983]. Hence
Z2m (for m > 1) is not a field, as not every element in Z2m has an inverse.
Lack of inverses in Z2m makes RTL verification complicated, since Euclidean
algorithms for division and factorization are no longer applicable.

Definition 3.6. Let R be a ring. A polynomial over R in the indeterminate
x is an expression of the form

a0 + a1x + a2x2 + · · · + akxk =
∑

k

aixi (8)

∀ai ∈ R. Elements ai are coefficients, k is the degree. The element ak is called
the leading coefficient; when ak = 1, the polynomial is monic.

The system consisting of the set of all polynomials in x over the ring R, with
addition and multiplication defined accordingly, also forms a ring, called the
ring of polynomials R[x]. Similarly, R[x1, . . . xd] denotes a ring of multivariate
polynomials in d -variables. When R = Z2m , the corresponding polynomials are
evaluated mod 2m.

Early classical studies by Keller and Olson [1968], Kempner [1921], and
Singmaster [1974] have analyzed functions over finite rings that have polyno-
mial representations. These are generally termed as polynomial functions (or
polyfunctions). Next, we state the definition given by Singmaster [1974].

Definition 3.7 [Singmaster 1974]. A function f : Zn → Zn is said to be a
polynomial function if it is representable by a polynomial F ∈ Z [x], that is,
f (a) ≡ F (a) for all a = 0,1, . . . ,n − 1. Here, ≡ denotes congruence mod n.

Example 3.1. Let f : Z3 → Z3 be defined as f (0) = 1, f (1) = 0, f (2) = 2.
It can be seen that f is a polynomial function, since f is representable by a
polynomial F (x) = 2x + 1, namely, f (a) ≡ F (a) (mod 3) for a = 0,1,2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:9

The preceding concept has been extended to multivariate polynomial func-
tions, from Zn[x1, x2, . . . , xd] → Zn [Hungerbuhler and Specker 2006], where
all variables and coefficients are in Zn. This model is suited for arithmetic de-
signs implemented with a fixed-size datapath, as they can be represented as
polynomial functions over Z2m[x1, x2, . . . , xd] → Z2m , where m is the bit-vector
size of the computations.

This concept can be further extended to functions over Zn1
×Zn2

×· · ·×Znd →
Zm. The following definition of such a polynomial function is taken from Chen
[1996], and modified, for our application, to rings modulo an integer power of 2.

Definition 3.8. A function f from Z2n1 ×Z2n2 ×· · ·×Z2nd → Z2m is said to be
a polynomial function if it is represented by a polynomial F ∈ Z [x1, x2, . . . , xd],
that is, f (x1, x2, . . . , xd) ≡ F (x1, x2, . . . , xd) for all xi ∈ Z2ni , i = 1, 2, . . . , d
and ≡ denotes congruence mod 2m.

Example 3.2. Let f : Z21 × Z22 → Z23 be a polyfunction in variables x, y ,
defined as: f (0, 0) = 1, f (0, 1) = 3, f (0, 2) = 5, f (0, 3) = 7, f (1, 0) = 1,
f (1, 1) = 4, f (1, 2) = 1, f (1, 3) = 0. Then, f is a polyfunction representable by
F = 1+2 y + x y2, since f (x, y) ≡ F (x, y) mod 23 for x = 0, 1 and y = 0, 1, 2, 3
(note that F is not a unique representation of f).

When n1 = · · · nd = m, then this polyfunction reduces to f :
Z2m[x1, . . . , xd] → Z2m , also represented as f : Z d

2m → Z2m .

Definition 3.9. Let F , G be the polynomials ∈ Z [x1, x2, . . . , xd] represent-
ing the functions f and g , respectively. We say that F is related to G, de-
noted as F ≡ G, if F and G induce the same polynomial function from
Z2n1 × Z2n2 × · · · × Z2nd → Z2m .

F ≡ G implies that F [x1, x2, . . . , xd] ≡ G[x1, x2, . . . , xd] for all xi = 0,
1, . . . ,ni − 1.

Example 3.3. Let f : Z8 → Z8 be a polyfunction in x, defined as f (0) = 0,
f (1) = 4, f (2) = 4, f (3) = 0, f (4) = 0, f (5) = 4, f (6) = 4, f (7) = 0. Then, f is
a polyfunction representable by F1 = 6 ∗ x2 + 6 ∗ x over Z8[x]. Alternatively, f
can also be represented as F2 = 2 ∗ x2 + 2 ∗ x over Z8[x]. Here, F1 ≡ F2 for all
x = 0, . . . , 7.

We wish to search for such equivalent polynomial representations in an ef-
ficient manner and identify a representation that is suitable for an optimized
implementation. For this purpose, we introduce the concept of vanishing poly-
nomials.

3.1 Vanishing Polynomials

In the previous example, F1 ≡ F2 mod Z8. So, F1 − F2 ≡ 0 mod 8. Computing
F1 − F2, we get 4 ∗ x2 + 4 ∗ x. For every value of x ∈ Z8, 4 ∗ x2 + 4 ∗ x computes
to 0. Hence, in spite of being a polynomial with nonzero coefficients, F1 − F2

always computes to zero mod 8, or, in other words, F1 − F2 vanishes mod 8.
Thus F1 − F2, represents a nil polyfunction. Such an expression is a vanishing
polynomial over a finite ring.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:10 • S. Gopalakrishnan and P. Kalla

A vanishing polynomial corresponds to algebraic redundancy in the compu-
tation. Eliminating such redundancies by subtracting “appropriate” vanishing
polynomials from the given expression ultimately leads to its minimal, unique,
canonical form. To create vanishing polynomials, we exploit some fundamental
results in number theory.

Number theory perspective. According to a fundamental result in number
theory, for any n ∈ N , n! divides the product of n consecutive numbers. For
example, 4! divides 4 × 3 × 2 × 1. But this is also true of any n consecutive
numbers: 4! also divides 99 × 100 × 101 × 102. Consequently, it is possible to
find the least k ∈ N such that n divides k! (denoted n|k!). We denote this value
k as k = SF(n), where SF(n) is referred to as the Smarandache function.1

In the ring Z2m , let SF(2m) = k such that 2m|k!. For example, SF(23) = 4,
since 8 divides 4! = 4 × 3 × 2 × 1 = 23 × 3. But 8 does not divide 3!; hence least
k = 4.

This property can be utilized to interpret the concept of vanishing polynomial
as a divisibility issue in Z2m . If f (x) mod 2m ≡ 0, then 2m| f (x). In Z23 [x], let
8| f (x). But 8|4! too, as SF(8) = 4. Therefore, if for all x, f (x) can be represented
as a product of 4 consecutive numbers, then f (x) vanishes in Z23 . A polynomial
can be represented as a product of 4 consecutive numbers as follows: x(x − 1)
(x − 2) (x − 3).

Such a product expression is referred to as a falling factorial and is formally
defined next.

Definition 3.10. Falling factorials of degree k ∈ Z are defined according to
Y0(x) = 1, Y1(x) = x, Y2(x) = x · (x − 1), . . . , Yk(x) = x · (x − 1) · · · (x − k + 1).

Example 3.4. Consider F (x) over Z23 [x], where F (x) = x4 +2x3 +3x2 +2x.
Here SF(23) = 4. F (x) can be factored as a product of 4 consecutive numbers,
namely, (Y4(x)). Therefore F (x) is a vanishing polynomial in Z23 [x], or F (x) ≡
Y4(x) mod 23, hence F (x) mod 23 ≡ 0.

The previous concept of falling factorials can be similarly defined for multi-
variate expressions over Z2m[x1, . . . , xd].

Yk =
d∏

i=1

Yki (xi) = Yk1
(x1) · Yk2

(x2) · · · Ykd (xd) (9)

Extending the aforesaid concept, if a multivariate polynomial in Z2m[x1, . . . , xd]
can be factored into a product of SF(2m) consecutive numbers in at least one of
the variables xi, then it vanishes mod 2m.

Example 3.5. Consider F (x1, x2) over Z22 [x1, x2], where F (x1, x2) = x4
1 x2 +

2x3
1 x2 + 3x2

1 x2 + 2x1x2. Here SF(22) = 4, and the highest degrees of x1 and
x2 are k1 = 4 and k2 = 1, respectively. F mod 4 can be equivalently written
as F = Y<4,1>(x1, x2) mod 4 = Y4(x1) · Y1(x2) mod 4. Since F mod 4 can be
represented as a product of 4 consecutive numbers in x1, 22|F and F ≡ 0.

1This is a well-studied function in number theory. It was initially studied by Lucas [1883] and

Kempner [1918] and recently revisited by Smarandache [1980].

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:11

When a polynomial cannot be factored into such Yk expressions, can it still
vanish? Consider the quadratic polynomial 4x2 − 4x in Z8[x]. It can be written
as 4(x)(x − 1). While 4x2 − 4x cannot be factorized as (x)(x − 1)(x − 2)(x − 3)
(a product of 4 consecutive numbers), it still vanishes in Z8. The missing
factors, (x − 2)(x − 3) in this case, are replaced by the multiplicative constant
4; therefore 4x2 − 4x ≡ 0 mod 8.

In the next section, we explain how we identify appropriate vanishing poly-
nomials and use them to devise a step-by-step polynomial reduction procedure
in Z2n1 × Z2n2 × · · · Z2nd to Z2m .

4. POLYNOMIAL REDUCTION IN Z2n1 × Z2n2 × · · · Z2nd TO Z2m

In this section, we explain the polynomial reduction procedure in Z2n1 × Z2n2 ×
. . . Z2nd to Z2m . We use the following multiindex notation in the rest of the ar-
ticle [Hungerbuhler and Specker 2006]: k = 〈k1, k2, . . . , kd 〉 are the degrees
corresponding to the d -variables x = 〈x1, x2, . . . , xd 〉, respectively. We also
provide lemmata and theorems that form the basis for the reduction proce-
dure. Furthermore, we extend this technique to polynomial reduction of fixed-
size datapaths (polynomial functions over Z2m) and explain it with suitable
examples.

If a multivariate polynomial in Z2m[x1, . . . , xd] can be factored into a product
of SF(2m) consecutive numbers in at least one of the variables xi, then it van-
ishes mod 2m (as explained in the earlier section). However, for a multivariate
polynomial to vanish in Z2n1 × Z2n2 × · · · Z2nd to Z2m , we have to also take into
account the input bit-vector sizes (n1, . . . , nd). For this purpose, we define a
quantity.

μi = min{2ni , SF(2m)}; i = 1, 2, . . . , d (10)

In the case of a fixed-size datapath, this equation reduces to

μi = SF(2m) = μ; i = 1, 2, . . . , d (11)

because n1, n2, . . . , nd = m.
Now, consider the following:

LEMMA 4.1. Let k= 〈k1, k2, . . . , kd 〉 ∈ (Z +)d , where Z + represents the set of
nonnegative integers. Then Yk ≡ 0 if and only if ki ≥ μi , for some i.

Example 4.1. Consider F (x1, x2) over Z21 × Z22 → Z23 , where F = x2
1 x2 −

x1x2. Here SF(23) = 4, k1 = 2, k2 = 1. Furthermore, μ1 = min{21, 4} = 2 = k1,
satisfying Lemma 4.1, and μ2 = min{22, 4} = 4 > k2. Now F can be written as

x2
1 x2 − x1x2 ≡ x1(x1 − 1)x2 (12)

≡ Y<2,1>(x1, x2) (13)

≡ 0. (14)

The following example illustrates application of Lemma 4.1 for fixed-size
datapaths.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:12 • S. Gopalakrishnan and P. Kalla

Example 4.2. Consider F (x1, x2) over Z23 , where F (x1, x2) = x4
1 x2 + 2x3

1 x2

+ 3x2
1 x2 + 2x1x2. Here μ = SF(23) = 4 from Eq. (11), and k1 = 4, k2 = 1. Now

F (x1, x2) can be factored as Y4(x1)Y1(x2), namely, Y<4,1>(x1, x2), where Y4(x1) is
a product of 4 consecutive numbers, hence Y4 ≡ 0 mod 23. Since the polynomial
can be factored into a product of SF(23) consecutive numbers in x1, F (x1, x2)
is a vanishing polynomial in Z23 , or F (x1, x2) ≡ Y<4,1>(x1, x2) mod 23, hence
F (x1, x2) mod 23 ≡ 0.

We now need to identify the constraints on multiplicative constants such
that the given polynomial would vanish. We state the following result [Chen
1996].

LEMMA 4.2. The expression gk · Yk ≡ 0 if and only if 2m

gcd(2m,
∏d

i=1 ki !)
|gk, where:

—gk ∈ Z ;
—k = 〈k1, k2, . . . , kd 〉 ∈ Z d such that ki < μi, ∀i = 1, . . . , d ; and
—gcd (2m,

∏d
i=1 ki!) is the greatest common divisor of 2m and

∏d
i=1 ki!

Henceforth, we will denote the term 2m

gcd(2m,
∏d

i=1 ki !)
as bk.

Example 4.3. Consider F (x1, x2) over Z21 × Z22 → Z23 , where F = 4x1x2
2 +

4x1x2. Here 2n1 = 2, 2n2 = 4, and 2m = 8, k = 〈k1, k2〉 = 〈1, 2〉. So
∏2

i=1 ki! =
1! · 2! = 2, SF(2m = 8) = 4; μ1 = min{2, 4} = 2, μ2 = min{4, 4} = 4.

F ≡ 4x1x2
2 + 4x1x2 (15)

≡ 4 · x1 · x2 · (x2 − 1) (16)

≡ g<1,2> · Y<1,2>(x1, x2) (17)

≡ 0 (18)

because bk = 4, which divides g<1,2> = 4.

In the following, we show an example illustrating application of Lemma 4.2
on fixed-size datapaths.

Example 4.4. Consider a polynomial F (x1, x2) over Z23 where F (x1, x2) =
4x2

1 x2 − 4x1x2. Here gk = 4, Yk = x1(x1 − 1)x2 = Y<2,1>(x1, x2), and k1 = 2,

k2 = 1. Computing bk, we get 4. Since 4 divides gk, 4x2
1 x2 − 4x1x2 is a vanishing

polynomial.

The preceding concepts can be extended to derive a unique canonical repre-
sentation for a polynomial function from Z2n1 × Z2n2 × . . . Z2nd to Z2m . We state
the following theorem [Chen 1996].

THEOREM 1. Let F be a polynomial representation for the function f from
Z2n1 × Z2n2 × . . . Z2nd to Z2m. Then, F can be uniquely represented as

F =
∑

k

ckYk , (19)

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:13

where:

—Yk is the falling factorial defined in Eq. (9);
—k= 〈k1, . . . , kd 〉 for each ki = 0, 1, . . . , μi − 1;
—ck ∈ Z such that 0 ≤ ck, < bk , where bk is as defined in Lemma 4.2

PROOF. The proof is provided in Chen [1996]. Briefly reviewing it, any poly-
nomial F from Z2n1 × Z2n2 × . . . Z2nd to Z2m can be decomposed in the form

F =
d∑

i=1

Qi Yμ(i) +
∑

k

a kb k Y k +
∑

k

c k Y k, (20)

where:
—Qi ∈ Z [x1, . . . , xd] is an arbitrary polynomial;
—μ(i) = <0, . . . ,μi, . . . ,0> is a d -tuple, where μi is in the position i and μi

is defined according to Eq. (11);
— Y k is the falling factorial defined in Eq. (9);
— Yμ(i) is the falling factorial of degree μ(i) in variable xi;
— k = 〈k1, . . . , kd 〉 for each ki = 0, 1, . . . , μi − 1;
—a k ∈ Z is an arbitrary integer;
—b k is defined according to Lemma 4.2; and
—c k ∈ Z is an arbitrary integer such that 0 ≤ c k < b k.

Let us consider the first term (Qi Yμ(i)) from Eq. (20). This term is a vanishing
polynomial according to Lemma 4.1, as Yμ(i) is a falling factorial with degree μi.
The second term (

∑
k a kb k Y k) is also a vanishing polynomial, as can be seen

from Lemma 4.2. The third term (
∑

k c k Y k) cannot be reduced any further,
since the coefficient c k < b k and hence b k cannot divide c k (for Lemma 4.2 to
hold true). Hence, Eq. (20) can simply be written as F = ∑

k c k Y k.
The following example illustrates the aforesaid concept.

Example 4.5. Consider a polynomial F = x2
1 + 7x1 + 6x1x2

2 + 2x1x2 for

f : Z2 × Z22 → Z23 . Here μ1 = min{2, SF(8)} = 2; μ2 = min{22, SF(8)} = 4.
Now F can be written as follows.

x2
1 + 7x1 + 6x1x2

2 + 2x1x2 ≡ x1(x1 − 1) + 4x1x2(x2 − 1) + 2x1x2(x2 − 1)

≡ Y<2,0>(x1, x2) + a<1,2>b<1,2>Y<1,2>(x1, x2)

+ c<1,2>Y<1,2>(x1, x2)

≡ c<1,2>Y<1,2>(x1, x2)

≡ 2x1x2
2 + 2x1x2

The first term Y<2,0>(x1, x2) is a vanishing polynomial according to Lemma 4.1
(Qi = 1). In the second term, a<1,2> = 1, b<1,2> = 8/(8, 1! · 2!) = 4, thus making
it a vanishing polynomial according to Lemma 4.2. In the third term, c<1,2> = 2.
It cannot be reduced any further, again according to Lemma 4.2. Thus, F can
be written in the form given by Theorem 1, and is the unique canonical form
representation of the polynomial.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:14 • S. Gopalakrishnan and P. Kalla

The theorem can also be applied for the canonical form reduction of fixed-size
datapaths (m), where μi = μ = SF(2m) ∀ i. This is illustrated in the following
example.

Example 4.6. Consider a polynomial F = x4
1 x2 + 2x3

1 x2 + x2
1 x2 + x1x2 for

f : Z 2
22 → Z22 . Here k1 = 4, k2 = 1 and SF(22) = μ = 4. Specifical F can be

written as follows.

x4
1 x2 + 2x3

1 x2 + x2
1 x2 + x1x2 ≡ x1(x1 − 1)(x1 − 2)(x1 − 3)x2 + 2x1(x1 − 1)x2 + x1x2

≡ Y<4,1>(x1, x2) + a2b2Y<2,1>(x1, x2) + c1Y<1,1>(x1, x2)

≡ Y1(x2)Y<4,0>(x1, x2) + a2b2Y<2,1>(x1, x2)

+ c1Y<1,1>(x1, x2)

≡ c1Y<1,1>(x1, x2)

≡ x1x2

The term Y<4,0>(x1, x2) makes the first term a vanishing polynomial according to
Lemma 4.1, where Qi = Y1(x2). In the second term, a2 = 1, b2 = 4/gcd (4, 2!) =
2. Hence, this term also vanishes according to Lemma 4.2. Finally, in the third
term, c1 = 1. Therefore, it cannot be reduced any further by using Lemma
4.2. Thus F can be written in the form given by Theorem 1, and is the unique
canonical form representation of the polynomial.

4.1 Algorithm

Here, we present an algorithm that uses the concepts described earlier to re-
duce a polynomial function over Z2n1 × Z2n2 × . . . Z2nd to Z2m . The pseudocode
for the algorithm is given in Algorithm 1, which takes the following inputs:
Input polynomial F1, d , variables x1, . . . , xd , with corresponding input bit-
widths n1, . . . , nd and the output bit-width m. The output of the algorithm is
the polynomial in its unique canonical reduced form. The algorithm operates as
follows:

Algorithm 1. RED POLY: Reduce a Given Polynormal.

1: RED POLY(F1, d, x, m, n).

2: F1 = Polynomial in x; d = Number of variables;

3: x[1 . . . d] = List of input variables; m = Bit-width of F1;

4: n[1 . . . d] = List of bit-widths of input variables, x;

5: poly = F1; Compute SF(2m)

6: /*Compute the values for μi*/

7: for i = 1 to d do
8: μ[i] = min(2ni ,SF(2m)); k[i] = Max. degree of x[i] in poly;

9: end for
10: /*Check if Yμ(i) divides poly*/

11: for i = 1 to d do
12: /*Lemma 4.1*/

13: if (k[i] ≥ μ[i]) then

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:15

14: quo, rem = poly
Y<0,... ,k[i],... ,0>(x1,... ,xd)

;

15: if (rem == 0) /* rem = remainder */ then
16: /*poly = Qμ Yμ(i); a vanishing polynomial*/

17: return 0;

18: else
19: poly = rem;

20: break;

21: end if
22: end if
23: end for
24: /*Iterate over all possible degrees*/

25: for j = ∏d
l=1(μl) to 1 do

26: /*Update degrees*/

27: for i = 1 to d do
28: k[i] = Degree of x[i] in the next highest order monomial of poly;

29: end for
30: quo, rem = poly

Y〈k[0],... ,k[d]〉(x1,... ,xd)
;

31: b〈k[0],... ,k[d]〉 = 2m

gcd (2m,
∏d

i=1 k[i]!)
;

32 : /*Lemma 4.2*/

33: if (b〈k[0],... ,k[d]〉|quo) then
34: if (rem == 0) then
35: return 0;

36: else
37: poly = rem;

38: end if
39: end if
40: ck = Coefficient of 〈k[0], . . . , k[d]〉
41: /*Check for the range of the coefficient*/

42: if (ck > b〈k[0],... ,k[d]〉) /*if coefficient > the range*/ then
43: quo, rem = poly

b〈k[0],... ,k[d]〉∗ Y〈k[0],... ,k[d]〉(x1,... ,xd)
;

44: poly = rem;

45: end if
46: Update poly w.r.t. its order;

47: end for
48: return poly;

(1) Assign F1 to poly.

(2) Compute SF(2m). A procedure to compute SF(n) is outlined in the Appendix,
which has a complexity of O(n/log n) [Power et al. 2002]. Here n = 2m. The
value of SF(2m) is then used to obtain the μi values.

(3) Find the max. degree (ki) of each variable xi in poly.

(4) Divide the polynomial by the falling factorial expressions Yμ(i) in each of
the d -variables.

(5) If the remainder is zero, it is a vanishing polynomial because F = Qμ Yμ(i).
Else, use the remainder as the new poly.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:16 • S. Gopalakrishnan and P. Kalla

(6) Compute ki (the degree of x[i] in the next highest order monomial of the
poly) and continue dividing from Yμ−1 (next highest degree) to Y0 for each
variable.

(7) After each division, check for the following conditions:
—If the quotient can be written as ak · bk (where bk is defined according

to Theorem 1), and the remainder is zero, return 0. It is a vanishing
polynomial.

—If the quotient can be written as ak · bk, and the remainder is nonzero,
use the remainder as the new poly.

—Check if the coefficient ck > bk. If so, perform the division with bk* Yk,
and again use the remainder as the new poly.

Complexity. In Algorithm 1, the number of multivariate divisions is bound
by O(

∏
d μi), where μi is as defined previously and d is the total number of

variables.
Let us illustrate the operation of this algorithm in the following example.

Example 4.7. Consider a polynomial F = x2
1 + 7x1 + 5x1x2

2 + 5x1x2 over
Z2 × Z22 → Z23 .

—Initially the SF(23) is computed (SF(23) = 4).

—The values of μi are then computed. μ1 = 2, μ2 = 4.

—The maximum degree of x1 is found (k1). Initially k1 = μ1 = 2. Therefore
Lemma 4.1 holds true. So we divide the poly F by Y<2,0>(x1, x2).

—We get quotient = 1 and remainder = 5x1x2
2 + 5x1x2.

—Now k1 = 1 and k2 = 2. Since μ2 = 4, we come out of the loop.

—We divide the poly by Y<1,2>(x1, x2). The quotient is 5 and the remainder is 0.

—Computing b〈k1,k2〉, we get 4. So b〈k1,k2〉 does not divide quotient.

—Now we divide the poly by b〈k1,k2〉 ∗ Y<1,2>(x1, x2).

—Here quotient = 1 and remainder = x1x2
2 + x1x2.

—The remainder is then assigned to the poly.

—x1x2
2 + x1x2 is the unique canonical reduced form for the given poly.

5. MODELING AREA COST AT POLYNOMIAL LEVEL

In Algorithm 1, at every reduction step we get an intermediate polynomial that
is equivalent to the original. We wish to estimate the cost (implementation
area) of the original polynomial, all intermediate polynomials, and also the final
reduced form, and, then to select the least-cost expression for implementation.
The minimal reduced form might not be the least expensive to implement;
an intermediate expression might be less costly. This may happen when an
intermediate form is “sparse” and the minimal form is more “dense.”

Polynomial computations correspond to additions, multiplications, and con-
stant multiplication operations (where one input to the multiplier is a constant).
If we can compute the cost of the implementation area of these operations sep-
arately, we can determine the total cost of implementing any given polynomial
f . Hence, we model the cost of adders, multipliers, and constant multipliers

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:17

Fig. 2. Implementation of a 4-bit array multiplier (AX).

(implemented with specific input and output bit-vector sizes) at polynomial
level.

—Adders: We estimate the area of an adder based on the implementation of a
ripple-carry adder. If the input bit-vector sizes of the adder are n1 and n2,
and the output bit-vector size is m:

—If max(n1 + 1, n2 + 1) > m, then we require at least m full adder modules.
—else if max(n1 + 1, n2 + 1) < m, then we will require max(n1 + 1, n2 + 1) full

adder modules

Cost(Adder) = n ∗ Cost(FA), (21)

where Cost(FA) is the cost of a full adder and n is the number of full adder
modules.

—Multipliers: The estimated cost of an n1 × n2 to m-bit multiplier is modeled
on an array multiplier implementation [Koren 2002].

Consider the 4-bit array multiplier shown in Figure 2. It is composed of
partial product generators and an array of full adder modules. Its area can
be modeled as the sum of partial product cost and the array network cost. We
are interested in the area of the multiplier responsible for generating only the
lower m output bits. For instance, in Figure 2, if the value of m is 4, then the
region of interest is to the right side of the dotted line. Therefore, the cost of
the multiplier can be estimated as

Cost(mbit Mult) = Cost(PP(m)) + Cost(Arr(m)), (22)

where Cost(PP(m)) is the cost of partial products (implemented with AND gates)
and Cost(Arr(m)) is the cost of the array network (implemented with FA mod-
ules). Using the structure of the array multiplier and the values of n1, n2, and
m, we can determine the minimum number of partial products and full adder
modules required to implement an n1 × n2 to m-bit multiplier.

—Constant multipliers: When an input to a multiplier is a constant, then the
constant bits can be propagated to simplify the circuit. To model this effect,

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:18 • S. Gopalakrishnan and P. Kalla

we need to analyze their bit pattern and estimate a cost based on the simpli-
fication caused by propagating these bits. We model constant multiplication
using the array multiplier model. An n1 × n2 to m-bit constant multiplier is
modeled as an m×m to m-bit multiplier (either by padding 0’s or truncation)
to apply our constant propagation strategy. In other words, if n1 (or n2) is
smaller than m, then the remaining bits (m – n1, (or m − n2)) are padded
with zeroes until the mth bit. On the other hand, if n1 (or n2) is greater
than m, then only the lower-order m-bits (from n1, and n2) are chosen for the
implementation. In this manner, for an m × m to m-bit multiplier, only the
lower-order m-bits are analyzed for constant propagation.

Simplification using constant propagation. In Figure 2, consider X as the
constant and A the variable. To propagate the constant X , we analyze the bits
from the least significant position (X [0]) to the most significant (X [m − 1]).
Here are some results that we have derived to estimate the area as a result of
constant propagation.

(1) While traversing X from its LSB to MSB, until we reach a bit position
whose value is 1, the cost of the implementation is zero due to zero propa-
gation: Consider the bit-pattern of X = {X [m − 1], X [m − 2], . . . , X [i] =
1, 0, 0 . . . , X [0] = 0}. Here, X [i] is the least significant bit, with value 1.
The partial products generated using X [k], k < i will be 0. Therefore, up to
the ith level, 0’s are fed into the full adder modules, which results in their
complete elimination (simplification) up to (i − 1) levels.

(2) Until we reach the second bit position with value 1 in X while traversing from
its LSB to MSB, the cost of the implementation is still zero: Consider the bit-
pattern of X = {X [m − 1], . . . , X [k] = 1, 0, 0 . . . , X [i] = 1, 0, 0 . . . , X [0] =
0}. Here, X [i] is least bit position, with value 1 and X [k] is the next least bit
position, with value 1. We know that the area cost due to the bits from X [0]
to X [i − 1] is zero from the previous result. The partial products that are
generated by X [i] keep propagating until the kth level because: (a) There
are no carry signals generated in the ith level; and (b) every subsequent
level until (k − 1) performs an addition with 0 (partial products due to
X [i + 1] to X [k − 1] are 0).

(3) On encountering the second bit position with value 1 in the traversal of
X from its LSB to MSB, the full adder modules in that level can be op-
timized to half adder modules: Consider the bit-pattern used in the pre-
vious result. The partial products generated by X [i] and X [k] are added
at the kth level. However, the carry signals feeding the full adder mod-
ules in the kth level are 0. Hence, these can be optimized to half adder
modules.

(4) For subsequent levels, if the value of X [i] at any level is 0, then the full adders
in that level reduce to half adders: Since the partial products generated due
to X [i]′s = 0 are also 0, the full adders being fed by these partial products
are simplified to half adders.

Based on the bit-pattern of the constants, the previous models are employed
to estimate the effect of constant propagation on the multiplier area.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:19

Fig. 3. Implementation of 3A, X = 0011.

Fig. 4. Implementation of 5A, X = 0101.

Example. Consider the effect of 3 ∗ A and 5 ∗ A in a multiplier with output
bit-vector size m = 4. Figures 3 and 4 depict the optimization in designs for the
multiply operation with constants 3 (X = 0011) and 5 (X = 0101), respectively.

For 3 ∗ A (constant X = {0011}), three full adders in level 1 are reduced
to half adders, since one of the inputs to all the adders in this level is always
zero. As the last two bits of X are 0, other full adders are also optimized to half
adders. So the cost of 3 ∗ A is 6 ∗ Cost(H A).

For 5 ∗ A (X = {0101}), the three full adders in level 1 are completely elim-
inated; two inputs to all the full adders in this level are zeroes. Hence, the
results of the first level propagate to level 2; level-1 cost is zero. Moreover, full
adders in levels 2 and 3 are reduced to half adders. Thus, the cost of 5 ∗ A is
equal to 3 ∗ Cost(H A).

5.1 Quantifying the Cost

From the previous discussions, we see that the costs of all the modules are
eventually expressed in terms of the costs of implementing AND gates, full
adder, and half adder modules. We employ the unit model cost, that is, every
logic gate can be implemented with a unit cost. A full adder can be optimally
implemented with 5 2-input gates, while a half adder can be implemented using

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:20 • S. Gopalakrishnan and P. Kalla

2 2-input gates. We use these values as estimates to quantitatively calculate the
area of the polynomial.

5.2 Integrated Approach

This cost model can now be integrated with the polynomial reduction Algorithm
1. In this algorithm, the poly gets updated in lines 19, 37, and 44. Every time the
poly gets updated in these portions of the algorithm, we apply the cost model,
estimate the cost at the polynomial level, and retain that polynomial with the
least-cost implementation as the min cost poly. On completion of the algorithm,
min cost poly gives the least-cost implementation of the polynomial.

6. BRANCHING ALGORITHM: POLYNOMIAL REDUCTION

The polynomial reduction technique presented in Algorithm 1 gives a system-
atic procedure to arrive at the unique canonical representation of the polyno-
mial. By integrating it with the cost model, we can also find the polynomial with
a lower-cost implementation. However, the reduction procedure can be further
improved to search for other lower-cost polynomial implementations. Certain
transformations that are left unexplored in the previous algorithm can be in-
cluded in the search for a better implementation. In the following, we provide
an example motivating the need for such an approach (presented in this sec-
tion), and explain the necessary modifications to Algorithm 1 required for this
approach.

Consider a polynomial f = x6 + 8x3 + 8x, with bit-vector sizes of {x, f}
being {3, 4}, respectively. According to the previous algorithm, the reduction
starts with the highest-degree monomial (highest degree = 6, in this case)
and proceeds further. Using the previous algorithm, the polynomial reduction
results in the following set of polynomials.

Initial polynomial: f = x6 + 8x3 + 8x;
1st intermediate polynomial: f = 11 ∗ x5 + x4 + 9 ∗ x3 + 8 ∗ x2 + 4 ∗ x;
2nd intermediate polynomial: f = x5 + 11 ∗ x4 + 7 ∗ x3 + 14 ∗ x2; and
Final reduced polynomial: f = x5 + x4 + 3 ∗ x3 + 12 ∗ x.

Using the cost model, the initial polynomial is estimated to be the least-cost
polynomial, as it is much sparser than the others. However, in this polynomial,
the subexpression 8x3 + 8x is a vanishing polynomial in Z24 . Thus, it can be
seen that if we choose to only reduce this subexpression, the initial polynomial
f optimizes to x6.

Initial polynomial: f = x6 + 8x3 + 8x
(reduce only 8x3 + 8x and retain x6 as is); thus
Optimized polynomial: f = x6.

Now, the optimized polynomial has a lesser cost than the original. Thus, using
an approach where subexpressions of the polynomial are selectively reduced,
the optimization is further enhanced.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:21

To lend an algorithmic procedure to such an approach, instead of iterating
over all possible degrees (refer to Algorithm 1), we iterate over all combinations
of all possible degrees. In other words, consider the previous example where
f = x6 + 8x3 + 8x. The combination of all possible degrees is given by the set
{(x6 +8x3 +8x), (x6 +8x3), (8x3 +8x), (x6 +8x), (x6), (8x3), (8x)}. Each element of
the set is considered as a subexpression, and it is reduced.2 It should be noted
that Algorithm 1 is subsumed in this algorithm. Since this is a more pervasive
algorithm than the previous approach, the complexity clearly increases. In this
algorithm, the number of multivariate divisions is bound by O(μ) = O(2

∏
d μi)

because in the worst case, it has to iterate through all combinations of all
degrees for every variable to determine the optimized polynomial.

The pseudocode for this approach is given in Algorithm 2.

Algorithm 2. OPT POLY: Optimize a Given Polynomial.

1: Given a polynomial F1, compute the combination set of polynomials.

(FS1
, FS2

,FS
2k−1

), where there are k monomial terms;

2: Initially, min cost poly = F1; min cost = Cost(F1);

3: for every polynomial in the combination set, perform the reduction;

4: Call RED POLY(FSi , d , x, m, ni′s)

5: At every reduction step of FSi , determine the minimum cost polynomial

(min poly Si) with its corresponding cost (Cost(min poly Si));

6: /*At every reduction step, compute the cost of the entire polynomial (Fnew) */

Cost(Fnew) = Cost(F1 − FSi) + Cost(min poly Si);

7: /* At every reduction step, retain the minimum cost polynomial. In other words,

update min cost poly and min cost */

if (Cost(Fnew) < min cost poly){
min cost poly = (Fnew);

min cost = Cost(Fnew);

8: }
9: end for

10: min cost poly gives the minimum cost polynomial and min cost gives its estimated

cost;

7. EXPERIMENTS

The algorithms were implemented in Perl with calls to Maple [2007], along
with the presented cost model for optimizing the given polynomial. The poly-
nomial representing the datapath and operating bit-vector size (input/output
- n1, n2,nd /m) was given as the input to the tool. Step-by-step reductions
of the given polynomial were performed using our algorithms until a minimal
form was obtained. For the original, minimal, and every intermediate polyno-
mial generated, the implementation cost was estimated. The polynomial with
the least estimated cost was selected for implementation.

We used the Synopsys design compiler to generate the required n1 × n2 to
m-bit adders and multipliers. These units were used subsequently as functional

2Note that if there are k monomial terms, the combination set will have 2k – 1 elements.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:22 • S. Gopalakrishnan and P. Kalla

Fig. 5. A nonlinear filter model.

Fig. 6. Polynomial extracted model for the nonlinear filter.

units to implement the polynomials. To compare the area statistics, both the
original and reduced polynomial with least estimated cost were implemented
using the Synopsys module compiler.

7.1 An Application of our Approach

Let us demonstrate the application of our approach using a typical design
methodology for nonlinear filters. Consider a nonlinear filter that needs to
implement the function φ, as shown in Figure 5. Some nonlinearities can be
approximated as polynomial functions. As shown in Figure 6, the polynomial
function is extracted as f , while φ′ is the nonlinearity of the system that can-
not be expressed as a polynomial model. Generally, f is implemented using
the Volterra series expansion model [Mathews and Sicuranza 2000]. Our focus
essentially lies in optimizing f for a better implementation.

In Jeraj [2005], nonlinear systems were implemented using this design
methodology. One example for such an extracted polynomial system model is
the polynomial filter implemented in Jeraj [2005], used in an image processing
application. Here, the polynomial representation is given by

F = a1x4 + a2x3 + a3x2. (23)

By scaling the coefficients (ai′s) to an appropriate fixed-point representation,
we determine their values and implement the polynomial over a uniform 16-bit
datapath as

F = 13220 ∗ x4 + 16384 ∗ x3 + 8180 ∗ x2. (24)

For the preceding RTL computation, when synthesized using the Synopsys mod-
ule compiler [Synopsys 2007], using components from the DesignWare library,
we get an implementation area of 25,384 sq.units.

On applying our optimization technique to this polynomial, we get a reduced
expression for F as

F = 5028 ∗ x4 + 16372 ∗ x2 + 16384 ∗ x. (25)

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:23

The implementation area of this expression of F is only 19,904 sq.units.
The previous results suggest that for such applications, we can apply our

optimization technique to effectively lower the final implementation area of
the extracted polynomial models.

7.2 Results

Experiments have been performed on a variety of DSP benchmarks. The results
for polynomial datapaths implemented with fixed-size bit-vectors are presented
in Table I and those for polynomial datapaths implemented with multiple word-
length operands are presented in Table II. In Table I, IRR is an image rejection
receiver from Chen and Huang [2001]. Antialias is borrowed from Peyman-
doust and DeMicheli [2003]. Chebys (1)–(4) are Chebyshev polynomial filters
from Hosangadi et al. [2004]. The last two functions are elementary function
computations. In Table II, the first four examples are from Verma and Ienne
[2004]. Deg4, Janez, and Cubic are polynomial filters used in image processing
applications [Mathews and Sicuranza 2000]. Mibench is an automotive applica-
tion from Guthaus et al. [2001]. PSK (phase shift keying) is from Peymandoust
and DeMicheli [2003], and IIR-4 is a 4th-order IIR computation. For both the
tables, column 2 lists the design characteristics: number of variables, their
highest degree, and the bit-vector sizes (n1, . . . nd/m). Column 3 lists the esti-
mated cost of the original polynomial. Columns 4 and 5 list the cost of the opti-
mized polynomial using Algorithm 1 and Algorithm 2, respectively. In columns
6 and 7, we list the percentage of improvement obtained in the estimated cost
using Algorithm 1 (Imp1) and Algorithm 2 (Imp2), respectively. For the imple-
mentation cost, we report the results of Algorithm 2. Columns 8 and 10 list
the actual implementation area of the original and selected polynomial (syn-
thesized), respectively. Columns 9 and 11 depict the critical path delay of the
original and selected polynomial implementations, respectively. These imple-
mentations have been realized using shifters, multipliers, and adders. Column
12 depicts the improvement in area of the actual implementation, while col-
umn 13 depicts the improvement in critical path delay in the implementation.
The final column reports whether the polynomial chosen for implementation
is the original polynomial (orig), the minimal canonical form (minimal), or a
polynomial obtained during an intermediate reduction step (intermed). If the
improvement in the estimated model is less than 1%, we choose the original
polynomial for implementation.

For the benchmarks implemented with fixed-size bit-vectors, there is an av-
erage improvement of approximately 22.09%, with an improvement of 29.46%
for the first 6 benchmarks from Table I. For the benchmarks implemented with
multiple word-length operands, the average improvement in implementation
area is 24.84% with an improvement of 35.49% considering only the first 7
benchmarks from Table II. Considering all the benchmarks, there is still an
average improvement of 23.61% in the implementation area.

7.3 Consistency of our Estimation Approach

The cost estimated by our approach seems to be consistent with the ac-
tual implemented area of the designs. To elaborate further, we describe the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:24 • S. Gopalakrishnan and P. Kalla

T
a

b
le

I.
P

e
rf

o
rm

a
n

ce
C

o
m

p
a

ri
so

n
o
f

E
st

im
a

ti
o
n

a
n

d
Im

p
le

m
e
n

ta
ti

o
n

C
o
st

s
(fi

x
e
d

-s
iz

e
d

a
ta

p
a

th
s)

E
st

im
a

te
d

C
o
st

Im
p

le
m

e
n

ta
ti

o
n

C
o
st

C
h

o
ic

e

B
e
n

ch
-m

a
rk

V
a

r/
D

e
g
/m

O
ri

g
A

lg
1

A
lg

2
Im

p
.

1
Im

p
.

2
O

ri
g
in

a
l

A
lg

2
Im

p
.

%

%
%

A
re

a
D

e
la

y
A

re
a

D
e
la

y
A

re
a

D
e
la

y

IR
R

2
/4

/1
6

1
0

8
6

4
6

9
4

3
6

9
4

3
36

.0
9

36
.0

9
5

4
5

9
4

4
0

0
.0

4
3

7
7

9
2

3
6

2
.9

1
30

.7
7

9
.2

8
m

in
im

a
l

A
n

ti
a

li
a

s
1

/7
/1

6
1

8
6

6
9

1
3

9
7

2
1

3
9

7
2

25
.1

5
25

.1
5

7
9

2
5

4
5

4
0

.1
2

5
9

7
1

2
5

0
2

.9
8

24
.6

5
6

.8
7

in
te

rm
e
d

C
h

e
b

y
1

1
/3

/3
2

7
5

2
1

6
3

0
2

6
3

0
2

16
.2

1
16

.2
1

4
2

2
3

4
3

3
9

.3
4

2
1

4
9

0
2

5
1

.9
6

49
.1

1
2

5
.3

4
m

in
im

a
l

C
h

e
b

y
2

1
/4

/3
2

1
5

0
4

2
1

2
6

0
4

1
2

6
0

4
16

.2
1

16
.2

1
6

3
7

2
4

5
0

3
.9

2
4

2
9

8
0

4
1

6
.5

4
32

.5
5

1
7

.3
4

m
in

im
a

l

C
h

e
b

y
3

1
/5

/3
2

2
1

1
8

4
1

8
7

4
6

1
8

7
4

6
11

.5
11

.5
9

4
8

4
0

5
9

1
.3

7
4

0
9

6
5

0
3

.9
2

21
.8

7
1

1
.5

6
m

in
im

a
l

C
h

e
b

y
4

1
/6

/3
2

2
6

2
6

7
2

5
0

4
8

2
5

0
4

8
4.

67
4.

67
1

1
6

3
0

7
5

5
.8

8
9

5
5

8
6

6
6

8
.5

17
.8

3
1

4
.7

7
m

in
im

a
l

co
t(

x
)

1
/9

/3
2

2
5

2
6

5
8

2
5

2
6

5
8

2
5

2
6

5
8

<
1

<
1

—
—

—
—

—
—

o
ri

g

e
rf

(x
)

1
/7

/3
2

1
6

8
1

9
0

1
6

8
1

9
0

1
6

8
1

9
0

<
1

<
1

—
—

—
—

—
—

o
ri

g

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:25

T
a

b
le

II
.

P
e
rf

o
rm

a
n

ce
C

o
m

p
a

ri
so

n
o
f

E
st

im
a

ti
o
n

a
n

d
Im

p
le

m
e
n

ta
ti

o
n

C
o
st

s
(a

ri
th

m
e
ti

c
w

it
h

co
m

p
o
si

te
m

o
d

u
li

)

B
e
n

ch
m

a
rk

V
a

r/
D

e
g
/

E
st

im
a

te
d

C
o
st

Im
p

le
m

e
n

ta
ti

o
n

C
o
st

C
h

o
ic

e

n 1
,
..
n d

/m
O

ri
g

A
lg

1
A

lg
2

Im
p
.1

Im
p
.2

O
ri

g
in

a
l

A
lg

2
Im

p
ro

v.
%

%
%

A
re

a
D

e
la

y
A

re
a

D
e
la

y
A

re
a

D
e
la

y

P
o
ly

1
3

/4
/1

4
,
1

4
,
1

6
/1

6
7

5
8

1
3

9
2

7
3

7
6

6
48

.2
50

.3
3

7
4

3
0

3
7

2
.4

5
2

0
6

2
8

2
8

8
.6

3
44

2
2

.5
m

in
im

a
l

P
o
ly

2
3

/4
/1

0
,
8

,
1

3
/1

6
4

8
2

0
2

3
9

3
2

3
9

3
50

.3
50

.3
2

8
8

4
8

2
8

8
.6

3
1

1
6

8
4

2
1

4
.3

5
59

.4
9

2
5

.7
3

m
in

im
a

l

P
o
ly

3
2

/5
/1

3
,
1

3
/1

6
6

2
2

7
5

4
6

5
5

4
6

5
11

.7
11

.7
2

8
8

4
0

3
3

5
.3

2
2

3
0

0
6

2
9

8
.1

8
20

.2
1

1
.0

7
m

in
im

a
l

P
o
ly

u
n

o
p

t
1

/4
/1

2
/1

6
5

1
9

6
2

9
9

4
2

9
9

4
42

.3
42

.3
2

8
8

3
6

3
3

5
.3

2
1

4
4

2
4

2
1

4
.3

5
49

.9
3

6
.0

7
m

in
im

a
l

D
e
g
4

3
/4

/1
6

,
8

,
1

6
/1

6
2

2
7

3
1

1
6

3
6

1
1

6
3

6
1

28
28

1
1

6
6

8
4

6
3

2
.4

4
8

2
7

1
8

5
2

1
.0

2
29

.1
1

7
.6

1
m

in
im

a
l

J
a

n
e
z

1
/5

/1
2

/1
6

8
9

0
7

6
1

6
3

6
1

5
4

30
.8

30
.9

4
2

9
1

0
3

7
2

.4
5

2
8

8
4

0
3

3
5

.3
2

32
.7

9
.9

7
m

in
im

a
l

M
ib

e
n

ch
2

/9
/1

6
,1

2
/1

6
5

8
5

1
0

4
8

2
2

6
4

8
2

2
6

17
.6

17
.6

2
4

9
2

9
0

9
7

7
.3

1
2

1
6

7
7

2
9

2
1

.0
7

13
.0

4
5

.7
5

in
te

rm
e
d

P
S

K
2

/4
/1

1
,1

4
/1

6
1

8
1

4
0

1
8

1
4

0
1

8
1

4
0

<
1

<
1

7
6

8
7

6
—

—
—

—
—

o
ri

g

C
u

b
ic

3
/3

/2
4

,2
8

,3
1

/3
2

4
7

5
9

5
4

7
5

8
6

4
7

5
8

6
<

1
<

1
2

5
6

3
8

8
—

—
—

—
—

o
ri

g

II
R

-4
2

/4
/2

4
,2

9
/3

2
4

9
3

3
9

4
9

3
3

3
4

9
3

3
3

<
1

<
1

2
1

3
4

0
8

—
—

—
—

—
o
ri

g

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:26 • S. Gopalakrishnan and P. Kalla

Fig. 7. Deg4: estimated and implemented costs for all reduction steps.

experiments performed with the Deg4 filter. Figure 7 plots the estimated cost
and actual implemented area corresponding to the polynomials obtained after
every reduction step. The figure shows that that the estimated cost behaves
consistently with respect to the actual implementation area.

7.4 Horner Form Implementation

The Horner form of a polynomial is a nested normal form representation which
expresses that polynomial with the minimal number of multiplications and
additions. A Horner form for a univariate expression can be written as

a0 · xn + · · · + an−1 · x + an =
(· · ·((a0 · x + a1) · x + a2) · x + · · ·an−1) · x + an.

Multiply-accumulate units (MACs) are efficient hardware implementations of
Horner polynomials. Typically, expressions are expressed in Horner form and
directly mapped to MAC units. For the benchmark Poly3, we show how our cost
model at the polynomial level is also suitable for their implementation on MAC
units. Figure 8 plots the estimate, actual area of implementation using adders
and multipliers, and the area of implementation using MAC units, and depicts
this consistency.

7.5 Discussion on Expression Manipulation Techniques

There are many expression manipulation techniques that have been used in
the optimization of arithmetic datapaths. While such techniques are commonly
used in synthesis of arithmetic polynomials, our approach can be used as a pre-
processing step, thus providing an additional scope for optimization. We briefly
review conventional expression manipulation techniques [Peymandoust and
DeMicheli 2003; Hosangadi et al. 2004] and contrast them against the opti-
mization presented in our approach.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:27

Fig. 8. Poly3: costs model versus add/mult and MAC implementation for all reduction steps.

—Factorization: Consider a polynomial f = x2 + 6 ∗ x. If f is a polynomial in
Z (integral domain), then f can be uniquely factorized as f = (x) ∗ (x + 6)
because Z is a unique factorization domain. However, if f is a polynomial in
Z23 (fixed-size datapath with 3 bit-vectors), it can be factorized as f = (x) ∗
(x+6) or f = (x+4)∗(x+2) because Z23 is a nonunique factorization domain.
(Note: ((x+4)∗(x+2)) mod 23 = (x2 +6∗x+8) mod 23 = (x2 +6∗x) mod 23 as
8 mod 23 = 0). Unfortunately, factorization in non-UFDs is not a well-studied
topic in symbolic algebra. For this reason, arithmetic datapaths implemented
over fixed-size bit-vectors cannot fully exploit the benefit of factorization. In
some sense, our approach exploits the nonunique factorization to search for
better implementations.

—Tree-height reduction: In this technique, the focus is on reducing the height
of an arithmetic expression tree, where the height of the tree is the number
of steps required to compute the expression. For example, (p + (q ∗ r)) + (s)
can be written as (p + s) + (q ∗ r).

—Common subexpression elimination: This is another expression manipula-
tion technique, where isomorphic patterns are identified in the arithmetic
expression tree and merged. This avoids the cost of implementing multiple
copies of the same subexpression.

High-level synthesis techniques such as scheduling and resource sharing can
also be employed to reduce the number of components and improve the critical
path in an arithmetic expression.

For all the aforementioned techniques, it can be seen that they operate on
the given data-flow graph (given computation) and will still need to implement
all the operations shown in that graph. On the other hand, the data-flow graph
generated by our approach leads to a better implementation. This graph can
be further optimized by expression manipulation, scheduling, and resource-
sharing techniques.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:28 • S. Gopalakrishnan and P. Kalla

7.6 Limitation of our Approach

Given a polynomial f of degree k, one can derive a vanishing polynomial q
of higher degrees (say, k + 1) as well. By computing f + q, one can create a
higher-degree (k + 1) polynomial equivalent to f . The cost of f + q might be
less expensive than f . Our approach cannot identify lower-cost implementa-
tions of a higher degree. Unfortunately, there can be more than one vanishing
expressions of a given degree (depending upon the coefficients) that can be
added to f . This makes it difficult to derive a “convergent” algorithm to search
for low-cost implementations of higher degree.

8. CONCLUSIONS AND FUTURE WORK

This article has presented an area optimization approach for polynomial data-
paths where the input and output bit-vector sizes of the operands are given as
(n1, n2, . . . , nd) and (m), respectively. Finite word-length bit-vector arithmetic
is then modeled as a polynomial function from Z2n1 × Z2n2 × · · · × Z2nd to Z2m .
Exploiting the concept of vanishing polynomials over this mapping, we present
two algorithms to optimize a given polynomial to a polynomial with a lower-cost
implementation. A cost model to estimate the area at polynomial level is also
presented. Using the optimization procedure along with the cost model allows to
select an equivalent lower-cost expression for synthesis. Experimental results
demonstrate substantial area savings over nonoptimized instances using our
approach. Also, it can be seen that the area savings do not worsen timing. We
are currently investigating how to extend our approach to perform polynomial
decompositions over such arithmetic.

9. APPENDIX

Algorithm 3. SF(2m) Computation.

COMPUTE SF(2m)

2m = Input for which SF value needs to be computed

/* For m = 1 or m = 2 */

if (m ≤ 2)

return (2 · m)

end if
/* For m > 2 */

ν = �log2(1 + m)�;

rem = m;

n = 0;

while (rem �= 0) do
aν = 2ν − 1;

n = n + �rem/aν�
rem = rem mod aν

ν = ν − 1

end while
return (m + n)

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

Optimization of Polynomial Datapaths Using Finite Ring Algebra • 49:29

SF(n) was first considered by Lucas [1883], though the algorithm for its
computation was outlined by Kempner [1918]. It was revisited in Smarandache
[1980] and is defined as the smallest value for a given n at which n|SF(n)!. We
have adapted the algorithm from Kempner [1918] for n = 2m, and used the
procedure as part of the algorithms in this article.

Example 9.1. Let us compute the value of SF(23). In this case, m = 3. The
algorithm proceeds as follows:

(1) Since m > 2, we compute the value of ν as �log2(1 + 3)� = 2.

(2) Now, initialize rem = 3 and n = 0. Continue to the while loop since rem > 0.
—Compute a2 = 2ν − 1 = 3 and n = 0 + �rem/a2� = 1.
—Update rem = rem mod a2 = 0 and ν = ν − 1 = 1.

(3) Since rem = 0, exit the while loop. The computed value of SF(23) is (m+n) =
4.

Complexity. The worst-case complexity of the algorithm is O(m/log(m)),
where m corresponds to the word length of the output variable in the datapath.

REFERENCES

ALLENBY, R. J. B. T. 1983. Rings, Fields, and Groups: An Introduction to Abstract Algebra. E. J.

Arnold.

ARVIND AND SHEN, X. 1998. Using term rewriting systems to design and verify processors. IEEE
Micro. 19, 2, 36–46.

CHEN, C. AND HUANG, C. 2001. On the architecture and performance of a hybrid image rejection

receiver. IEEE J. Select. Areas Commun. 19, 6, (Jun.) 1029–1040.

CHEN, Z. 1996. On polynomial functions from Zn1
×Zn2

× · · · ×Znr to Zm. Discrete Math. 162, 1–3,

67–76.

CHEN, Z. 1995. On polynomial functions from zn to zm. Discrete Math. 137, 1–3, 137–145.

CONSTANTINIDES, G., CHEUNG, P., AND LUK, W. 2001. Heuristic datapath allocation for multiple

wordlength systems. In Proceedings of the Design Automation and Test in Europe (DATE)
(Munich).

DEMICHELI, G. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York.

GROUTE, I. A. AND KEANE, K. 2000. M(VH)DL: A Matlab to VHDL conversion toolbox for digital

control. In IFAC Symposiun on Computer-Aided Control System Design (Salford, UK).

GUTHAUS, M. R. 2001. Mibench: A free, commercially representative embedded benchmark suite.

In IEEE 4th Annual Workshop on Workload Characterization (Austin, TX).

HOSANGADI, A., FALLAH, F., AND KASTNER, R. 2005. Energy efficient hardware synthesis of polyno-

mial expressions. In Proceedings of the International Conference on VLSI Design (Kolkata, India)

653–658.

HOSANGADI, A., FALLAH, F., AND KASTNER, R. 2004. Factoring and eliminating common subexpres-

sions in polynomial expressions. In Proceedings of the Internatoinal Conference on Computer
Aided Design (ICCAD) (San Jose, CA), 169–174.

HUANG, C.-Y. AND CHENG, K.-T. 2001. Using word-level atpg and modular arithmetic constraint

solving techniques for assertion property checking. IEEE Trans. Comput. Aided. Des. 20, 381–

391.

HUNGERBUHLER, N. AND SPECKER, E. 2006. A generalization of the smarandache function to several

variables. Integers: Electron. J. Combin. Num. Theory 6, A23, 1–11.

JERAJ, J. 2005. Adaptive estimation and equalization of non-linear systems. Ph.D. thesis, Uni-

versity of Utah, Salt Lake City, Utah.

KELLER, G. AND OLSON, F. 1968. Counting polynomial functions (mod pn). Duke Math. J. 35, 835–

838.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

49:30 • S. Gopalakrishnan and P. Kalla

KEMPNER, A. J. 1921. Polynomials and their residual systems. Amer. Math. Soc. Trans. 22, 240–

288.

KEMPNER, A. J. 1918. Miscellanea. Amer. Math. Month. 25, 201–210.

KOREN, I. 2002. Computer Arithmetic Algorithms. A. K. Peters.

KUM, K. AND SUNG, W. 1998. Word-Length optimization for high-level synthesis of DSP systems.

In International Workshop Signal Processing Systems (SIPS). Piscataway, NJ.

LUCAS, E. 1883. Question nr. 288. Mathesis 3, 232.

MAPLE. 2007. Maple. http://www.maplesoft.com.

MATHEWS, V. J. AND SICURANZA, G. L. 2000. Polynomial Signal Processing. Wiley-Interscience, New

York.

MENARD, D., CHILLET, D., CHAROT, F., AND SENTIEYS, O. 2002. Automatic floating-point to fixed-point

conversion for DSP code generation. In International Conference on Compiler, Architecture, and
Synthesis Embedded Systems (CASES) (Grenoble, France).

PEYMANDOUST, A. AND DEMICHELI, G. 2003. Application of symbolic computer algebra in high-level

data-flow synthesis. IEEE Trans. Comput. Aided. Des. 22, 9, 1154–11656.

POWER, D., TABIRCA, S., AND TABIRCA, T. 2002. Java concurrent program for the smarandache

function. Smarandache Notions J. 13, 1-2-3, 72–84.

PRADHAN, D. 1978. A theory of galois switching functions. IEEE Trans. Comput. C-27, 3, 239–248.

PRADHAN, D., ASKAR, S., AND CIESIESKI, M. 2003. Mathematical framework for representing discrete

functions as word-level polynomials. In Proceedings of the IEEE International High Level Design
Validation and Test Workshop (HLDVT) (San Francisco, CA), 135–139.

RAJAPRABHU, T., SINGH, A., JABIR, A., AND PRADHAN, D. 2004. Modd for CF: A compact representa-

tion for multiple output function. In IEEE International High Level Design Validation and Test
Workshop (Sonoma Valley, CA).

SHEKHAR, N., KALLA, P., AND ENESCU, F. 2006. Equivalence verification of arithmetic datapaths

with multiple word-length operands. In Proceedings of the Design Automation and Test in Europe
(DATE) (Munich).

SHEKHAR, N., KALLA, P., ENESCU, F., AND GOPALAKRISHNAN, S. 2005. Equivalence verification of poly-

nomial datapaths with fixed-size bit-vectors using finite ring algebra. In Proceedings of the In-
ternational Conference on Computer Aided Design (ICCAD) (San Jose, CA).

SINGMASTER, D. 1974. On polynomial functions (mod m). J. Num. Theory 6, 345–352.

SMARANDACHE, F. 1980. A function in number theory. Analele Univ. Timisoara, Fascicle 1, 17,

79–88.

SMITH, J. AND DEMICHELI, G. 2001. Polynomial circuit models for component matching in high-

level synthesis. IEEE Trans. VLSI 9, 6, 783–800.

SMITH, J. AND DEMICHELI, G. 1999. Polynomial methods for allocating complex components. In

Proceedings of the Design Automation and Test in Europe (DATE) (Munich).

SMITH, J. AND DEMICHELI, G. 1998. Polynomial methods for component maching and verification.

In Proceedings of the International Conference on Computer Aided Design (ICCAD) (San Jose,

CA).

SYNOPSYS. 2007. Synopsys module compiler and designware library. htpp://www.synopsys.com.

THORNTON, M., DRECHSLER, R., AND MILLER, D. M. 2001. Spectral Techniques in VLSI CAD. Kluwer

Academic, Hingham, MA.

VERMA, A. K. AND IENNE, P. 2006. Towards the automatic exploration of arithmetic circuit archi-

tectures. In Proceedings of the Design Automation Conference (DAC) (San Francisco, CA).

VERMA, A. K. AND IENNE, P. 2004. Improved use of the carry-save representation for the synthesis

of complex arithmetic circuits. In Proceedings of the International Conference on Computer Aided
Design (ICCAD) (San Jose, CA).

Received October 2006; revised March 2007; accepted March 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 49, Pub. date: Sept. 2007.

