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We report the theoretical efficiency of thermoelectric power generation with asymmetric thermal

contacts to reservoirs. A key ingredient is the electrical and thermal co-optimization. Generic formula

of the maximum power output and the optimum leg length are obtained. The Curzon-Ahlborn limit at

maximum power can be rigorously derived when the dimensionless figure-of-merit is very large for

any asymmetric thermal contact resistances. The results differ from cyclic thermodynamic engines,

and some of the reasons are discussed. We also point out the similarity and differences with

single-level quantum dot heat engines, which assume no explicit thermal contact resistance with

reservoirs.VC 2012 American Institute of Physics. [doi:10.1063/1.3679544]

I. INTRODUCTION

Research efforts on thermoelectrics have been mostly

focused on improving the dimensionless figure-of-merit (ZT)
of the material.1–3 Z is the ratio of the Seebeck coefficient

square times electrical conductivity divided by thermal con-

ductivity, and T is the absolute temperature. Improving the

material ZT (with, e.g., embedded nanoparticles, superlattice,

etc.) is not the only factor which affects the power output. We

need to consider the whole energy conversion system, which

involves thermal contacts with the hot and cold reservoirs.

Recently, it was shown that the system efficiency at maximum

power output is inversely proportional to the sum of the heat

dissipation in hot and cold thermal resistances.4 The optimum

condition is found only when the thermoelectric internal im-

pedance matches the external impedance both electrically and

thermally. This fact has been partially understood and

reported in the literature on thermoelectric systems.5–9 Here,

we perform a comprehensive optimization by the method of

the Lagrange multiplier based on a generic model of a thermo-

electric generator with asymmetric thermal contacts with res-

ervoirs. We use this model to identify the efficiency at large

ZT and compare the results with ideal thermodynamic

engines. We also discuss the differences compared to single

level quantum dot thermoelectric heat engines.

II. MODEL

The model includes a thermoelectric element (leg) with

length d placed between hot and cold reservoirs. The thermal

resistance with the hot reservoir is given by wh, and that with

the cold reservoir is wc, as shown in Fig. 1. This model con-

siders a unit cross-sectional area, which is perpendicular to

the heat flow. Heat flux qh is supplied by the hot reservoir at

temperature Ts (fixed). Also, the cold reservoir Ta (fixed) is

given. Heat flux qc, which flows into the cold reservoir, is

reduced from qh, depending on the energy conversion effi-

ciency. Useful power w is extracted at the external electrical

load resistor RL connected to the leg.

For a given material system (with any Z value), the sys-

tem could be designed to operate either at maximum output

power or at maximum efficiency. The system parameters that

can be changed are: external thermal resistances with hot and

cold reservoirs, thermoelectric (TE) element thickness, and

load resistance. In practice, there is always some finite ther-

mal resistance between the TE element and reservoirs and

this is given. Then, TE element thickness and load resistance

are variables that should be adjusted to be able to get the

highest output power or the highest efficiency. The difficulty

is that changing the thermoelectric leg length affects temper-

atures at the hot and cold sides of the element, which, in turn,

modify Peltier cooling and heating at interfaces. The equa-

tions become recursive and a careful co-optimization of the

electrical and thermal networks is required. This is a mathe-

matical difficulty, which is described in Sec. III. However,

from a physical point of view, the picture is clear. The high-

est output power corresponds to the highest power delivered

to a load. The highest efficiency corresponds to the highest

ratio of electrical power delivered to load to the amount of

heat flux from the hot reservoir to the cold reservoir.

Equations (1) and (2) are derived based on the energy con-

servation at two nodes, Th and Tc, which are the temperatures

at the hot side and the cold side of the thermoelectric leg.

qh ¼ b
d
ðTh � TcÞ þ SITh � I2R=2; (1)

qc ¼ b
d
ðTh � TcÞ þ SITc þ I2R=2: (2)

Here, b is the thermal conductivity, S is the Seebeck coeffi-

cient, I is the electrical current, and R is the thermoelectric

internal (electrical) resistance. One should note that Joule

heating happens everywhere in the thermoelectric leg. In

one-dimensional heat transport, one can show that Joule

heating could be represented by two localized sources at the

hot and the cold junctions, each dissipating 1=2 of the total
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power. The output power delivered to the load per unit area

of the heat source w [W=m2] is found as

w ¼ I2mR ¼ mrS2

ð1þ mÞ2d ðTh � TcÞ2; (3)

where w ¼ qh� qc by energy conservation, r is electrical

conductivity of the leg, and m is the ratio of the internal re-

sistance to the external load resistance, i.e., RL ¼ mR. The ra-
tio of the temperature difference across thermoelectric leg

(Th�Tc) over the overall temperature difference (Ts�Ta)
can be calculated from the energy balance equation as

ðTh � TcÞ
ðTs � TaÞ ¼

d

d þ bðX þ YÞ ; (4)

where X and Y are

X ¼ 1þ Z

2 1þ mð Þ2 2mþ 1ð ÞTh þ Tcð Þ
 !

wh;

Y ¼ 1þ Z

2 1þ mð Þ2 Th þ 2mþ 1ð ÞTcð Þ
 !

wc;

(5)

where Z is the figure of merit. Thus, the power output as a

function of Ts and Ta can be written as

w ¼ mZ

ð1þ mÞ2
db�

d þ bðX þ YÞ
�2 ðTs � TaÞ2: (6)

The temperatures Th and Tc in Eq. (5) can be found using re-

cursive Eqs. (7) and (8) below, which are transformed from

the energy balance Eqs. (1) and (2). In subsequent analysis

and numerical tests, these Th and Tc are calculated

iteratively.

g1 ¼ b
d
XðTh � TcÞ � ðTs � ThÞ ¼ 0; (7)

g2 ¼ b
d
YðTh � TcÞ � ðTc � TaÞ ¼ 0: (8)

III. OPTIMIZATION FOR MAX POWER OUTPUT

We maximize the power output, which depends on sev-

eral parameters m, d, Th, and Tc. The Lagrange multiplier

method was used for the optimization. Taking partial deriva-

tives of Eq. (6) with respect to m, d, Th, and Tc, while intro-

ducing constraint functions Eqs. (7) and (8), we obtain the

following eight equations:

@w

@m
� k1

@g1
@m

¼ 0;
@w

@d
� k1

@g1
@d

¼ 0;
@w

@Th
� k1

@g1
@Th

¼ 0;

@w

@Tc
� k1

@g1
@Tc

¼ 0;
@w

@m
� k2

@g2
@m

¼ 0;
@w

@d
� k2

@g2
@d

¼ 0;

@w

@Th
� k2

@g2
@Th

¼ 0;
@w

@Tc
� k2

@g2
@Tc

¼ 0: (9)

We first find the Lagrange multiplier k1 and k2 from the two

above Lagrange differentials of w with m as

k1 ¼ ðm� 1ÞðTh � TcÞ
whðmTh þ TcÞ ; k2 ¼ ðm� 1ÞðTh � TcÞ

wcðTh þ mTcÞ : (10)

Then, we find the optimum m (e.g., mopt) by substituting

Eq. (10) into k1 and k2 in the two above Lagrange differentials

of w with respect to d. These two equations yield the same

result as

mopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z

ðTh þ TcÞ
2

r
: (11)

Note that this m is still not independent from Th and Tc. From
the rest of the Lagrange differentials of w, with respect to Th
and Tc, the leg length d is found for maximum power output as

dh
b
¼
wh

�
Thþð2m�1ÞTc

�
ðThþTcÞ ;

dc
b
¼
wc

�
ð2m�1ÞThþTc

�
ðThþTcÞ :

(12)

Unfortunately, we did not reach a unique solution for opti-

mum leg length. In Eq. (12), subscripts h and c denote the or-
igin of the equations in the Lagrange differentials Th and Tc,
respectively. By our extensive numerical tests, we were able

to eventually obtain the solution of the optimum leg length

as the sum of the two equations in Eq. (12),

dopt
b

¼
wh

�
Th þ ð2m� 1ÞTc

�
þ wc

�
ð2m� 1ÞTh þ Tc

�
ðTh þ TcÞ :

(13)

For the symmetric contacts wh ¼ wc, the optimum leg length

becomes quite simple as

dopt
b

¼ m
X

w: (14)

Here, Rw is the sum of the external thermal resistances, i.e.,

Rw ¼ whþwc. The m in the above Eqs. (13) and (14) must

simultaneously obey Eq. (11) to calculate the optimum leg

length.

FIG. 1. (Color online) Thermal resistance network showing a thermoelectric

leg in contact with hot and cold reservoirs. Peltier and Joule heating sources

are also shown.
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Then, two temperatures Th and Tc at the maximum

power output are found from the given temperatures Ts and
Ta. The ratio a ¼ (Ts�Ta)=(Th� Tc) is found from Eqs. (4)

and (13) as

a ¼
ð2m� 1Þðmþ 1Þðwh þ wcÞðTh þ TcÞ þ 2

�
whðTh þ mTcÞ þ wcðmTh þ TcÞ

�
ðmþ 1Þ

�
wh

�
Th þ ð2m� 1ÞTc

�
þ wc

�
ð2m� 1ÞTh þ Tc

�� : (15)

The temperature difference across the leg is half of the total

temperature difference at the maximum power output

according to Eq. (15) only if wc=wh ¼ 1.

asymmetry ¼ Ts � Ta
Th � Tc

¼ 2: (16)

From this analysis, the maximum power output shall be

found near the point at which the internal and external

temperature differences match, analogous to the voltage dif-

ference match in an electronic circuit. Due to the thermoelec-

tric energy conversion, the thermal resistance match takes

into account the reduction of effective thermal conductance

of the leg due to the power generation.

From Eqs. (6) and (7), the relation of temperature ratio

Ta=Ts and Tc=Th is found as

Ta
Ts

¼
�
wc

�
2mðTh þ mTcÞ

�
þ ðmþ 1Þfwh

�
Th þ ð2m� 1ÞTc

�
þ wc

�
ð2m� 1ÞTh þ Tc

�
g
�
Tc � wc

�
2mðTh þ mTcÞ

�
Th�

wh

�
2mðmTh þ TcÞ

�
þ ðmþ 1Þfwh

�
Th þ ð2m� 1ÞTc

�
þ wc

�
ð2m� 1ÞTh þ Tc

�
g
�
Th � wh

�
2mðmTh þ TcÞ

�
Tc

: (17)

These temperatures Tc and Th should be determined from the

above Eqs. (15) and (17). However, the equations are still

too complex to yield the closed forms. Finally, the maximum

power output is found as

wmax ¼ mZ

a2ð1þ mÞ2
b
dopt

ðTs � TaÞ2: (18)

Equation (18) is one of the key results of this paper, and it is

valid for any value of Z. This equation is valid when the op-

timum thickness of the TE element for highest output power

is given by Eq. (13) and the optimum value of load resistance

with respect to TE leg resistance, m, is given by Eq. (11). In

Eq. (18), m, dopt, and a still depend on Th and Tc. Th and Tc
can be derived from Ts and Ta using Eqs. (15) and (17).

Equation (18) shows how maximum power output depends

on asymmetric external thermal resistances wc and wh. For

symmetric contact systems,

wmax ¼ Z

4ð1þ mÞ2Pw
ðTs � TaÞ2: (19)

This explains the result of Freunek et al.9. Their model gives

the maximum without the term (1þm)2, and thus, it is valid

only if m � 1.

IV. EFFICIENCYANALYSIS

The energy conversion efficiency g at maximum power

output is given by wmax divided by qh. From the Eqs. (1),

(11), and (18), the system efficiency becomes

g ¼ ðm� 1ÞðTh � TcÞ
ðmTh þ TcÞ : (20)

This equation is exactly the same as the well-known formula

of the maximum efficiency of thermoelectric elements. Th
and Tc depend on the system boundary conditions, and they

need to be derived as a function of Ts and Ta, iteratively,
using Eqs. (15) and (17).

In the following, we assumed an infinitely large Z to

find the upper limit of system efficiency at the maximum

power output. Since the temperatures Th and Tc have a weak
dependence on wc=wh, the efficiency changes slightly. Inter-

estingly, the efficiency converges to a unique formula as Z

goes to infinity.

At Z ! infinity, the Eq. (17) converges as

Ts
Ta

! Th
Tc

� �2

: (21)

Therefore, the efficiency Eq. (20) at the maximum power

output when Z ! infinity is given by

g ! 1� Tc
Th

¼ 1�
ffiffiffiffiffi
Ta
Ts

r
: (22)

Eq. (22) is independent of either wc or wh. Thus, this effi-

ciency applies to all asymmetric thermal contacts. This is

exactly the same efficiency at the maximum power output

for the irreversible thermodynamic engine, which was

derived by Curzon and Ahlborn.10

Now, let us study the case when the leg length is fixed

to the optimum value found for the symmetric thermal

024509-3 K. Yazawa and A. Shakouri J. Appl. Phys. 111, 024509 (2012)
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resistances and then change the load resistance to get highest

power in the case of asymmetric thermal resistances. The

total wcþwh is assumed to be constant. Figure 2(a) and 2(b)

show that Curzon-Ahlborn efficiency at maximum power is

found when the leg length is optimized for each asymmetric

thermal resistance. Figure 2(b) also shows the efficiency if

the leg length is kept constant (fixed d=b). In the latter case,

the efficiency at the maximum power depends on the wc=wh

ratio.

The optimization of output power for finite thermal

resistances with heat source and heat sink is technologically

important. As for any given heat source, we have a trade-off

in the design of the thermoelectric generator and in the opti-

mization of performance and cost of the high performance

heat sinks (e.g., microchannel; see Ref. 12).

Figure 3 shows the higher bounds of the system effi-

ciency at the maximum power output from the above cases

when Z is very large. In the figure, Carnot efficiency is

defined, as it should, as a function of reservoir temperatures

(1� Ta=Ts). It is interesting to note that the asymmetric lim-

its, when the optimum leg length is fixed to the value for the

symmetric system, have very different behaviors for low

hot-side thermal resistance or low cold-side thermal resist-

ance. These limits are very similar to the ones for generic

cyclic thermodynamic systems reported by Esposito et al.11.
On the other hand, when the leg length is fully optimized,

the thermoelectric generator recovers the Curzon-Ahlborn

limit.

Figure 4(a) shows the power output as a function of rela-

tive efficiency with respect to the Carnot value when Ta=Ts
¼ 0.2 as an example. The ZT parameter is modified by

changing only the thermal conductivity. The leg length d is a

variable along the curves. Curves start from zero and

increase in both power output and efficiency as leg length d

increases. After reaching a peak, power decreases, but effi-

ciency continues to increase. This trend is observed for any

ZT value. Only for the case of ZT ! infinity does the maxi-

mum efficiency exactly match the Carnot efficiency, i.e.,

FIG. 2. (Color online) Power output normalized to the maximum at wc=wh

¼ 1 and efficiency as a function of normalized leg length. Ta=Ts¼ 0.1, Z¼ 1

(order of ZT � 103), wc=wh ¼ 0.01, 1, and 100.

FIG. 3. (Color online) Efficiency at maximum power output as a function of

Ta=Ts, the model at infinite Z, perfectly matches Curzon-Ahlborn at any

wc=wh. The limits of the thermodynamic cyclic engines (Ref. 11) and the

curves for Z ¼ 3� 10�3 with wc=wh ¼ 1 are also shown.

FIG. 4. (Color online) Output power as a function of efficiency (a) varying

ZT for Ta=Ts ¼ 0.2 and (b) varying Ta=Ts with power normalized with

respect to the peak power value of the individual curves. Ta ¼ 300 K fixed,

Rw ¼ 1.0, wc ¼ wh, and only thermal conductivity is modified for various

ZT.
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1� Ta=Ts, where leg length d becomes extremely large and

then power output diminishes. Figure 4(b) is the normalized

power output with different Ta=Ts ratios. The curves repre-

sent the case where ZT is infinity. There is a region of very

low efficiency in Fig. 4(b) where the power output does not

exist. This region is identified outside of the hatched area in

the figure.

Carnot limit is always reached when the output power is

zero. In the case when ambient reservoir temperature is

much smaller than the heat source temperature (Fig. 4(b),

Ta=Ts ¼ 0.001), we see that maximum output power can be

reached at an efficiency very close to Carnot limit. The tem-

perature gradient is so large that one can get lots of power

with very high efficiency. For the opposite extreme case,

when Ts is close to Ta, the maximum power is observed

when the efficiency equals half of the Carnot efficiency.

It is interesting to compare the results with the quantum

dot (QD) thermoelectric engine investigated by Nakpathom-

kun et al.13 In their study, delta function differential conduc-

tivity (transport function) can produce an “ideal”

thermoelectric material with Carnot efficiency. Nakpathom-

kun et al. correlate the transfer function of QD with the ZT of

bulk materials. For comparison, Figs. 5(a) and 5(b) show the

power output of our model with corresponding ZT values to

QD engines as a function of the normalized efficiency to that

of Carnot g=gC. The curves are obtained by modifying the

load resistance (m). These curves are similar to the QD ones

in lower power output ranges and for efficiency at maximum

output power. Like QD, the maximum efficiency is independ-

ent of temperature when ZT is fixed. However, the maximum

efficiency is lower than QD. This may happen because the

bulk materials have finite thermal conductivity, and our calcu-

lation is always optimizing the system with finite leg length to

match external thermal impedances. Thermal resistances with

reservoirs were not explicitly included in the case of quantum

dot heat engines. In the classical thermoelectric systems, there

is always a finite thermal resistance between reservoirs (Ts
and Ta) and the hot (Th) and cold (Tc) junctions of the thermo-

electric element. Thus, Th and Tc are different from Ts and Ta.
On the other hand, in the quantum dot case, only two tempera-

tures, Ts and Ta, enter in the calculations. Coupling with reser-
voirs and discrete energy level broadening limit the charge

flow (electrical resistance) as well as electronic heat flow

through the quantum dot. However, there is no explicit ther-

mal resistance between the hot side of the quantum dot and

the hot reservoir and the same for the cold side. It seems that

inherently ideal “thermal” contacts are assumed. If one adds

non-ideal thermal contacts, then some of the results on bulk

thermoelectric system described in this paper could be directly

compared with the quantum dots.

Another fundamental difference between bulk thermo-

electric material and single quantum dot material is that cou-

pling with reservoirs broadens the quantum dot energy level,

and this modifies the “effective” Z of the quantum dot mate-

rial. Electrical conductivity, Seebeck coefficient, and elec-

tronic thermal conductivity depend on the width of the

energy level. Because the “effective” Z is not an inherent

property of the dot, one cannot have Curzon-Ahlborn limit

(finite output power) with infinitely large Z (requiring delta

function density-of-states). However, in the case of bulk ma-

terial, Z is given and thermal and electrical contacts with res-

ervoirs do not change the inherent material properties. Given

any thermal contact resistances with reservoirs, one can opti-

mize the thermoelectric leg length and the load resistance to

get either the highest output power or the highest energy con-

version efficiency.

V. SUMMARY

We have modeled and analyzed a generic thermoelectric

power generation system that contains asymmetric thermal

contacts with hot and cold reservoirs. The maximum power

output is found when the load electrical resistance divided

by the thermoelectric element resistance is given by

sqrt(1þZT) and when the temperature difference across the

leg is approximately half of the total temperature span. For

the symmetric contacts with the reservoirs, this temperature

ratio is exactly half and the thermal resistance ratio is equal

to the electrical resistance ratio.

System energy conversion efficiency at maximum power

output always follows the Curzon-Ahlborn limit when the

figure of merit Z is very large. An infinitely large Z makes

the thermoelectric leg exactly the same as the reversible heat

engine when the temperatures for both hot side and cold side

are ideally given. However, due to the co-optimization of

both electrical and thermal networks and the fact that the

thermoelectric leg is always in contact with both hot and

cold reservoirs, the efficiency at the maximum power output

shows different behavior compared to cyclic thermodynamic

engines for asymmetric thermal contacts with reservoirs.

FIG. 5. (Color online) Output power as a function of efficiency g=gC. (a)
ZT � 420 equivalent to C ¼ 0.01 kT and (b) ZT � 1.0 equivalent to C ¼
2.25 kT of QD (Ref. 13). DT=Ta ¼ 0.1 and Ta ¼ 100, 200, 300 K, wc ¼ wh.
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Interestingly, the thermoelectric efficiency limit at maximum

output power for the case of asymmetric thermal contacts

with hot and cold reservoirs approaches the limits obtained

by Esposito et al.11 when the thermoelectric leg thickness is

fixed to the optimum value used in the symmetric case (see

Fig. 2). Further optimization of the leg thickness yields the

Curzon-Ahlborn result. One should emphasize that the bulk

analysis in this paper is valid for “any” Z value. Figure 3

focuses on the infinite Z. However, the rest of the analysis is

done with Z (or ZT) as a variable. The bulk thermoelectric

model was also compared with ideal quantum dot heat

engines, which are based on delta function differential con-

ductivity and displayed similarities and also differences.

This inconsistency may come from the limitation of the bulk

systems given by finite thermal resistances with reservoirs,

which is not included in the standard treatment of the quan-

tum systems.
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