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Abstract  

This work proposes the multi-objective version of the recently proposed Multi-Verse Optimizer 

(MVO) called Multi-Objective Multi-Verse Optimizer (MOMVO). The same concepts of MVO 

are used for converging towards the best solutions in a multi-objective search space. For 

maintaining and improving the coverage of Pareto optimal solutions obtained, however, an 

archive with an updating mechanism is employed. To test the performance of MOMVO, 80 case 

studies are employed including 49 unconstrained multi-objective test functions, 10 constrained 

multi-objective test functions, and 21 engineering design multi-objective problems. The results 

are compared quantitatively and qualitatively with other algorithms using a variety of 

performance indicators, which show the merits of this new MOMVO algorithm in solving a 

wide range of problems with different characteristics.    

 

Keywords: Multi-objective Optimization; Multi-verse Optimizer; Constrained multi-objective 

optimization; MVO; MOMVO 
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1. Introduction:  

Engineering optimization deals with finding optimal solutions for a given engineering problem. 

In the past, designing an engineering system would require a large number of tedious 

experiments. This means that a designer would have to build prototype to be able to test 

different designs and find the optimal one. For instance, to find an optimal shape for a car, a 

designer would have to build multiple prototypes of the car with changing the body and 

measuring the wind resistance in a wind tunnel. Obviously, such process would have been very 

expensive and required massive amount of human involvement in both design and test phases. 

Due to the natural errors that humans make, the design process was very unreliable as well.  

After the invention of computers, the field of computer-aided design came to the existence and 

allowed engineers to solve engineering problems with computers. In the early steps, designers 

would employ computer to simulate the problem and all the factors around it. Therefore, there 

was little need for building prototype and testing in real environments. For instance, a computer 

program was able to construct the 3D shape of a car‘s body and simulating the drag of wind. In 

this case, the designers concentrated mostly on the design part rather than simulation. This 

significantly reduced the cost of the whole design process and amount of human involvement. 

However, such computer-aided engineering design was semi-automated because the computer 

only simulated the system and its surrounding environment.  

Another significant progress in the field of engineering optimization and computer-aided design 

was to utilize computer to both design and simulate the system. This approach, which is still of 

the best techniques in the field of engineering optimization, requires the least human 

involvements. A designer needs to only formulate, prepare, and set up the problem for 

computers. In addition, an automatic problem solving techniques should be employed to find 

the optimal design. This is where optimization algorithms come in. Optimization algorithms 

command the computer how to find optimal solutions for optimization problems. This main 
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advantages of this approach are the lower error, less human involvement, and cheaper design 

cost. However, it requires designing an optimization algorithm to address all the difficulties that 

are available in engineering design problems.  

It is undeniable that the advantages of the last approach outweigh its drawbacks. The majority of 

the first optimization algorithms employed to solve engineering problems used gradient descent 

[1]. This means that they used to calculate the derivation of the problem to find an optimal 

solution starting from an initial design. After a while, designers realized that there are two main 

problems with gradient-based methods. For one, most of the real problems are simulated in 

computers with sophisticated mathematical equations with unknown or expensive derivation. 

For another, gradient descend may lead to a local solution and highly depends on the initial 

solution.  

The process of finding a local optimum and assuming it as the global optimum by an algorithm 

is called local optima stagnation [2]. Due to the unknown shape of the search space of real-world 

engineering problems, local optima stagnation prevents gradient-based algorithms from being 

beneficial. This resulted in the proposal of stochastic optimization algorithms in the past. Such 

approaches, equipped with random components, promote slight or major changes during the 

optimization process to avoid local solutions. The main advantage of stochastic algorithms is the 

ability to avoid local solutions. However, stochastic behaviours make the results of such 

algorithms different in each runs. It should be noted here that stochastic algorithms mostly do 

not need gradient information and consider a system as a black box. 

Stochastic optimization algorithms are divided into two main groups: individual-oriented versus 

population-oriented. In the former class, a single design for a given engineering design problem 

is created and improved during optimization. By contrast, the latter method solves a problem 

with a collection of solutions. The nature of population-oriented algorithms makes them more 

reliable due to the higher probability of local optima avoidance [3]. However, they need more 
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function evaluation and require special mechanisms to exchange information between solutions. 

The most popular individual-oriented algorithms are Simulated Annealing (SA) [4] and hill 

climbing [5], while Genetic Algorithms (GA) [6], Ant Colony Optimization (ACO) [7, 8], and 

Particle Swarm Optimization (PSO) [9, 10] are the most well-regarded population-oriented 

algorithms. 

Despite the flexibility and the ease of stochastic optimization algorithms, optimization of real 

engineering design problems involves addressing several and often conflicting difficulties: 

constraints, uncertainties, expensive objection function, dynamic objective function, multiple 

objectives, etc. This paper concentrates on handling multiple objectives [11], which is one of the 

most important characteristics of engineering design problems. Optimization of such problems 

is challenging due to the existence of multiple criteria to compare the solutions. The field that 

concentrates on handling multiple objectives using stochastic optimization techniques is 

Evolutionary Multi-Objective Optimization (EMOO) [12]. This field is one of the most popular 

fields in the recent years and its algorithms are being used widely in both science and industry 

[13-15].  

The most well-regarded algorithms in EMOO are Non-Dominated Sorting Genetic Algorithm 

(NSGA) [16], Multi-Objective Particle Swarm Optimization (MOPSO) [17], and Multi-Objective 

Evolutionary Algorithm based on Decomposition (MOEA/D) [18]. These algorithms are all 

population-oriented and designed based on Pareto optimality concepts. Pareto optimal 

dominance allows such techniques to compare solutions considering multiple objectives. Since 

there is more than one ―optimal solution‖ for a multi-objective problem, multi-objective 

algorithms mostly utilize a storage to store best solutions (Pareto optimal solutions) obtained so 

far and improve this set during optimization.  

Most of the recent algorithms have been equipped with suitable mechanisms to solve problems 

with multiple objectives [3, 19-21]. However, it has been logically proved by the well-known No-
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Free-Lunch (NFL) theorem [22] that none of these algorithms is able to solve all optimization 

problems. This means that there is room for improving the current algorithms or proposing new 

ones to better solve a certain group of problems. The current algorithms are mostly suitable for 

unconstrained problems and unable to address different types of constraints without special 

components.  This work targets constrained problems and proposes the multi-objective version 

of the recently proposed Multi-Verse Optimization (MVO) [23] algorithm to solve both 

unconstrained and constrained problems. The MVO has been inspired from one of the theories 

on the existence of multiple universes and mimics the interaction between them. The Multi-

Objective MVO (MOMVO) is proposed that uses an archive and leader selection mechanisms in 

a similar manner to those in the MOPSO algorithm. The rest of the paper is organized as 

follows:  

Section 2 presents the related works and reviews the literature. Section 3 briefly introduces the 

single-objective version of the MVO algorithm. Also, the multi-objective MVO algorithms are 

proposed in Section 3. Section 4 includes the results, discussions, and analysis of the results. 

Eventually, Section 5 concludes the paper and presents a couple of research directions for future.  

 

2. Related works and literature review  

This section first starts with the definitions of multi-objective optimization, Pareto optimality, 

Pareto dominance, Pareto optimal set, and Pareto optimal front. Different multi-objective 

optimization techniques are then discussed and reviewed.  

2.1. Multi-objective optimization 

As the name implies, multi-objective optimization addresses multiple objectives. It can be written 

as a minimization problem as follows: 

                                        ( ⃗)  *  ( ⃗)   ( ⃗)     ( ⃗)+ (2.1) 
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                                         ( ⃗)                      (2.2) 

                             ( ⃗)                      (2.3) 

                                                     (2.4) 

where n is the number of variables, o is the number of objective functions, m is the number of 

inequality constraints, p is the number of equality constraints,    is the i-th inequality constraints,    indicates the i-th equality constraints, and [Li,Ui] are the boundaries of  i-th variable. 

It should be noted that there is only one solution for a single-objective problem due to the 

existence of unary objective. Also, comparison of solutions can be easily made by relational 

operators: < or ≤ for comparing algorithms in a minimization problem and > or ≥ in a 

maximization problem. In a multi-objective problem, however, there is no longer one best 

solution, which is because of considering multiple objectives. In fact, a set of solutions that 

contains the best trade-offs between objectives is the answer for a multi-objective problem.  

Relational operators are ineffective in comparing solutions with respect to multiple objectives. 

The most common operator in the literate is Pareto optimal dominance, which is defined as 

follows for minimization problems [24]:  

   *       +    ( ⃗)    ( ⃗)          *       +   ( ⃗)    ( ⃗) (2.5) 

where  ⃗  (          ) and   ⃗  (          ). 

For maximization problems, Pareto optimal dominance is defined as follows:  

   *       +    ( ⃗)    ( ⃗)          *       +   ( ⃗)    ( ⃗) (2.5) 

where  ⃗  (          ) and   ⃗  (          ). 

This equation shows that a solution is better than another in a multi-objective search space if it is 

equal in all objective and better in at least one of the objectives (see Fig. 1). Pareto optimal 
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dominance is denoted with ≺ and ≻. With these two operators, solutions can be easily compared 

and differentiated. 

Pareto optimality refers to the solutions that are the best when using Pareto dominance. They are 

also referred as non-dominated solutions. There is a set of best non-dominated solutions for 

every multi-objective problem called true Pareto optimal solution set. This set is mathematically 

defined as follows:  

   * ⃗  ⃗        ⃗ ≺  ⃗+ (2.6) 

where S indicates a set of solutions and PS shows the Pareto solution set.  

Eq. (2.6) shows that the Pareto optimal solution set is a set in which no solution is dominated by 

another. In other words, all solutions in this set are non-dominated. An example of Pareto 

optimal set is illustrated in Fig. 1.  

The main objective of a multi-objective optimization algorithm is to find this set. Another 

common term and set in multi-objective optimization is Pareto optimal front. This set includes 

the projection of Pareto optimal solutions in the objective space. This is illustrated in Fig. 1 for a 

minimization problem. This figure also shows a dominated and a non-dominated solution in 

both parameter and objective spaces.  

 

Objective space Parameter space 

x1 

x2 f2 

f1 

Pareto optimal front Pareto optimal set 
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Figure 1. Parameter space and objective space in multi-objective optimization. Both objectives should be 

minimized in this example.  

 

2.2. Related works 

Multi-objective optimization utilizing stochastic population-oriented algorithm was first 

proposed by Schaffer in 1984. The main idea was to compare solutions using Pareto optimal 

dominance operators and approximate the Pareto optimal set for a given problem instead of 

using relational operators and determining only one solution. After the proposal of this idea, the 

field of EMOO was born and attracted much attention. Due to the similarity of multi-objective 

and single-objective population-oriented algorithms, they inherit all the advantages of the 

techniques mentioned in the preceding section. The most popular multi-objective population-

oriented algorithms in the literature are: MOEA/D, NSGA-II, MOPSO, Pareto Archived 

Evolutionary [25], and Prato-frontier Differential Evolution (PDE) [26]. Such technique can be 

divided to three main classes: aggregation (a priori) methods [27], a posteriori methods [28], and 

interactive methods [29].    

In the first class, aggregation-based approached, multiple objectives are aggregated to a single 

objective utilizing a set of weights, which define the importance of each objective from a 

decision maker point of view. After the aggregation phase, a single-objective algorithm is 

employed to find the optimal solution. If the decision maker‘s preference is not available, Pareto 

optimal set can be constructed with changing the weights and re-running the single-objective 

algorithm. The main drawback of this class of algorithms is that an evenly distributed set of 

weights does not result in an even set of Pareto optimal solutions [30]. Due to the summation of 

objectives using positive weights, in addition, such methods are not able to find non-convex 

regions in the Pareto optimal front. However, solving multi-objective problems with this 

approach is fairly straightforward and does not require algorithm modifications. It is worth 
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mentioning here that there are several improvements in the literature of aggregation methods 

[31], yet the above-mentioned disadvantages are not alleviated completely.  

On the other hand, a posteriori technique maintains the multi-objective formulation of a multi-

objective problem and approximates the Pareto optimal solutions. Therefore, there is no need 

for additional weights and aggregation. Such algorithms determine the Pareto optimal solutions 

set in just one run, but decision making is done after the optimization. This emphasizes the 

importance of solutions‘ distribution across all objectives to give decision makers several 

options. Needless to say, maintaining the multi-objective formulation requires algorithms 

modification and addressing multiple objectives, which are often in conflict. The algorithms in 

this class are very popular in the literature.  

The last class of multi-objective stochastic optimization algorithm includes interactive methods. 

This group is somehow between the preceding two groups, in which decision making 

preferences are considered and incorporated during optimization. An interactive method keeps 

the multi-objective formulation but pauses the execution of the program and fetch the decision 

makers‘ preferences. This assists algorithm not to explore undesirable regions of the search space 

and Pareto optimal front. However, it needs human involvement and make it naturally slower 

than the aggregation and a posteriori algorithms.  

It is worth mentioning here that there are two main goals when determining the Pareto optimal 

front using a posteriori algorithms: convergence and coverage. The former refers to the speed and 

accuracy of an algorithm in approximating Pareto optimal solutions. Obviously, the ultimate 

objective here is to find a very accurate Pareto optimal solution set with the least possible 

number of function evaluation. The latter concept, however, refers to the distribution of Pareto 

optimal solutions across all objectives. In this case, an effective algorithm is the one that finds a 

uniformly distributed Pareto optimal front to give decision makers freedom of decision making 

from a lot of diverse designs. The main challenge here is that convergence and coverage are in 
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conflict, so an algorithm should be able to efficiently balance them to be useful in solving real-

word multi-objective problems.  

In addition, another important aspect of multi-objective optimization algorithms is the execution 

time to determine an accurate estimation of true Pareto optimal solutions. Parallel multi-

objective optimization algorithms are the best solutions to decrease the run time [20, 32].  

In this work, the main concentration is on the proposal of a posteriori method based on the 

recently proposed MVO algorithm. This algorithm uses an archive, which is very similar to that 

in MOPSO and PAES. Also, a mechanism is employed to choose non-dominated solutions to 

improve the coverage. The next section first presents the MVO algorithm. Then, the new multi-

objective algorithm is proposed. 

 

3. Multi-objective Multi-Verse Optimization algorithm (MOMVO):  

3.1. Multi-Verse Optimizer 

The MVO algorithm [23] mimics one of the theories in physics on the existence of multiple 

universe in the world. The main inspiration is the interaction of multiple universes via white 

hole, black hole, and worm hole. In this theory, objects are transferred from a universe through a 

tunnel from a white hole to a black hole. Also, worm holes are able to move objects from one 

corner of a universe to another without a need for a white or black hole.  

MVO is a population-based algorithms and can be considered in the family of evolutionary 

algorithms. The optimization process starts with set of candidate solutions. Each candidate 

solution is analogous to a universe and variables are considered as objects in the universe. 

Similarly to other evolutionary algorithms, MVO has operators to combine the solutions and 

keep the best one(s). In order to combine the solutions, white and black holes are randomly 

created in the universes and causes movement of objects. It should be noted that each universe 

is evaluated with an objective function and its objective value is considered as the inflation rate. 
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The inflation rate is the growing speed of a universe and calculated proportional to the objective 

function.  

What guarantees the improvement of solutions over the course of generation is the higher 

probability of white holes proportional to the inflation rate. The better inflation rate, the higher 

probability that a universe has to own white holes. By contrast, the existence of black holes is 

inversely proportional to the inflation rate. These rules cause the flow of variables from better 

universes to worse ones. The main difference between the Genetic Algorithm (GA) and MVO is 

that GA perform cross over on parts of parents and create a child with only two of them, while 

MVO allows any solution to contribute to the creation of new solutions. The while-black hole 

tunnels cause exploration of search space due to changing solutions suddenly. 

Another main difference between GA and MVO is that MVO has elitism and save the best 

solution obtained so far. However, the GA algorithm discards all solutions created in the 

previous generation(s). It is worth mentioning here that the worm holes create tunnels between 

the best solution obtained so far and any solutions in the population. Therefore, the mutation of 

MVO is not 100% random as that of GA. In other words, the best solution obtained so far has 

the potential to contribute in the creation of any new solutions. This mechanism improves the 

exploitation of this MVO algorithm.  

The main equation in the MVO algorithm is as follows [23]:  

    { {       (              )              (              )                                                                                                               (3.1) 

where     indicates the j-th variable in the i-th solution,    shows the j-th variable in the best 

solution, WEP is the worm hole existence probability, TDR indicates the travelling distance rate,     is the lower bound of j-th dimension,     is the upper bound of j-th dimension,       are 



ACCEPTED MANUSCRIPT

A
C
C
EPTED

 M
A

N
U

SC
R
IP

T

12 

 

random values. Note that distribution of r2-r4 can be tuned to emphasize exploration or 

convergence.  

There are several parameters in this equation, but the most important ones are WER and TDR. 

These two variables change adaptively to balance exploration and exploitation. WER stands for 

Wormhole Existence Rate and TDR stands for Travelling Distance Rate. The WER should be 

increased to emphasise exploitation proportional to the number of generation.  By contrast, the 

TDR is better to be decreased to reduce the magnitude of changes when using the worm holes.  

In the original paper of MVO, it has been proven that this algorithm is able to solve 

optimization problems effectively and provides very competitive results compared to the current 

algorithms. The main advantage of this algorithm compared to the existing ones is the high 

exploration. Several mechanisms abruptly and randomly change the solutions, which results in a 

very high exploration and consequently local optima avoidance. This motivated our attempts to 

propose the multi-objective version of this algorithm in the following subsection.  

3.2. Multi-Objective Multi-Verse Optimizer (MOMVO)  

In order to develop the multi-objective version of MVO, an archive is first integrated to this 

algorithm. This archive is very similar to those in MOPSO [33] and PAES. It is a repository to 

store the best non-dominated solutions obtained so far. The search mechanism in MOMVO is 

very similar to that is MVO, in which solutions are improved using white, black, and worm 

holes. Due to the existence of multiple best solutions, however, the white holes and specially 

worm holes should be chosen from the archive.  

In order to select solutions from the archive to establish tunnels between solutions, we employ a 

leader selection mechanism. In this approach, the crowding distance between each solution in 

the archive is first selected and the number of solutions in the neighbourhood is counted as the 

measure of coverage or diversity. MOMVO is required to select solutions with a roulette wheel 
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from the less populated regions of the archive using the following equation to improve the 

distribution of solutions in the archive across all objectives:  

      ⁄  (3.2) 

where c is a constant and should be greater than 1 and    is the number of solutions in the 

vicinity of the i-th solution. This parameter c should be greater than one and remain constant 

since it decreases the fitness of the hypercubes containing more particles and it may be 

considered as a way of fitness sharing [34]. 

This equation gives a high probability to solutions in the less populated areas of the areas to 

contribute in the improvement of others. This automatically gravitates solutions towards the less 

populated regions of the archive and eventually improves the coverage of solutions in the Pareto 

optimal front obtained.   

Obviously, the archive is able to accommodate a limited number of non-dominated solutions, 

and it might become full during the optimization process. So, there should be a mechanism to 

remove undesirable solutions from the archive. An undesired solution is the one with many 

neighbouring solutions, so we require the archive to throw away such solutions. The following 

equation, which is the inverse of Eq. (2.2), is employed to give high probability to undesired 

solutions in the archive to be discarded by the MOMVO algorithm.  

       ⁄  (3.3) 

where c is a constant and should be greater than 1 and    is the number of solutions in the 

vicinity of the i-th solution. Note that the value of c needs to remain constant when calculating 

the probability for all the segments.  This parameter should be greater than one since it increases 

the fitness of the hypercubes containing more particles. 
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With the above operators the MOMVO algorithm is able to store Pareto optimal solutions in the 

archive and improve them over the course of iterations. This algorithm complies with the 

following principles when comparing and adding a solutions to the archive in a manner similar to 

that in [33]:  

 If a new solution dominates any solutions in the archive, it should be replaced by them 

immediately.  

 If a new solution does not dominate a solution in the archive, it should be discarded and 

not allowed to enter the archive.  

 If a solution is non-dominated with respect to all solutions in the archive, it should be 

added to the archive.  

 If the archive is full, an undesired solution should be deleted and the new non-

dominated solution should enter the archive.  

To compare all the solutions in MOMVO, the concepts of Pareto optimality and Pareto optimal 

solution are used. This is because in a multi-objective search space, solutions cannot be 

compared with relational operators (<, ≤, >, ≥, =, ≠). Therefore, we need to use Pareto 

dominance to find out if a solution is better than another in a multi-objective search space or 

not. The Pareto dominance is able to consider more than one comparison criteria and allows us 

to find Pareto optimal solutions.   

The main difference between MOMVO algorithm and NSGA-II is the archive. In NSGA-II, 

solutions are sorted and chosen based on their domination level. Although this mechanism 

promotes exploration, it might damage good non-dominated solutions. The main motivation of 

using an archive for MOMVO was to reduce the probability of damaging non-dominated 

solutions during optimization. The archive maintains the best non-dominated solutions. Since we 

required the solutions in MOMVO to updates their variables abruptly using several operators, 
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this algorithm theoretically provides a superior exploration and convergence compared to the 

NSGA-II algorithm.  

The MOMVO algorithm is able to be potentially more promising than other archive-based 

techniques such as SPEA2 due to different mechanism for abruptly changing the solutions 

during optimization. SPEA2 use cross over and mutation in a pool of solutions in very iteration. 

This biases the search more towards the archive members compared to the MOMVO algorithm. 

In the proposed algorithm, exchanging variables between solutions might occur between a 

solution and an archive member or two non-dominated solutions in the search space. This 

increases the exploration, which might negatively impact the convergence as a potential 

drawback for MOMVO. We tried to give 50% chance of selecting an archive member or a non-

dominated solution in the search space to balance exploration and exploitation.   

The MOMVO algorithm starts approximating the true Pareto optimal front for a given multi-

objective optimization problem with a random set of solutions. Each solution is assigned with 

multiple objective values. At first, all the non-dominated solutions are chosen and inserted to the 

archive. After the first iteration, the algorithm repeatedly updates the position of solutions using 

Eq. (3.1). This equation gives 50% change to exchange variables with an archive member or one 

of the non-dominated solutions in the current population. The former mechanism promotes the 

exploitation of the best Pareto optimal solutions obtained so far. The latter operator, however, 

improves the exploration of the search space. The process of improving the solutions is 

continued until the satisfaction of a termination condition. The coverage of solutions across all 

objectives are improved by selecting solutions from the less populated regions of the archive as 

well.  

In the following section, a number of test functions and real engineering design problems are 

employed to benchmark the performance of the proposed MOMVO algorithms.  
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4. Results on test functions  

4.1. Experimental set up 

In order to benchmark the performance of the proposed algorithm a variety of test functions are 

used. They can be divided to 3 main groups as follows: 

 Unconstrained multi-objective test functions (ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, 

DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6, DEB1, DEB2, UF1-UF10, LAU, 

LIS, MUR, QUAG, REND1, REND2, BINH1, SCH2, OKA1, LZ01-LZ09, SCH1, 

FON1, FON2, KUR, VNT1, VNT2, VNT3, and POL ) [35-39] [40-45] 

 Constrained multi-objective test functions (CONSTR, TNK, SRN, BNH, OSY, KITA, 

BEL, BNH4, VNT4, and CF1) [46-48] [49, 50] 

 Engineering design multi-objective problems (gear train, pressure vessel, helical 

compression spring, two-bar truss, welded beam, four-bar truss, disk brake, speed 

reducer, CNC machine tool, tool spindle, I-beam, cantilever, multiple disk clutch, 

brushless DC wheel motor, safety isolating transformer, vibrating platform, satellite heat 

pipe, three-bar truss, bulk carrier, car crash, and metal cutting tool. [51-61] 

Note that some of the test functions have linear fronts, so they can be solved by aggregating the 

objectives since the objectives are not in conflict. However, there are even standard test 

functions in the literature with linear front (e.g. UF5, UF6, and U7 in the CEC test suite) because 

such test functions are very helpful for benchmarking the coverage of an algorithm since there is 

no intrinsic bias towards different regions. 
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In order to compare the algorithms on the above case studies, we employ both quantitative and 

qualitative metrics. For quantifying the convergence, we have chosen Generational Distance 

(GD) proposed by Veldhuizen in 1998 [62] and Inverted Generational Distance (IGD) [63]. In 

order to quantify the distribution of Pareto optimal solutions obtained (coverage), Spacing (SP) 

metric proposed by Schott [64] [65] and Maximum Spread (M) proposed by Zitzler [66] have 

been employed. The mathematical equations of these performance indicators are as follows:  

   √∑            
(4.1) 

where no is the number of obtained Pareto optimal solutions and    indicates the Euclidean 

distance between the i-th Pareto optimal solution obtained and the closest true Pareto optimal 

solution in the reference set. Note that the Euclidean distance is calculated in the objective space.  

    √∑ (   )         (4.2) 

where nt is the number of true Pareto optimal solutions and     indicates the Euclidean distance 

between the i-th true Pareto optimal solution and the closest Pareto optimal solution obtained in 

the reference set. 

   √      ∑(    )   
    (4.3) 

where   is the average of all   , no is the number of Pareto optimal solutions obtained, and        (    ( ⃗)     ( ⃗)      ( ⃗)     ( ⃗)) for all i,j=1,2,…,n.  

The lower the value for this metric, the better the coverage is. The second coverage measure is 

called: 
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  √∑   ( (     )) 
    (4.4) 

where o is the number of objectives, and d() calculates the Euclidean distance,    is the maximum 

value in the i-th objective, and   is the minimum value in the i-th objective 

To see the results qualitatively, the best Pareto optimal fronts obtained by the MOMVO 

algorithm on the case studies are illustrated in the appendix A. Each algorithm was run 30 times 

and the results are presented and discussed in the following section. For results verification, 

MOMVO is compared to a wide range of algorithms including MOEA/D, NSGA-II, and 

SPEA-II in the next subsection.  

Table 1. Results of the multi-objective algorithms (using GD) on the unconstrained on test functions employed 

Algorithm 
 ZDT1  (2 objs)            ZDT2    (2 objs)          ZDT3 (2 objs)                ZDT4  (2 objs)             ZDT6 (2 objs) 
   Ave    Std.    Ave    Std.    Ave    Std.    Ave    Std.    Ave   Std. 

MOMVO 0.00173 0.00005 0.000948 0.00005 0.005076 0.00009 0.002463 0.00006 0.000652 0.00002 
MOEA/D-DE 0.00413 0.00008 0.004422 0.00006 0.005129 0.00011 0.003971 0.00009 0.003322 0.00024 
NSGA-II-DE 0.005186 0.00028 0.004133 0.00020 0.006200 0.00041 0.077546 0.09002 0.003273 0.00027 

Algorithm 
DTLZ1 (2 objs)                 DTLZ2 (2 objs)                        DTLZ3 (2 objs)                    DTLZ4 (2 objs) 
 Ave  Var.  Ave  Var.   Ave  Var.  Ave  Var.  

MOMVO 1.1E-06 1.6E-11 0.00026 4.8E-13  0.0017 2.2E-03 0.0019 4.32E-05  
MOEA/D-DE 4.2E-05 1.8E-10 0.00035 2.8E-11  0.1079 2.2E-02 0.0258 6.66E-04  
NSGA-II 0.12580 2.2E-01 0.00029 1.3E-09  0.8250 3.6E-01 0.0435 2.53E-04  

Algorithm 
DTLZ5 (2 objs)                DTLZ6 (2 objs)                     DTLZ7 (2 objs)                           DEB1 (2 objs)   
 Ave  Var.  Ave  Var.   Ave  Var.  Ave  Var.  

MOMVO 0.0034 0.0018 0.0020 0.00011  0.00798 5.34e-08 3.88E-5 4.79E-10  
MOEA/D-DE N/A N/A N/A N/A  N/A N/A N/A N/A  
NSGA-II N/A N/A N/A N/A  N/A N/A N/A N/A  

Algorithm 
DTLZ1 (3 objs)               DTLZ2 (3 objs)                               DTLZ3 ((3 objs)                     DTLZ4 (3 objs)   
 Ave  Var.  Ave  Var.   Ave  Var.  Ave  Var.  

MOMVO 0.00102 2.1E-12 0.00056 4.6E-12  0.0010 4.4E-05 0.0185 2.14E-04  
MOEA/D-DE 0.00111 3.1E-11 0.00096 8.7E-11  0.0048 3.5E-04 0.0457 1.06E-03  
NSGA-II 0.00447 1.2E-04 0.00162 3.7E-08  1.5488 5.06E+0 0.0326 2.83E-04  

Algorithm 
 DTLZ5 (3 objs)               DTLZ6 (3 objs)                     DTLZ7 (3 objs)                            DEB2 (2 objs)   
 Ave  Std.  Ave  Std.   Ave  Std.  Ave  Std.  

MOMVO 0.00014 2.3E-05 9.0E-05 2.7E-06  1.8E-03 8.17E-05 1.35E-04 2.38E-05  
SPEA-II 0.00018 8.4E-12 0.28130 N/A  0.01180 N/A N/A N/A  
NSGA-II 0.00017 1.1E-09 0.09410 N/A  0.01110 N/A N/A N/A  

Algorithm 
   UF1   (2 objs)               UF2  (2 objs)              UF3 (2 objs)                 UF4 (2 objs)          UF5 (2 objs) 
Ave    Std. Ave    Std. Ave    Std. Ave    Std. Ave    Std. 

MOMVO 0.010576 0.00572 0.010020 0.00300 0.02169 0.03557 0.040464 0.00248 0.279502 0.19521 
MOEA/D-DE 0.067801 0.00703 0.034738 0.00555 0.02453 0.02798 0.060091 0.00819 0.564877 0.22891 
NSGA-II-DE 0.011549 0.00548 0.010039 0.00127 0.06703 0.03799 0.037238 0.00146 0.315271 0.21944 

Algorithm 
UF6   (2 objs)                UF7   (2 objs)              UF8 (2 objs)                 UF9  (2 objs)               UF10 (2 objs) 
Ave    Std. Ave    Std. Ave    Std. Ave    Std. Ave    Std. 

MOMVO 0.049160 0.05561 0.007524 0.00167 0.635041 0.11475 1.319607 0.54863 1.72438 0.40508 
MOEA/D-DE 0.306746 0.06107 0.043162 0.00624 0.429362 0.08932 0.397282 0.04172 0.39666 0.10734 
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NSGA-II-DE 0.052228 0.09148 0.006895 0.00133 2.858333 0.28673 1.666083 0.42798 6.43363 0.54881 

Algorithm 
         LAU   (2 objs)                          LIS  (2 objs)                          MUR (2 objs)                              QUAG (2 objs) 
 Ave  Std.  Ave  Std.   Ave  Std.  Ave  Std.  

MOMVO 0.059 0.001 0.0005 0.0001  0.00019 0.00001 0.0009 0.00058  
IGMOEA-5 0.109 0.012 0.002 0.000  0.000 0.000 0.003 0.000  
NSGA-II 0.089 0.002 0.002 0.000  0.000 0.000 0.001 0.000  

Algorithm 
 REND1   (2 objs)             REND2  (2 objs)                   BINH1 (2 objs)                     SCH2 (2 objs) 
 Ave  Std.  Ave  Std.   Ave  Std.  Ave  Std.  

MOMVO 0.0007 0.00001 0.0001 0.00017  0.002 0.0001 0.00158 0.00314  
IGMOEA-5 0.001 0.000 0.001 0.000  0.011 0.001 N/A N/A  
NSGA-II 0.001 0.000 0.001 0.000  0.007 0.000 0.3096 0.02175  

 

Table 2. Results of the multi-objective algorithms (using IGD) on the unconstrained test functions employed 

Algorithm 
ZDT1   (2 objs)               ZDT2 (2 objs)                ZDT3 (2 objs)                 ZDT4  (2 objs)               ZDT6 (2 objs) 
Ave    Std. Ave    Std. Ave    Std. Ave    Std. Ave    Std. 

MOMVO 0.000504 0.00006 0.000509 0.00005 0.009057 0.00006 0.000413 0.00004 0.000405 0.00004 
MOEA/D-DE 0.004136 0.00009 0.004100 0.00007 0.009168 0.00007 0.003965 0.00009 0.003167 0.00024 
NSGA-II-DE 0.004501 0.00028 0.004533 0.00026 0.006070 0.00037 0.077979 0.08876 0.013749 0.00021 

Algorithm 
       DTLZ1 (2 objs)                 DTLZ2 (2 objs)                          DTLZ3 (2 objs)                     DTLZ4 (2 objs) 
 Ave  Var.  Ave  Var.   Ave  Var.  Ave  Var.  

MOMVO 6.6E-05 5.9E-14 1.5E-04 2.2E-16  0.0001 3.57E-05 0.00018 2.50E-05  
MOEA/D-DE 1.3E-04 1.0E-12 1.7E-04 1.3E-15  0.0311 2.10E-03 0.03373 1.57E-04  
NSGA-II 4.0E-04 1.6E-07 1.8E-04 6.7E-11  0.2036 2.40E-02 0.02000 1.41E-04  

Algorithm 
       DTLZ5 (2 objs)                 DTLZ6 (2 objs)                      DTLZ7 (2 objs)                       DEB3 (2 objs) 
 Ave  Var.  Ave  Var.   Ave  Var.  Ave  Var.  

MOMVO 0.0004 0.0001 0.0007 0.00012  0.0000054 8.32E-12 8.58E-04 1.59E-08  
MOEA/D-DE N/A N/A N/A N/A  N/A N/A N/A N/A  
NSGA-II N/A N/A N/A N/A  N/A N/A N/A N/A  

Algorithm 
       DTLZ1 (3 objs)                 DTLZ2 (3 objs)                          DTLZ3 (3 objs)                     DTLZ4 (3 objs) 
 Ave  Var.  Ave  Var.   Ave  Var.  Ave  Var.  

MOMVO 4.2E-04 1.5E-12 7.5E-04 3.4E-12  0.0015 2.4E-06 1.9E-04 3.77E-06  
MOEA/D-DE 7.6E-04 1.5E-11 8.0E-04 7.6E-12  0.0017 7.1E-06 9.7E-03 4.07E-06  
NSGA-II 6.7E-04 4.5E-08 7.9E-04 9.5E-10  0.0528 1.0E-03 5.0E-03 6.0E-06  

Algorithm 
       DTLZ5 (3 objs)                 DTLZ6 (3 objs)                      DTLZ7 (3 objs)                       OKA1 (2 objs)   
 Ave  Std.  Ave  Std.   Ave  Std.  Ave  Std.  

MOMVO 1.1E-04 1.1E-05 1.6E-04 1.7E-05  1.1E-03 1.8E-04 9.66E-03 1.29E-05  
SPEA-II 4.3E-03 3.8E-04 6.4E-01 5.9E-02  6.3E-02 2.8E-03 N/A N/A  
NSGA-II 5.5E-03 3.7E-04 6.5E-01 6.1E-02  7.7E-02 4.1E-03 N/A N/A  

Algorithm 
                 LZ01  (2 objs)                                     LZ02     (2 objs)                                          LZ03 (2 objs) 
Ave Std. Best Ave Std. Best Ave Std. Best  

MOMVO 0.0014 0.0000 0.0014 0.0010 7.8E-5 0.0009 0.0010 0.0002 0.0006  
MOEA/D-DE 0.0015 0.0000 0.0015 0.0028 0.0004 0.0023 0.0068 0.0099 0.0022  
NSGA-II-DE 0.0044 0.0000 0.0044 0.0349 0.0066 0.0203 0.0296 0.0030 0.0228  

Algorithm 
              LZ04     (2 objs)                                     LZ05   (2 objs)                                                 LZ06 (2 objs) 
Ave Std. Best Ave Std. Best Ave Std. Best  

MOMVO 0.0010 0.0001 0.0008 0.0009 0.0001 0.0006 0.0066 0.0012 0.0054  
MOEA/D-DE 0.0040 0.0014 0.0025 0.0127 0.0069 0.0073 0.0289 0.0014 0.0276  
NSGA-II-DE 0.0288 0.0021 0.0251 0.0288 0.0031 0.0244 0.0680 0.0072 0.0522  

Algorithm 
              LZ07    (2 objs)                                  LZ09     (3 objs)                                                    
Ave Std. Best Ave Std. Best     

MOMVO 0.0034 0.0027 0.0007 0.0009 0.0001 0.0008     
MOEA/D-DE 0.0049 0.0063 0.0015 0.0035 0.0008 0.0025     

Algorithm UF1  (2 objs)                      UF2   (2 objs)                UF3 (2 objs)                    UF4  (2 objs)                   UF5 (2 objs) 
Ave    Std. Ave    Std. Ave    Std. Ave    Std. Ave    Std. 

MOMVO 0.009550 0.00170 0.009040 0.00016 0.003773 0.00276 0.001433 0.00018 0.033936 0.00314 
MOEA/D-DE 0.064926 0.00164 0.029768 0.00031 0.029823 0.03411 0.058549 0.00675 0.113243 0.03029 
NSGA-II-DE 0.042377 0.01228 0.015293 0.00203 0.247844 0.08995 0.035261 0.00089 0.034925 0.00328 

Algorithm 
 UF6  (2 objs)                    UF7 (2 objs)                    UF8  (2 objs)                    UF9 (2 objs)                    UF10 (2 objs) 
Ave    Std. Ave    Std. Ave    Std. Ave    Std. Ave    Std. 

MOMVO 0.006534 0.0022 0.007690 0.00117 0.024627 0.00033 0.031639 0.00954 0.369872 0.08259 
MOEA/D-DE 0.267101 0.0812 0.041148 0.00039 0.122289 0.00103 0.193243 0.03263 0.366985 0.03651 
NSGA-II-DE 0.104944 0.04595 0.022305 0.00330 1.036505 0.29149 0.070979 0.01610 0.361609 0.11337 
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Algorithm 
SCH1   (2 objs)                       FON1   (2 objs)                          FON2   (2 objs)                    KUR(2 objs) 
 Ave  Std.  Ave  Std.   Ave  Std.  Ave  Std.  

MOMVO 3.48E-3 4.3E-05 9.84E-4 4.6E-05  1.64E-3 1.50E-04 8.59E-3 1.5E-04  

SPEA-II 1.66E-2 1.1E-04 4.66E-3 7.1E-05  4.18E-3 3.2E-04 3.41E-2 7.1E-04  

NSGA-II 1.87E-2 4.3E-04 5.56E-3 1.7E-04  5.15E-3 4.8E-04 4.23E-2 1.9E-03  

Algorithm 
VNT1   (3 objs)                   VNT3     (2 objs)                        VNT3   (3 objs)                        POL (2 objs) 
 Ave  Std.  Ave  Std.   Ave  Std.  Ave  Std.  

MOMVO 1.81E-2 1.19E-4 2.12E-3 3.63E-5  8.28E-3 1.60E-4 6.32E-4 2.42E-4  

SPEA-II 1.27E-1 2.7E-03 1.23E-2 3.7E-04  3.24E-2 1.0E-03 5.31E-2 1.1E-03  

NSGA-II 1.58E-1 6.7E-03 2.31E-2 2.3E-03  4.98E-2 3.2E-03 6.96E-2 5.7E-03  

 

 

4.2. Results on unconstrained and constrained test functions  

The results of algorithms on unconstrained multi-objective test functions are presented in Table 

1 and Table 2. As per the results of these two tables, it is evident that MOMVO is able to 

outperform other algorithms on the majority of unconstrained test functions. IGD and GD 

performance indicators quantify the convergence of multi-objective algorithms. Therefore, the 

results show that MOMVO benefits from improved convergence. The best Pareto optimal 

fronts obtained by the algorithm is shown in the appendix A. It can be seen that that Pareto 

optimal solutions estimated are of high distribution across all objectives.  

The results of algorithms on constrained multi-objective test functions are shown in Table 3. To 

solve these kinds of problems, we use a death penalty function as the main constraint handling 

technique for MOMVO. The results show that the MOMVO outperforms other algorithms on 

the majority of case studies as well. The performance indicators quantitatively prove this, and the 

Pareto fronts in the appendix A show that this algorithm is better qualitatively as well. The 

distribution of the solutions is very high, showing that the MOMVO is able to handle constraints 

and find Pareto optimal solutions in different feasible regions.  

4.3. Solving real-worlds problems using MOMVO 

In order to confirm the efficiency and effectiveness of the proposed optimization algorithm on 

real-world problems, this subsection solves a variety of engineering design problems using the 
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proposed MOMVO. The results of algorithm on multi-objective engineering design problems 

are provided in Table 4 and 5. These cases studies are the most challenging ones employed in 

this work and able to effectively benchmark the performance of MOMVO. Inspecting the results 

in Table 4 and 5 and best Pareto optimal fronts obtained in the appendix A, it is evident that 

MOMVO is able to find very accurate approximation of the true Pareto optimal solutions for 

real problems as well. The high coverage can be observed in the figure.  

 

Table 3. Results of the multi-objective algorithms on constrained benchmark test problems 

CONSTR test problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 8.1386E-04 5.3142E-05 0.39873 5.0074E-02 0.0287 0.0013 1.3E-04 1.14E-05 
MOPSO 4.5437E-03 6.8558E-04 0.94312 3.6719E-01 N/A N/A N/A N/A 
NSGA-II 5.1349E-03 2.4753E-04 0.54863 2.7171E-02 0.0437   0.0041 N/A N/A 
TNK test problem(2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 3.1765E-04 4.5897E-05 0.67482 2.4030E-02 0.003 0.0001 4.9E-04 5.69E-05 
MOPSO 5.0877E-03 4.5564E-04 0.79363 5.1029E-02 N/A   N/A   N/A   N/A   
NSGA-II 4.0488E-03 4.3465E-04 0.82286 2.8678E-04 N/A   N/A   N/A   N/A   
SRN test problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 4.2709E-05 2.5599E-06 0.3749 2.4572E-02 0.6273 0.118 5.25E-04 1.58E-06 
MOPSO 2.7623E-03 2.0794E-04 0.6655 7.2196E-02 N/A N/A N/A N/A 
NSGA-II 3.7069E-03 5.1034E-04 0.3869 2.5115E-02 1.586 0.133 N/A N/A 
BNH test problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 3.6839E-04 4.5175E-05 0.3512 2.2963E-02 0.3789 0.032 8.9E-04 2.21E-05 
MOPSO N/A N/A N/A N/A 0.6941 0.038 N/A N/A 
NSGA-II N/A N/A N/A N/A 0.7756 0.072 N/A N/A 
OSY test problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 5.56E-02 4.89E-02 0.3945 2.9596E-02 0.5125 0.081 3.4E-02 1.27E-02 
MOPSO 9.68E-02 7.18e-02 N/A N/A 0.522 0.095 N/A N/A 
NSGA-II 9.89E-01 9.78E-01 N/A N/A 1.14 0.275 N/A N/A 
KITA test problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 0.0035 3.52E-02 0.00691 0.0089 0.1352 0.1179 3.6E-04 1.785E-05 
MOPSO 0.0467 0.0535 0.09925 0.1176 0.3184 0.4778 N/A N/A 
NSGA-II 0.04 0.044 0.7863 0.1951 0.1462 0.1518 N/A N/A 
                       BEL test problem        BNH4 test problem  (2 objs)                  VNT4 test problem  (2 objs)     CF1 test problem (2 objs)   

Algorithm 
IGD  (2 objs)                       IGD IGD IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 3.60E-3 5.3E-05 9.75E-2 1.1E-03 3.78E-2 1.2E-04 2.70E-3 5.78E-04 
SPEA-II 3.74E-2 3.0E-04 5.87E-1 1.6E-02 1.11E-1 2.0E-03 N/A N/A 
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NSGA-II 4.61E-2 1.6E-03 7.09E-1 3.5E-02 1.77E-1 1.2E-02 N/A N/A 
 

 

 

 

 

 

 

Table 4. Results of the multi-objective algorithms on engineering design problems  

Problems          Gear train design problem (2 objs)                                                                    Pressure vessel design problem (2 objs) 

Algorithm 
       Minimum F1                            Minimum F2     Minimum F1                   Minimum F2 
F1 F2 F1 F2 F1 F2  F1  F2 

MOMVO 2.358E-09 39 3.32E-02 21 42.020 8171.0   2.779E+05 6.099E+07 
MOWCA 4.50E-09 43 7.32E-01 12 N/A N/A N/A N/A 
NSGA-II 1.8E-08 37 5.01E-01 13 38.982 7329.34 3.223 E+05 6.366 E+07 
Helical compression spring design problem   (2 objs)                                

Algorithm 
                                       GD                               IGD  
Max. Min. Median Std.  Max. Min. Median Std. 

MOMVO 8.87E-04 4.97 E-04 7.02 E-04 7.8 E-06 13.69 E-04 6.96 E-05 8.62 E-04 2.13 E-05 
MOWCA 9.16 E-04 5.27 E-04 7.18 E-04 9.8 E-05 15.70 E-04 7.58 E-04 9.33 E-04 1.50 E-04 
Two-bar truss design problem (2 objs) 

Algorithm 
                                       GD                               IGD  
Max. Min. Median Std.  Max. Min. Median Std. 

MOMVO 0.000485 0.000243 0.000401 0.0000645 0.000368 0.000183 0.000221 0.0000592 
E-PSO 0.000408 0.000328 0.000381 0.000021 0.000428 0.000277 0.000312 0.000036 
NSGA-II 0.000338 0.000216 0.000277 0.000028 0.000266 0.000222 0.000245 0.000011 
MOPSO-CD 0.001220 0.000276 0.000376 0.000179 0.001020 0.000493 0.000621 0.000110 
Welded beam design problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 0.01587 0.00809 0.20587 0.00349 0.0388 0.0079 0.00426 0.00287 
MOPSO 0.04909 0.02821 0.22478 0.09280 N/A N/A N/A N/A 
NSGA-II 0.16875 0.08030 0.88987 0.11976 N/A N/A N/A N/A 
Four-bar truss design problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 0.2491 0.0156 0.174 0.0088 1.1017 0.158 0.0281 0.1165 
MOPSO 0.3741 0.0422 N/A N/A 2.5303 0.227   N/A N/A 
NSGA-II 0.3601 0.0470 N/A N/A 2.3635 0.255 N/A N/A 
Disk brake design problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 0.0132 0.02681 0.42058 0.04671 0.2283 0.0541 0.00565 0.00098 
MOPSO 0.0244 0.12314 0.46041 0.10961 N/A N/A N/A N/A 
NSGA-II 3.0771 0.10782 0.79717 0.06608 N/A N/A N/A N/A 
Speed reducer design problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 0.85792 0.0098 0.9767 0.0626 1.8765 1.739 0.43067 0.04121 
MOPSO 0.98831 0.1789 N/A N/A 16.685 2.696 N/A N/A 
NSGA-II 9.8437 7.0810 N/A N/A 2.7654 3.534   N/A N/A 
CNC Machine tool design problem (2 objs) 

Algorithm 
       Minimum F1                            Minimum F2          GD                                  IGD 
F1 F2 F1 F2 Ave Std. Ave Std. 
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MOMVO 0.853 9.487 1.125 2.112 0.0038 0.0042 0.00611 0.00275 
NSGA-II 0.854 9.488 1.125 2.113 N/A N/A N/A N/A 
Tool spindle design problem (2 objs) 

Algorithm 
       Minimum F1                            Minimum F2                        GD                          IGD 
F1 F2 F1 F2 FS Ave Ave Std. 

MOMVO 474465.86 0.037149 1646075.69 0.016612 1296549.78 0.2033 0.3271 0.02549 
PSO-EO 474653.67 0.037186 1646089.55 0.016613 1171435.88 N/A N/A N/A 
MOTS 497644.10 0.037839 1485169.00 0.016894 987524.900 N/A N/A N/A 
I- beam design problem (2 objs) 

Algorithm 
       Minimum F1                            Minimum F2                    GD                         IGD 
F1 F2 F1 F2  FS Ave Ave Std. 

MOMVO 127.65 0.05507 848.6 0.005907 726.54 0.1470 0.1334 0.01646 
PSO-EO 127.71 0.06424 850.00 0.005909 722.29 N/A N/A N/A 
MOTS 143.52 0.03700 678.21 0.006640 534.69 N/A N/A N/A 

 

Table 5. Results of the multi-objective algorithms on engineering design problems  

Cantilever beam design problem (2 objs) 

Algorithm 
       Minimum F1                            Minimum F2         GD                                IGD 
F1 F2 F1 F2 Ave Std. Ave Std. 

MOMVO 0.4415 0.002021 3.056 4.21E-05 0.00038 0.0001 0.00052 0.00018 
MOPSO N/A N/A N/A N/A N/A N/A N/A N/A 
NSGA-II N/A N/A N/A N/A N/A N/A N/A N/A 
Multiple disk clutch brake design problem (2 objs) 

Algorithm 
       Minimum F1                            Minimum F2          GD                               IGD 
F1 F2 F1 F2 Ave Std. Ave Std. 

MOMVO 0.3137 11.6500 2.0521 3.2579 0.1234 0.0123 0.04199 0.00875 
NSGA-II 0.4704 11.7617 2.0948 3.3505 N/A N/A N/A N/A 
Brushless DC Wheel Motor design problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 3.71E-3 4.27E-3 0.8211 0.07845 0.05513 0.0047 2.42E-3 1.57E-3 
SPEA-II 8.78E-2 4.22E-2 N/A N/A N/A N/A N/A N/A 
NSGA-II 8.51E-2 1.70E-2 N/A N/A N/A N/A N/A N/A 
Safety Isolating Transformer design problem (2 objs) 

Algorithm 
GD                        Metric of spread Metric of spacing IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 1.43952E-3 1.58196E-4 0.9612 0.05938 0.0678 0.0059 3.17E-3 3.30E-4 
MOSQP 6.54731E-2 9.85432E-3 N/A N/A N/A N/A N/A N/A 
NSGA-II 2.65719E-2 7.67234E-3 N/A N/A N/A N/A N/A N/A 
Vibrating platform design problem (2 objs) 

Algorithm 
       Pareto optimal point                     Metric of spacing         GD                                IGD 
               F1  Ave Std. Ave Std. Ave Std. 

MOMVO            80/3052  0.1872 0.0605 0.1470 0.0426 0.05516 0.0038 
EO            60/3052  N/A N/A N/A N/A N/A N/A 
Satellite Heat Pipe design problem (2 objs) 

Algorithm 
       Minimum F1                            Maximum F2          GD                               IGD 
F1 F2 F1 F2 Ave Std. Ave Std. 

MOMVO 25.87 0.322 27.52 0.3820 0.0321 0.0338 0.044823 0.01125 
BA 26.70 N/A N/A 0.3818 N/A N/A N/A N/A 
GA 26.71 N/A N/A 0.3812 N/A N/A N/A N/A 
HS 26.70 N/A N/A 0.3810 N/A N/A N/A N/A 
Three-bar truss design problems (2 objs) 

Algorithm 
       Minimum F1                            Minimum F2          GD                               IGD 
F1 F2 F1 F2 Ave Std. Ave Std. 

MOMVO 2.6685E+2 6.3460E-7 19.13E+2 0.8228E-7 0.0423 0.0012 0.02545 0.003987 
MONLP 4.5288E+2 4.2962E-7 6.507E+2 2.7141E-7 N/A N/A N/A N/A 
Bulk Carrier Design problems (3objs) 

Algorithm 
HV                        Metric of spread GD IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 
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MOMVO 0.444852 0.000524 0.13584 0.0652 0.000103 0.000057 0.00908 0.005213 
SAMO 0.444701 0.001275 N/A N/A N/A N/A N/A N/A 
NSGA-II 0.275908 0.034077 N/A N/A 0.000106 0.000014 0.01153 0.001270 
Car Crash design problems (3objs) 

Algorithm 
HV                        Metric of spread GD IGD 
Ave Std. Ave Std. Ave Std. Ave Std. 

MOMVO 0.010570 0.000015 0.2782 0.3065 0.2351 0.10251 0.01608 0.004737 
SAMO 0.010410 0.000077 N/A N/A N/A N/A N/A N/A 
NSGA-II 0.006365 0.001425 N/A N/A N/A N/A N/A N/A 
Metal Cutting tool design problems (3 objs) 

Algorithm 
                  Minimum F1  Minimum F2             Minimum F3 
F1 F2 F3 F1 F2 F3 F1 F2                    F3 

MOMVO 0.1627 0.1194 3.951 0.176 0.073 3.243 2.737 1.067              2.002 
NSGA-II 0.163 0.125 2.161 0.181 0.073 1.098 2.731 1.065              0.240 

In the previous paragraphs, the convergence of algorithms was compared quantitatively, whereas 

the coverage was reported and compared qualitatively. To quantify the coverage, we employ 

Execution Time (ET), Metric of Spread (MS), and Inverse Hyper Volume (IHV) metrics to show the 

efficiency and effectiveness of proposed MOMVO algorithm compared to NSGA-II and MODE [67-70] 

on some of the real world problems [51-61] employed above. The results are given in Table 6 (test 

functions) and Table 7 (engineering design problems). Note that N/A in the tables stands for Not 

Applicable, which refers to the algorithms that we did not find any results for a particular 

engineering design problem in the literature. 

Table 6. Results of different metrics, Hyper Volume (HV) and Execution Time (ET), for MOMVO, NSGA-II 
and MOPSO algorithms.  

Problems 
HV in m3  (avg.) ET in second (avg.) 

MOMVO NSGA-II MOPSO MOMVO NSGA-II MOPSO 
ZDT1 (2 objs) 0.999854 0.994704 0.820794 3.02587 8.8836 97.1898 
ZDT2 (2 objs) 0.998732 0.995543 0.602551 3.10279 11.4737 76.6658 
ZDT3 (2 objs) 0.998579 0.992548 0.627398 5.87542 9.3890 80.0386 
ZDT4 (2 objs) 0.993287 0.989682 0.633132 6.28831 15.2137 125.8195 
ZDT6 (2 objs) 0.998678 0.872076 0.994543 7.69872 9.5596 35.9135 
DTLZ1 (3 objs) 0.999158 0.992282 0.995180 7.63112 9.8537 25.6417 
DTLZ2 (3 objs) 0.999872 0.995327 0.972694 5.87924 7.6157 242.6490 
DTLZ3 (3 objs) 0.987558 0.985328 0.977411 8.35789 10.9689 21.7793 
DTLZ4 (3 objs) 0.999475 0.975525 0.993028 7.65328 8.0930 145.7864 
DTLZ5 (3 objs) 0.996879 0.987040 0.994401 7.93873 8.0209 186.3189 
DTLZ6 (3 objs) 0.999548 0.974175 0.980990 6.83278 9.5265 255.5049 
DTLZ7 (3 objs) 0.983258 0.963346 0.931623 7.93571 8.5004 185.6130 

 

 
Table 7. Results of different metrics Metric of Spread (MS), Inverse Hyper Volume (IHV), and Execution 

Time (ET) with MOMVO, NSGA-II and MODE algorithms for engineering design problems. 

Problems 
MS in m (avg. ± std.) IHV in m-3  (avg. ± std.) ET in second (avg. ± std.) 

MOMVO NSGA-II MODE MOMVO NSGA-II MODE MOMVO NSGA-II MODE 
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Welded beam 
design (2 objs) 

0.20587± 
0.003490 

0.88987± 
0.119760 

0.58607± 
0.043660 

6.89E-5± 
6.8354E-4 

1.3E-3± 
3.543E-3 

5.39E-4± 
1.016E-3 

0.32416± 
0.017600 

0.46880± 
0.024510 

0.37520± 
0.019400 

Speed reducer 
design (2 objs) 

0.51489± 
0.048590 

0.79717± 
0.066080 

0.84041± 
0.200850 

2.75E-4± 
2.357E-3 

1.3E-3± 
3.543E-3 

5.39E-4± 
1.016E-3 

0.41807± 
0.005689 

0.46260± 
0.008760 

0.42500± 
0.006710 

Disk brake 
design (2 objs) 

0.51670± 
0.062600 

0.66542± 
0.014310 

0.61511± 
0.045810 

9.89E-4± 
3.854E-5 

2.1E-3± 
7.450E-4 

1.41E-3± 
2.689E-4 

0.11482± 
0.002486 

0.16880± 
0.006610 

0.13780± 
0.007160 

Bulk Carrier 
Design (3 objs) 

0.13584± 
0.065200 

N/A N/A 
3.28E-4± 
1.254E-4 

3.2E-3± 
1.590E-4 

1.99E-3± 
1.969E-4 

0.58732± 
0.087135 

N/A N/A 

Two-bar truss 
design (2 objs) 

0.7982± 
0.024730 

0.93725± 
0.024250 

0.87393± 
0.050320 

3.58E-5± 
2.658E-4 

N/A N/A 
0.25872± 
0.022579 

0.30660± 
0.00876 

0.26560± 
0.026850 

 
Table 6 and 7 indicate that the MOMVO algorithm outperforms other algorithms in all new metrics. This 

quantitative comparison shows that the MOMVO algorithm benefits from a good coverage as well. To 

avoid the variability of each algorithm, Wilcoxon signed-rank test method [71] and Friedman [72] 

are used to validate comparative study between optimization algorithms in Table 6 for the HV 

metric as an example. Wilcoxon signed-rank test conducted at 10% significance level (p-

value>0.1 rejects the null hypothesis) on the best results of algorithms with the population size 

of 60 and 30 independent runs. The results of this statistical test (average p-values on all test 

cases based on HV metric) are shown in Table 8.  Note that the following procedure is used to 

perform Wilcoxon signed-rank test: 

 Step 1: Average values of the HV metric in Table 6 obtained by MOMVO and other 

algorithms (say A) are collected. 

 Step 2: Sum of ranks for cases where MOMVO outperforms A and vice versa are used 

to compute R+ and R- . 

 Step 3: To ascertain the significance of statistical test based on hypotheses, p-value are 

computed. A Smaller value represents stronger evidence against the null hypothesis. 

It is evident in the results of Table 8 that no significant differences were found between 

MOMVO and MOPSO in average, while MOMVO is clearly superior to NSGA-II. We 

observed that the superiority of MOMVO on three-objective problems tend to be more 

significant compared both MOPSO and NSGA-II. This shows that MOMVO is able to better 

handle difficulties in challenging multi-objective problems.  
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Table 8: Wilcoxon signed ranks test results based on HV metric from Table 6. 

Comparison  R+  R-  Exact P-Value  

MOMVO versus MOPSO  192 108 0.0942  

MOMVO versus NSGA-II 198  102 0.0506  

 

Another statistical test conducted to prove the significance of the results is Friedman aligned 

test. In this method, a value of location is computed based on the average of MS from Table 7 as 

the mean outturn obtained by all algorithms on each problem. Then, the variation between the 

outturn achieved by an algorithm and the value of locations is calculated. This step is repeated 

for each combination of algorithms and problems. The aligned observations are then ranked 

from 1 to k relative to each other. The results are presented in Table 9. Once more, it is apparent 

that MOMVO ranks first and outperforms both MODE and NSGA-II. 

Table 9: Average ranking of algorithms by Friedman Aligned test based on MS obtained from Table 7. 

Rank  Algorithm Ranking 
1 MOMVO 64.5762 
2 MODE 79.3732 
3 NSGA-II  86.3485 

 

It is worth mentioning here that as a Pareto dominance-based algorithm, MOMVO becomes less 

effective proportional to the number of objectives. This is due to the fact that in problems with 

more than three objectives, a large number of solutions are non-dominated, so the archive 

becomes full quickly.  Therefore, the MOMVO algorithm is suitable for solving problems with 

less than four objectives. Increasing the archive size might help to capture best non-dominated 

solutions in a many-objective problem, but there should be special operators and mechanisms to 

reliably solve such problems using the proposed MOMVO algorithm. The above results showed 

that MOMVO has the potential to show superior results in terms of both accuracy and 

execution time compared to other similar algorithms when solving the majority of three-

objective case studies. This makes this algorithm potentially able to provide competitive results 

on many-objective problems. Solving such problems is out of the scope of this work, yet it is a 

valuable contribution for future works.  
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4.4. Comparison of MOMVO with recent algorithms 

In the preceding section, the MOMVO algorithm was compared with well-known algorithms. To validate 

the performance of this algorithm even further, this section employs recently proposed algorithms.  The 

algorithms are Multi objective Symbiotic organism search (MOSOS) [73] and Multi-objective colliding 

bodies optimization (MOCBO) [74]. The comparative results are given in Table 10 with GD and ET 

performance metrics. To prove the significance of the results, Quade [75] statistical test are 

performed for GD in Table 11. The results of these two tables show that the MOMVO provides 

very competitive results and tends to outperform MOSOS and MOCBO on the majority of test 

functions. 

 

4.7. Discussion  

In summary the results and discussions of this section show that the MOMVO algorithm 

provides very high convergence speed. This originates from the fact that the best solution always 

contributes to the improvement of other solutions significantly. The first component of Eq. (3.1) 

requires solutions to change their positions with respect to the best solution obtained so far. This 

mechanism is a bonus in most of problem since the solutions gravitate towards the best regions 

of the search space. This emphasizes exploitation of the best regions consequently. Since 

MOMVO uses the same search mechanisms of MVO, it inherits the high exploitation. In spite 

of choosing ‗best solution‘ from the archive, the results show that this mechanism does not 

negatively impact the exploitation. It is worth mentioning here that high exploitation also results 

in high convergence. Convergence is accelerated in MOMVO proportional to the number of 

iterations since WEP in Eq. (3.1) is increased adaptively proportional the number of iterations. 

Improved exploitation and adaptively increasing convergence are of the main reasons why 

MOMVO reforms really well on simple unimodal multi-objective test problems.  
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Also, MOMVO benefits from high exploration. This originates from the main operators in 

MVO and MOMVO. Sudden changes in the solution, which come from the second component 

of Eq. (3.1), cause extensive exploration of the search space in MVO. Since MOMVO uses the 

same equation to update the solutions, it inherently shows improved exploration as well. 

Another reason of high explorative behaviour is due to the leader selection in MOMVO. The 

roulette wheel operator allows every solution to impact on other solutions. For one, this 

mechanism improves the exploration since the solutions face abrupt changes. For another, 

solutions are able to resolve local optima stagnation since poor solutions are also able to attract 

other solutions although with a very low probability.  

Table 10: Comparison MOMVO, MOSOS and MOCBO algorithms for different unconstraint and constraint 
problems. 

Problems 
GD (avg.) ET in second (avg.) 

MOMVO MOSOS MOCBO MOMVO MOSOS MOCBO 

SCH1 (2 objs) 0.0018 0.0028 0.0031 4.2873 8.2135 5.4845 

SCH2 (2 objs) 0.00158 0.0705 0.0932 4.5982 8.7015 5.9751 

KUR  (2 objs) 0.0051 0.0075 0.0083 5.2347 10.741 7.9531 

FON2 (2 objs) 0.0017 0.0019 0.0022 7.8962 11.401 8.6606 

ZDT1 (2 objs) 0.00173 0.3325 0.3337 3.025 8.235 3.143 

ZDT2 (2 objs) 0.000948 0.0731 0.0729 3.102 8.234 3.1501 

ZDT3 (2 objs) 0.005076 0.1022 0.0982 5.875 13.456 6.2846 

ZDT4 (2 objs) 0.002463 0.5015 0.5078 6.288± 13.902 6.6922 

SRN   (2 objs) 4.2709E-05 0.0988 0.1018 8.3254 12.325 7.3251 

CONSTR (2 objs) 8.1386E-04 0.5162 0.5202 5.1687 10.011 5.2252 

TNK (2 objs) 3.1765E-04 0.1508± 0.1528 12.259 15.128 11.010 

OSY (2 objs) 5.56E-02 0.1196 0.1210 11.919 20.212 12.210 

BNH (2 objs) 3.6839E-04 0.1436 0.1498 7.5369 16.266 9.1544 

KITA (2 objs) 0.0035 0.0368 0.0384 9.5234 14.382 10.324 

 
Table 11: Average ranking of algorithms by Quade test results based on GD obtained Metric from Table 10. 

Rank  Algorithm Ranking 
1 MOMVO 2.3465 
2 MOSOS 2.5753 
3 MOCBO 3.0956 

 

Another observation was the high coverage of Pareto optimal solutions obtained by MOMVO 

on most of the test functions. This originates from the leader selection and archive maintenance 

mechanisms. MOMVO selects leaders from the least populated regions of the obtained Pareto 
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optimal front. This requires other solutions to explore and exploit the regions of the search 

space and consequently find non-dominated solutions in the less populated regions. In addition, 

non-dominated solutions are removed from the most populated regions when the archive is full. 

This also promotes balancing the distribution of non-dominated Pareto optimal solutions in the 

archive.  

The performance of NSGA-II algorithm on the challenging engineering design problems was 

good as well. This is due to the non-dominated sorting and cross-over mechanisms in this 

algorithm, which results in high exploration of the search space. In real-world problems, there is 

a considerable number of local fronts that can be avoided by the NSGA-II algorithm. On the 

other hand, MOSOS and MOCBO did not perform really well on most of the test cases. This is 

due to the high exploitation of these algorithms. Both techniques belong to the family of swarm 

intelligence techniques, which intrinsically have a lower exploration compared to evolutionary 

algorithms. NSGA-II and MOMVO have been equipped with operators to require the solution 

to change abruptly which resulted in significantly better results.  

 

5. Conclusion:  

This work proposed the multi-objective version of the recently proposed MVO algorithm. 

Inspiring from the main mechanism of MOPSO, an archive and leader selection mechanism 

were integrated to MOMVO. There was also an archive maintenance to balance the distribution 

of the solutions in the archive when it is full. The contribution was the proposal of a new multi-

objective algorithm capable of solving both unconstrained and constrained multi-objective 

problems. Due to the archive controller and leader selection mechanism developed, the 

proposed MOMVO algorithm was computationally cheaper than the current well-known 

algorithm as well.  
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After the proposal of MOMVO, it was tested on 80 case studies including 

unconstrained/constrained test functions and real engineering problems. The result showed that 

the proposed MOMVO algorithm is able to effectively approximate the true Pareto optimal 

fronts for all the case studies employed. All the fronts obtained were of high distribution as well. 

The analyses of the results showed that the superiority of the results originated from the 

improved exploration and exploitation in MOMVO.  

As per the results and finding of the comprehensive comparative study of this work, we 

conclude that this algorithm has merits among the current multi-objective algorithms. MOMVO 

is suitable for problems with two and three objectives. Due to the very high exploration and local 

front avoidance of this algorithm, is can be readily applied to real-world problems with many 

local fronts. For future works, it is recommended to apply different constrained handling 

techniques to MOMVO. Also, the proposal of techniques to handle many objectives (more than 

four) using MOMVO is recommended.  
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Figure A.1. Best Pareto optimal front obtained by the multi-objective MVO algorithm on ZDT1, ZDT2, ZDT3, 

ZDT4 and ZDT6 problems. 

  

 

Figure A.2. Best Pareto optimal front obtained by the multi-objective MVO algorithm on 2-Dim. DTLZ1, 

DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6 and DTLZ7 problems. 
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Figure A.3. Best Pareto optimal front obtained by the multi-objective MVO algorithm on 3-Dim. DTLZ1, 

DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6 and DTLZ7 problems. 
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Figure A.4. Best Pareto optimal front obtained by the multi-objective MVO algorithm on LZ01, LZ02, LZ03, 

LZ04, LZ05, LZ06, LZ07 and LZ09 problems. 
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Figure A.5. Best Pareto optimal front obtained by the multi-objective MVO algorithm on UF1, UF2, UF3, UF4, 

UF5, UF6, UF7, UF8, UF9 and UF10 problems. 
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Figure A.6. Best Pareto optimal front obtained by the multi-objective MVO algorithm on BINH1, FON1, FON2, 

KUR, LAU, LIS, MUR, QUAG, REND1, REND2, SCH1, SCH2, VNT1, VNT2, VNT3 and POL problems. 
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Figure A.7. Best Pareto optimal front obtained by the multi-objective MVO algorithm on DEB1, DEB2, DEB3 

and OKA1 problems. 

 

 

 

Figure A.8. Best Pareto optimal front obtained by the multi-objective MVO algorithm on CONSTR, TNK, SRN, 

OSY, BNH and KITA problems. 
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Figure A.9. Best Pareto optimal front obtained by the multi-objective MVO algorithm on BEL, BNH3, VNT4 

and CF1 problems. 

 

 

 

Figure A.10. Best Pareto optimal front obtained by the multi-objective MVO algorithm on Gear Train Design, 

Pressure Vessel Design, Helical Spring Design, Two Bar Truss Design, Welded Beam Design and Four-bar 

truss design problems. 
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Figure A.11. Best Pareto optimal front obtained by the multi-objective MVO algorithm on Disk Brake Design, 

Speed reducer Design, CNC Machine Tool Design, Tool Spindle Design, I-Beam Design and Cantilever Beam 

Design problems. 

 

Figure A.12. Best Pareto optimal front obtained by the multi-objective MVO algorithm on Multiple disk clutch 

brake Design, Isolated Safety Transformer Design, Brushless DC Wheel Motor Design, Vibrating platform 

design, Satellite Heat Pipe Design and Three-bar truss design problems. 
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Figure A.13. Best Pareto optimal front obtained by the multi-objective MVO algorithm on Bulk Carrier Design, 

Car Crash Design and Metal Cutting tool design problems 
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