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Optimization of Process Parameters during Hydroforming of Tank 

Bottom using NSGA-III Algorithm 
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Abstract：The hydroforming technology can realize overall forming of large storage tank’s bottom, but 
the quality is affected by many technological parameters. In view of wrinkling and cracking defects of 

integral storage tank’s bottom in hydroforming, a multi-objective optimization model is established for 

process parameters include pre-expansion pressure, hydraulic pressure, blank holder force and fillet 

radius of blank holder. Based on finite element simulation, the surrogate model between process 

parameters and quality criteria is established using Kriging technique. NSGA-III is used to determine 

optimal process parameters when storage tank’s bottom reaches targets include minimum wall 

thickness variations, minimum fracture trend, minimum flange wrinkle and minimum wrinkle trend. 

Compared with Particle swarm optimization (PSO) algorithm, NSGA-III algorithm is more suitable to 

solve this optimization problem. The validity of this method and accuracy of the results are verified by 

simulation experiments.    
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1 Introduction 

Launch vehicle is a kind of space delivery vehicle, which is usually used to send artificial earth 
satellites, manned spacecraft, space stations, space probes and other payloads into the predetermined 
orbit. The development of launch vehicle technology has promoted the development of Chinese 
satellites and their applications as well as manned space technology. The launch vehicle is composed of 
pressurized transportation, rocket body structure and telemetry control system. Rocket body structure 
carries all loads and propellants, mainly including propellant storage tank, the interstage section and the 
fairing. The reliability of rocket body structure determines the security and stability of the launch 
vehicle to a great extent. The propellant storage tank is the largest structural part in the rocket body 
structure. It is used as a pressure vessel to store liquid propellant, and at the same time as the main 
bearing structure of the carrier, supporting the thermal protection system and providing installation 
foundation and space for other system equipment. Therefore, the manufacturing quality of propellant 
tank is very critical. 

The storage tank’s bottom is a key component of propellant tank. It is a semi-ellipsoidal thin-walled 
shell and bears composite loads such as internal pressure and vibration. The traditional forming method 
is to first form melon parts, and weld them to get the integral storage tank’s bottom. However, the 
performance of tailor-welded blanks is uneven, and mandatory assembly produces welding residual 
stress, which leads to poor reliability. In order to overcome shortcomings of traditional forming method, 
many studies have been conducted in recent years to develop and design new forming processes. 
Among these new technologies, sheet hydroforming (SHF) has been developed and used in the 
production of new generation of rocket tanks’ bottoms. 

SHF is a new soft mold forming method, which is not only beneficial to improve the forming quality, 
but also increases the limit drawing ratio (LDR) of the part. SHF uses liquid as the mold, which greatly 
simplifies mold structure and reduces production costs. It has been highly recognized and widely 
concerned in the stamping industry [1]. Nevertheless, due to the large size and thin wall of the storage 
tank’s bottom (ratio of thickness to diameter equals <3‰), wrinkling is induced by plastic instability in 
the forming of integral storage tank’s bottom. In the hydroforming forming of the storage tank’s bottom, 
various process parameters affect the final forming quality. 

Process parameters in the hydroforming process are often chosen based on handbooks and 



trial-and-error approach. In order to reduce trial and error cost and shorten production cycle, many 
researchers have used statistical experimental methods to simulate the hydroforming process, explore 
theoretical models, and study the relationships between process parameters and forming quality. For 
example, Munoz-Rubio et al. [2] set process parameters as control factors and material parameters as 
noise factors, and found the optimal conditions for process control factors through taguchi method 
experimental design. Ballikaya et al. [3] used taguchi experimental design method to study the 
influence of mould angle, mould radius, punching force, blank holder force, cavity pressure and other 
process parameters on LDR. The results show that blank holder force has the greatest effect on LDR. 
Safari and Joudaki [4] used statistical tools including taguchi method and signal-to-noise ratio analysis) 
to obtain appropriate process parameters and produce parts with no defects. In addition, a nonlinear 
regression equation is established to predict the thickness variations ratio in hydrodynamics deep 
drawing and hydromechanical deep drawing processes. 

Other models such as Barlat and Lian yield criterion, forming limit diagram (FLD) model and finite 
element model [5] are also used to simulate the hydroforming process. Alizad-Kamran and 
Hoseinpour-Gollo [6] proposed a theoretical model based on Barlat and Lian yield criteria to conduct 
fracture instability analysis with maximum drawing force conditions, and studied the influence of 
material and process parameters on the path of critical fluid pressure. Modi and Kumar [7] establish the 
regression equation between process parameters and objective functions based on the results of 
experiments and finite element analysis. Objective functions include minimum thickness and angular 
radius. Liu et al. [8] carried out mechanical analysis for the suspension area in hydroforming forming 
process of curved thin shell, and deduced nonlinear fluid pressure loading curve to suppress wrinkling 
and fracture. According to theoretical calculation of loading path and simulation results, the optimal 
fluid pressure loading path is obtained. Gajjar et al. [9] adopted two different yield criteria (Hill's 
quadratic model and Barlat's three-parameter model) to develop a stress-based FLD. They applied it to 
the failure prediction of AA5182 alloy square cup in hydraulic forming. Cai et al. [10] have built 
numerical simulation model for predicting plate thickness under fluid pressure. The wrinkling height is 
proposed to represent the anti-wrinkling property of the material. Cai et al. [11] found that the ratio 
between thickness and radius would affect errors in different areas of the cup. Chen et al. [12] explored 
the influence of die fillet size on the formability of parts by using finite element method. Nikhare et al. 
[13] presented a method to estimate the minimum pressure for low pressure hydroforming of 
non-buckling parts by using plastic energy principle. The model also shows that minimum pressure 
required depends on yield stress of the pipe, the thickness of the pipe and straight length of the section 
in contact with the die. Abdelkefi et al. [14] learned that finite element simulations using 
three-dimensional shell models could better predict thickness assessments. An experimental method for 
calculating friction coefficient is presented without using advanced numerical calculation method. 
Bagherzadeh et al. [15] realized precise modeling program for oil pressure’s non-uniform distribution. 
Chen et al. [16] set up a theoretical model of the thin-walled shell’s critical stress by using energy 
method, considering anti-bulging effect, so as to quantitatively predict and control the wrinkling of 
curved thin-walled shells in unsupported area. Wang et al. [17] calculated the processing window 
diagram using a stress analytical model with material properties. The result showed that initial pressure, 
total pressure and loading trajectory were basic parameters that directly affected forming quality and 
dimensional accuracy. 

However, it is difficult to express the complex relationship between the quality and process 
parameters by theoretical model. Therefore, agent models have been widely used in design based on 
simulation. In addition to agent models, bionic heuristic algorithms for optimization are also becoming 
more and more popular for that they can produce the optimal solution in a reasonable calculation time. 
These studies mainly focus on the agent models and optimization algorithms. 

Liu et al. [18] used response surface method to optimize the pre-expansion forming process. The 
results showed that the combination of pre-bulging effect and sheet metal hydroforming process is a 
potential method to improve the formability. Ozturk et al. [19] raised an improved AFEA-FCA method 
(adaptive finite element analysis and fuzzy control algorithm) to determine optimal hydraulic pressure 
and blank holder force, and obtain maximum ultimate drawing ratio. They also found that the 
coefficient of friction between plates and dies had little effect on optimizing loading profile. Chebbah 
et al. [20] put forward the optimization method of pipe hydroforming based on agent model and genetic 
algorithm. By comparing Kriging and moving least square (MLS) method, it is found that the optimal 
results obtained by Kriging method are better than MLS method. Bansch et al. [21] used meta-heuristic 
optimization model and finite element simulation for the complex process flow. The method can 
approximate the Pareto front through few finite element simulations. Hu et al. [22] came up with an 
improved NSGA-III optimization method, which can quickly and accurately solve a multi-objective 
optimization problem of sensor layout. Ben et al. [23] compared response surface method and least 



squares support vector regression (LSSVR) as meta-modeling techniques, to build a meta-model for 
global sensitivity analysis and multi-objective optimization of THF processes. Ge et al. [24] proposed a 
multi-objective optimization method based on differential evolution to obtain the best match between 
internal pressure and end feed process. The validity, accuracy and reliability of this method are proved 
by an example of pre-bending hydroforming. Hashemi et al. [25] proposed an optimization method 
combining adaptive simulated annealing technique and adaptive finite element method. Experimental 
results showed that proposed adaptive method can be used for process optimization of large search 
space. Huang et al. [26] used the Kriging method to build proxy model for loading path design of 
T-tube hydroforming, and the robustness and reliability of this method were verified. 
Intarakumthornchai et al. [27] integrated genetic algorithms into finite element analysis for 
determination of feasible loading paths. 

The application of simulation in hydroforming process can help engineers to develop process 
effectively, thus reducing cost and limitations of real experiments. The combination of finite element 
method with various optimization methods can avoid too much time on trial-and-error experiment. 
Therefore, this paper uses mathematical prediction model to model the hydroforming forming process 
of the storage tank’s bottom, explores the relationship between quality indicators and process 
parameters, and finally obtains the best process parameters to achieve the best quality. The rest of this 
article is as follows: Section 2 describes and models the problem. Section 3 focuses on the simulation 
and prediction model through Kriging interpolation method. Section 4 uses NSGA-III algorithm for 
multi-objective optimization, the best process parameters of forming process are obtained. Compared 
with Particle Swarm Optimization (PSO), the accuracy of optimization results is verified by 
experiments. Section 5 summarizes the whole paper and puts forward some questions that need further 
study. 

2 Model of storage tank’s bottom during hydroforming 

The forming processes of the storage tank’s bottom is basically divided into two steps :(1) the punch 
keeps still, and the liquid chamber provides a certain pre-expansion force, so that the sheet is extruded 
and deformed upward and anti-expansion zone is formed. (2) The punch begins to go down, driving the 
sheet downward and blank is deformed. Under double action of punch and liquid chamber pressure, the 
bottom of storage tank is finally formed.  

Many kinds of requirements should be taken into account in the forming of the storage tank’s bottom, 
and sometimes they are contradictory, so several objective functions are introduced. The optimization 
objective is to find the best process parameters which can achieve optimal forming quality. According 
to relevant literature and engineering experience, the process parameters we choose are pre-expansion 
pressure 0P , hydraulic pressure P , blank holder force F  and the fillet radius of blank holder hR . 

Under these conditions, the nonlinear optimization problem can be expressed as follows: 
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Where is the objective function, where t  is initial thickness, X  is the vector of design 

variable: 0[ , , , ]hX P P F R= . This vector is bounded by L
X and U

X which, respectively represent lower 

and upper limits: [0,0,1200,10]L
X =  and [3,12,2400,100]U

X = . 

In our case, the optimization problem has four objectives. Objective functions 1 and 2 are defined to 
avoid cracking problem. Cracking is a major defect in the bottom of storage tank. The fracture is 
evaluated by sheet thickness and FLD. The change of sheet thickness can reflect severity of rupture, 
and the maximum thinning rate can more visually represent change in thickness of the sheet during the 
forming process. Objective functions 3 and 4 are defined to reduce wrinkling. Wrinkling is the main 
form of compression instability caused by compressive stress in sheet metal forming. Wrinkling is 
evaluated by height of wrinkling and thick strain. The wrinkling height truly reflects the severity of the 
parts’ wrinkling defects, while maximum thickness strain can reflect the tendency of the sheet 



wrinkling during the forming process. During forming process, wrinkles usually occur in the flange 
region and the side wall. Since the workpiece in this paper is spherical, main form of wrinkling is 
flange side wrinkling without side wall wrinkling, so this paper mainly considers flange side wrinkling. 

The specific objective functions are explained as follows: 
Objective function 1: 
This function is defined to avoid rupture. It is generally required in industry that maximum thickness 

reduction rate is less than 20% for qualified parts. Maximum thickness thinning rate is defined as 
follows: 

 0 min
max

0

100%
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t
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Where max  is the maximum thinning ratio, 0t  is the initial plate thickness, mint  is the smallest 

plate thickness. So objective function 1 is defined as: 
 max1 min( )y =   (3) 

Objective function 2: 
In the field of metal forming, FLD is used to judge failure of materials. It shows the limits of sheet 

during forming under different stress states. FLD figure takes minimum principal strain in plane strain 
state as abscissa, and maximum principal strain in plane strain state as ordinate, includes a forming 
limit curve (FLC) formed by all the forming limit points. If plane principal strain of a point on the sheet 
is above FLC, the sheet where the point is located will crack. If plane principal strain of a point on the 
sheet is below FLC, deformation state of the point is safe, and the farther from FLC, the greater the 
safety margin. 

FLC of 2219 aluminum alloy is obtained through theoretical derivation. The premise of theoretical 
derivation is: 

(1) Von.Mises yield criterion 
The research object is large and thin-walled shell. For a thin-walled shell, thickness stress Z  is 

very small and can be approximately regarded as: 0Z = . Therefore, the shell can be considered to be 

in a plane stress state, i.e., 3 0Z = = . Then the Von.Mises yield criterion can be expressed as: 

 ( )2 2 2 2
1 2 2 1 2 s    − + + =   (4) 

(2) Hollomon hardening criteria 
Hollomon hardening criterion is the most classical constitutive equation, on which most other 

constitutive equations are derived. It can well describe the stress-strain relationship of most metals, and 
it is widely used in engineering. Therefore, the theoretical calculation in this paper adopts Hollomon 
hardening criterion, and it be expressed as: 

 = n
K    (5) 

(3) Swift-Hill instability criterion 
The Von.Mises yield criterion and Hollomon hardening criterion can describe stress-strain rule of the 

material under deformation. The instability criterion can be used to judge whether the material fails or 
not. There are many researches on plastic tensile instability theory of sheet, among which Swift 
dispersed instability criterion and Hill concentrated instability criterion are the most widely used. The 
specific formulas are shown in Eqs. (6) and (7). 
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Where 1 2,   are principal stresses in the plane, and 1 2 3, ,    are principal strains. The Swift-Hill 

instability criterion is chosen in order to comprehensively describe the failure state of sheet. Assume 

that 2
1 2

1

0 =


  


  ，  , thickness direction stress 3 =0 . Then, combining with Eqs. (4), (5), (6) 

and (7) above, the ultimate strain values of sheet can be calculated by substituting relevant mechanical 
property parameters of materials with different values of  . The ultimate strain values are shown in 
Table 1. According to the calculated values in the table, these limit strain points are drawn in coordinate 
system 1 2 − , and a smooth curve is fitted by Origin software. Thus, the theoretical FLC of 2219 



aluminum alloy is obtained. 

Table 1 Strain data of Swift-Hill 

 Swift Hill 

α ε1 ε2 ε1 ε2 
0   0.528 -0.264 

0.1   0.456 -0.192 
0.2   0.396 -0.132 
0.3   0.3452 -0.0812 
0.4   0.3017 -0.0377 
0.5 0.264 0 0.264 0 
0.6 0.2832 0.0405   
0.7 0.3009 0.0926   
0.8 0.308 0.154   
0.9 0.2959 0.2152   
1.0 0.264 0.264   

Swift instability criterion describes the dispersive instability characteristic of sheet under biaxial 
tensile condition. Hill instability criterion is more suitable for uniaxial tensile stress state and plane 
tensile stress state. Therefore, when the range of   is 0-0.5, theoretical value of the material’s 
ultimate strain at the time of instability can be obtained by using the Hill concentrated instability 
criterion. When the range of   is 0.5-1.0, theoretical value of the material’s ultimate strain at the time 
of instability can be obtained by using Swift dispersed instability criterion. When 0.5 = , average 
value of the two limiting strains is chosen to obtain the complete theoretical FLC. Fig. 1 shows the 
complete FLC. 
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Fig. 1 Theoretical FLC of 2219 aluminum alloy 

There are many reasons for the cracking of sheet hydroforming, while FLD describes ultimate strain 
of sheet’s cracking under different conditions. When the point's principal strain falls above the FLC 
curve, the part will break when it is formed. When the point's principal strain is below the FLC curve, 

the farther away the point is, the safer it is. Suppose that the point's principal strain is ( )2 1,i i  , and the 

vertical distance from this point to the FLC is P , then 1
i i
FLDP  = − . In order to prevent the whole 

part from fracture, the principal strain of all points should be below the FLC, and the larger P is, the 
better. Then objective function 2 can be expressed as:  

 min2 max( )y P=   (9) 

Objective function 3: 



When the sheet is wrinkling, the blank holder will be jacked up, so the degree of wrinkling can be 
represented by measuring vertical displacement of the flange area 2U . Industry requires that wrinkle 
height should be less than 1.2 times the thickness of the sheet. To minimize wrinkling, 2U  needs to 
be as small as possible. Objective function 3 can be expressed as: 
 maxy3 min( 2 )U=   (10) 

Objective function 4: 

Under the condition of plane strain, max min 0t  + + = . Then max min( )t  = − + . t  is the thick 

strain. When t 0  , the sheet has a wrinkle trend. max min = −  can be defined as a wrinkling curve. 

When the point is below the wrinkling curve, the sheet has a wrinkle trend. Suppose that the principal 

strain of a point is ( )i
2 1, i  , the vertical distance from this point to the wrinkling curve is Q , then 

max 1
i i

Q  = −  . In order to reduce the tendency of sheet’s wrinkling, Q  of each point in the forming 

part should be as small as possible. Objective function 4 can be expressed as: 
 max4 min( )y Q=   (11) 

3 Experimental design and prediction model 

In multi-objective optimization problem, in order to shorten optimization period, reduce optimization 
cost and obtain appropriate optimization scheme, we first need to build an agent model. This requires a 
complete numerical analysis of the hydroforming process, and then an agent model based on Latin 
hypercube sampling method is established. Finally, a multi-objective optimization algorithm is used to 
achieve the optimal parameters with low cost and high precision. Several agent models can be used to 
approximate the nonlinear optimization problem Eq. (1). Here, Kriging interpolation method is adopted. 
The flow chart of optimization process is shown in Fig. 2. 

Start
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Fig. 2 Flowchart of optimized design 

3.1 The numerical simulation 

The simulation about the hydroforming process of the storage tank’s bottom is specially treated, 
according to characteristics of the hydroforming process. The material of sheet is 2219 aluminum alloy, 
which is isotropic elastic-plastic and meets Mises yield criterion. The thickness of sheet has 5 Simpson 
integral points and the unit type is S4R, i.e., shell unit. In order to improve computational efficiency, 
1/4 model is selected for process simulation. Symmetric boundary conditions are applied at the plane of 
symmetry. The plate is set as a variable body, punch, die and blank holder are set as rigid bodies, and 
friction coefficient at each contact surface is set as 0.1. In order to study the influence of process 
parameters on the plate, a denser mesh is used for the plate. The mesh of sheet is divided into 
quadrangles and the grid size is set as 4. The punch, die and blank holder mesh are divided into 
quadrangles and the grid size is set as 6. 

Fig. 3 and Table 2 give the geometric parameters, material properties and process parameters used in 
the simulation and experiment. In Fig. 3, 0D , pD , hD  are the diameters of the blank, punch and blank 



holder, respectively. t  is the initial thickness of the blank. hR , dR  are the fillet radius of the blank 

holder and the die, respectively. 
Dp

D0

Rh

t

Dh

Rd

 
Fig. 3 Geometrical parameters of a storage tank’s bottom 

Table 2 Material and process conditions 

Geometrical parameters Material properties (2219 aluminum alloy) 
D0 4200mm E 73.8GPa 
Dp 3338mm K 564MPa 
Dh 3340mm n 0.264 
t 8mm Process parameters  
Rh 100mm Coulomb friction coefficient 0.1 
Rd 50mm Total axial feeding 900mm 

In order to analyze the influence of process parameters in hydroforming, the same loading path is 
adopted in the simulation process, and objective functions are obtained under the same conditions. 
Otherwise, changing process parameters will completely change forming conditions, which will 
complicate the model construction based on finite element. Figure 4 depicts the loading paths of stroke 
and hydraulic pressure used in the analysis. Keep the punch still, apply a certain pre-expansion pressure 
at the sheet, and the sheet deforms. Then the punch is linearly loaded, and the pressure remains linearly 
loaded. Geometric parameters are fixed parameters, as shown in Table 2. The design variables are 
pre-expansion pressure 0P , hydraulic pressure P , blank holder force F  and the fillet radius of 

blank holder hR . Their initial values are 1MPa, 3MPa, 1500t and 100mm, respectively. 

 
Fig.4 Loading path of hydraulic pressure 

Finally, the hydroforming forming model of the storage tank's bottom is obtained as shown in Fig. 5. 



 
Fig. 5 Finite element model of the storage tank’s bottom 

3.2 Establishment of prediction model 

In this paper, Kriging method is used to build an approximate model. Kriging treats the response y(x) 
of the simulation model as an implementation of a random process that includes regression terms. The 
method is applied to actual work to express response surface in explicit form according to the 
optimization variables. The approximate relation of the objective function can be expressed as follows: 

 ( ) ( )T
J x p Z x= +   (12) 

Kriging is used to fit the actual experimental value and the predicted value, and it is necessary to 
check the fitting accuracy of the approximate model. Only when certain conditions are met, the 
approximate model can be used in engineering design. The accuracy verification of approximate model 
includes two aspects: prediction ability at sample points and reproducibility ability at non-sample 
points. Since the Kriging approximation model is interpolation approximation, there is no error at the 
sample points. Then, cross-validation method is used to test accuracy of agent model without 
generating additional sampling points. The indexes of cross validation include determination 
coefficient R2, mean square error (MSE). For our Kriging agent model, the optimal determination 
coefficient R2 are (0.9370,0.9075, 0.9419, 0.9271), which are greater than 0.9, indicating that Kriging 
can fully explain the most variability response variables. The MSE of Kriging agent model are 
(7.749%,9.907%,7.261%, 8.235%). The MSE are less than 10%, which further confirms the adequacy 
of the prediction model. The goodness of fit of the prediction model is shown in Fig. 6. It can be seen 
from Fig. 6 that the deviation between most of the predicted data points and the experimental data 
points is very small, indicating that the model can successfully interpolate the nonlinear mapping 
between the response variables and the process parameters. In conclusion, the agent model has high 
accuracy and can be used in the optimization process next. 
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Fig. 6 The goodness-of-fit plot of Kriging 

3.3 The influence of process parameters on response variables  

The influence of process parameters on response variables can be observed in the pareto diagram, as 
shown in Fig. 7. The effect of parameters on the response is proportional to the band length. When the 
band length exceeds 0.05, the effect is statistically significant. The blue bands represent a synergistic 
effect, while the red bands represent an antagonistic effect. The pareto diagram shows that the quality 
of the storage tank’s bottom is highly dependent on the hydraulic pressure. The pareto diagram also 
shows that the process parameters have some influence on the response. 

 
(a)% effect on y1                    (b) % effect on y2 

 
(c) % effect on y3                   (d) % effect on y4 

Fig. 7 Pareto diagram showing the relative influences of process parameters X on the response variable 
 

4 Multi-objective optimization and result analysis 

The quality optimization of storage tank’s bottom is a multi-objective optimization problem, and 
there is a mutual restriction relationship between the objectives, so this paper uses NSGA-III algorithm 
to solve the problem. As a meta-heuristic algorithm, the crossover and mutation operations of 
NSGA-III algorithm ensure the diversity of solutions, and the reference point selection strategy 
improves the speed of searching solutions. 

4.1 NSGA-III algorithm 

In the pseudo-code of NSGA-III, the detailed steps are shown in Table 3: 
Step 1: Lines 1-2, initializes the population of chromosomes, each chromosome represents a solution of 



process parameters. Set stop criteria. 
Step 2: Lines 4-5, performs the crossover and mutation operations and generates a new population. 
Step 3: Line 6, performs the evaluation operation. The old and new populations are combined into a 
temporary population, and the fitness values of each chromosome for all objective functions are 
evaluated. 
Step 4: Lines 7-17, performs a quick non-explicit sort. 
Step 5: Lines 18-21, uses the reference point strategy to direct the search. 
Step 6: Go to step 2, until the stop conditions are satisfied. 

Table 3 Algorithm NSGA-III 
Algorithm NSGA-III. 

 1: loading (“simulated Data”) 
 2: P0←initializePop(popsize); 
 3: while t<Maxgen do 
 4:   Crossover: Ot ← crossover[Pt, pc] 
 5:   Mutation: Ot ←mutate[Pt, pm] 
 6:   Fitness: Ot ←assess Fitness(Ot) 

 7:   Pt ←Ot∪Pt 

 8:   (F1,F2,…)=Non-dominated-sort(Pt) 
 9:   repeat 

10:     St=St∪Fi  and i=i+1 
11:   until |St|≥N 
12:   Last front to be included: Fl= Fi 
13:   if |St|=N then 
14:     Pt+1=St, break 
15:   else 

16:     Pt+1=  

17:     Points to be chosen from Fl: K=N-|Pt+1| 
18:     Normalize objectives and create reference set Zr: Normalize(fn,St,Zr,Zs,Za) 
19:     Associate each member s of St with a reference point: [π(s),d(s)]=Associate(St,Zr) 
        %π(s): closet reference point, d(s): distance between s andπ(s): 
20:     Compute niche count of reference point j∈Zr:ρj=∑S∈St/Fl((π(s)=j)?1:0) 
21:     Choose K members one at a time from Fl to construct Pt+1: Niching(K, ρj,π,d, Zr,Fl,Pt+1) 
22:   end if      
23: end while 

 

4.2 Optimization results and analysis 

In our study, the parameters of NSGA-III algorithm are set as follows: parameters of population size, 
crossover probability, mutation probability, crossover parameter and mutation parameter are chosen as 
100, 0.85, 0.15, 20 and 20, respectively. The optimization process is repeated 50 times. The search 
process for each trial will continue until the predefined maximum number of 500 generations is met. In 
order to verify the accuracy of optimization results of NSGA-III algorithm, PSO algorithm is selected 
as comparison. PSO algorithm can also be used to deal with multi-objective optimization problems, but 
the selection mechanism is different. PSO algorithm find the optimal solution through the collaboration 
and information sharing between individuals in the group. PSO algorithm is easy to fall into local 
convergence while NSGA-III algorithm searches the problem space more random and uniform. 
Parameters of the PSO algorithm are set as follows: population size, inertia weight and learning factor 
are chosen as 100, 0.9 and 0.9, respectively.  

Fig. 8 shows the change curve of the four objective functions’ optimal values when the number of 
iterations is 40. It can be seen that the fitness value gradually decreases with the increase of the number 
of evolutionary iterations. Generally speaking, NSGA-III algorithm and PSO algorithm converge. It 
can also be seen from Fig. 8 that NSGA-III algorithm converges faster than PSO algorithm, and the 
values of the objective function found by NSGA-III algorithm is smaller than PSO algorithm within 40 
iterations. 



 
(a) y1                                 (b) y2 

 
(b) y3                                 (d) y4 

Fig. 8 The convergence curves of NSGA-III and PSO for 40 generations 
 

The pareto fronts obtained by the two algorithms are shown in Fig. 9, where the red dots are the 
Pareto Fronts obtained by the NSGA-III algorithm, and the blue triangles are the pareto fronts obtained 
by the PSO algorithm. From Fig. 9, we can intuitively see that the optimal solution areas obtained by 
NSGA-III algorithm and PSO algorithm are partially overlapping, indicating that the optimization 
directions are basically the same. However, the optimal solutions obtained by NSGA-III algorithm are 
obviously more evenly distributed, while the optimal solutions obtained by PSO algorithm are too 
continuous, and some of them even converge to a line. Comparatively speaking, the learning strategy of 
NSGA-III is more effective for the quality optimization problem of the storage tank’s bottom. 

 
Fig. 9 Pareto fronts of NSGA-III and PSO 

In Fig. 9, the four objectives conflict with each other, and the optimal solutions cannot be obtained at 



the same time. And it is difficult for the optimal solutions to compare with each other. Therefore, it is 
necessary to select several groups of optimization results satisfying the constraint conditions as the 
optimal solutions according to different preferences. In order to verify the accuracy of the results, we 
select a group of optimal solutions from the optimization results for simulation verification. Table 4 is 
comparison table includes optimization results based on NSGA-III algorithm and simulation results. It 
can be seen from the table that absolute errors of the optimization values obtained by NSGA-III 
algorithm are both within the allowable range, indicating that the optimization results are accurate.  

 
Table 4 Confirmation test using the obtained optimal process parameters by NSGA-III and PSO 
Optimization 

algorithm 
optimization 

objective 
Combination of process 

parameters 
Optimal 

value 
Simulation 

value 
Absolute 

error 

NSGA-III 

y1 
（2.25,0.619,1397.8,58.7） 

 
 

0.1466 0.1591 8.53% 
y2 0.1357 0.1496 10.24% 
y3 1.7 1.57 7.65% 
y4 0.0346 0.0374 7.49% 

 

Compared to the quality of the tank bottom before optimization, all quality indexes have been 
improved after optimization, and the specific results can be seen in Fig. 10. As can be seen from the Fig. 
10, the minimum wall thickness before optimization is 6.25mm, and after optimization it becomes 
6.727mm. Before optimization, the wrinkle height of flange edge is 16.602mm, after optimization, it 
becomes 1.566mm. The strain distribution of all the units on the tank bottom before and after 
optimization is shown in Fig. 10 (e). It is obvious that the whole unit has moved to the safe area after 
optimization. 

 

(a) Thickness distribution cloud map before (b) Thickness distribution cloud map after 

 

(c) U2 contour distribution cloud map before (d) U2 contour distribution cloud map after 

 



 

(e) The strain distribution of the points on the forming parts  

Fig. 10 Comparison diagram of optimization results 

5 Conclusion 

In this paper, we firstly studied the hydroforming process parameter optimization of storage tank’s 
bottom, then the problem is expounded and mathematic definition is given. Combing with Kriging 
interpolation method and finite element simulation, the hydroforming process of storage tank’s bottom 
is simulated and a surrogate model is established. The influence of pre-swelling pressure, hydraulic 
pressure, blank holder force and fillet radius of blank holder on forming quality is discussed by using 
pareto diagram analysis method. The optimization for hydroforming parameters of storage tank’s 
bottom is settled by NSGA-III and PSO algorithms. By using the two optimization methods, the 
optimum process parameters with the best quality of forming parts are found, and the optimization 
results are verified by simulation experiments. The results showed that: 

(1) Using Kriging interpolation method to establish a surrogate model can more accurately simulate 
the relationship between process parameters and quality criteria. 

(2) The influence of hydraulic pressure on the forming quality about storage tank’s bottom is the 
largest among the four process parameters, while the other process parameters are not the most 
effective parameters. 

(3) By comparing the results obtained by NSGA-III and PSO optimization algorithms, it can be 
concluded that NSGA-III algorithm is more effective in the optimization for the hydroforming process 
parameters of storage tank’s bottom. And the optimization results can be obtained faster in the same 
number of iterations. The effectiveness and accuracy of the optimization results are verified by 
simulation experiments. It is instructive to select hydroforming technological parameters of storage 
tank’s bottom in future engineering. 

Although the hydroforming process parameters of the storage tank’s bottom are optimized, and 
achieved some research results, there is still some work remains to be further studied： 

(1) The four objective functions, including biggest wall thickness reduction ratio, cracking factor, 
height of flange wrinkling, wrinkling factor, represent wrinkling and cracking defects. However, the 
springback defect also occurs in SHF, and this defect needs to be studied for that storage tank’s bottom 
requires high reliability  

(2) The study of fluid pressure and pre-bulging pressure is based on the linear loading path. In fact, 
there are many different load paths such as pulsating pressure, arc pressure and so on. The influence of 
different loading paths on forming quality remains to be studied. 
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Geometrical parameters of a storage tank’s bottom
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Loading path of hydraulic pressure
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Finite element model of the storage tank’s bottom
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The goodness-of-�t plot of Kriging
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Pareto diagram showing the relative in�uences of process parameters X on the response variable
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The convergence curves of NSGA-III and PSO for 40 generations
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Pareto fronts of NSGA-III and PSO
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