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Abstract

In the association rule mining field many different quality measures have been proposed over time with
the aim of quantifying the interestingness of each discovered rule. In evolutionary computation, many of
these metrics have been used as functions to be optimized, but the selection of a set of suitable quality
measures for each specific problem is not a trivial task. The aim of this paper is to review the most widely
used quality measures, analyze their properties from an empirical standpoint and, as a result, ease the
process of selecting a subset of them for tackling the task of mining association rules through evolutionary
computation. The experimental analysis includes twenty metrics, thirty datasets and a diverse set of
algorithms to describe which quality measures are related (or unrelated) so they should (or should not)
be used at time. A series of recomendations are therefore provided according to which quality measures
are easily optimized, what set of measures should be used to optimize the whole set of metrics, or which
measures are hardly optimized by any other.
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1. Introduction

The discovery of valuable and unknown information

from big amounts of data gathered from different

domains is essential for many companies that aim

to take any advantage of that17. This information

may be defined under the term pattern24, which rep-

resents any type of homogeneity and regularity in

data, providing intrinsic and important properties of

them1. Association rules were proposed at the be-

ginning of the nineties2 as a way of describing asso-

ciations among patterns so more descriptive analysis

can be achieved. These associations are implications

of the form X → Y , X and Y being patterns with no

common item (X∩Y = /0) whose meaning is that one

of the sets leads to the presence of the other set26.

Generally, existing algorithms for mining associ-

ation rules produce a huge output that hampers the

process of analysing the utility and interest of the

results. In this regard, interestingness quality mea-

sures can be used to filter and/or rank the output,

producing a reduced set of association rules eas-

ily understandable. These quality measures are di-

vided into objective and subjective metrics. Objec-

tive measures are said to be data-driven and only

take into account statistical and structural properties

of data22, serving as a filter to select interesting pat-

terns/associations. On the contrary, subjective mea-
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sures are user-driven in the sense that they take into

account the user’s preferences and goals. This user

is not assumed to be a data mining expert, but rather

an expert in the field being analysed.

Different models7 have been proposed over time

to produce a comprehensible and reduced set of

rules that improve the clarity of the output. In this

sense, evolutionary algorithms24 have achieved ex-

cellent results due to their ability to look for optimal

solutions according to a single or a set of quality

measures. Some additional studies based on evo-

lutionary computation aimed at combining a set of

quality measures by assigning different weights to

each one16 or by finding good compromises among

them14,20. At this point and even when many ex-

isting models are conducted at using different qual-

ity measures on different ways, it is still hard to

find a general and unbiased study that helps users

in finding which measure (or pair of them) should be

used. The aim of this paper is therefore to review the

most widely used quality measures, describing and

analyzing their properties, and providing the reader

with a general knowledge of their behaviour to ease

the process of selecting one or more measures when

tackling an association rule mining problem. The

strong point of this paper is the empirical analysis

carried out, including twenty metrics, thirty datasets,

and a diverse set of evolutionary algorithms that op-

timize a single measure12,13,15,20,25 or multiple met-

rics at time6,27. An exhaustive search approach9 is

also considered to validate the degree of optimiza-

tion achieved by the evolutionary algorithms. The

final aim of this experimental analysis is to describe

which quality measures are related (or unrelated) so

they should (or should not) be used at time.

Results obtained in the experimental study pro-

vide a series of recomendations according to which

quality measures are easily optimized, what set of

measures should be used to optimize the whole set

of metrics, or which measures are hardly optimized

by any other. This information is essential for any

researcher in the design of an optimal evolutionary

algorithm for mining association rules. As an ex-

ample of knowledge extracted by this analysis, it

is described that any algorithm that considers Sup-

port/Confidence as measures to be optimized should

avoid a set of metrics (Coverage, Prevalence, CF,

Laplace, ECR and Zhang) since they are also opti-

mized at time. It provides a really useful infoma-

tion since there is no sense to choose any of the

aforementioned metrics when Support/Confidence

are being optimized. It is our understanding that the

knowledge provided in this study is of high interest

for future researches on the field, determining which

quality measures are more general and which one (or

pair of them) should be used if other different met-

rics are required to be optimized.

The remainder of the paper is as follows. Sec-

tion 2 overviews the most relevant quality measures

used in association rule mining, providing formal

definitions (Section 2.1), analysing the general prop-

erties for any quality measure (Section 2.2), and de-

termining how the most widely used quality mea-

sures are related (Section 2.3). Section 3 provides

an extensive experimental study about the behaviour

of a set of twenty quality measures and considering

thirty datasets. Finally, Section 4 summarizes the

conclusions drawn from the conducted analysis.

2. Quality measures

The aim of this section is to serve as a prelimi-

nar analysis, providing a general overview of the

most well-known quality measures in association

rule mining. In this regard, some formal definitions

for the existing quality measures are first introduced.

Then, some general properties that should satisfy

any good quality measure are described. Finally, the

two most widespread metrics (Support and Confi-

dence) in the association rule mining field are math-

ematically analysed, describing how they are related

to the most widely used quality measures.

2.1. Formal definitions

The mining of valuable and previously unknown as-

sociation rules in a database might produce a large

amount of different solutions, giving rise to a hard

process of analysing each single rule. Besides, a

large percentage of this set of solutions may be unin-

teresting and useless, being the user responsible for

reducing the output by means of a process of quan-

tifying the association rules24. To solve this issue,
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different quality measures (see Table 1) based on

the analysis of the statistical properties of data have

been proposed by different authors4,21.

Table 1. Quality measures and range of feasible values.

Name Equation Feasible values

Support pxy [0, 1]

Coverage px [0, 1]

Prevalence py [0, 1]

Confidence
pxy

px

[0, 1]

Lift
pxy

px × py

[0, n]

Cosine
pxy√

px × py

[0, 1]

Leverage pxy − (px × py) [-0.25, 0.25]

Conviction
px × py

pxy

[
1

n
,

n

4
]

CC
pxy

px

− py [-1, 1-
1

n
]

CF



























pxy

px

− py

py

i f (
pxy

px

− py)> 0

pxy

px

− py

py

Otherwise

[-1, 1]

Recall
pxy

py

[0, 1]

Laplace
pxy ×n+1

px ×n+2
[

1

nx +2
,

nx +1

nx +2
]

Pearson
pxy − (px × py)√
px × py × px × py

[− nx ×ny

nx ×ny

,
nx ×ny

nx ×ny

]

IG log(
pxy

px × py

) [log(
1

n
), log(n)]

Sebag
pxy

pxy

[0, n−1]

LC
pxy − pxy

py

[−(n−1), 1− 1

n
]

ECR 1− pxy

py

[2−n, 1]

Zhang
pxy − (px × py)

Max{pxy × px, pxy × pxy}
[-1, 1]

Netconf
pxy − (px × py)

px × (1− px)
[-1, 1]

Yule’sQ
pxy × pxy − pxy × pxy

pxy × pxy + pxy × pxy

[-1, 1]

The principal element in association rule mining

is the pattern P, which is defined as a subset of the

whole set of items I = {i1, i2, ..., il} in a dataset Ω,

i.e. P = {i j, ..., ik} ⊆ I,1 6 j,k 6 l. An associa-

tion rule is an implication of the form X → Y that

is formed from P in such a way that the antecedent

X is defined as X ⊂ P, whereas the consequent Y

is denoted as Y = P \X . Any existing quality mea-

sure in this field is based on the number of transac-

tions in the dataset satisfied by the rule (denoted as

nxy), the antecedent (nx), and the consequent (ny).

All these values (nxy, nx and ny) can also be rep-

resented as relative frequencies, by considering the

number n of transactions in data, in per unit basis:

pxy = nxy/n; pxy = nxy/n; pxy = nxy/n; pxy = nxy/n;

px = pxy + pxy = 1− px; py = pxy + pxy = 1− py;

px = pxy+ pxy = 1− px; and py = pxy+ pxy = 1− py.

Support2 is the most well-known quality mea-

sure in association rule mining. It is defined as the

relative frequency of occurrence of an association

rule X → Y , i.e. Support(X → Y ) ≡ pxy. Symme-

try is a major feature of this quality measure, i.e.

Support(X →Y ) = Support(Y → X), so it does not

quantify any implication between the antecedent X

and the consequent Y . Additionally, the minimum

and maximum values for this quality measure are 0

and 1, respectively. However, an association rule is

considered as misleading if one of these two values

is obtained. Thus, in situations where pxy = 1, then

the rule is useless since it appears in any transaction

so it does not provide any new knowledge about the

data properties. On the contrary, if pxy = 0, then the

rule does not represent any transaction so it is con-

sidered as misleading. This last situation might be

caused by the two following issues: (a) px = 0 or

py = 0, so both X and Y do not have any transac-

tion satisfied in common; (b) either the antecedent

X and the consequent Y satisfy up to 50% of the

transactions within the dataset, i.e. px 6 0.5 and

py 6 0.5, but they do not satisfy any transaction

in common. An important property of the Support

quality measure is that it is always greater than 0

when px + py > 1, and its maximum value is always

equal to the minimum value among px and py, i.e.

pxy 6 Min{px, py}.

Coverage and Prevalence21 quality measures

are defined as the Support on the basis of the an-

tecedent X or the consequent Y , respectively. Cov-

erage, defined as px, determines the percentage of

transactions where the antecedent X appears. On

the contrary, the Prevalence quality measure, i.e. py,

determines the percentage of transactions where the

consequent Y appears. It is noteworthy that, simi-

larly to Support, these two quality measures operate

 

___________________________________________________________________________________________________________

61

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 59-78



J.M. Luna, et al. / Optimization of ARM measures

in the range [0,1].

Confidence is a quality measure that appears in

most of the problems where the mining of associa-

tion between patterns is a dare26. This quality qual-

ity measure is defined as the percentage of transac-

tions in a dataset containing X and, at the same time,

also Y . In a formal way, this quality measure can be

expressed as Con f idence(X → Y ) = pxy/px, or as

an estimate of the conditional probability P(Y |X). It

should be highlight that Confidence quality measure

operates on the interval [0,1] and it is not symmetric,

i.e. Con f idence(X → Y ) 6= Con f idence(Y → X),
denoting implication between X and Y . However,

it is possible to obtain that Con f idence(X → Y ) =
Con f idence(Y → X) in situations where px = py re-

gardless the pxy value.

Lift (also called interest)5 is one of the many

alternative quality measures proposed by different

authors. This quality measure calculates the rela-

tionship between the Confidence of the rule and its

Prevalence. As shown in Table 1, Lift quality mea-

sure is described as Li f t(X → Y )= pxy/(px × py),
or also as Li f t(X → Y ) =Con f idence(X → Y )/py.

This measure calculates a ratio between the joint

probability of two observing variables (antecedent

X and consequent Y ) with respect to their probabil-

ities under the independence assumption. Lift may

produce invalid results when px or py is equal to 0,

i.e. Li f t(X → Y ) = 0/0. Otherwise, Lift is defined

within the range [0,n] and it is symmetric. The min-

imum value is obtained when pxy = 0 and px 6= 0

and/or py 6= 0, whereas the maximum value is ob-

tained when pxy = px = py = 1/n (only one trans-

action is satisfied within the dataset). This measure

may also be defined as a correlation measure, cal-

culating the degree of dependence between the an-

tecedent and consequent of a rule. Lift values lower

than 1 determine a negative dependence (positive de-

pendence for values greater than 1), whereas a value

of 1 stands for independence.

Cosine (also called IS)21 is a quality met-

ric derived from Lift. Cosine is formally de-

fined as Cosine(X → Y ) =
√

Li f t ×Support =
pxy/

√
px × py. It is similar to Lift measure with the

difference of the square root which is taken on the

product of the probabilities px and py (denominator

of the equation). This square root means that Cosine

is possible only influenced by px, py and pxy, but not

by the total number of transactions |Ω|. This quality

measure ranges the values in [0,1], since it is defined

as the geometric mean of Confidence, which also

ranges in the same space of values. Finally, it should

be highlight that Cosine quality measure includes

the following properties: (a) it takes into account

both the interestingness and the significance of an

association rule since it contains two important qual-

ity measures in this sense, i.e. Support and Lift; (b)
it is equivalent to the geometric mean of Confidence,

i.e. Cosine =
√

Li f t ×Support=
√

p2
xy/(px × py),

which can also be described as Cosine(X → Y ) =
√

Con f idence(X → Y )×Con f idence(Y → X); (c)
similarly to Lift, Cosine does not quantify any im-

plication between the antecedent X and consequent

Y , i.e. Cosine(X → Y ) =Cosine(Y → X).

Leverage was proposed by Piatetsky-Shapiro19

as a quality measure quite similar to Lift. Leverage

determines how different is the co-occurrence of the

antecedent X and the consequent Y of a rule from

independence10. This quality measure, also known

as novelty3, is formally defined as Leverage(X →
Y )=pxy − (px × py), and it takes values in the range

[−0.25,0.25], denoting a zero value in those cases

where the antecedent X and consequent Y are sta-

tistically independent. Finally, similarly to Sup-

port, Lift and Cosine quality measures, Leverage

also includes symmetry as an important property, i.e.

Leverage(X → Y ) = Leverage(Y → X).

Conviction5 was proposed as a way of repre-

senting the degree of implication of a rule, and

values far from the unity indicate interesting rules.

This quality measure (see Table 1) is formally de-

fined as Conviction(X → Y )=(px × py)/pxy, which

can also be defined as Conviction(X → Y )=(px −
(px× py))/(px− pxy). Conviction takes values in the

range [1/n,n/4]. Whereas lower bound is reached

when px = py = pxy since px = 0 produces an in-

determination, the upper bound is reached when

px = py = 0.5 and pxy = 1/n.

Centered Confidence (CC)10, also called rel-

ative accuracy or gain is formally defined as

gain(X → Y ) = Con f idence(X → Y ) − py). As

shown in Table 1, the centered Confidence measure
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produces values in the range [−1,1 − 1/n], being

impossible to produce a value equal to unity. Note

that the maximum feasible value is achieve when py

is minimum and Con f idence(X → Y ) is maximum.

The minimum feasible value of py is py = 1/n since

0 values does not produce maximum Confidence

values, i.e. py = 0 = pxy so Con f idence(X → Y ) =
0. Hence, the maximum value for the centered Con-

fidence or gain is equal to gain(X → Y ) = 1− 1/n,

when pxy = px and py = 1/n.

Other quality measures have been proposed

by many authors as interesting quality measures to

be considered. Even when almost all the exist-

ing works in the association rule mining field in-

clude, at least, one of the aforementioned quality

measures, there are many other additional measures

that might be used in different scenarios (see Ta-

ble 1) including the following: certainty factor (CF)4

is defined as the gain normalized into the inter-

val [−1,1], i.e. CF(X → Y ) = gain(X → Y )/py if

gain(X → Y ) > 0), and CF(X → Y ) = gain(X →
Y )/py if gain(X → Y ) < 0); Recall8 (Recall(X →
Y ) = pxy/py) is denoted as the percentage of trans-

actions in a database containing Y and, at the same

time, also X ; Laplace measure8 is formally stated

as Laplace(X → Y ) = (nxy +1)/(nx +2) and it can

be transformed to (pxy × n+ 1)/(px × n+ 2); pear-

son’s correlation coefficient11, which is defined as

(pxy − (px × py))/
√

px × py × px × py; information

gain (IG)11, denoted as log(pxy/(px × py)) and tak-

ing values in the range [log(1/n), log(n)]; Sebag

and Schoenauer11 proposed a quality measure de-

fined as pxy/pxy=pxy/(px − pxy); least contradic-

tion (LC)8, which is formulated as (pxy − pxy)/py;

example and counterexample rate (ECR)8, defined

as 1 − (pxy/py); the metric proposed by Zhang et

al.26 and denoted as (pxy − (px × py))/Max{pxy ×
px, pxy × pxy}; netconf22 described as a measure to

estimate the strength of an association rule, and de-

fined as (pxy−(px× py))/(px×(1− px)); yule’sQ22

as (pxy × pxy − pxy × pxy)/(pxy × pxy + pxy × pxy).

2.2. Properties of quality measures

As previously described, many objective quality

measures have been proposed in the literature to

quantify the interest of the knowledge extracted.

The analysis of these measures is not trivial and

many different and opposed properties have been

considered by different researchers, denoting that

these properties can be divided into two main dif-

ferent sets, i.e. the one proposed by Piatetsky-

Shapiro19 and the one of Tan et al.22.

Piatetsky-Shapiro19 suggested that any quality

measure M defined to quantify the interest of an as-

sociation rule should verify three specific properties

in order to separate strong and weak rules so high

and low values can be assigned, respectively. These

properties are described below and Table 2 sum-

marizes which quality measure satisfies each of the

three properties. The first property (P1) states that

an association rule which occurs by chance has zero

interest value, that is, it is not interesting. P1 claims

that any quality measure M should test whether X

and Y are statistically independent, denoting that

M (X → Y ) should be 0 when pxy = px × py. Prop-

erty number two (P2) states that the greater the Sup-

port, the greater the interestingness value when the

Support for X and Y is fixed, that is, the more pos-

itive correlation X and Y have, the more interesting

the rule. Here, M (X → Y ) monotonically increases

with pxy when px and py remain the same. The third

property (P3) states that if the Supports for the rule

and Y (or X) are fixed, the smaller the Support for X

(or Y ), the more interesting the pattern. Considering

P3, M (X → Y ) monotonically decreases with px or

with py when other parameters remain the same, i.e.

pxy and px or py remain unchanged.

Tan et al.22 proposed a different set of properties

based on operations for 2x2 contingency tables. The

five proposed properties are described below and

all the aforementioned quality measures have been

tested regarding these five properties (see Table 2).

The first property (O1) is related to the symmetry

under variable permutation. In this sense, a mea-

sure M satisfies this property if and only if M (X →
Y ) = M (Y → X). The second property (O2) deter-

mines invariance when we scale any row or column

by a positive factor. Property number three (O3) de-

scribes the antisymmetry under row/column permu-

tation. A normalized measure M is antisymmetric

under the row permutation operation if M (T R)=-

M (T ), considering T as the table of frequencies
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and T R as the table of frequencies with a permuta-

tion on the rows; whereas the measure M is anti-

symmetric under the column permutation operation

if M (TC)=-M (T ), considering TC as the table of

frequencies with a permutation on the columns. Ac-

cording to the authors22 measures that are symmet-

ric under the row and column permutation opera-

tions do not distinguish well between positive and

negative correlations so it should be careful when

using them to evaluate the interestingness of a pat-

tern. Analysing the O3 property, it is stated that

M (X → Y ) = −M (X → ¬Y ) = −M (¬X → Y ),
so it means that the measure can identify both pos-

itive and negative correlations. Property O4 states

that M (X → Y ) = M (¬X → ¬Y ), so property O3

is in fact a special case of this one, i.e. O4. Note that

when permuting the rows (columns) causes the sign

to change once and permuting the columns (rows)

causes it to change again, so the overall result of per-

muting both rows and columns will be to leave the

sign unchanged. The fifth property (O5) states that

the measure M should only take into account the

number of records containing X , Y , or both. O5 is a

null invariance property, denoting that if we change

just the values of pxy, the measure remains the same.

As a summary, Table 2 shows that there are

six quality measures (Leverage, centered Confi-

dence, certainty factor, pearson, information gain

and yule’sQ) that satisfy the three properties pro-

posed by Piatetsky-Shapiro19. According to the set

of properties provided by Tan et al.22 there are three

measures (Leverage, pearson and yule’sQ) that sat-

isfy a higher number of properties. However, it is

noteworthy that not all the properties are required to

be satisfied. For instance, in association rule min-

ing, it is of high interest to determine the implica-

tion, not the co-occurrence, so property O1 is not

desirable. Note that a measure M satisfies O1 if

and only if M (X →Y ) = M (Y → X). Hence, even

when Leverage quality measure seems to be a really

good metric (it satisfies almost all the properties), it

does not provide implication (Leverage(X → Y ) =
Leverage(Y →X)) so it should be used together with

other quality measure18 that provide implication (O1

property should not be satisfied), e.g. Confidence.

Table 2. Summary of properties satisfied by a set of different
objective quality measures.

Piatetsky-Shapiro19 Tan et al.22

Measure P1 P2 P3 O1 O2 O3 O4 O5

Support No Yes No Yes No No No No

Coverage No No No No No No No No

Prevalence No No No No No No No No

Confidence No Yes No No No No No Yes

Lift No Yes Yes Yes No No No No

Cosine No Yes Yes Yes No No No Yes

Leverage Yes Yes Yes Yes No Yes Yes No

Conviction No Yes No No No No Yes No

CC Yes Yes Yes No No No No No

CF Yes Yes Yes No No No Yes No

Recall No Yes No No No No No No

Laplace No Yes No No No No No No

Pearson Yes Yes Yes Yes No Yes Yes No

IG Yes Yes Yes Yes No No No Yes

Sebag No Yes Yes No No No No Yes

LC No Yes Yes No No No No Yes

ECR No Yes Yes No No No No Yes

Zhang Yes No No No No No No No

Netconf No Yes Yes No No No No Yes

Yule’sQ Yes Yes Yes Yes Yes Yes Yes No

2.3. Relationships between the most well-known

quality measures

The analysis of existing quality measures, which

score the interest of any association rule, is cor-

nerstone to ease the process of choosing the right

metric. In this regard, many different quality mea-

sures have been proposed along the years, but the

simultaneous optimization of all measures is com-

plex and might lead to poor results. The selection

of which quality measure should be optimized is of

high importance, determining which kind of rules

will be extracted. Additionally, to analyse the exist-

ing relationships among measures is essential since

the maximization of a specific measure could imply

the optimization of many more in the best case sce-

nario. With this aim, and considering Support and

Confidence as the basic pillars of any good qual-

ity measure2, it is of high interest to mathematically

describe the relationship between different metrics

and Support/Confidence. Here, the most widespread

quality measures (Support, Confidence, Lift, Co-

sine, Leverage and Conviction) in the association

rule mining field24 are considered.

Support/Confidence. First, it is appealing to de-

termine the existing relationship between Support

and Confidence quality measures (see Figure 1).
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Note that the shaded region illustrates the feasible

area in which any association rule can obtain the val-

ues. In order to understand the aforementioned rela-

tionship, it should be noted that pxy 6 Min{px, py},

and pxy 6 px. Thus, given a value pxy, then px will

have a value in the range px ∈ [pxy,1].

support

0.0

0.4

0.4 0.6 0.8

1.0

1.0

0.8

0.6

0.2

0.2

co
n

fi
d

e
n

ce

Fig. 1. Relationship between Support and Confidence.

According to the previous information, pxy/px >

pxy so it is possible to assert that Con f idence(X →
Y ) is always greater or equal to Support(X → Y ).

As shown in Figure 1, it is not possible to obtain

a high Support value and a low Confidence value

at the same time, and this information is essential

to be known beforehand. Hence, this analysis re-

veals that a high co-occurrence (high values of pxy)

implies a high implication (high values of pxy/px),

whereas a high implication does not imply a high

co-occurrence.

Lift vs Support/Confidence. As it is illustrated

in Figure 2, for any Support value pxy and consider-

ing Lift values lower than unity, then Lift increases

when Support also does. On the contrary, when con-

sidering Lift values greater than unity, then Lift in-

creases when Support decreases. In fact, high Sup-

port values tend to produce Lift values around unity,

implying an independence between antecedent and

consequent of the rule. Finally, it should be noted

that Support values equal to unity implies Lift val-

ues close to unity, but the opposite is not necessarily

true. This information is essential to be known in ad-

vance, so any user or expert knows that it is not pos-

sible to optimize both Support and Lift (high values)

at time.
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Fig. 2. Relationship between Lift and Support.
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Fig. 3. Relationship between Lift and Confidence.

Analysing the existing relationship between

Confidence (pxy/px) and Lift (pxy/(px × py)), it is

possible to define Lift on the basis of Confidence as

Li f t(X → Y )= Con f idence(X → Y )/py. Lift qual-

ity measure produces maximum values when py is

minimum, i.e. py = 1/n, so the maximum values

for this quality measure is obtained as Li f tmax(X →
Y )= Con f idence(X → Y )× n. On the contrary,

Lift produces minimum values when py is maxi-

mum, i.e. py = 1, so the minimum values for Lift

quality measure is obtained as Li f tmax(X → Y )=
Con f idence(X → Y ). This relationship is shown in

Figure 3. As it is illustrated, for maximum Confi-

dence values, i.e. Con f idence(X →Y ) = 1, then the

Lift value will be in the range [1,n]. This analysis

reveals that low Confidence values produce low Lift

values (lower than unity), denoting a negative corre-

lation. On the contrary, it is easy to obtain a positive

correlation (positive Lift values) when Confidence
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produces high values (close to unity).

Cosine vs Cupport/Confidence. Comparing

Support and Cosine values (see Figure 4) according

to their definitions (see Table 1), it is obtained that

any Support value (pxy) may produce maximum Co-

sine values, and these maximum values are obtained

in situations where pxy = px = py.
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Fig. 4. Relationship between Support and Cosine.
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Fig. 5. Relationship between Confidence and Cosine.

On the contrary, minimum Cosine values are ob-

tained when pxy = px (or pxy = py) and py = 1 (or

px = 1). Both Support and Cosine behave almost

equal to Support and Confidence. In this sense, it

is not possible to obtain a high Support value and

a low Cosine value at the same time (see Figure 4).

This analysis reveals that high Support values imply

high Cosine values, but the opposite is not true. Fi-

nally, comparing Cosine with Confidence (the fea-

sible area is shown in Figure 5), it is obtained that

almost any Confidence value may produce any Co-

sine value. Hence, both measures can be mini-

mized/maximized at once.

Leverage vs Support/Confidence. Leverage,

defined as Leverage(X → Y ) = pxy − (px × py), de-

termines how different is the co-occurrence of the

antecedent X and the consequent Y of a rule from

independence10. Similarly to the previous analy-

ses, Figure 6 graphically shows how Support and

Leverage are related, denoting that any associa-

tion rule will obtain a Leverage value in the range

[−0.25,0.25] and high Support values tend to pro-

duce Leverage values close to 0. The upper bound-

ary of the feasible area is obtained when pxy =
px = py, so considering Support(X → Y ) = pxy the

upper boundary is defined as Leverage(X → Y ) =
Support(X → Y )− Support2(X → Y ). Continuing

the analysis, it is obtained that low Support values

tend to produce Leverage values lower than 0.

support

-0.25

0.4 0.6 0.8 1.0

-0.15

0.2

le
v
e
ra

g
e

-0.05

0.05

0.15

0.25

Fig. 6. Relationship between Support and Leverage.

Finally, considering how Confidence is related to

Leverage (see Figure 7), it is shown that high Con-

fidence values tend to produce positive values for

the Leverage quality measure. On the other hand,

low Confidence values tend to produce negative val-

ues for Leverage. It is interesting to know before-

hand that extremely high Confidence values can-

not produce negative Leverage values, whereas ex-

tremely low Confidence values cannot produce pos-

itive Leverage values.
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Fig. 7. Relationship between Confidence and Leverage.

Conviction vs Support/Confidence. As shown

in Figure 8, Support and Conviction are related

in such a way that the highest Conviction values

are obtained for intermediate values of Support.

Zero Support values (pxy = 0) imply Conviction

values defined as Conviction(X → Y )=(px − (px ×
py))/px=1 − py. Hence, pxy = 0 implies a Con-

viction value in the range [0,1]. For py = 1 then

Conviction(X → Y ) = 0, whereas for py = 0 then

Conviction(X → Y ) = 1. On the contrary, maxi-

mum Support values, i.e. pxy = 1, produces in-

valid Conviction results, since pxy = px = py = 1 and

Conviction(X → Y ) = 0/0. Hence, it is required to

know that no algorithm is able to obtain rules with

huge Support values and huge Conviction values re-

gardless the dataset used or the application field.
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Fig. 8. Relationship between Support and Conviction.

Considering now the relationship between Con-

fidence and Conviction (see Figure 9), maximum

Confidence values (pxy/px = 1) produce invalid re-

sults since pxy = px so Conviction(X → Y ) = (1−
pxy)/0. Finally, it should be noted that minimum

Confidence values (pxy/px = 0, pxy = 0 and px 6= 1)

implies a Conviction value in the range [0,1]. From

this analysis, it is revealed that no association rule

can produce a low Confidence value and a high Con-

viction value at time.
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Fig. 9. Relationship between Confidence and Conviction.

3. Experimental study

The aim of this experimental study is to analyse a

wide set of quality measures in the field of associ-

ation rule mining, providing the reader with a gen-

eral knowledge of their behaviour to ease the pro-

cess of selecting one or more measures when tack-

ling an association rule mining problem. This em-

pirical analysis is a strong point of this paper, in-

cluding twenty metrics, thirty datasets, and a diverse

set of evolutionary algorithms that optimize a single

measure12,13,15,20,25 or multiple metrics at time6,27).

Here, the ultimate goal is to provide an extensive

analysis about how existing quality measures in the

association rule mining field are related from differ-

ent points of view, describing the effects of choosing

different metrics as functions to be optimized by any

evolutionary algorithm, that is, how values of other

measures increase when the values of specific mea-

sure are maximized.

The experimental study is performed as follows.

First, the collection of datasets used to carry out

the experimental analysis is described. Then, the

methodology used to achieve an optimization on dif-
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ferent quality measures is explained in depth. Fi-

nally, the analysis of the quality measures by con-

sidering either single-objective and multi-objective

optimization methods is performed.

3.1. Datasets

The experimental analysis has been carried out by

considering a set of 30 varied and well-known

datasets (see Table 3), which are publicly available

at http://keel.es, as well as twenty quality mea-

sures widely used in the association rule mining

field. Datasets were selected to be as varied as pos-

sible, including either continuous and discrete at-

tributes, and comprising a diverse number of trans-

actions. This diversity is a keystone since each qual-

ity measure may differently behave from dataset to

dataset, so the higher the number of datasets, the

more close to the reality are the results.

Table 3. Datasets (alphabetically ordered) used in the experi-
mental study.

Dataset #
A

tt
ri

b
u
te

s

#
D

is
cr

et
e

#C
o
n
ti

n
u
o
u
s

#
T

ra
n
sa

ct
io

n
s

AnkaraWeather 10 0 10 1,609

Automobile 8 0 8 392

Bolts 8 0 8 40

Car 6 6 0 1,728

Chess 36 36 0 3,196

Cmc 10 3 7 1,730

Flare 12 12 0 1,066

German 20 13 7 1,000

IzmirWeather 10 0 10 1,461

Marketing 13 13 0 8,993

Mushrooms 22 22 0 8,124

Nursery 8 8 0 12,960

Optdigits 64 0 64 5,620

Pollution 16 0 16 60

Ring 20 0 20 7,400

Satimage 36 0 36 6,435

Soybean 36 36 0 683

Stock 10 0 10 950

Stulong 5 0 5 1,417

Texture 40 0 40 5,500

Thyroid 21 0 21 7,200

Tic-tac-toe 9 9 0 958

Treasury 16 0 16 1,049

Twonorm 20 0 20 7,400

Vote 16 16 0 435

Vowel 14 4 10 990

WDatabaseBC 11 1 10 683

Weather 5 5 0 14

WPBC 34 1 33 194

Zoo 17 16 1 101

As shown in Table 3, the selected datasets com-

prise a number of attributes that varies from 5 to

64, whereas the number of transactions ranges from

14 to 12,960. Additionally, the datasets considered

in this experimental analysis comprise either dis-

crete and continuous attributes, and the proportion

of discrete/continuous attributes varies from dataset

to dataset.

3.2. Methodology

The huge number of existing objective quality mea-

sures prompts users to carry out an arduous process

of choosing the most suitable metrics to be max-

imized by any algorithm, either exhaustive search

or evolutionary methods. In order to get an idea

of the role played by each quality measure in this

optimization process, a deep analysis is required to

determine how each measure behaves when others

are optimized. In this regard, the experimental study

requires to know beforehand the maximum feasible

value for each dataset and quality measure. The pre-

vious knowledge of these maximum values eases the

process of testing whether a specific quality measure

is being optimized or not. It is noteworthy that the

maximum value may be completely different from

dataset to dataset depending on the data distribution

and, therefore, sub-ranges of the ranges analysed in

Table 1 should be considered.

Table 4 contains the maximum values for each

dataset and quality measure, and it will serve as

baseline for the experimental study performed in this

work. Any value shown in Table 4 was obtained af-

ter running different association rule mining algo-

rithms on each dataset, and keeping the maximum

value obtained for each quality measure. In those

datasets that only include discrete attributes, then a

brute force algorithm9 was applied, which extracts

any existing association rule, so the maximum value

for each dataset can be surely obtained. However,

this kind of algorithms cannot be applied to datasets

comprising continuous attributes due to the huge

search space. For these specific datasets, the extrac-

tion of the maximum value for each quality measure

is not a trivial issue since each continuous attribute

can be split into an undetermined number of bins.

Hence, the same brute force algorithm9 was applied
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Table 4. Maximum feasible values found for each dataset and
each quality measure.

Dataset S
u
p
p
o
rt

C
o
v
er

ag
e

P
re

v
al

en
ce

C
o
n
fi

d
en

ce

L
if

t

C
o
si

n
e

L
ev

er
ag

e

C
o
n
v
ic

ti
o
n

C
C

C
F

R
ec

al
l

L
ap

la
ce

P
ea

rs
o
n

IG S
eb

ag

L
C

E
C

R

Z
h
an

g

N
et

co
n
f

Y
u
le

’s
Q

AnkaraWeather 1.00 1.00 1.00 1.00 1,609.00 1.00 0.23 302.70 1.00 1.00 1.00 1.00 1.00 7.38 1,597.80 1.00 1.00 1.00 1.00 1.00

Automobile 1.00 1.00 1.00 1.00 392.00 1.00 0.24 91.60 1.00 1.00 1.00 1.00 0.98 5.97 377.20 1.00 1.00 1.00 1.00 1.00

Bolts 1.00 1.00 1.00 1.00 40.00 1.00 0.18 7.80 0.98 1.00 1.00 0.98 1.00 3.69 0.00 1.00 1.00 1.00 1.00 1.00

Car 0.11 0.33 0.33 0.33 1.00 0.33 0.00 1.00 0.00 0.00 0.33 0.34 0.00 0.00 0.50 −0.02 −1.00 0.00 0.00 0.35

Chess 1.00 1.00 1.00 1.00 2,876.40 1.00 0.18 429.50 1.00 1.00 1.00 1.00 0.96 7.93 3,184.30 1.00 1.00 1.00 1.00 1.00

Cmc 1.00 1.00 1.00 1.00 1,473.00 1.00 0.14 60.80 1.00 1.00 1.00 1.00 0.65 7.30 1,472.00 1.00 1.00 1.00 1.00 1.00

Flare 0.97 1.00 1.00 1.00 1,066.00 1.00 0.21 157.60 1.00 1.00 1.00 1.00 1.00 6.97 1,038.00 1.00 1.00 1.00 1.00 0.99

German 1.00 1.00 1.00 1.00 1,000.00 1.00 0.14 61.50 1.00 1.00 1.00 1.00 1.00 6.91 896.20 1.00 1.00 1.00 1.00 1.00

IzmirWeather 1.00 1.00 1.00 1.00 1,461.00 1.00 0.23 300.90 1.00 1.00 1.00 1.00 0.97 7.29 1,457.90 1.00 1.00 1.00 1.00 1.00

Marketing 1.00 1.00 1.00 1.00 6,876.00 1.00 0.22 423.30 1.00 1.00 1.00 1.00 0.95 8.84 0.00 1.00 1.00 1.00 1.00 1.00

Mushrooms 0.98 1.00 1.00 1.00 1,015.50 1.00 0.21 172.10 1.00 1.00 1.00 1.00 1.00 6.92 1,547.90 1.00 1.00 1.00 1.00 1.00

Nursery 0.33 0.50 0.50 1.00 240.00 1.00 0.22 66.00 1.00 1.00 1.00 1.00 1.00 5.48 0.00 1.00 1.00 1.00 1.00 0.50

Optdigits 1.00 1.00 1.00 1.00 4,215.00 1.00 0.13 82.70 1.00 1.00 1.00 1.00 0.94 8.22 0.00 1.00 1.00 1.00 1.00 1.00

Pollution 0.95 0.97 0.97 1.00 60.00 1.00 0.19 10.40 0.98 1.00 1.00 0.98 1.00 4.09 57.00 1.00 1.00 1.00 1.00 0.94

Ring 1.00 1.00 1.00 1.00 7,400.00 1.00 0.10 15.30 1.00 1.00 1.00 1.00 0.50 8.91 0.00 1.00 1.00 1.00 1.00 1.00

Satimage 1.00 1.00 1.00 1.00 5,577.00 1.00 0.21 705.40 1.00 1.00 1.00 1.00 0.91 8.13 0.00 1.00 1.00 1.00 1.00 1.00

Soybean 0.91 0.94 0.94 1.00 683.00 1.00 0.24 152.40 1.00 1.00 1.00 1.00 1.00 6.25 480.40 1.00 1.00 1.00 1.00 0.89

Stock 0.99 1.00 1.00 1.00 950.00 1.00 0.24 194.20 1.00 1.00 1.00 1.00 0.98 6.86 911.60 0.99 1.00 1.00 1.00 0.99

Stulong 1.00 1.00 1.00 1.00 1,417.00 1.00 0.14 73.70 1.00 1.00 1.00 1.00 1.00 7.26 1,415.20 1.00 1.00 1.00 1.00 1.00

Texture 1.00 1.00 1.00 1.00 5,500.00 1.00 0.23 825.90 1.00 1.00 1.00 1.00 1.00 8.61 0.00 1.00 1.00 1.00 1.00 1.00

Thyroid 1.00 1.00 1.00 1.00 7,200.00 1.00 0.14 46.70 1.00 1.00 1.00 1.00 1.00 8.88 0.00 1.00 1.00 1.00 1.00 1.00

Tic-tac-toe 0.38 0.65 0.65 1.00 958.00 0.68 0.08 13.50 0.99 1.00 1.00 0.99 0.48 6.86 0.00 0.44 1.00 1.00 0.99 0.59

Treasury 0.99 0.99 0.99 1.00 1,049.00 1.00 0.24 225.50 1.00 1.00 1.00 1.00 0.98 6.96 967.80 0.99 1.00 1.00 1.00 0.99

Twonorm 1.00 1.00 1.00 1.00 7,400.00 1.00 0.06 15.90 1.00 1.00 1.00 1.00 0.88 8.91 0.00 1.00 1.00 1.00 1.00 1.00

Vote 0.56 0.63 0.63 1.00 435.00 0.96 0.22 93.10 1.00 1.00 1.00 1.00 0.91 6.08 210.00 0.95 1.00 1.00 1.00 0.60

Vowel 1.00 1.00 1.00 1.00 990.00 1.00 0.14 55.10 1.00 1.00 1.00 1.00 0.90 6.76 987.80 1.00 1.00 1.00 1.00 1.00

WDatabaseBC 1.00 1.00 1.00 1.00 683.00 1.00 0.20 102.60 1.00 1.00 1.00 1.00 0.87 6.53 579.00 1.00 1.00 1.00 1.00 1.00

Weather 0.43 0.64 0.64 1.00 7.00 1.00 0.14 2.60 0.86 1.00 1.00 0.83 1.00 1.95 6.00 1.00 1.00 1.00 1.00 0.61

WPBC 0.99 0.99 1.00 1.00 194.00 1.00 0.24 41.40 0.99 1.00 1.00 0.99 1.00 5.27 190.60 1.00 1.00 1.00 1.00 0.99

Zoo 0.92 1.00 1.00 1.00 101.00 1.00 0.24 24.80 0.99 1.00 1.00 0.99 1.00 4.62 74.00 1.00 1.00 1.00 1.00 1.00

by transforming continuous attributes into a varied

number of bins (equal-width and equal-frequency

binning methods were applied, considering 5, 10,

15, 20, 25 and 30 bins). Additionally, different evo-

lutionary algorithms (NICGAR15, EARMGA-A25,

ARMMGA20, QuantG3P12 and G3PARM13) that

work with continuous attributes without a previous

transformation were also considered. These algo-

rithms, which were taken from KEEL23 software

tool, were specifically designed to work with contin-

uous attributes and they have achieved a really good

performance24. As a result, the values shown in Ta-

ble 4 are the maximum values obtained after apply-

ing all the aforementioned algorithms.

The methodology followed in this work is based

on checking whether each quality measure is being

optimized or not. We determine that a specific qual-

ity measure is being optimized if the results for this

measure is close to the maximum value described

in Table 4. For instance, let us consider the ankara

weather dataset and a sample rule having the val-

ues for Support and Confidence equal to 0.90 and

0.92, respectively. In such a situation, it is possible

to assert that both quality measures are optimized

at time since the maximum values for both Support

and Confidence measures are 1.00. Let us also con-

sider now a sample rule on dataset nursery having

the values for Support and Confidence equal to 0.32

and 0.98, respectively. In this situation, it is also

possible to assert that the rule optimizes both quality
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measures at time since the maximum Support value

is 0.33, and 1.00 for the Confidence metric for this

specific dataset. Therefore, it demonstrates that the

optimization testing should be carried out by consid-

ering the maximum values for each specific dataset

and not only the maximum feasible values mathe-

matically described in Table 2.

The empirical analysis is twofold: single and

multiple objective optimization. As for single-

objective optimization, the aim is to determine a sin-

gle measure as objective to be optimized, and to test

how the rest of measures behave. The process is re-

peated by each single quality measure. An exhaus-

tive search algorithm9 and a set of evolutionary algo-

rithms (NICGAR15, EARMGA-A25, ARMMGA20,

QuantG3P12 and G3PARM13) freely available in the

KEEL23 software tool was performed, and each al-

gorithm was run 6,000 times — evolutionary algo-

rithms are stochastic models so 10 different runs per

dataset and per quality measure are required. Re-

sults are the average results obtained for the different

runs and taking the top rules discovered, i.e. those

having the highest value for the objective quality

measure. We have taken a resulting set of 20 rules

since this is the number most widely used by most of

the evolutionary algorithms for discovering the top

association rules24. As for multi-objective optimiza-

tion, two of the most well-known multi-objective

optimization algorithms were used (NSGA26 and

SPEA227), and each one was run 57,000 times —

they are stochastic algorithms so 10 different runs

per dataset and per pair of quality measures (190

combinations of quality measures). Results are the

average results obtained for the different runs and

taking the resulting set of rules (the ones that achieve

a good trade-off between two conflicting metrics) of

each algorithm.

3.3. Single-objective optimization

In this first analysis, a single-objective optimization

is performed by taking each sole quality measure as

objective function each time. The aim is three-fold:

first, to check which quality measure is maximized

by a higher number of other quality measures; sec-

ond, to determine which quality measure (used as

a single objective function) allows a higher number

of quality measures to be optimized (maximized) at

time; finally, to analyse which set of quality mea-

sures should be used to maximize all the metrics. A

specific quality measure is marked as optimized if it

is close to the maximum value according to a spe-

cific percentile. As a matter of example, the Support

quality measure whose values range in the interval

[0.0,1.0] will be marked as optimized in the 90th

percentile if a value is in the range [0.9,1.0].

First analysis. Taking the aforementioned

guidelines, the first goal is to check which quality

measures is optimized by a higher number of ob-

jectives (single quality measures). As previously

demonstrated, the percentile used to mark whether

a quality measure has been optimized or not plays a

really important role since minimum/maximum val-

ues changed from dataset to dataset. Hence, for

the sake of doing a complete analysis, different per-

centiles (70th, 80th and 90th percentile) were con-

sidered. Results are summarized in Figure 10, which

shows the percentage of objective functions that op-

timize each single quality. As it is illustrated, Con-

fidence and ECR are optimized by almost 80% of

the objective functions. Additionally, Zhang and

CF (Certainty Factor) are also really general quality

measures, since they are optimized by close to 70%

of the objectives (single metrics). On the contrary,

Support, Lift, Leverage, Conviction, IG, Sebag and

Yule’sQ are high indepedent quality measures since

they are hardly optimized by any other single metric.

Taking those quality measures (Confidence, CF,

Laplace, ECR and Zhang) that are optimized by a

higher number of fitness functions (single quality

measures) according to the previous analysis sum-

marized in Figure 10, the aim is to check the be-

haviour on each single dataset. In this sense, Table 5

shows the results for this analysis, stating that Con-

fidence and ECR are optimized by around 80% of

the quality measures regardless the dataset used and

with a low dispersion. As for the Confidence qual-

ity measure, it is optimized by more than 70% of the

quality measures for any dataset except for Treasury

and Weather. The latter is, according to the results,

the dataset in which the Confidence quality measure

worst behaves since this measure is maximized by

only 40% of the metrics.
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Table 5. Average percentage (in per unit basis) of objective
functions that achieves to optimize the measures analysed for
each dataset. The 70th percentile was considered.

Dataset Confidence CF Laplace ECR Zhang

Ankara weather 0.85 0.55 0.65 0.85 0.55

Automobile 0.85 0.75 0.65 0.85 0.75

Bolts 0.85 0.70 0.75 0.85 0.70

Car 0.85 0.50 0.65 0.75 0.50

Chess 0.85 0.50 0.60 0.85 0.55

Cmc 0.80 0.70 0.65 0.80 0.70

Flare 0.70 0.65 0.75 0.70 0.70

German 0.75 0.80 0.75 0.75 0.90

Izmir weather 0.85 0.85 0.70 0.85 0.85

Marketing 0.80 0.80 0.65 0.80 0.85

Mushrooms 0.80 0.60 0.60 0.80 0.65

Nursery 0.80 0.70 0.50 0.80 0.70

Optdigits 0.85 0.70 0.70 0.85 0.70

Pollution 0.80 0.60 0.70 0.75 0.60

Ring 0.80 0.75 0.65 0.80 0.75

Satimage 0.70 0.75 0.70 0.65 0.85

Soybean 0.80 0.80 0.50 0.80 0.85

Stock 0.80 0.80 0.60 0.80 0.80

Stulong 0.80 0.65 0.50 0.75 0.65

Texture 0.85 0.70 0.65 0.80 0.70

Thyroid 0.85 0.75 0.60 0.75 0.75

Tic-tac-toe 0.80 0.75 0.65 0.80 0.75

Treasury 0.65 0.65 0.40 0.60 0.85

Twonorm 0.80 0.50 0.65 0.70 0.50

Vote 0.85 0.40 0.65 0.80 0.40

Vowel 0.80 0.85 0.60 0.80 0.90

WDatabaseBC 0.85 0.40 0.70 0.85 0.45

Weather 0.40 0.85 0.40 0.90 0.85

WPBC 0.80 0.60 0.60 0.75 0.60

Zoo 0.80 0.65 0.50 0.80 0.75

Focusing now on the ECR quality measure, it is

optimized by more than 70% of the quality measures

for any dataset except for Satimage and Treasury.

This is a normal behaviour since data distribution

from dataset to dataset may vary so much. Thus,

it is important to analyse the results from a general

perspective, taking as many datasets as possible. Fi-

nally, it is noteworthy that the analysis performed

provides the user with a really interesting knowl-

edge, denoting that Confidence and ECR may be op-

timized without fixing them implicitly into the func-

tion to be optimized. At the same time, other quality

measures such as Lift or Leverage cannot be opti-

mized unless they are included into the function to

be optimized (see Figure 10).

Second analysis. The next analysis of this exper-

imental stage is to determine those single-objectives

that enable a higher number of different metrics to

be maximized. In this regard, and similarly to the

previous analysis, three different percentiles (70th,

80th and 90th percentile) has been considered. The

results obtained for all the datasets under study

have been summarized in Figure 11, which shows

the percentage of measures that are maximized by

each single-objective. As it is illustrated, Cover-

age, Prevalence, Recall and Yule’sQ optimize an ex-

tremely low number of quality measures. Hence,

it is possible to assert that these metrics should be

avoided as single-objective functions in those situa-

tions were values close to the maximum are required

in other quality measures. Continuing the analysis,

there is no specific objective function that enables a
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Fig. 11. Average percentage of quality measures that were optimized by each single-objective and

considering different percentiles (70th, 80th and 90th percentile).

high number of metrics to be optimized. As shown

in Figure 11, the optimization of any single mea-

sure produces a maximization in less than 60% of

the metrics. From all the analysed single-objective

functions, Lift, CC, Pearson, IG and Netconf are the

most promising ones, achieving to optimize more

than 50% of the quality measures at time.

Third analysis. The last analysis is conducted to

determine which set of quality measures should be

used to maximize the whole set of quality measures.

Let us consider Support as the best known quality

measure in the association rule mining field and, at

the same time, it was defined as the quality measure

that maximizes a higher number of quality measures

at time. Hence, this metric will be taken as base-

line. Analysing the results shown in Table 6, it is

obtained that Support enables the following metrics

to be maximized (taking those satisfied in >90% of

the datasets): Support, Coverage, Prevalence, Confi-

dence, Cosine, Recall, Laplace, Least Contradiction

(LC) and ECR. Hence, none of these metrics should

be taken if Support was previously used as an ob-

jective function to be maximized. Continuing the

analysis, and discarding from Table 6 those qual-

ity measure already maximized by Support (these

columns are obtained by now), it is obtained that

Lift maximizes the following (taking those satisfied

in >90% of the datasets): Lift, CC, CF, Pearson, IG,

Zhang and Netconf. The rest of the quality mea-

sures, i.e. those that has not been maximized yet

neither by Support nor by Lift, are only maximized

by themselves. Thus, Leverage, Conviction, Sebag

and Yule’sQ are also required as quality measures to

be optimized.

3.4. Multi-objective optimization

In this second analysis, a multi-objective optimiza-

tion is performed by taking any pair of metrics (each

quality measure is a different objective) from the set

of 20 quality measures analysed in this work. Hence,

from a total of 190 existing pairs (number of combi-

nations of pairs of quality measures), the goal is to

test which specific group of quality measures is opti-

mized when others are used as multi-objective func-

tions. Similarly to the previous analysis, the final

aim is three-fold: first, to check which quality mea-

sure is maximized by a higher number of pairs of

measures; second, to determine which pair of qual-

ity measures (used as multi-objective function) al-

low a higher number of quality measures to be op-

timized (maximized) at time; and, finally, to anal-

yse which set of multi-objective functions should be

used to maximize all the metrics.

First analysis. Taking the aforementioned

guidelines, the goal of this first analysis is to check

which quality measures are optimized by a higher

number of objectives (pairs of quality measures).
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Table 6. Average percentage (in per unit basis) of datasets in
which each quality measure is maximized when a single mea-
sure (objective function) is used as objective to be maximized.
The 70th percentile was considered.
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Support 1.00 0.97 0.97 0.97 0.00 1.00 0.13 0.00 0.03 0.20 1.00 0.97 0.20 0.00 0.33 0.97 0.93 0.27 0.17 0.07

Coverage 0.00 1.00 0.00 0.00 0.03 0.00 0.03 0.03 0.03 0.03 0.27 0.00 0.03 0.03 0.10 0.00 0.00 0.03 0.03 0.10

Prevalence 0.00 0.00 1.00 0.40 0.00 0.03 0.03 0.00 0.00 0.17 0.00 0.57 0.03 0.00 0.17 0.03 0.40 0.17 0.00 0.13

Confidence 0.00 0.00 0.50 1.00 0.03 0.03 0.07 0.03 0.37 0.93 0.00 1.00 0.03 0.03 0.03 0.03 1.00 0.93 0.43 0.27

Lift 0.00 0.00 0.00 0.90 1.00 0.90 0.07 0.03 1.00 1.00 0.90 0.03 0.97 1.00 0.00 0.87 0.90 1.00 1.00 0.30

Cosine 0.60 0.57 0.57 0.97 0.17 1.00 0.23 0.00 0.40 0.47 1.00 0.83 0.50 0.20 0.17 1.00 0.97 0.50 0.47 0.10

Leverage 0.03 0.00 0.00 0.90 0.03 0.93 1.00 0.07 0.63 0.93 0.90 0.90 0.97 0.03 0.30 0.67 0.73 1.00 0.93 0.10

Conviction 0.00 0.00 0.17 0.93 0.03 0.57 0.63 1.00 0.73 1.00 0.43 0.93 0.73 0.07 0.37 0.43 0.97 1.00 0.80 0.10

CC 0.00 0.00 0.00 0.97 0.93 0.90 0.07 0.03 1.00 1.00 0.83 0.13 0.97 1.00 0.00 0.87 1.00 1.00 1.00 0.30

CF 0.00 0.00 0.37 0.97 0.03 0.00 0.07 0.03 0.40 1.00 0.00 0.97 0.03 0.03 0.00 0.03 1.00 1.00 0.47 0.33

Recall 0.00 0.63 0.00 0.00 0.03 0.00 0.10 0.03 0.07 0.07 1.00 0.00 0.10 0.03 0.03 0.03 0.03 0.37 0.07 0.20

Laplace 0.90 0.87 0.97 1.00 0.03 0.90 0.17 0.03 0.07 0.60 0.90 1.00 0.33 0.03 0.03 0.93 1.00 0.60 0.20 0.10

Pearson 0.03 0.00 0.00 0.93 0.37 0.93 0.47 0.03 1.00 1.00 0.93 0.60 1.00 0.40 0.10 0.90 0.90 1.00 1.00 0.17

IG 0.00 0.00 0.00 0.87 1.00 0.90 0.07 0.03 0.97 0.97 0.93 0.03 0.97 1.00 0.00 0.83 0.87 1.00 0.97 0.30

Sebag 0.60 0.60 0.87 1.00 0.03 0.60 0.13 0.10 0.13 0.67 0.57 1.00 0.20 0.03 0.97 0.60 1.00 0.67 0.27 0.17

LC 0.53 0.50 0.53 1.00 0.20 0.97 0.27 0.03 0.43 0.53 0.93 0.93 0.57 0.23 0.20 1.00 1.00 0.53 0.50 0.10

ECR 0.00 0.00 0.47 1.00 0.03 0.00 0.07 0.03 0.33 0.87 0.00 1.00 0.03 0.03 0.03 0.03 1.00 0.87 0.37 0.27

Zhang 0.00 0.00 0.90 0.97 0.03 0.00 0.07 0.03 0.13 1.00 0.00 0.97 0.03 0.03 0.00 0.03 1.00 1.00 0.17 0.23

Netconf 0.17 0.13 0.13 0.97 0.57 0.93 0.13 0.03 0.87 0.87 0.93 0.57 0.87 0.77 0.00 0.97 1.00 0.90 1.00 0.17

Yule’sQ 0.00 0.37 0.13 0.10 0.03 0.00 0.03 0.03 0.03 0.20 0.27 0.00 0.03 0.03 0.00 0.03 0.03 0.23 0.30 1.00

Similarly to the previous experimental study for

single-objective optimization, the percentile used to

mark a quality measure as optimized is a keystone,

so different percentiles (70th, 80th and 90th per-

centile) were considered to carry out a complete

analysis. Figure 12 illustrates the average results

obtained for all the runs and considering all the

datasets and two well-known multi-objective opti-

mization models (NSGA2 and SPEA2). In this fig-

ure, the percentage of objectives (from a total of

190 pairs of quality measures) that optimizes each

quality measure by considering different percentiles

(70th, 80th and 90th percentile) is shown. As it is

illustrated, Coverage, Laplace and zhang are opti-

mized by more than 80% of the 190 pairs of multi-

objective functions available in this study. Addi-

tionally, CF and ECR are also really general quality

measures, since they are optimized by close to 70%

of the multi-objectives. On the contrary, Lift, Con-

viction, IG and Netconf are high independent qual-

ity measures since they are hardly optimized by any

multi-objective function.

Second analysis. The next analysis of this exper-

imental stage is to determine which multi-objectives

(pairs of metrics) enable a higher number of met-

rics to be maximized. In this regard, and similarly

to the previous analysis, three different percentiles

(70th, 80th and 90th percentile) have been consid-

ered. The results obtained for all the datasets un-

der study and considering the 70th percentile have

been summarized in Figure 13, which shows the

percentage of measures that were maximized by

each multi-objective functions (only the 20 multi-

objective functions that maximize a higher percent-

age of quality measures are shown in this analy-

sis). As it is illustrated, there is no specific multi-

objective function that enables a high number of

metrics to be optimized, and the optimization of any

multi-objective function produces a maximization in

less than 60% of the metrics. As a remarkable re-

sult, it is obtained that more than 56% of the met-

rics were optimized by the following multi-objective

metrics: Support-Leverage, Leverage-LC, CF-LC,

and Cosine-Leverage. Finally, the same analysis has

been carried out for different percentiles (80th and

90th) and as it is summarized in Figures 14 and 15.
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Fig. 12. Percentage of pairs of objectives, from a total of 190 pairs, that maximizes each quality

measure by considering different percentiles (70th, 80th and 90th percentile).
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Fig. 13. Average percentage of quality measures that was optimized by the best multi-objective func-

tions (those 20 that obtain a best average) and considering the 70th percentile.

Analysing all the results for the three afore-

mentioned percentiles, it is obtained that 14 multi-

objective functions appear within the 20 best multi-

objective functions for each percentile. These multi-

objective functions are the following: Cosine-LC,

LC-yule’sQ, Support-LC, Prevalence-LC, Support-

Cosine, Cosine-Laplace, Laplace-LC, LC-ECR, CF-

LC, Sebag-LC, Support-CF, Cosine-ECR, Cosine-

CF, and Confidence-LC. When analysing each sin-

gle quality measure (from the set of multi-objective

functions), it is obtained that LC appears in 9 of

these 14 multi-objective functions; Cosine in 5 of

the 14 multi-objective functions; CF and Support in

3; Laplace and ECR in 2 of the multi-objective func-

tions; and, finally, Prevalence, Confidence, Sebag

and yule’sQ in 1 of the aforementioned functions.

Third analysis. The final analysis is conducted

to determine which set of multi-objective functions

should be used to maximize the whole set of quality

measures. It is based on the percentage of datasets in

which each quality measure is marked as optimized

when the 70th percentile is considered as shown in

Table 7. Due to space limitations, only those multi-

objective functions that optimizes a higher number
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Fig. 14. Average percentage of quality measures that was optimized by the best multi-objective func-

tions (those 20 that obtain a best average) and considering the 80th percentile.
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Fig. 15. Average percentage of quality measures that was optimized by the best multi-objective func-

tions (those 20 that obtain a best average) and considering the 90th percentile.

of metrics are shown in Table 7. Among all of them,

the first five multi-objective functions are the ones

that optimize a higher number of metrics (9 in to-

tal). Analysing the results, it is obtained that, when

considering Support-Prevalence as multi-objective

function, the following metrics are also maximized:

Support, Coverage, Prevalence, Confidence, Cosine,

Recall, Laplace, LC and ECR. All of these quality

measures were optimized in almost all the datasets

(>90% of the datasets). The same set of qual-

ity measures were also maximized when consider-

ing Support-Cosine, Support-Laplace, Support-LC

(among others) as multi-objective functions. Hence,

taking Support-Prevalence as a multi-objective func-

tion, it is required to choose another multi-objective

function that maximizes those of quality measures

that were not maximized by the previous one.

For instance, if we take Confidence-CC as multi-

objective function, the following metrics are max-

imized (those that were not maximized yet): CC,

CF, Zhang and Yule’sQ. Finally, it should be noted

that the rest of quality measures that were not maxi-

mized by any multi-objective function, denoting that

they are really hard to be optimized from a multi-

objective point of view. As a matter of example, let

us focus on the Lift quality measure which takes ex-

tremely high values in some datasets. Even when a

multi-objective approach enables the maximum fea-

sible value to be obtained, the fact of optimizing

more than one quality measure produces a deteriora-

tion in the average values of the output. Hence, some

quality measures such as Lift, Conviction, Pearson,
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Table 7. Average percentage (in per unit basis) of datasets
in which each quality measure is optimized for each multi-
objective function. The 70th percentile was considered.
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Support-Prevalence 1.00 1.00 1.00 0.98 0.03 0.98 0.05 0.03 0.03 0.20 0.93 1.00 0.13 0.03 0.40 0.93 0.98 0.20 0.00 0.10

Support-Cosine 0.97 1.00 0.97 0.90 0.03 1.00 0.20 0.03 0.05 0.38 1.00 1.00 0.35 0.03 0.30 0.95 0.97 0.37 0.00 0.15

Support-Laplace 0.95 1.00 0.97 0.97 0.03 1.00 0.13 0.03 0.03 0.55 0.92 1.00 0.25 0.03 0.27 0.92 1.00 0.52 0.00 0.13

Support-LC 1.00 1.00 0.98 0.92 0.03 1.00 0.18 0.03 0.03 0.40 1.00 1.00 0.37 0.03 0.33 0.95 1.00 0.40 0.00 0.13

Coverage-Prevalence 1.00 1.00 1.00 0.97 0.03 0.97 0.03 0.03 0.03 0.12 0.97 0.98 0.07 0.03 0.35 0.73 0.77 0.12 0.00 0.07

Support-Coverage 1.00 1.00 1.00 0.93 0.03 0.98 0.05 0.03 0.03 0.10 1.00 0.97 0.12 0.03 0.32 0.75 0.75 0.10 0.00 0.07

Support-Yule’sQ 0.98 1.00 1.00 0.90 0.03 1.00 0.13 0.03 0.03 0.40 0.98 0.98 0.35 0.03 0.37 0.77 0.85 0.42 0.00 0.13

Coverage-Cosine 0.98 1.00 1.00 0.90 0.03 1.00 0.15 0.03 0.03 0.27 1.00 0.98 0.27 0.03 0.32 0.72 0.73 0.28 0.00 0.13

Coverage-Laplace 0.98 1.00 0.98 0.97 0.03 1.00 0.13 0.03 0.03 0.38 0.95 1.00 0.18 0.03 0.30 0.78 0.88 0.38 0.00 0.13

Coverage-LC 0.97 1.00 0.98 0.87 0.03 1.00 0.13 0.03 0.05 0.33 1.00 0.97 0.32 0.03 0.28 0.68 0.72 0.33 0.00 0.15

Prevalence-Cosine 0.98 1.00 0.98 0.93 0.03 1.00 0.17 0.03 0.03 0.37 0.95 1.00 0.27 0.03 0.35 0.95 1.00 0.35 0.00 0.15

Prevalence-LC 0.98 1.00 0.98 0.95 0.03 1.00 0.17 0.03 0.03 0.35 0.93 1.00 0.28 0.03 0.33 0.95 1.00 0.33 0.00 0.15

Confidence-CC 0.03 1.00 0.02 0.03 0.10 0.17 0.07 0.03 0.98 1.00 0.13 0.77 0.43 0.03 0.12 0.15 1.00 1.00 0.00 0.97

Confidence-Netconf 0.05 1.00 0.03 0.03 0.07 0.42 0.32 0.05 0.98 1.00 0.33 0.83 0.65 0.03 0.17 0.30 1.00 1.00 0.00 0.97

Conviction-CC 0.02 1.00 0.02 0.03 0.05 0.23 0.12 0.07 0.98 1.00 0.13 0.92 0.60 0.03 0.37 0.13 1.00 1.00 0.00 0.97

Conviction-Netconf 0.05 1.00 0.03 0.03 0.03 0.45 0.38 0.10 0.93 1.00 0.35 0.98 0.67 0.03 0.37 0.32 1.00 1.00 0.00 0.97

CC-CF 0.03 0.98 0.02 0.02 0.05 0.15 0.07 0.00 0.97 1.00 0.10 0.73 0.42 0.03 0.10 0.12 1.00 1.00 0.00 0.97

CC-ECR 0.03 1.00 0.03 0.03 0.10 0.18 0.07 0.03 0.97 1.00 0.13 0.82 0.43 0.03 0.13 0.13 1.00 1.00 0.00 0.97

CC-Netconf 0.03 0.98 0.02 0.02 0.08 0.32 0.23 0.00 0.98 1.00 0.23 0.87 0.63 0.03 0.22 0.23 0.98 1.00 0.00 0.97

CC-Yule’sQ 0.03 1.00 0.03 0.03 0.10 0.15 0.07 0.03 0.98 1.00 0.12 0.72 0.45 0.03 0.13 0.12 0.98 1.00 0.00 0.97

CF-Netconf 0.05 0.98 0.02 0.02 0.05 0.40 0.27 0.02 0.98 1.00 0.28 0.87 0.67 0.03 0.20 0.30 1.00 1.00 0.00 0.97

IG, etc, cannot maximize the values of the output

in multi-objective optimization problems. However,

this issue does not imply that they are undesirable

quality measures to be used on multi-objective opti-

mization but the opposite.

3.5. Lesson learned

The results obtained in this experimental analysis

are quite useful for any researcher in the association

rule mining field, specially those focused on evo-

lutionary computation. The analysis has described

which quality measures are related (or unrelated) so

they should (or should not) be used at time. Consid-

ering Support and Confidence as the basic pillars of

any good quality measure2, and knowing that these

are the two most widely used metrics in this field,

it is essential to use them together with other quality

measures that provide any additional information. In

this regard, when any existing algorithm for min-

ing association rules considers Support/Confidence

as measures to be maximized, the following metrics

should be avoided since they are also maximized at

time: Coverage, Prevalence, CF, Laplace, ECR and

Zhang. Hence, there is no sense to choose any of the

aforementioned metrics when Support/Confidence

are being maximized.

When an expert (or a random user) needs to max-

imize a specific metric without using it as objec-

tive to be maximized but a different metrics, it is

good to know that Confidence, ECR, Zhang, CF and

Laplace are those more easily maximized. In fact,

more than 60% of the metrics enable these measures

to be maximized at time. On the contrary, Support,

Lift, Leverage, Conviction, IG, Sebag and Yule’sQ

are high independent quality measures since they are

hardly maximized by any other single metric. This

is a really interesting knowledge since anyone who

needs to maximize any of that metrics requires to

use them explicitly in the algorithm.

Additionally, the experimental results have re-

vealed that Support and Lift appear as the most

promising quality measures to be used as metrics to

be maximized in any association rule mining prob-

lem. Any algorithm designed to maximize these two

quality measures will produce a resulting set of rules
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where 16 over the 20 quality measures are also max-

imized. Hence, these two quality measures can be

defined as general metrics to be considered by any

algorithm in this field. In fact, even when it was

tought that Confidence is also a good quality mea-

sure in this field, this specific metric is maximized

together with Support so the use of both at time

might be meaningless for some problems. Finally,

it is of high interest for any expert user in the as-

sociation rule mining field to know that Leverage,

Conviction, Sebag and Yule’sQ are not desirable to

be used as metrics to be maximized since they only

maximize a unique quality measure at time. Thus,

these four quality measures should be used only in

those cases were they are required to be maximized

(no additional maximization is required).

As for the multi-objective optimization problem,

the results obtained in this analysis have revealed

that Coverage, Laplace and Zhang are maximized

by a high number of multi-objective functions so

they should not be used by any multi-objective al-

gorithm as metrics to be maximized. Taking a 70th

percentile, these quality measures are maximized

by more than 80% of the results of the 190 pairs

of multi-objective functions available in this study.

On the contrary, if user need to know which qual-

ity measures are high independent to be included as

functions in a multi-objective algorithm, the exper-

imental analysis has revealed that Lift, Conviction,

IG and Netconf should not be used if the user needs

to maximize a higher number of metrics at time.

Focusing on which pair of metrics are better to

be chosen if we want the algorithm to maximize a

higher number of metric (among the 20 studied met-

rics), it is obtained that either Support-Prevalence

or Confidence-CC maximize 65% of the metrics

analysed in this work. For example, considering

Support-Prevalence as a multi-objective function, it

is obtained that the following measures are maxi-

mized: Support, Coverage, Prevalence, Confidence,

Recall, Laplace, LC and ECR. The same set of met-

rics are also maximized if we consider Support-

Cosine for a multi-objective algorithm.

Finally, it is interesting to note that, some qual-

ity measures (Lift, Leverage, Conviction, Pearson

and Sebag) do not produce a self-maximization

when they are optimized together with other met-

ics in a multi-objective optimization algorithm. It

is quite interesting knowledge for the expert and it

is somehow related to the knowledge previously de-

scribed since some of these measures were defined

as hardly maximized metrics in single-objective op-

timization. Hence, these metrics should be con-

sidered as autonomous metrics (either in single-

objective or multi-objective algorithms) and should

be studied in isolation for any expert.

4. Conclusion

In this paper we have carried out an empirical

study to facilitate the decision about which measure

should be selected for each specific goal. An exten-

sive analysis has been performed by considering a

set of thirty varied well-known datasets from which

association rules are mined over a set of twenty qual-

ity measures widely used in literature. A set of ex-

haustive search models as well as highly promising

evolutionary algorithms described in literature have

been also used to perform this study, considering ei-

ther single-objective algorithms and multi-objective

optimization approaches. For each algorithm and

each quality measure more than 57,000 executions

were done. The obtained results are of high interest

for future researches on the field, determining which

single quality measure (or pairs of them) should be

used if other different metrics are required to be op-

timized.
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10. N. Lavrač, P. A. Flach, and B. Zupan. Rule Eval-
uation Measures: A Unifying View. In Proceedings
of the 9th International Workshop on Inductive Logic
Programming, ILP ’99, pages 174–185, London, UK,
1999. Springer-Verlag.

11. P. Lenca, P. Meyer, B. Vaillant, and S. Lallich. On se-
lecting interestingness measures for association rules:
User oriented description and multiple criteria deci-
sion aid. European Journal of Operational Research,
184(2):610 – 626, 2008.

12. J. M. Luna, J. R. Romero, C. Romero, and S. Ventura.
Reducing gaps in quantitative association rules: A ge-
netic programming free-parameter algorithm. Inte-
grated Computer-Aided Engineering, 21(4):321–337,
2014.

13. J. M. Luna, J. R. Romero, and S. Ventura. Design and
behavior study of a grammar-guided genetic program-
ming algorithm for mining association rules. Knowl-
edge and Information Systems, 32(1):53–76, 2012.

14. J. M. Luna, J. R. Romero, and S. Ventura. Grammar-
based multi-objective algorithms for mining associa-
tion rules. Data & Knowledge Engineering, 86:19–37,
2013.

15. D. Martı́n, J. Alcalá-Fdez, A. Rosete, and F. Herrera.
NICGAR: A niching genetic algorithm to mine a di-
verse set of interesting quantitative association rules.
Information Sciences, 355356:208 – 228, 2016.

16. M. Martı́nez-Ballesteros, F. Martı́nez-Álvarez,
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