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Abstract 

This paper examines a novel optimization 
technique called genetic algorithms and its application 
to the optimization of reliability allocation strategies. 
Reliability allocation should occur in the initial stages 
of design, when the objective is to determine an optimal 
breakdown or allocation of reliability to certain 
components or subassemblies in order to meet system 
specifications. 

The reliability allocation optimization is applied to 
the design of a cluster tool, a highly complex piece of 
equipment used in semiconductor manufacturing. The 
problem formulation is presented, including decision 
variables, performance measures and constraints, and 
genetic algorithm parameters. Piecewise “effort curves” 
specifying the amount of effort required to achieve a 
certain level of reliability for each component or 
subassembly are defined. The genetic algorithm 
evolves or picks those combinations of “effort” or 
reliability levels for each component which optimize the 
objective of maximizing Mean Time Between Failures 
while staying within a budget. The results show that the 
genetic algorithm is very efficient at finding a set of 
robust solutions. A time history of the optimization is 
presented, along with histograms of the solution space 
fitness, MTBF, and cost for comparative purposes. 

Introduction 

Reliability allocation, defined as specifying a level 
of reliability for each subsystem or module in a system 
to achieve a given system reliability, should be 
performed early in the design cycle to guide designers 
in choosing components, materials, and a design 
topology that will meet system objectives. Reliability 
allocation should start from a base of past experience. 
For example, some initial design structures can often be 
generated with reliability estimates for the subsystems. 
Reliability allocatih is not the same as detailed design 
tradeoff studies, where specific design options are 
evaluated for costheliability tradeoffs. Nor is reliability 
allocation the same as reliability improvement, where 
the objective is to find the optimal combination of 
improvements to upgrade an existing design to 

maximize its reliability. However, reliability alloca i 

all related, subsequent and often iterative steps of the 
design process. Reliability allocation should be the first 
step since it can guide later design work it is not 
efficient to develop a detailed design and then have to 
redesign and reallocate reliability if the initial allocation 
is not achievable. 

Reliability allocation is a subset of the more 
general problem of design optimization. System design 
optimization is difficult because there are many ways 
one can define subsystems and components to fulfill the 
functional design requirements for a system: one can 
alter a design by changing the structure of a 
configuration, the parameters of the individual 
components, or a mix of these. Because of the number 
of potential components, structural arrangements, and 
parameter values, system design optimization problems 
can quickly become large (hundreds of thousands to 
millions of solutions) through combinatorial explosion. 
Often design decisions are made at a component level 
without a systematic approach that examines structural 
linkages between parts of the overall process and 
uncertainties throughout the system. Financial 
considerations may be taken into account using a simple 
costhenefit analysis of individual units, but this can 
lead to suboptimal decisions. A structured approach 
which explicitly incorporates the potential combinations 
through different stages of the system and their effect on 
other parts of the system will contribute to improved 
design processes and more reliable products. 

This paper presents the formulation of genetic 
algorithms for a specific application, reliability 
allocation. 

design tradeoff studies, and reliability improvemen E23 7” I 

Optimization Methodology 

Past work on reliability optimization has focused 
on Mixed Integer Nonlinear Programming (MINLP) 
algorithms for specific structural systems. Many of the 
reliability optimization models are formulated as N- 
stage series systems. At each stage i, there is the option 
to add redundancy in the form of parallel components. 
The optimization problem is to determine the optimal 
number of parallel components at each stage along with 
the reliability of each component to maximize system 
reliability subject to resource constraints such as cost or 
weight. This problem is often formulated as a MINLP 
where the integer variables denote the number of 
parallel components to include at each stage of the 
system, and the continuous variables denote the 
reliability of these components. 

Limitations of mathematical programming 
approaches are that they require a rigid system 
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structure, they allow for comparisons between systems 
of incrementally different structure but not radically 
different structure, and they often do not incorporate 
redundancy or parallelism easily. In many design 
optimization problems, the structural topology 
influences the optimal parameter settings so a simple 
de-coupling approach does not work. That is, one 
cannot optimize the structural topology and then the 
parameters because the optimal topology may depend 
upon the performance of the system at certain parameter 
levels. Finally, the complexity of these problems 
depends upon the form of the objective function. In the 
past, solution techniques typically depended upon 
objective functions that were single-attribute and linear 
(Le., minimize cost). However, real problems often 
require multi-attribute objectives such as minimizing 
costs while maximizing safety and/or reliability and 
ensuring feasibility. In these cases, the goal is to 
optimize over a set of performance indices which may 
be combined in a nonlinear objective function. 

Genetic algorithms were chosen as a solution 
technique because of their flexibility in overcoming 
some of the above limitations, and because of the 
natural combinatorics involved with reliability 
optimization. Genetic algorithms are a combinatorial 
optimization method. In a design, one can list possible 
components, upgrades or replacements, redundancies, 
improvements, etc. A combination of components with 
specified failure rates in a certain configuration is a 
solution. The goal is to find the combination of all 
possible combinations which optimizes the reliability 
objective. The genetic algorithm approach also has the 
significant advantage of incorporating uncertainty in 
component failure rates into the optimization of system 
reliability, something that math programming 
formulations generally do not allow. 

Genetic Alporithms 

Genetic algorithms take their inspiration from the 
biological world.' Genetic algorithms operate by 
creating an initial "population" of solutions (usually 
represented as bit strings) that ''evolve" over successive 
generations. The solutions with high "fitness" are 
"mated" with other solutions by crossing parts of a 
solution string with another. Solution strings are also 
"mutated" by replacing the value of a random bit on a 
solution string with another value. Over time, the 
operations of weeding out poor fitness solutions and 
reproducing by crossing high fitness solutions at 
random points act to sample the state space very 
efficiently. As in natural selection, genetic algorithms 
process fitness information and rank solutions according 
to their survival capabilities. (Note: fitness refers to 
the value of the objective function. For example, if the 

objective was to maximize the MTBF, a solution with a 
higher MTBF would have a higher fitness than one with 
a low MTBF). 
' 

Many reliability optimization problems can be 
easily formulated in a genetic algorithm framework. A 
solution "chromosome" is a bit string of "genes," where 
each gene represents a failure mode or a component of 
the design and its associated reliability level. The 
"fitness" of a particular solution can be obtained by 
solving the reliability equations for a design involving 
all of the units present on the chromosome, with the 
component reliability given by allele levels on a gene. 
Genetic algorithms have been applied to combinatorial 
optimization problems in engineering design3 and 
reliability! We have successfully applied genetic 
algorithms to reliability improvement problem?, where 
the objective is to identify the types of component 
improvements and the level of effort spent on those 
improvements to maximize one or more performance 
measures (e.g., reliability or system availability) subject 
to constraints (e.g., cost) in the presence of uncertainty 
about the component failure rates. Reliability 
improvement generally occurs after a design exists and 
upgrades are made to improve system performance, for 
example in a later release or version. In this paper, we 
expand the previous work to address reliability 
allocation problems. Such problems would occur in the 
initial stages of design, when the objective is to 
determine an optimal breakdown or allocation of 
reliability to certain components or subassemblies in 
order to meet system specifications. 

Awlication 

The reliability allocation optimization will be 
applied to a problem of cluster tool design. A cluster 
tool is a highly complex piece of equipment used in 
semiconductor manufacturing. It consists of a robot 
arm surrounded by various processing chambers in 
which vapor deposition, etching, cleaning, etc. is 
performed. A laser alignment system combined with 
the robot arm move the wafers from one chamber to 
another, according to the manufacturing "recipe" 
needed. A schematic of the system is shown in Figure 
1. Since the cost of equipment, labor, and materials is 
high for the cluster tool machine, downtime is very 
expensive and so correct reliability allocation in design 
is critical. 
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Figure 1. Cluster Tool 

The reliability of the system is modeled through a 
fault tree. The top event (system failure) may be 
defined in many ways, but we choose to define it as the 
failure of the machine to complete one cycle (i.e., taking 
one set of wafers through its recipe). This is a task 
oriented approach to fault trees which is appropriate to 
equipment failures involved in processing items. 
Processing involves a series of tasks, so failure to 
complete any one of those tasks constitutes failure to 
complete the entire task. Thus, the failure of the cluster 
tool to complete a cycle can be decomposed into the 
failure of the machine to load the wafers, a failure to 
transfer the wafers between stations, a failure to process 
the wafers in any of the process chambers, or a failure 
to unload the wafers. These tasks can be further 
decomposed to their immediate causes. For example, 
the failure to process the wafers in a chamber could be 
caused by a failure of the chamber itself or of the 
central support systems such as the power and the 
system controller or of the support systems to the 
chamber. The support systems include the vacuum 
system for each chamber, the temperature control unit, 
the gas distribution system, and the RF plasma. These 
could be further decomposed given more information 
about their function, however they are not for the 
purpose of this analysis. See Figure 2 for a fault tree of 
the process. Note that there are events which occur at 
more than one point throughout the tree. For example, 
a central support system failure will affect the 
functioning of the process chambers and the 
loadinghnloading. 

We have used the WinRm software developed at 
Sandia National Laboratories in the modeling and 
optimization of the reliability allocation problem for the 
cluster tool. WinRm supports the modeling of system 
reliability, with capabilities for nondeterministic 
modeling of system reliability, superior data input 
formatting and handling, fault tree editing and viewing, 
graphical displays and editing of graphics output, and 
optimization capabilities. Both repairable and non- 
repairable systems can be modeled in WinRm. 
WinRm has been designed to allow for iterative 
reliability modeling at all stages of design, from initial 
conceptual design and reliability allocation, to tradeoff 
studies of more specific designs, to reliability 
improvement strategies for existing systems, and 
optimal spares identification. 
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Figure 2. Fault tree for Cluster Tool Problem 

Problem Formulation 

Four items must be specified to define the 

0 Decision Variables 

0 Performance Measures 

Constraints 

0 Genetic Algorithm Parameters 

These are discussed in more detail below. 

reliability allocation optimization problem: 

Decision Variables 

The decision variables in reliability allocation are 
what levels of reliability to assign to each component or 
subassembly. In formulating the reliability allocation 
problem, an initial design with preliminary failure rates 
per component or failure mode is conceptualized. 
Then, for each failure mode, potential improvements 
and the associated effort to make those improvements 
are postulated. This is done by examining multipliers of 
the failure rate or failure probability. For example, if 
the “base case” failure rate on the load station is 
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estimated to have a mean of .00043 failures per hour, 
the following table is constructed: 

Table 1: Reliability improvement and corresponding cost 

1500 -- 

1000 -- 

500 - -  

0 5E-05 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 

Failure rate (failuredhour) 

Figure 3: Effort Curve for reliability improvement 

combinations of “effort” or reliability levels for each 
component which optimize the objective. 

Performance Measures and Constraints 

Performance measures refer to the goals of the 
optimization. Typically they include goals such as 
maximizing system MTBF or reliability, minimizing 
system repair time, maximizing availability, and/or 
minimizing maintenance costs. WinRm will optimize a 
deterministic or a sfochastic (uncertain) objective. A 

Table 1 defines a piecewise “effort curve” shown in 
Figure 3. This graph shows the effort to improve the 
reliability of a particular failure mode increases as the 
failure rate decreases (as the reliability increases): it 
usually costs much more to halve or tenth the failure 
rate than to make incremental improvements. 

Effort curves are defined for all failure modes in 
the initial design. The optimization will pick those 
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decision maker may be interested in maximizing the 
mean of this distribution, or a percentile. If the system 
is designed for customers who receive a warranty, the 
decision maker may decide to maximize a certain 
percentile, such as the fifth percentile, so that he or she 
can be assured that only five percent of the customers 
will have an MTBF less than the warranty period. A 
major advantage of WinRTM is that it can optimize one 
or more performance measures in the presence of 
uncertainty about the component failure rates. We have 
shown that genetic algorithms perform well in the face 
of the statistical noise or ”jitter” in the output space 
induced by the uncertainties in the component failure 
rates? In the case of reliability allocation, we are not 
including uncertainty in the performance measures so 
the optimization is deterministic. 

In addition to the performance measures, it is 
necessary to define the constraints upon the system. 
These can be in terms of weight limits or other physical 
limits. For the purposes of reliability allocation, we only 
consider the constraint of cost. Usually reliability can 
be improved substantially, but it may be very costly and 
not feasible in a world of fixed and shrinking budgets. 
Thus, budget is the main constraint. 

Genetic algorithms are an unconstrained 
optimization technique, that is, they do not explicitly 
account for constraints. There are two basic methods 
for incorporating constraints: 

1. Only allowing solutions which satisfy the 
constraints 

2. Penalizing the solutions which fail to satisfy the 
constraints by adding a penalty function to the 
objective. Penalty functions may be linear, quadratic, 
logarithmic, etc. functions of the deviations of the 
constraints and/or the number of violated constraints 

The implementation of constraints is difficult. If 
one incorporates a high penalty function for constraints 
that cannot be violated, one runs the risk of creating a 
space of mostly infeasible or illegal solutions. This also 
occurs if any solution which violates the constraints is 
simply rejected. The problem is that this may lead to 
evaluation of many solutions before a feasible one is 
found, which can add significant computation time 
depending upon the amount of infeasibility in the space. 
Further, when one legal individual is found, it may drive 
out other solutions and a type of premature convergence 
may result. Moderate penalties may also lead to 
anomalous results, especially if individuals which 
violate some constraints are rated higher than ones 
which meet all the constraints at a lower fitness level: 
these techniques may find a set of solutions which excel 

on one or more dimensions and have a higher objective 
than a feasible solution. 

Penalty functions are usually constructed in an ad- 
hoc manner, and often require much to be known about 
the problem and its structure before the implementation 
of an optimization technique, which is not always the 
case. There are no easy or clear answers to the difficult 
issues of objective or fitness definition, standardization 
of fitness measures, the collapsing of many objectives 

into one utility measure, or constraint implementation. 
Recent research suggests that variable or dynamic 
penalty functions which change over time are most 
effe~tive.6’~ We have found that objective functions 
which gradually degrade as the performance goals get 
worse andor as the constraints are violated are the most 
robust. Thus, we have defined our objective function 
as: 

(WlPl+WZPZ+ ...)* c (1) 

where PI, Pz, .. P, are performance measures (such as 
MTBF, system availability, etc.), w1, wz, .. w, are the 
relative weights on those performance measures, and C 
is the cost function. The performance measures and 
cost function are defined by their lowest or highest 
acceptable limit and the objective. 

In the case of the cluster tool, there is only one 
performance measure and that is MTBF. The “base 
case” design before reliability allocation has an MTBF 
of approximately 100 hours. The user can specify a 
lower limit which he or she will accept from the 
optimization, for example, 150 hours, along with a 
system objective of 200 hours. Similarly, the budget 
Constraint for the cluster tool problem was given an 
upper limit of $20,000 (no solutions with a cost above 
this will be accepted) and an objective of $10,000. The 
value of Pi for a particular design is specified according 
to the graph shown in Figure 4. 

V ueforp 7 

Lower acceptable Objective 
Limit 

Figure 4. Fitness function for performance measure 
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The individual functions for PI, P2, .. P,, and C are 
designed to have a value of 1 if the objective for the 
particular performance measure or cost is obtained. If 
they simply meet the lowest acceptable limit, they are 
given a value of 0.1. Between the acceptable limit and 
the objective, the fitness function increases linearly. If 
the objective is achieved, the fitness still increases but 
in a decreasing fashion according to a quadratic 
function, and likewise, the fitness tapers off to zero if 
the performance or cost is below the acceptable 
threshold. 

Genetic Algorithm Parameters 

After the decision variables and objective function 
(Equation 1) are defined, the combinatorial 
optimization problem is ready to be implemented in a 
genetic algorithm. We will not go into all the details of 
genetic algorithm implementation; Reference 2 provides 
an excellent overview. The reliability allocation 
problem had an implementation which corresponds 
naturally to the problem framework the population 
members are solution “chromosomes” composed of 
“genes.” Each gene represents a failure mode or a 
component of the design and its associated reliability 
level according to the effort curves given in Table 1 and 
Figure 3. Thus a solution might be coded as 
[0.8lO.5lO.4l0.7l ... 10.11 where the genes are separated by 
1. In this example, the first gene represents the first 
component and the failure rate for this component is the 
base case failure rate multiplied by 0.8. Likewise, the 
second component in this design has a reliability 
allocation of 0.5 times its base case reliability, etc. 

At each generation, every solution (population 
member) represented by the above coding is “decoded” 
to a set of components, failure modes, and failure rates 
and these are processed by WinRTM’s fault tree solver to 
obtain the performance measures of interest such as 
MTBF, reliability, and cost. The performance measures 
and cost are fed to the objective function to obtain a 
fitness value for that particular solution. The high 

fitness solutions are picked by the genetic algorithm to 
mate to produce the next generation. The process of 
mating high fitness solutions leads to the “evolution” of 
optimal solutions in later generations. 

There are some parameters which govern the 
performance of the genetic algorithm; these include the 
crossover or reproduction rate and the mutation rate. 
We have used a mutation rate of 0.1 and a crossover 
rate of 0.5. There are also other factors which influence 
the performance, including parent selection methods 
and crossover schemes. We are using tournament 
selection to pick the parents. That is, two population 
members are arbitrarily selected and the one with the 
higher fitness becomes a parent. It is mated with the 

higher fitness solution from a comparison of two other 
population members. We are using two point 
crossover. 

WinRTM allows the user to specify the number of 
generations and the population size. Both the number 
of generations and the population size control how long 
the optimization runs and the number of solutions 
examined. Larger population sizes over more 
generations is usually better because more solutions are 
examined, minimizing the possibility of the genetic 
algorithm getting trapped in a ‘‘local optimum” (i.e., a 
very good solution) and not the “global optimum” (the 
best possible solution). However, there is a 
computational tradeoff: larger populations over more 
generations takes longer to evaluate. At some point, the 
fitness value will start to plateau out or converge. We 
have found that running a population of size 50 to 100 
for 40 generations is a good starting point for the 
optimization. 

The performance of genetic algorithms are 
dependent on many of the implementation factors and 
can be tuned to the particular problem at hand. See 
References 8 and 9 for a detailed discussion of control 
parameters. We have found genetic algorithms to be 
fairly robust to the particular choice of control 
parameters. 

Results 

The cluster tool reliability allocation problem was 
run using a genetic algorithm implemented in the 
WinRTM software. This example has twelve major 
subassemblies or failure modes, each with 10 possible 
levels of reliability (the base case plus nine additional 
levels from 0.9 to 0.1 times the base case). Thus the 
total number of combinations is 1OI2 or 1 trillion! This 
is a large optimization and obviously there are not 1 
trillion “realistic” combinations of reliability levels for 
the design of this equipment. However, the point of the 
reliability allocation optimization is to provide guidance 
for what the approximate reliability levels for each 
subassembly should be to best meet the system 
objectives. There certainly could be 1 trillion 
combinations of potential allocations. 

The optimization was run using a population size of 
100 for 50 generations. The fitness history is shown in 
Figure 5, and the evolution of MTBF is shown in Figure 
6. In Figure 5, the solution member with the best or 
“maximum” fitness is tracked, along with the average 
fitness and the minimum fitness solution. Note that the 
genetic algorithm performs very well, honing in on 
optimal solutions by 20 generations. The MTBF of the 
optimally allocated solutions is more than double that of 
the base case (approximately 100 hours vs. 220 hours). 
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Fitness History 
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Figure 5. Fitness History 

System MTBF History 
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Figure 6. MTBF History 

WinRm tracks the top ten solutions over all 
generations. The top three solutions are shown in Table 
2. Notice that they are very similar. This indicates that 
the solution is robust. For example, all solutions have 
the failure rate of the load station allocated at 60% of its 
base case, the failure rate of the central vacuum system 
at 50% of its base case, the failure rate of the central 
controller at 20% of its base case, etc. There are minor 
differences with respect to the reliability allocation for 
the power distribution, the unload station, and the robot. 
The fitness for the top solutions is the same to two 
decimal places, and the slight tradeoffs between cost 

and increased MTBF can be seen. For example, 
solution 2 has an MTBF which is almost five hours 
greater than that of solution 3, but costs an additional 
$600 more. These results can provide guidance for the 
target levels of reliability that subassembly should attain 
in a more detailed design. 
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Table 2. Top solutions in population 

219.1 220.5 215.7 

0.952 0.953 0.952 . 

10.700 10.900 10.300 

To evaluate the performance of the genetic 
algorithm and provide some insight about the shape of 
the solution space, a partial enumeration of the solutions 
was performed by evaluating 10,000 randomly selected 
combinations. The results are shown in Figures 7 
through 9. Figure 7 displays a histogram of MTBF 
values for potential combinations of reliability 
allocation in the solution space. The optimal solution 
found by the genetic algorithm (solution 1) has an 
MTBF of 219 hours, which is in the upper third of all 
solutions. Note that it is possible to attain higher 
reliability solutions, but not within the cost constraint. 
The cost histogram, in Figure 8, shows that the optimal 
solution lies at the lower end of the cost distribution 
over the solution space. Thus, the genetic algorithm 
found a set of solutions in a small portion of the 
solution space which attain the reliability goals for a 
very low cost. Figure 9 shows the histogram of solution 
fitness. This shows that most of the solutions have a 
very low fitness, and the optimal solution fitness value 
of 1.06 is at the tail end of the fitness distribution. The 
genetic algorithm found a set of reliability allocations 
extremely efficiently: by examining approximately 
3000 solutions in a space of 1 trillion combinations, a 
tiny fraction of the solution space (3*10-’!). Note: the 
3000 solutions was calculated as follows: at each of 50 
generations, with a crossover rate of 0.5, half of the 100 
population members reproduce so there are 50 new 
members in the subsequent generation plus the mutated 
ones, 0.1*100 or 10, thus there are about sixty new 
members and 40 old members which have previously 
been evaluated in each generation. 

System MTBF Histogram 

50.00 100m 150.00 200.00 zom 300.00 350.00 400.00 

System MTBF 

Figure 7. Histogram based on partial enumeration of the solution space 
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Figure 8. Cost Histogram 
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Figure 9. Fitness Histogram 

Conclusions 

Reliability allocation should be one of the f i s t  
steps in the design process since it can guide later 
tradeoff and improvement studies of more detailed 
designs. This paper presented a novel optimization 
technique called genetic algorithms and its application 
to the optimization of reliability allocation strategies. 
The reliability allocation optimization was applied to 
the design of a cluster tool. The results show that the 
genetic algorithm is very efficient at finding a set of 
robust solutions: 3000 solutions in a space of 1 trillion 
combinations were examined, a tiny fraction of the 

solution space. This research builds on previous 
research using genetic algorithms for optimization of 
reliability improvement. We have shown that genetic 
algorithms can also successfully be used for 
optimization of reliability allocation, thus making them 
a powerful tool in an iterative design process. 
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