
OPTIMIZATION OF RELIABILITY
ALLOCATION STRATEGIES THROUGH USE
OF GENETIC ALGORITHMS

James E. Campbell
Laura A. Painton
Sandia National Laboratories, MS 0746
Manufacturing Systems Reliability Department
Albuquerque NM 87 185

Abstract

This paper examines a novel optimization
technique called genetic algorithms and its application
to the optimization of reliability allocation strategies.
Reliability allocation should occur in the initial stages
of design, when the objective is to determine an optimal
breakdown or allocation of reliability to certain
components or subassemblies in order to meet system
specifications.

The reliability allocation optimization is applied to
the design of a cluster tool, a highly complex piece of
equipment used in semiconductor manufacturing. The
problem formulation is presented, including decision
variables, performance measures and constraints, and
genetic algorithm parameters. Piecewise “effort curves”
specifying the amount of effort required to achieve a
certain level of reliability for each component or
subassembly are defined. The genetic algorithm
evolves or picks those combinations of “effort” or
reliability levels for each component which optimize the
objective of maximizing Mean Time Between Failures
while staying within a budget. The results show that the
genetic algorithm is very efficient at finding a set of
robust solutions. A time history of the optimization is
presented, along with histograms of the solution space
fitness, MTBF, and cost for comparative purposes.

Introduction

Reliability allocation, defined as specifying a level
of reliability for each subsystem or module in a system
to achieve a given system reliability, should be
performed early in the design cycle to guide designers
in choosing components, materials, and a design
topology that will meet system objectives. Reliability
allocation should start from a base of past experience.
For example, some initial design structures can often be
generated with reliability estimates for the subsystems.
Reliability allocatih is not the same as detailed design
tradeoff studies, where specific design options are
evaluated for costheliability tradeoffs. Nor is reliability
allocation the same as reliability improvement, where
the objective is to find the optimal combination of
improvements to upgrade an existing design to

maximize its reliability. However, reliability alloca i

all related, subsequent and often iterative steps of the
design process. Reliability allocation should be the first
step since it can guide later design work it is not
efficient to develop a detailed design and then have to
redesign and reallocate reliability if the initial allocation
is not achievable.

Reliability allocation is a subset of the more
general problem of design optimization. System design
optimization is difficult because there are many ways
one can define subsystems and components to fulfill the
functional design requirements for a system: one can
alter a design by changing the structure of a
configuration, the parameters of the individual
components, or a mix of these. Because of the number
of potential components, structural arrangements, and
parameter values, system design optimization problems
can quickly become large (hundreds of thousands to
millions of solutions) through combinatorial explosion.
Often design decisions are made at a component level
without a systematic approach that examines structural
linkages between parts of the overall process and
uncertainties throughout the system. Financial
considerations may be taken into account using a simple
costhenefit analysis of individual units, but this can
lead to suboptimal decisions. A structured approach
which explicitly incorporates the potential combinations
through different stages of the system and their effect on
other parts of the system will contribute to improved
design processes and more reliable products.

This paper presents the formulation of genetic
algorithms for a specific application, reliability
allocation.

design tradeoff studies, and reliability improvemen E23 7” I

Optimization Methodology

Past work on reliability optimization has focused
on Mixed Integer Nonlinear Programming (MINLP)
algorithms for specific structural systems. Many of the
reliability optimization models are formulated as N-
stage series systems. At each stage i, there is the option
to add redundancy in the form of parallel components.
The optimization problem is to determine the optimal
number of parallel components at each stage along with
the reliability of each component to maximize system
reliability subject to resource constraints such as cost or
weight. This problem is often formulated as a MINLP
where the integer variables denote the number of
parallel components to include at each stage of the
system, and the continuous variables denote the
reliability of these components.

Limitations of mathematical programming
approaches are that they require a rigid system

1 D ~ B u T l o N ms r.mm@Jy 18 UFIIW
American Institute of Aeronautics and Astronautics

\
This work was supported by the United States Departmeht under Contract DE -
AC04-94AL85000.

i

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily Mnstitute or imply its endorsement, mom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

structure, they allow for comparisons between systems
of incrementally different structure but not radically
different structure, and they often do not incorporate
redundancy or parallelism easily. In many design
optimization problems, the structural topology
influences the optimal parameter settings so a simple
de-coupling approach does not work. That is, one
cannot optimize the structural topology and then the
parameters because the optimal topology may depend
upon the performance of the system at certain parameter
levels. Finally, the complexity of these problems
depends upon the form of the objective function. In the
past, solution techniques typically depended upon
objective functions that were single-attribute and linear
(Le., minimize cost). However, real problems often
require multi-attribute objectives such as minimizing
costs while maximizing safety and/or reliability and
ensuring feasibility. In these cases, the goal is to
optimize over a set of performance indices which may
be combined in a nonlinear objective function.

Genetic algorithms were chosen as a solution
technique because of their flexibility in overcoming
some of the above limitations, and because of the
natural combinatorics involved with reliability
optimization. Genetic algorithms are a combinatorial
optimization method. In a design, one can list possible
components, upgrades or replacements, redundancies,
improvements, etc. A combination of components with
specified failure rates in a certain configuration is a
solution. The goal is to find the combination of all
possible combinations which optimizes the reliability
objective. The genetic algorithm approach also has the
significant advantage of incorporating uncertainty in
component failure rates into the optimization of system
reliability, something that math programming
formulations generally do not allow.

Genetic Alporithms

Genetic algorithms take their inspiration from the
biological world.' Genetic algorithms operate by
creating an initial "population" of solutions (usually
represented as bit strings) that ''evolve" over successive
generations. The solutions with high "fitness" are
"mated" with other solutions by crossing parts of a
solution string with another. Solution strings are also
"mutated" by replacing the value of a random bit on a
solution string with another value. Over time, the
operations of weeding out poor fitness solutions and
reproducing by crossing high fitness solutions at
random points act to sample the state space very
efficiently. As in natural selection, genetic algorithms
process fitness information and rank solutions according
to their survival capabilities. (Note: fitness refers to
the value of the objective function. For example, if the

objective was to maximize the MTBF, a solution with a
higher MTBF would have a higher fitness than one with
a low MTBF).
'

Many reliability optimization problems can be
easily formulated in a genetic algorithm framework. A
solution "chromosome" is a bit string of "genes," where
each gene represents a failure mode or a component of
the design and its associated reliability level. The
"fitness" of a particular solution can be obtained by
solving the reliability equations for a design involving
all of the units present on the chromosome, with the
component reliability given by allele levels on a gene.
Genetic algorithms have been applied to combinatorial
optimization problems in engineering design3 and
reliability! We have successfully applied genetic
algorithms to reliability improvement problem?, where
the objective is to identify the types of component
improvements and the level of effort spent on those
improvements to maximize one or more performance
measures (e.g., reliability or system availability) subject
to constraints (e.g., cost) in the presence of uncertainty
about the component failure rates. Reliability
improvement generally occurs after a design exists and
upgrades are made to improve system performance, for
example in a later release or version. In this paper, we
expand the previous work to address reliability
allocation problems. Such problems would occur in the
initial stages of design, when the objective is to
determine an optimal breakdown or allocation of
reliability to certain components or subassemblies in
order to meet system specifications.

Awlication

The reliability allocation optimization will be
applied to a problem of cluster tool design. A cluster
tool is a highly complex piece of equipment used in
semiconductor manufacturing. It consists of a robot
arm surrounded by various processing chambers in
which vapor deposition, etching, cleaning, etc. is
performed. A laser alignment system combined with
the robot arm move the wafers from one chamber to
another, according to the manufacturing "recipe"
needed. A schematic of the system is shown in Figure
1. Since the cost of equipment, labor, and materials is
high for the cluster tool machine, downtime is very
expensive and so correct reliability allocation in design
is critical.

2
American Institute of Aeronautics and Astronautics

This work was supported by the United States Department under Contract DE -
AC04-94AL85000.

Figure 1. Cluster Tool

The reliability of the system is modeled through a
fault tree. The top event (system failure) may be
defined in many ways, but we choose to define it as the
failure of the machine to complete one cycle (i.e., taking
one set of wafers through its recipe). This is a task
oriented approach to fault trees which is appropriate to
equipment failures involved in processing items.
Processing involves a series of tasks, so failure to
complete any one of those tasks constitutes failure to
complete the entire task. Thus, the failure of the cluster
tool to complete a cycle can be decomposed into the
failure of the machine to load the wafers, a failure to
transfer the wafers between stations, a failure to process
the wafers in any of the process chambers, or a failure
to unload the wafers. These tasks can be further
decomposed to their immediate causes. For example,
the failure to process the wafers in a chamber could be
caused by a failure of the chamber itself or of the
central support systems such as the power and the
system controller or of the support systems to the
chamber. The support systems include the vacuum
system for each chamber, the temperature control unit,
the gas distribution system, and the RF plasma. These
could be further decomposed given more information
about their function, however they are not for the
purpose of this analysis. See Figure 2 for a fault tree of
the process. Note that there are events which occur at
more than one point throughout the tree. For example,
a central support system failure will affect the
functioning of the process chambers and the
loadinghnloading.

We have used the WinRm software developed at
Sandia National Laboratories in the modeling and
optimization of the reliability allocation problem for the
cluster tool. WinRm supports the modeling of system
reliability, with capabilities for nondeterministic
modeling of system reliability, superior data input
formatting and handling, fault tree editing and viewing,
graphical displays and editing of graphics output, and
optimization capabilities. Both repairable and non-
repairable systems can be modeled in WinRm.
WinRm has been designed to allow for iterative
reliability modeling at all stages of design, from initial
conceptual design and reliability allocation, to tradeoff
studies of more specific designs, to reliability
improvement strategies for existing systems, and
optimal spares identification.

a LoADfAIL FalactobadLhewden
CTulADfAIL LOadStationFd
CTWAC CentrdV-System

a CENTGUPPRT-FAIL GnlrdSuppxtSystemF&e

CT-TRAN+IOB T~md~Robot
TRANSfAIL Fahetobarrlerwdur

CT-TRAN-TC Tranrlerawnber

P

1

1

CTWAC CaadV-system

-Q PROClfAlL Fa3uedProcessChmkl

a CENT-SUPPRT-FAIL Gnlrd Suppoct System F&e

0 CTpRoClPcl Procescharrbec

P
PROCESSfAIL F&e to poem the den

A CENT-SUPFRT-FAIL CaadSuppoctSydemFdure

CT-PROCl-VACI V- System 1
CTPROCl-TW1 TurpGnhdUnitl
CTQROClGOl G a r D i h 1

PROCI-SUPPORT suppoctwt-charrbeci

8 CTPROClRFfl RFPktmal

-Q FROUfAIL FaiuedProccttChanba2
0 CTpRoC2pu Rocctrawnber2

a PROC~WPFURT support for R- chamber 2
a CENT-SUPPRTfAIL CentrdSlgpatSystemFdure

CTPROC2YAu veaunsydem2

CTPROC2GD2 Gat D i h 2 8 CTPROUfIFP2 RFPhsma2
-Q PROC3fAIL FakredRoatsawnber3

0 C T p R O c 3 p c 3 RocettChamber3
a CENT-SUPPRTSAIL Caad Suppat System Fdure

S w t for R~cers chamber 3

CTPROC2-TW2 TempWdUnit2

PROBSUPPORT
C T - P R O W A U V- System 3
CTPROC3TW3 TurpGnhdUd3
CTPROaC03 Gar Dih 3
C T Q R O a R F P 3 RFPbnna3

CenbdV-system

Falae to h d the wdert UNWADfAIL

CT-WAC
0 CTUNLMDfAIL UlJoadStabbnFal

A CENT-SUPPRTfAIL Mrd Suppxt System F&e

CTCONT System controlu

Caad V a m sytlem

1
1 ^CENT-SUPFRT-FAIL CaadSupport System Fdue

PomrDiibiwim e C T - P M R
’ ^CTWAC

Figure 2. Fault tree for Cluster Tool Problem

Problem Formulation

Four items must be specified to define the

0 Decision Variables

0 Performance Measures

Constraints

0 Genetic Algorithm Parameters

These are discussed in more detail below.

reliability allocation optimization problem:

Decision Variables

The decision variables in reliability allocation are
what levels of reliability to assign to each component or
subassembly. In formulating the reliability allocation
problem, an initial design with preliminary failure rates
per component or failure mode is conceptualized.
Then, for each failure mode, potential improvements
and the associated effort to make those improvements
are postulated. This is done by examining multipliers of
the failure rate or failure probability. For example, if
the “base case” failure rate on the load station is

3
American Institute of Aeronautics and Astronautics

This work was supported by the United States Department under Contract DE -
AC04-94AL85000.

I_

estimated to have a mean of .00043 failures per hour,
the following table is constructed:

Table 1: Reliability improvement and corresponding cost

1500 --

1000 --

500 - -

0 5E-05 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005

Failure rate (failuredhour)

Figure 3: Effort Curve for reliability improvement

combinations of “effort” or reliability levels for each
component which optimize the objective.

Performance Measures and Constraints

Performance measures refer to the goals of the
optimization. Typically they include goals such as
maximizing system MTBF or reliability, minimizing
system repair time, maximizing availability, and/or
minimizing maintenance costs. WinRm will optimize a
deterministic or a sfochastic (uncertain) objective. A

Table 1 defines a piecewise “effort curve” shown in
Figure 3. This graph shows the effort to improve the
reliability of a particular failure mode increases as the
failure rate decreases (as the reliability increases): it
usually costs much more to halve or tenth the failure
rate than to make incremental improvements.

Effort curves are defined for all failure modes in
the initial design. The optimization will pick those

4
American Institute of Aeronautics and Astronautics

This work was supported by the United States Depar tment of E n e r g y under Cont rac t
DE-AC04-94AL85000.

decision maker may be interested in maximizing the
mean of this distribution, or a percentile. If the system
is designed for customers who receive a warranty, the
decision maker may decide to maximize a certain
percentile, such as the fifth percentile, so that he or she
can be assured that only five percent of the customers
will have an MTBF less than the warranty period. A
major advantage of WinRTM is that it can optimize one
or more performance measures in the presence of
uncertainty about the component failure rates. We have
shown that genetic algorithms perform well in the face
of the statistical noise or ”jitter” in the output space
induced by the uncertainties in the component failure
rates? In the case of reliability allocation, we are not
including uncertainty in the performance measures so
the optimization is deterministic.

In addition to the performance measures, it is
necessary to define the constraints upon the system.
These can be in terms of weight limits or other physical
limits. For the purposes of reliability allocation, we only
consider the constraint of cost. Usually reliability can
be improved substantially, but it may be very costly and
not feasible in a world of fixed and shrinking budgets.
Thus, budget is the main constraint.

Genetic algorithms are an unconstrained
optimization technique, that is, they do not explicitly
account for constraints. There are two basic methods
for incorporating constraints:

1. Only allowing solutions which satisfy the
constraints

2. Penalizing the solutions which fail to satisfy the
constraints by adding a penalty function to the
objective. Penalty functions may be linear, quadratic,
logarithmic, etc. functions of the deviations of the
constraints and/or the number of violated constraints

The implementation of constraints is difficult. If
one incorporates a high penalty function for constraints
that cannot be violated, one runs the risk of creating a
space of mostly infeasible or illegal solutions. This also
occurs if any solution which violates the constraints is
simply rejected. The problem is that this may lead to
evaluation of many solutions before a feasible one is
found, which can add significant computation time
depending upon the amount of infeasibility in the space.
Further, when one legal individual is found, it may drive
out other solutions and a type of premature convergence
may result. Moderate penalties may also lead to
anomalous results, especially if individuals which
violate some constraints are rated higher than ones
which meet all the constraints at a lower fitness level:
these techniques may find a set of solutions which excel

on one or more dimensions and have a higher objective
than a feasible solution.

Penalty functions are usually constructed in an ad-
hoc manner, and often require much to be known about
the problem and its structure before the implementation
of an optimization technique, which is not always the
case. There are no easy or clear answers to the difficult
issues of objective or fitness definition, standardization
of fitness measures, the collapsing of many objectives

into one utility measure, or constraint implementation.
Recent research suggests that variable or dynamic
penalty functions which change over time are most
effe~tive.6’~ We have found that objective functions
which gradually degrade as the performance goals get
worse andor as the constraints are violated are the most
robust. Thus, we have defined our objective function
as:

(WlPl+WZPZ+ ...)* c (1)

where PI, Pz, .. P, are performance measures (such as
MTBF, system availability, etc.), w1, wz, .. w, are the
relative weights on those performance measures, and C
is the cost function. The performance measures and
cost function are defined by their lowest or highest
acceptable limit and the objective.

In the case of the cluster tool, there is only one
performance measure and that is MTBF. The “base
case” design before reliability allocation has an MTBF
of approximately 100 hours. The user can specify a
lower limit which he or she will accept from the
optimization, for example, 150 hours, along with a
system objective of 200 hours. Similarly, the budget
Constraint for the cluster tool problem was given an
upper limit of $20,000 (no solutions with a cost above
this will be accepted) and an objective of $10,000. The
value of Pi for a particular design is specified according
to the graph shown in Figure 4.

V ueforp 7

Lower acceptable Objective
Limit

Figure 4. Fitness function for performance measure

5
American Institute of-Aeronautics and Astronautics

This work was supported by the United States Department of E n e r g y under Contract
DE-AC04-94AL85000.

The individual functions for PI, P2, .. P,, and C are
designed to have a value of 1 if the objective for the
particular performance measure or cost is obtained. If
they simply meet the lowest acceptable limit, they are
given a value of 0.1. Between the acceptable limit and
the objective, the fitness function increases linearly. If
the objective is achieved, the fitness still increases but
in a decreasing fashion according to a quadratic
function, and likewise, the fitness tapers off to zero if
the performance or cost is below the acceptable
threshold.

Genetic Algorithm Parameters

After the decision variables and objective function
(Equation 1) are defined, the combinatorial
optimization problem is ready to be implemented in a
genetic algorithm. We will not go into all the details of
genetic algorithm implementation; Reference 2 provides
an excellent overview. The reliability allocation
problem had an implementation which corresponds
naturally to the problem framework the population
members are solution “chromosomes” composed of
“genes.” Each gene represents a failure mode or a
component of the design and its associated reliability
level according to the effort curves given in Table 1 and
Figure 3. Thus a solution might be coded as
[0.8lO.5lO.4l0.7l ... 10.11 where the genes are separated by
1. In this example, the first gene represents the first
component and the failure rate for this component is the
base case failure rate multiplied by 0.8. Likewise, the
second component in this design has a reliability
allocation of 0.5 times its base case reliability, etc.

At each generation, every solution (population
member) represented by the above coding is “decoded”
to a set of components, failure modes, and failure rates
and these are processed by WinRTM’s fault tree solver to
obtain the performance measures of interest such as
MTBF, reliability, and cost. The performance measures
and cost are fed to the objective function to obtain a
fitness value for that particular solution. The high

fitness solutions are picked by the genetic algorithm to
mate to produce the next generation. The process of
mating high fitness solutions leads to the “evolution” of
optimal solutions in later generations.

There are some parameters which govern the
performance of the genetic algorithm; these include the
crossover or reproduction rate and the mutation rate.
We have used a mutation rate of 0.1 and a crossover
rate of 0.5. There are also other factors which influence
the performance, including parent selection methods
and crossover schemes. We are using tournament
selection to pick the parents. That is, two population
members are arbitrarily selected and the one with the
higher fitness becomes a parent. It is mated with the

higher fitness solution from a comparison of two other
population members. We are using two point
crossover.

WinRTM allows the user to specify the number of
generations and the population size. Both the number
of generations and the population size control how long
the optimization runs and the number of solutions
examined. Larger population sizes over more
generations is usually better because more solutions are
examined, minimizing the possibility of the genetic
algorithm getting trapped in a ‘‘local optimum” (i.e., a
very good solution) and not the “global optimum” (the
best possible solution). However, there is a
computational tradeoff: larger populations over more
generations takes longer to evaluate. At some point, the
fitness value will start to plateau out or converge. We
have found that running a population of size 50 to 100
for 40 generations is a good starting point for the
optimization.

The performance of genetic algorithms are
dependent on many of the implementation factors and
can be tuned to the particular problem at hand. See
References 8 and 9 for a detailed discussion of control
parameters. We have found genetic algorithms to be
fairly robust to the particular choice of control
parameters.

Results

The cluster tool reliability allocation problem was
run using a genetic algorithm implemented in the
WinRTM software. This example has twelve major
subassemblies or failure modes, each with 10 possible
levels of reliability (the base case plus nine additional
levels from 0.9 to 0.1 times the base case). Thus the
total number of combinations is 1OI2 or 1 trillion! This
is a large optimization and obviously there are not 1
trillion “realistic” combinations of reliability levels for
the design of this equipment. However, the point of the
reliability allocation optimization is to provide guidance
for what the approximate reliability levels for each
subassembly should be to best meet the system
objectives. There certainly could be 1 trillion
combinations of potential allocations.

The optimization was run using a population size of
100 for 50 generations. The fitness history is shown in
Figure 5, and the evolution of MTBF is shown in Figure
6. In Figure 5, the solution member with the best or
“maximum” fitness is tracked, along with the average
fitness and the minimum fitness solution. Note that the
genetic algorithm performs very well, honing in on
optimal solutions by 20 generations. The MTBF of the
optimally allocated solutions is more than double that of
the base case (approximately 100 hours vs. 220 hours).

6
American Institute of Aeronautics and Astronautics

This work was s u p p o r t e d by the Uni ted States Depar tment of E n e r g y under Cont rac t
DE-AC04-94AL85000.

- - ~ - ~ - - - - -~ _ _ ~
< .

Fitness History
120

0 5 10 15 20 25 30 35 40 45 50

Generation

Figure 5. Fitness History

System MTBF History
240.00

m a O D 0.00

0 5 10 15 20 25 30 35 40 45 50

Generation

Figure 6. MTBF History

WinRm tracks the top ten solutions over all
generations. The top three solutions are shown in Table
2. Notice that they are very similar. This indicates that
the solution is robust. For example, all solutions have
the failure rate of the load station allocated at 60% of its
base case, the failure rate of the central vacuum system
at 50% of its base case, the failure rate of the central
controller at 20% of its base case, etc. There are minor
differences with respect to the reliability allocation for
the power distribution, the unload station, and the robot.
The fitness for the top solutions is the same to two
decimal places, and the slight tradeoffs between cost

and increased MTBF can be seen. For example,
solution 2 has an MTBF which is almost five hours
greater than that of solution 3, but costs an additional
$600 more. These results can provide guidance for the
target levels of reliability that subassembly should attain
in a more detailed design.

7

American Institute of Aeronautics and Astronautics
This work was supported by the Uni ted States Depar tment of E n e r g y under Cont rac t
DE-AC04-94AL85000.

- _----_ -- __- - _ _

Svstem MTBF

Ihours)

ImDrovement

Table 2. Top solutions in population

219.1 220.5 215.7

0.952 0.953 0.952 .

10.700 10.900 10.300

To evaluate the performance of the genetic
algorithm and provide some insight about the shape of
the solution space, a partial enumeration of the solutions
was performed by evaluating 10,000 randomly selected
combinations. The results are shown in Figures 7
through 9. Figure 7 displays a histogram of MTBF
values for potential combinations of reliability
allocation in the solution space. The optimal solution
found by the genetic algorithm (solution 1) has an
MTBF of 219 hours, which is in the upper third of all
solutions. Note that it is possible to attain higher
reliability solutions, but not within the cost constraint.
The cost histogram, in Figure 8, shows that the optimal
solution lies at the lower end of the cost distribution
over the solution space. Thus, the genetic algorithm
found a set of solutions in a small portion of the
solution space which attain the reliability goals for a
very low cost. Figure 9 shows the histogram of solution
fitness. This shows that most of the solutions have a
very low fitness, and the optimal solution fitness value
of 1.06 is at the tail end of the fitness distribution. The
genetic algorithm found a set of reliability allocations
extremely efficiently: by examining approximately
3000 solutions in a space of 1 trillion combinations, a
tiny fraction of the solution space (3*10-’!). Note: the
3000 solutions was calculated as follows: at each of 50
generations, with a crossover rate of 0.5, half of the 100
population members reproduce so there are 50 new
members in the subsequent generation plus the mutated
ones, 0.1*100 or 10, thus there are about sixty new
members and 40 old members which have previously
been evaluated in each generation.

System MTBF Histogram

50.00 100m 150.00 200.00 zom 300.00 350.00 400.00

System MTBF

Figure 7. Histogram based on partial enumeration of the solution space

8
American Institute of Aeronautics and Astronautics

This work was supported by the United States Department of Ensrgy under Contract
DE-AC04-94AL8 5 0 0 0 .

Improvement Cost Histogram
I 1

0.05.

0.04.

0

.e V

E
U

0.02.

0.01 '

--
0.00 10000.00 2OGQO.00 3D3J0.00 40000.00 5ooo0.00 Woo0130

Improvement Cost

Figure 8. Cost Histogram

Fitness Histogram

0.40

0.30
0

P u

E
U

020

0.1 0

0.00

0.00 090 0.40 0.60 0.80 I .oo I 90

Fitness

Figure 9. Fitness Histogram

Conclusions

Reliability allocation should be one of the f i s t
steps in the design process since it can guide later
tradeoff and improvement studies of more detailed
designs. This paper presented a novel optimization
technique called genetic algorithms and its application
to the optimization of reliability allocation strategies.
The reliability allocation optimization was applied to
the design of a cluster tool. The results show that the
genetic algorithm is very efficient at finding a set of
robust solutions: 3000 solutions in a space of 1 trillion
combinations were examined, a tiny fraction of the

solution space. This research builds on previous
research using genetic algorithms for optimization of
reliability improvement. We have shown that genetic
algorithms can also successfully be used for
optimization of reliability allocation, thus making them
a powerful tool in an iterative design process.

References

1. Holland, J. H. (1975). Adaptation in Natural and
Artificial Systems. Univ. of Michigan Press: Ann

Arbor. Reprinted in 1992 by MIT Press,
Cambridge MA.

9
American Institute of Aeronautics and Astronautics

This work was supported by the United S ta tes Department of E n e r g y under Contract
DE-AC04-94AL85000.

2. Goldberg, D. E. (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning.
Addison-Wesley: Reading, MA.

3. Powell, D. and M. M. Skolnick (1993). "Using
Genetic Algorithms in Engineering Design
Optimization with Non-linear Constraints,"
Proceedings of the Fifih International Conference
on Genetic Algorithms. S. Forrest, ed. Morgan
Kaufman: Los Altos, CA.

4. Coit, D. W. and A. E. Smith (1994). "Use of a
Genetic Algorithm to Optimize a Combinatorial
Reliability Design Problem," Proceedings of the
Third IIE Research Conference, 467-472.
Painton, L. and J. Campbell (1995). "Genetic
Algorithms in the Optimization of System
Reliability," IEEE Transactions on Reliability,
Special Issue on Design. 44(2), 172-178.

6. Siedlecki, W. and J. Sklansky (1989). "Constrained
Genetic Optimization via Dynamic Reward-
Penalty Balancing and its Use in Pattern
Recognition," Proceedings of the Third
International Conference on Genetic Algorithms.
J. D. Schaffer, ed. Morgan Kaufman: Los Altos,
CA.

7. Smith, A. E. and D. M. Tate (1993). "Genetic
Optimization using a Penalty Function,"
Proceedings of the Fifih International Conference
on Genetic Algorithms. S. Forrest, ed. Morgan
Kaufman: Los Altos, CA.

8. Greffenstette, J. J. (1986). "Optimization of Control
Parameters for Genetic Algorithms," IEEE
Transactions on Systems, Man, and Cybernetics

9. Schaffer, J.D., R. A. Caruana, L.J. Eshelman, and R.
Das (1989). "A Study of Control Parameters
Affecting Online Performance of Genetic
Algorithms for Function Optimization,"
Proceedings of the Third International
Conference on Genetic Algorithms. J. D.
Schaffer, ed. Morgan Kaufman: Los Altos, CA.

5.

SMC-16,1, 122-128.

10
American Institute of Aeronautics and Astronautics

This work was supported by the United States Department of Energy under Contract
DE-AC04-94AL85 0 0 0 .

- .- - - _ I___ I _-_

