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1 Introduction

1.1 Motivation

In the development of optical devices (for example in optical near-field mi-
croscopy) smaller and smaller wavelengths are necessary. Usually x-rays with
spot sizes in the micrometer range are achieved by (coherent or incoherent)
focussing, but the limits of these techniques have been reached. Since x-rays
with smaller spots could open up a new range of applications in scattering,
microscopy (for example high resolution tomography) and spectroscopy, espe-
cially in non-synchrotron experiments, one is interested in new approaches.
One approach is the use of multilayer systems for one-dimensional beam con-
centration. Such systems consist of several layers which can be varied in mate-
rial, thickness and shape and support certain resonant states. These resonant
states can be excited by x-ray beams under special grazing angles of inci-
dence, corresponding to resonant frequencies of the system, leading to a very
high field enhancement inside the system compared to the incident field (see
Pfeiffer et al. [PSH+00]). Field enhancement in x-ray waveguides can also
be used to strengthen the signal of weakly-scattering biomolecular films (see
Pfeiffer, Mennicke and Salditt [PMS02] and Salditt et al. [SPP+03]) as well
as for nuclear resonant x-ray scattering (see Röhlsberger et al. [RSKL05] and
[RKS+04]). The fabrication of the multilayer systems is typically done by
thin film deposition techniques such as e-beam evaporation and/or sputter-
ing. In real systems interface roughness is always a concern. The question to
which extend the roughness parameters influence the optical properties is one
motivation for the mathematical approach developed here.
It is the aim of this thesis to improve the existing systems, or more precisely
the achievable field enhancement, using tools from optimization theory and the
theory of resonances. We want to provide an optimization algorithm involv-
ing the field enhancement as objective function. Mathematically this means
we have to optimize the field enhancement as a function of the refractive in-
dex. This leads to interesting optimization problems with objective functions
involving resonances and resonance functions.

1.2 Overview and Outline

Resonances in open systems can be described by eigenvalue problems with a
radiation condition at infinity and arise in various fields including acoustics,
classical mechanics, quantum mechanics, and x-ray physics. In this thesis we
focus on the optimization of resonances for multilayer x-ray resonators.
Let us make things a little more concrete. The propagation of polarized x-rays
in layered media is described by the reduced wave equation

u�� + k20n
2u = νu, (1.1)

where the function n describes the refractive index and ν = k20 cos
2 α param-

eterizes the angle of incidence α. We want to find a function n for which the
field enhancement in the multilayer structure for a resonant angle of incidence

1



2 Introduction

is maximized subject to side constraints on n. The side constraints guarantee
physical admissibility of the refractive profiles. In the objective function of our
optimization problem we use an approximation of the solution u arising from
an asymptotic expansion in the vicinity of resonances. This avoids taking a
maximum over ν in the objective function and leads to an objective function
involving complex resonances and corresponding resonant functions.

The problem is discretized via finite elements combined with Hardy space
infinite elements in order to model radiation conditions in a way which pre-
serves the linear eigenvalue structure of the problem (see Hohage and Nannen
[HN09]). Most of the existing work on the optimization of eigenvalues for a
matrix depending on parameters is restricted to the case of symmetric/Her-
mitian matrices or linear dependence on the parameters1. These assumptions
are not satisfied for our problem. To compute the derivative of the objective
function anyways, we derive analytic expressions for the derivatives of reso-
nances and resonance functions with respect to n using perturbation theory of
linear operators. We finish with numerical computation leading to improved
multilayer x-ray resonators for several situations.

The outline of this thesis is as follows. In Chapter 2 we derive a complete
formulation of our optimization problem and give the basic definitions needed
for resonance problems. To this end, we formulate a scattering problem on all
of R (differential equation and radiation conditions characterizing the behavior
at ±infinity) describing the situation for a fixed multilayer system and all
permitted angles of incidence. We also formulate it in weak form and provide
an existence and uniqueness result. The scattering problem already leads to
a first formulation of our optimization problem over a set of admissible n and
ν. Since the optimization problem has a very complicated form, due to the
maximum over all permitted ν, we use the concept of resonances to make
it more accessible. Resonances are defined as eigenvalues to eigenfunctions
which fulfill a radiation condition. Or to put it in another way, they are the
singularities of the complex analytic continuation of the solution operator to
the scattering problem with respect to ν. Resonances enable us to compute the
resonant frequencies more directly as the real parts of the complex resonances
approximate them (see Section 4.3.4). At the end of Chapter 2 we analyze the
geometric multiplicities of the resonances. For the sake of differentiability we
use in the objective function to our optimization problem the L2-norm of the
total field inside the system instead of the maximum norm. This replacement is
very reasonable as the L2-norm inside the system is proportional to the energy
inside of it. Our numerical experiments suggest that the L∞- and L2-norm are
almost proportional for the field at a resonant frequency.

As a first step to find the derivative of our objective function we analyze
throughout Chapter 3 the dependence of the solution to the scattering problem
on the refractive index n. Fréchet derivatives of a suitable solution operator
are computed with the help of methods from integral equations. We provide a
result which is of interest in its own, the mathematical derivation of the kine-
matic approximation. The kinematic approximation is an approximation to

1For details, we refer to the introduction to Section 4.1.



1.2 Overview and Outline 3

the reflectivity2 in dependence of the angle of incidence α, which is widely used
especially in the x-ray community. First, we rewrite the scattering problem as
an integral equation using a Green’s function (fundamental solution) for some
admissible initial profile and analyze existence and uniqueness of solutions to
the integral equation. The analyticity of the solution operator with respect
to n at the initial profile is shown for α not equal to the critical angle, and
formulas for the derivatives are given. From this we deduce approximation for-
mulas not only on the reflectivity (in particular the kinematic approximation
using the first derivative), but also on the complete solution to the scattering
problem for small perturbations of the initial situation. We also get error es-
timates and higher order approximations for both using higher derivatives. In
this sense we do not only justify the kinematic approximation, but also show
how to improve it. Whenever a Green’s function is known one can obtain ap-
proximation formulas more suited to the particular application and hope for
even better approximation results. Close to the critical angle of incidence the
approximation of the reflectivity is still not too good even if we use higher
order Taylor expansions. This is due to the fact that the solution operator
is not differentiable at the critical angle. Improvements in this region can be
achieved by Padé approximations. We explain how they can be computed from
the derivatives and show their success and the other approximation formulas
for the reflectivity and the total field in a numerical example.

In Chapter 4 we analyze the differentiability of simple, isolated eigenvalues, and
corresponding eigenvectors, of a general operator-valued function with respect
to n. We apply the results to a generalized eigenvalue problem as it arises by
formulating the scattering problem in operator form using the Hardy space
formulation proposed in Hohage and Nannen [HN09]. For the eigenvalues we
prove continuous differentiability with respect to n under the assumption that
the underlying operator has this property. We derive expressions for their
derivatives and for those of the corresponding eigenvectors. As the latter are
non-unique, we show continuous differentiability assuming a special scaling for
them. We derive a handy formula for an appropriate objective function, and its
derivative can be deduced from our formulas for the derivatives of eigenvalues
and eigenvectors.

In order to arrive at a fully discrete problem, n is assumed to be encoded in a
vector n, and the scattering problem is discretized by finite elements combined
with Hardy space infinite elements. A discretization of n in the assumed
form, where the resulting operator depends continuously differentiably on n,
can be obtained by a piecewise constant approximation or a spline of higher
order. We explain why existing results on the optimization of eigenvalues of
a parameter-dependent matrix cannot be applied to the completely discrete
version of our objective function. Our results on the derivative of the objective
function can still be applied as the discrete version is only a special case of the
situation analyzed before. The required derivatives of the discretized operator
are computed. At the end of Chapter 4 this is done with respect to the

2The reflectivity is defined as the squared absolute value of the reflection coefficient. For
a definition of the reflection coefficient, we refer to Chapter 2, equation (2.6a).



4 Introduction

positions of layer change for a piecewise constant refractive index and for other
discretizations of n in Chapter 5.

Finally, in Chapter 5 we present numerical results showing what is achieved by
our method and leading to improved multilayer systems. We discuss different
discretizations of the refractive index and explain how we handle absorption ef-
fects. The absorption is not modelled as an independent variable as this always
leads to the lowest admissible absorption. We start with the optimization of
piecewise constant refractive profiles, optimizing refractive indices in the lay-
ers, layer thicknesses and both simultaneously. Especially the optimization
of the layer thicknesses turns out to be very promising and leads to improve-
ments up to 200% in the field enhancement compared to standard systems.
More accurate approximations of the refractive index using splines of higher
order suggest that one cannot achieve better L2-norms using different shapes
than potential wells with sharp layer changes. At the end we also involve the
angular acceptance3 into our objective function to improve the efficiency of the
resonators in the practical application.

1.3 Related work

Eigenvalue optimization problems arise in many different areas like optimal
design problems (see e.g. Cox and Overton [CO92] and Cox and McLaughlin
[CM90]), problems of optimal control (see e.g. Boyd et. al [BGFB94] and
Burke, Lewis, and Overton [BLO00], [BLO03]) and even in problems from
the theory of graphs (see e.g. Donath and Hoffman [DH73] and Overton and
Womersley [OW93]). We firstly checked if similar techniques apply to our
problem. It turned out that the underlying assumptions are not fulfilled in
our problem, and we are also interested in derivatives of eigenvectors which
causes additional problems. In particular, there exists a lot of work by Over-
ton and Burke on the optimization of eigenvalues of a matrix-valued function
depending on several parameters, but most of this work is restricted to sym-
metric/Hermitian matrices which we do not have. Without this assumption
severe problems occur in the variational analysis. Moreover, we will also need
derivatives of specially scaled eigenvectors such that the existing results, that
we are aware of, cannot be applied directly to our problem. We will comment
on this in more detail in Chapter 4 and give a detailed introduction to the
topic and the existing literature at the point where it becomes relevant and
when we are more familiar with the special properties of our problem.

As announced before, the concept of resonances is a basic tool in this thesis.
For a more detailed introduction than the one in Chapter 2, we refer to Hohage
and Nannen [HN09], [Nan08] and the references therein. These works also form
the basis for the numerics later since they provide the Hardy space infinite
elements method.

The central issue examined in this thesis is a problem of optimal design/shape.
We want to improve the field enhancement of multilayer systems by changing

3By the angular acceptance we measure how exact one must match a resonant angle to
achieve at least half of the field enhancement at the resonant frequency itself.



1.3 Related work 5

their design. Closely related to our problem is the one studied in an article
by Heidler et al. [HBKW08] from 2008. They aim for the improvement of
micro- and nanoscale structures (in particular photonic crystals) to decrease
energy loss. In the considered model the energy loss can be measured by
the magnitude of the imaginary part of a (scattering) resonance. Gradient
methods are applied to a quality factor which they define as the reciprocal of
the absolute value of the imaginary part of the resonance there. In our case
such an objective will turn out to be inappropriate since other quantities have
also to be taken into account. A reason for this are absorption effects which
in contrast to the article of Heidler et al. [HBKW08] cannot be neglected in
our case. Formulas for the necessary derivatives in Heidler et al. [HBKW08]
are derived in the continuous setting, but not in a completely rigorous way.
Another difference to our aims is the restriction to piecewise constant functions
in the numerics which simplifies the evaluation of the objective function (e.g.
it is possible to use a linear system to solve the scattering problem). We want
to consider more general bounded profiles in the optimization algorithm as
well.

There are several other articles also using (generalized) gradient methods for
different types of problems related to our setting like Kao and Santosa [KS07],
Lipton, Shipman and Venakides [LSV03] and Dobson and Santosa [DS04].
Motivated by photonic band gap devices in Kao and Santosa [KS07] a quality
factor (similar to the one in Heidler et al. [HBKW08]) is optimized using inte-
gral equation methods to design good resonators. Boundary integral methods
are used in Lipton, Shipman and Venakides [LSV03] to optimize resonances in
photonic crystal slabs where a quite different objective function is used. The
transmission coefficient4 and its variational gradient are central there. Dobson
and Santosa [DS04] examine optimally localized eigenmodes of an inhomoge-
neous membrane which leads to a self-adjoint analogue to the problem con-
sidered by Heidler et al. [HBKW08]. It is different from the ones mentioned
before because it does not deal with resonances but with Dirichlet eigenval-
ues on a bounded domain. A discretization leading to symmetric/Hermitian
matrices can be assumed then which simplifies the situation for the eigenvalue
optimization significantly as already mentioned above.

Somewhat further away from our studies, but absolutely worth mentioned, are
the articles by Burger, Osher and Yablonovitch [BOY04] and Felici and Engl
[FE01] where for different reasons (like non-existence of solutions and unstable
dependence on the data) ill-posedness occurs in the optimization problems
and hence the methods presented there involve regularization techniques. In
Burger, Osher and Yablonovitch [BOY04] this is done in the context of the
design of photonic crystals and in Felici and Engl [FE01] for the optimization
of optical waveguides.

There is also the very interesting doctoral thesis by Schneck [Sch09] on the
optimization of the reflection coefficient by constrained optimization in Hardy
spaces. The starting point of this work is a mirror design problem, i.e. the
design of a multilayer structure (by changing the refractive index describing

4For a definition see Chapter 2, equation (2.6b).



6 Introduction

the structure) to meet a desired complex-valued reflection coefficient. The
thesis does not aim for a new method. It examines the space of realizable
reflection coefficients and looks at the arising optimization problem for mirror
design from a more abstract point of view. This leads to the consideration of
an optimization problem in Hardy spaces5 subject to side constraints which
is examined analytically (existence, uniqueness, extremal property) and nu-
merically. Although many of the keywords sound familiar from our problem,
it is completely different in some sense. One thing is our objective function
involving the field enhancement which we want to maximize. Of course, one
could also ask the question how to design a system to reach a certain field
distribution, but the reflection coefficient has much nicer properties, especially
if absorption can be neglected (as in Schneck [Sch09]), than the complete field
distribution or respectively the achieved field enhancement. Apart from this,
the work of Schneck provides existence and uniqueness results for the consid-
ered optimization problem only in a larger solution space. From this it gains
information on the accuracy of solutions of the original optimization problem
by rigorous bounds on its optimum. Such bounds would also be desirable in
our problem, but it turns out that useful objective functions are considerably
more complicated and depend on many parameters. Hence, rigorous and useful
upper bounds on the achievable field enhancement seem out of reach.
The decision to use the L2-norm instead of the infinity norm is very reason-
able as explained above. One could also work directly with the infinity norm
by rewriting the problem into one with additional side constraints for every
discretization point. This approach is used e.g. in Grund and Rösch [GR01]
in the context of a control problem and leads to a huge set of additional side
constraints, especially for finer discretizations.
Another possibility to solve our optimization problem are genetic algorithms,
to avoid the effort of computing the derivatives. One attempt to apply genetic
algorithms in the optimization of x-ray waveguides can be found in Karimov
and Kurmaev [KK03]. But only very small systems of three layers were exam-
ined for which the layer thicknesses and the materials (only very few materials
allowed) in the cladding (outer layers) were optimized. In general, genetic
algorithms have the advantage of global instead of local convergence. They
do not require much information on the problem and can even be applied to
discontinuous problems. But as our problem can be shown to be differentiable
they will perform worse compared to gradient methods as genetic algorithms
have the disadvantage that the computational cost grows extremely fast with
the number of degrees of freedom. Especially in our problem, evaluations of
the objective function are very expensive since they require solving a resonance
problem.

5The occurrence of Hardy spaces might lead to the conjecture of an approach very closely
related to ours, but they are used as solution spaces for the optimization there while we use
them in the modelling of the radiation conditions.



2 Derivation of the mathematical problem

The problem of finding improved x-ray resonators described in the Introduction
will be formulated mathematically in this chapter. We arrive at an optimiza-
tion problem involving resonances.
The situation of a fixed multilayer system and a fixed angle of incidence gives
rise to a one-dimensional scattering problem which we formulate in strong and
weak form, and we provide an existence and uniqueness result. With the help
of this we are able to give a first formulation of our optimization problem.
Since the optimization problem has a complicated form, we use the concept
of resonances to make it more accessible. Two equivalent formal definitions
of resonances are given. The first one introduces them as eigenvalues whose
corresponding eigenfunctions fulfill a radiation condition. We prove that all
resonances can be excited by the incident field and have a corresponding one-
dimensional (eigen-)space of resonance functions.

2.1 Scattering problem

Before we turn to the mathematical formulation of the optimization problem
and to resonances, we give a short derivation of the underlying scattering
problem.
We consider a multilayer system which is impinged on the surface by a x-ray
beam under the angle of incidence α. The refractive index n is assumed to
depend only on the cartesian variable z. We assume that the upper half-space
{[x, y, z] ∈ R3 : z > 0} is filled with air and that the half-space {[x, y, z] ∈ R3 :
z < −a} is filled with a substrate such that

n(z) =




1, z > 0

nsub, z < −a.
(2.1a)

Thus, n is non-constant only within the strip −a ≤ z ≤ 0. A sketch of the
situation can be found in Figure 2.1.
In the x-ray regime the refractive index is of the form n = 1 − δ + iβ with
δ, β ≥ 0 and δ, β � 1 for all known materials6, and β describes the absorption.
For our analysis in addition to (2.1a) we only assume that

n ∈ L∞(R) with Re(n) > 0 and Im(n) ≥ 0. (2.1b)

The propagation of x-rays can be described7 by the time-harmonic Maxwell
equations

curl curl �E − k20n
2 �E = 0

for the electric field �E, with k0 := 2π/λ and the wavelength λ.

The incident8 field �Ei is given by

�Ei =
�
0,Re

�
eik0(x cosα−z sinα)e−iωt

�
, 0
��
. (2.2)

6Typically (the real part of) the refractive index for x-rays is some 10−6 below 1.
7An elaborate introduction to the physical background of multilayer x-ray resonators can

be found in [Pfe02, Section 2.1 and 2.2].
8The propagation direction of waves will be discussed immediately.

7



8 Derivation of the mathematical problem

Figure 2.1: example of a multilayer system

If the electric field �E is polarized in y-direction, the ansatz

�E(x, y, z) = [0, u(z)ei
√
νx, 0]� (2.3)

leads to the ordinary differential equation

−u��(z)− (k20n
2(z)− ν)u(z) = 0 (2.4)

on the whole real axis. The angle of incidence α is related to the parameter ν
in (2.4) via

k0 cosα =
√
ν.

To have the chance of unique solvability for the differential equation (2.4) we
need further conditions on the solution u.
Let us first consider the situation for z > 0. For z > 0 the differential equation
(2.4) has two linearly independent solutions

ui(z) := e−i
√
k2

0−ν z and ei
√
k2

0−ν z, (2.5)

remembering that n ≡ 1 for z > 0. If ν ∈ [0, k20) (0 < α ≤ π/2) the

first solution corresponds to our incident field �Ei propagating in the direc-
tion [cosα, 0,− sinα]�, and the second solution corresponds to a reflected
plane wave propagating in the direction [cosα, 0, sinα]�. This can be seen re-
spectively from computing the time-averaged/complex Poynting vector which
points in the direction of the energy flux or by directly examining the influence
of the chosen time-dependence e−iωt on the solutions in (2.5).
Our discussion shows that we have to look for solutions u of the form

u(z) = ui(z) + rνe
i
√
k2

0−ν z for z > 0 (2.6a)

with a reflection coefficient rν ∈ C. The formulation of the problem is com-
pleted by requiring that there exists a transmission coefficient tν ∈ C such that

u(z) = tνe
−i
√
k2

0n
2
sub−ν z for z < −a. (2.6b)
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Note that all solutions to (2.4) in the interval (−∞,−a) are linear combinations

of e±i
√
k2n2

sub−ν z. If ν < Re(k20n
2
sub) we choose a wave propagating downward

rather than upward, and if ν > Re(k20n
2
sub) we pick an exponentially decaying

rather than an exponentially growing solution. Here and in the following, we
always choose the branch of the square root function which has a cut at the
negative imaginary axis

iR−
0 := {ν ∈ C : Re(ν) = 0 and Im(ν) ≤ 0} . (2.7)

We sum all this up in a definition and the complete formulation of the scat-
tering problem.

Definition 2.1. a) We call a solution v of (2.4) in {z ∈ R : z > 0} outgoing

in the upper section if it is of the form v(z) = rν · ei
√
k2

0−ν z for all z > 0 with
a constant rν ∈ C.
b) We call a solution v of (2.4) in {z ∈ R : z < −a} outgoing in the lower

section if it is of the form v(z) = tν · e−i
√
k2

0n
2
sub−ν z for all z < −a with a

constant tν ∈ C.

Scattering problem.

Find u ∈ H2
loc(R), such that

− u��(z)− (k20n
2(z)− ν)u(z) = 0 for z ∈ R (2.8a)

u = ui + us (2.8b)

ui(z) = e−i
√
k2

0−νz (2.8c)

us is outgoing in the upper section (2.8d)

u is outgoing in the lower section. (2.8e)

H2
loc(R) denotes the space of functions whose restriction to K belongs to the

Sobolev space H2(K) for every compact subset K ⊂ R. The use of H2
loc(R)

is necessary as the expected solutions are not globally H2-functions which
becomes immediately clear from equation (2.6a). For a brief introduction to
Sobolev spaces, we refer to [RR94, Section 6.4].

2.2 Optimization problem

As mentioned in the Introduction, for a suitable multilayer system there exist
certain angles of incidence (we call these angles resonant angles, and in terms
of the corresponding ν we will often speak of resonant frequencies) for which
a very high field enhancement inside the system can be observed.
When the incident x-ray beam impinges on the surface of the multilayer system,
a part of the incident field is reflected and the rest penetrates into the system.
For a suitable combination of parameters a standing wavefield �E with enhanced
field inside the system occurs and propagates along the x-axis. Figure 2.2
sketches the described effect.
Let us motivate the effect a little more from a physical point of view and also
discuss the interval of angles in which we expect resonant angles. As a first
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Figure 2.2: sketch of a multilayer x-ray resonator with an impinging beam
that excites a resonant state

example, consider a system with piecewise constant refractive index consisting
of three layers on a substrate with Re(n2) < Re(n3) < 1 as sketched in Figure
2.2. Neglecting absorption effects for a moment, for angles of incidence α above
the critical angle9 between air and n2

αcr,n2 := arccos (Re(n2)) (2.9)

an (with α) increasing part of the incident field penetrates into the whole
multilayer system. In contrast, for α < αcr,n3 := arccos (Re(n3)) only a very
small part of the incident field is transmitted into the system as a strongly
decaying evanescent wave. Therefore, the interesting interval is

αcr,n3 ≤ α ≤ αcr,n2 , (2.10)

in which for a suitable combination of thicknesses and refractive indices there
are certain angles of incidence for which a highly enhanced field can be observed
inside the system. A part of the incident field tunnels through the top layer
(with n2) as an evanescent wave and only a very small part tunnels back.
Especially almost everything is reflected on the thick bottom layer while the
field propagates along the x-axis (for a more detailed description, we refer to
[Pfe02, Section 2.2.2-2.2.5]).

For a general refractive index we can restrain the region where we expect
resonant angles by

arccos

�
max

z∈[−a,0]
Re(n(z))

�
≤ α ≤ arccos

�
min

z∈[−a,0]
Re(n(z))

�
(2.11)

9If the wavelength is small compared to the geometry, one may use geometrical optics
as an approximation to the full physical optics model. The small absorption coefficient is
neglected in the definition of the critical angle.
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or respectively for the resonant frequencies by

k20

�
min

z∈[−a,0]
Re(n(z))

�2
≤ ν ≤ k20

�
max

z∈[−a,0]
Re(n(z))

�2
. (2.12)

What we are interested in, is the improvement of the multilayer structures to
get higher field enhancements or respectively better resonant states by modi-
fying the refractive index. But before we formulate the optimization problem,
let us look at an example to illustrate the situation.

2.2.1 Example of a multilayer x-ray resonator

Figure 2.3: upper panel: field intensity along the z-axis for different angles
of incidence α, lower panel: maximum field intensity for different angles
of incidence α; values: Table 2.1

We consider again a simple multilayer system consisting of three layers and a
substrate (a carbon layer between two nickel layers on silicon substrate) where
the refractive index is assumed to be piecewise constant10. In this case we are
able to compute the solution to the scattering problem (2.8) analytically from
a linear system (known as matrix or Parratt algorithm, see e.g. the classical
paper of Parratt [Par54] or [BW97] and [Lek87]). The used values can be
found in Table 2.1 and the results in Figure 2.3. For the layer thicknesses we
use the unit Ångström (1Å=0.1nm).
In the upper panel of Figure 2.3 the field intensity |us(z)|2 along the z-axis is
plotted for different angles of incidence and in the lower panel the maximum

10The presented example is taken from [PSH+00].
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field intensity. The peaks in the graphs clearly show the resonant frequencies
or respectively the resonant angles of incidence we are looking for.

layer thickness (in Å) refractive index
Ni d1 = 50 1− 4.45 · 10−6 + 1.37 · 10−7i
C d2 = 335 1− 1.15 · 10−6 + 2.21 · 10−10i
Ni d3 = 200 1− 4.45 · 10−6 + 1.37 · 10−7i
Si infinite 1− 1.20 · 10−6 + 4.56 · 10−9i

Table 2.1: values used in the computation for Figure 2.3 at λ = 0.62Å

2.2.2 First formulation of the optimization problem

We are now able to formulate the verbally described optimization problem
mathematically. By u[ν, n] we denote11 the solution u of (2.8) restricted to
[−a, 0] (inside the system) for the refractive index n and the angle-dependent
parameter ν.

Optimization problem 2.2.

max
n

max
ν

�u[ν, n]�∞ under (2.8) as side condition and

side conditions on n and ν.

Optimization Problem 2.2 is rather complicated because it is not only a param-
eter optimization problem in n with a differential equation as side condition,
but also a nested problem due to the maximum over ν. Moreover, the interval
[0, k20) for ν is quite large since the peaks in the intensity curve are very narrow
as one can see in Figure 2.3. As we will later see (Section 4.3.2), it even holds:
the higher a peak in the intensity is, the narrower it is. Therefore, we need
a very fine resolution for ν because otherwise the best peaks are likely to be
missed. If we want to reduce the set of permitted values of ν, we have to do it
in dependence of n, as seen in equation (2.12), but side conditions depending
on each other would make the problem even more complicated.
To make the problem more accessible, we use the concept of resonances. Reso-
nances are complex numbers in our case, and their real parts approximate the
resonant frequencies as we will see in Section 4.3.1. We introduce the basic
definitions and basic theory in the two following sections.

2.3 Reformulation of the differential equation

For the following analysis and the numerical solution we have to replace the
differential equation (2.8a) posed on R by a differential equation posed on the
bounded interval [−a, 0]. Moreover, it will be essential to study problem (2.8)
also for complex values of ν. The set of all admissible ν is given by

Z :=
�
ν ∈ C : Re (ν) ∈ [0, k20) ∧ (k20n

2
sub − ν) /∈ iR−

0

�
. (2.13)

11Square brackets are used to denote the dependence on ν and n since u is already a
function (of z) itself. We will often omit the square brackets, in particular in the differential
equations, whenever it is clear from the context which n and ν are used.
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Let us introduce the Dirichlet-to-Neumann numbers

DtN+ν := i
�
k20 − ν and DtN−

ν := −i
�
k20n

2
sub − ν.

Looking at the general solution to (2.8a) in (0,∞) it is easy to see that u is of
the form (2.6a) if and only if us = u−ui satisfies u�

s(0) = DtN+ν us(0). Similarly,
(2.6b) is equivalent to u�(−a) = DtN−

ν u(−a). Using these relations we obtain
the following equivalent formulation of problem (2.8).

Lemma 2.3. Let ν ∈ Z. If u ∈ H2loc(R) is a solution to (2.8), then us :=
(u− ui)|[−a,0] satisfies

− u��
s (z)− (k20n

2(z)− ν)us(z) = fν(z), z ∈ [−a, 0] (2.14a)

u�
s(0) = DtN+ν us(0) (2.14b)

u�
s(−a) = DtN−

ν us(−a) + DtN−
ν ui(−a)− u�

i(−a) (2.14c)

with fν(z) := k20(n
2(z)− 1)e−i

√
k2

0−ν z .

Vice versa, if us ∈ H2([−a, 0]) is a solution to (2.14), then u(z) := e−i
√
k2

0−ν z+
us(z) is the restriction of a solution to (2.8).

Remark 2.4. The boundary conditions (2.14b) and (2.14c) are also known
as transparent boundary conditions. In virtue of Lemma 2.3 and as it will be
clear from the context, we do not distinguish in our notation between us on all
of R and its restricted version to [−a, 0].

Definition 2.5. We call a function us ∈ H2([−a, 0]) a strong solution if it
fulfills (2.14).

A weak formulation of (2.14) can be obtained in a standard way. We write it
in operator form as

(I + T (ν))us = G(ν), (2.15)

where the bounded linear operators I, T (ν) ∈ L(H1([−a, 0])) and the function
G(ν) ∈ H1([−a, 0]) are implicitly given by the relations12

�Iu, v�H1 =
� 0

−a
u�v� + uv dz, (2.16a)

�T (ν)u, v�H1 = −k20
� 0

−a
n2uv dz + (ν − 1)

� 0

−a
uv dz

−DtN+ν u(0)v(0) + DtN−
ν u(−a)v(−a), (2.16b)

�G(ν), v�H1 =
� 0

−a
fνv dz −

�
DtN−

ν ui(−a)− u�
i(−a)

�
v(−a), (2.16c)

which hold for all u, v ∈ H1([−a, 0]).

Definition 2.6. We call a function us ∈ H1([−a, 0]) a weak solution if it
fulfills (2.15).

12Here and in the following we always use the convention that scalar products are anti-
linear in the second argument, and by L(X) we denote the set of bounded linear operators
on a normed vector space X.
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So far, we have only stated the problem in different formulation. Existence
and uniqueness of solutions are provided by the following proposition.

Proposition 2.7. 1. us ∈ H1([−a, 0]) is a solution to (2.15) if and only
if it is a solution to (2.14).

2. The equivalent problems (2.8), (2.14) and (2.15) have a unique solution
for all ν ∈ Z with Im(ν) ≤ 0.

Proof. 1. This follows by partial integration and elliptic regularity results,
for details see e.g. [RR94, Thm. 8.53].
2. We show that (I + T (ν)) has a bounded inverse using Riesz theory.
T (ν) ∈ L(H1([−a, 0])) is a compact operator which follows from the compact-
ness of the embedding H1([−a, 0]) �→ L2([−a, 0]) (see e.g. [RR94, Thm. 6.98])
and the fact that the DtN numbers define rank 1 operators.
To prove injectivity of (I + T (ν)), assume that (I + T (ν))us = 0. Then

0 = Im (�(I + T (ν))us, us�H1) =− k20

� 0

−a
Im(n2)|us|2 dz + Im(ν)�us�2L2

− Im(DtN+ν )|us(0)|2 + Im(DtN−
ν )|us(−a)|2.

Since by our assumptions all terms on the right hand side are nonpositive, all
of them must vanish. As

Im(DtN+ν ) = Re
��

k20 − ν
�
> 0, (2.17)

we obtain that us(0) = 0. Using the equivalence of (2.15) and (2.14), it follows
that u�

s(0) = 0 and uniqueness results for ordinary differential equations (see
Appendix) imply that us ≡ 0.
Now, Riesz theory implies that (I + T (ν)) has a bounded inverse (see e.g.
[Kre89, Thm. 4.17]), and hence (2.15) has a unique solution. �

In view of the following section and subsequent considerations, we cite another
equivalent weak formulation of (2.8). It is called Hardy space formulation, and
in contrast to (2.15) it preserves the linear structure in ν.

Definition 2.8. The Hardy space H+(S1) is the set of all functions f ∈
L2(S1), which are L2-boundary values of a in the unit disk {s ∈ C | |s| < 1}
holomorphic function g, in the sense that lim

r�1

� 2π
0 |g (reiϕ)− f (eiϕ)| dϕ = 0,

and for which the integrals
� 2π
0 |g(reiϕ)|2 dϕ are uniformly bounded for r ∈

[0, 1). Equipped with the L2-scalar product H+(S1) becomes a Hilbert space.

Lemma 2.9. Let XH := H+(S1) × H1([−a, 0]) × H+(S1), ν ∈ Z and us ∈
H2
loc(R) a solution to

− u��
s (z)− (k20n

2(z)− ν)us(z) = fν(z) for z ∈ R (2.18a)

us is outgoing in the upper section (2.18b)

us + ui is outgoing in the lower section (2.18c)
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with fν as in Lemma 2.3. Then we can define bilinear forms13 B[n],M : XH →
C and f (ν) ∈ XH for problem (2.18) and functions u�, u⊕

s ∈ H+(S1) such that

us :=
�
u�, us|[−a,0], u⊕

s

�
∈ XH fulfills

B[n](us, v)− νM(us, v) =M(f (ν), v) (2.19)

for all v ∈ XH. Vice versa if us = (u�, us, u
⊕
s ) ∈ XH is a solution to (2.19),

then us belongs to H2([−a, 0]) and is the restriction to [−a, 0] of a solution to
(2.18).
Equation (2.19) corresponds to an equivalent operator equation of the form

(B(n)− νM)us = Mf (ν), (2.20)

with a boundedly invertible operator M ∈ L(XH) and (B(n) − νM) ∈ L(XH)
is a Fredholm operator of index 0. If additionally Im(ν) ≤ 0, (B(n)− νM) is
boundedly invertible.

For details, we refer to [HN09, Theorem 2.4]. They are not explained here, as
this leads us too far away from our main purpose. We remark the following: In
contrast to the situation in [HN09, Theorem 2.4] we have radiation conditions
on both sides and an inhomogeneous differential equation. Because of the two
radiation conditions us consists of three components. Considering the set Z of
admissible ν, one can observe that we allow an exponential decay in the lower
section. This is also covered by the Hardy space formulation, we refer in par-
ticular to [HN09, Remark 2.8]. Since supp(fν) ⊂ [−a, 0], the inhomogeneous
differential equation does not cause any problems in the exterior of [−a, 0],
where we incorporate the radiation conditions into the weak formulation via
the Hardy spaces. In particular, f (ν) := [0, �fν , 0] ∈ XH and M(f (ν), v) have
no parts in the Hardy spaces andM(f (ν), v) is an analog to (2.16c). The part
�fν ∈ H1([−a, 0]) includes terms that allow for the fact that in the lower section
the total field u = us+ ui is outgoing and not the us, but it stays holomorphic
in ν. However, the proof in [HN09, Theorem 2.4] carries over to our lemma.
Note that (2.18) is an equivalent formulation of the scattering problem (2.8).
For the operator equation (2.20) observe that there exists an isometric bijection
between the space of bounded linear operators on a Hilbert space and the space
of bounded sesquilinear forms on this space (see [Con90], Theorem 2.2). That
(B(n)−νM) is a Fredholm operator of index 0 is shown in [HN09, Theorem 2.5
and Corollary 2.6]. The injectivity of this operator for Im(ν) ≤ 0 follows from
Proposition 2.7, using the equivalence of the formulations. By Riesz theory
this implies the bounded invertibility.
Lemma 2.9 is the basis for the Hardy space method which we later use to
discretize our problem.

2.4 Resonances

We give two equivalent definitions of resonances. The first one introduces
them as eigenvalues with outgoing eigenfunctions while the second definition

13The notation B[n] indicates that this bilinear form includes the refractive index n.
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is based on the analytic Riesz-Fredholm theory14 and introduces them as poles
of the resolvent. If we write simply “outgoing” for a function, we mean that it
is outgoing in both sections.

Theorem and Definition 2.10. A complex number ν� ∈ Z is called a res-
onance if it satisfies one of the following equivalent conditions:

1. There exist nontrivial solutions us� ∈ H2
loc(R) (resonance functions) of

the eigenvalue problem
�
− d2

dz2
− k20n

2(z)

�
us�(z) = −ν�us�(z) for z ∈ R (2.21a)

us� is outgoing (2.21b)

2. ν� ∈ Z is a pole of the resolvent

R : Z→ L(H1([−a, 0])), R(ν) := (I + T (ν))−1 . (2.22)

Proof. Let ν� be a resonance after the first definition. Then we have a
nontrivial solution us� ∈ H2([−a, 0]) to the following homogeneous form of
(2.14):

− u��
s�(z)− (k20n

2(z)− ν�)us�(z) = 0 for all z ∈ [−a, 0] (2.23a)

u�
s�(0) = DtN+ν�

us�(0) (2.23b)

u�
s�(−a) = DtN−

ν�
us�(−a). (2.23c)

This us� solves the homogeneous form of the weak formulation:

(I + T (ν�))us� = 0. (2.24)

Therefore, the operator (I + T (ν�)) is not invertible at ν� and ν� is a pole of
R(ν) since the resolvent is a meromorphic function. The proof of this property
can be found below in Theorem 2.12.
Starting now with a resonance ν� after the second definition which means ν� is
a pole of the resolvent and (I + T (ν�)) is therefore not invertible. Then there
exists a us� �= 0 in H1([−a, 0]) with (I+T (ν�))us� = 0 because for our operator
injectivity and surjectivity are equivalent (cf. proof of Proposition 2.7). us� is
then also a solution to (2.23) in H2([−a, 0]) and hence the restriction to [−a, 0]
of a nontrivial solution to (2.21). �

We will show now an important result on the existence, number and location
of resonances for our problem. As a preparation, we cite a famous theorem of
Steinberg.

Proposition 2.11. For a Banach space X, a domain D ⊆ C and an operator-
valued analytic function T : D → L(X), with T (ν) compact for all ν ∈ D,
either (i) or (ii) holds:

(i) (I − T (ν)) is not invertible for any ν ∈ D.

(ii) (I − T (ν)) is invertible except for at most a discrete subset of D

and (I − T (ν))−1 is a meromorphic function in D.

14For details on the analytic Riesz-Fredholm theory see e.g. [Kat95].
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Proof. See [Tay96, Ch.9, Proposition 7.4]. �

Theorem 2.12. 1. The resolvent R is a meromorphic function on Z. In
particular, we have at most a discrete set of resonances.

2. There cannot exist any resonances ν� ∈ Z with Im ν� ≤ 0.

Proof. 1. The compactness of T (ν), which we have already discussed in
the proof of Proposition 2.7, extends to all ν ∈ Z. Moreover, the mapping
ν �→ T (ν) on Z with values in L(H1([−a, 0])) is an analytic function. For this,
it suffices to show (see e.g. [Kat95, III.§3.1, Thm. 3.12]) that the right hand
side of (2.16b) depends holomorphically on ν. This can be seen quite easily.
Now we can apply Proposition 2.11.
2. In Proposition 2.7 we have seen that the resolvent is invertible for all ν ∈ Z
with Im ν ≤ 0. �

The question arises whether the resonances, if they exist, can be excited by
the incident field. Mathematically this means to check if a pole ν� of R is also
a pole of the mapping ν �→ R(ν)G(ν). We begin with a preparing Lemma.

Lemma 2.13. Let ν� be a resonance and us� a corresponding resonance func-
tion, i.e. a function us� �= 0 with (I + T (ν�))us� = 0. Then
a) (I + T (ν�)

∗)us� = 0 and

b) �G(ν�), us��H1 = −2i
�
k20 − ν�us�(0) �= 0.

Proof. a) For arbitrary v ∈ H1([−a, 0]) we have

�v, (I + T (ν�)
∗)us��H1 = �(I + T (ν�))v, us��H1

=
� 0

−a
v�u�

s� − k20

� 0

−a
n2vus� dz + ν�

� 0

−a
vus� dz

−DtN+ν�
v(0)us�(0) + DtN−

ν�
v(−a)us�(−a)

= �(I + T (ν�))us�, v�H1 = 0.

Because v ∈ H1([−a, 0]) was arbitrary, we obtain (I + T (ν�)
∗)us� = 0.

b) By definition we have fν = k20(n
2 − 1)ui,ν = u��

i,ν + (k20n
2 − ν)ui,ν with

ui,ν(z) = e−i
√
k2

0−νz and therefore

�G(ν�), us��H1 =
� 0

−a

�
u��
i,ν�

+ (k20n
2 − ν�)ui,ν�

�
us� dz

−
�
DtN−

ν�
ui,ν�

(−a)− u�
i,ν�

(−a)
�
us�(−a).

We perform twice a partial integration to get

�G(ν�), us��H1 =
� 0

−a
ui,ν�

�
u��
s� + (k20n

2 − ν�)us�
�
dz

+ us�(0)u
�
i,ν�

(0)− us�(−a)u�
i,ν�

(−a)− u�
s�(0)ui,ν�

(0) + u�
s�(−a)ui,ν�

(−a)
−
�
DtN−

ν�
ui,ν�

(−a)− u�
i,ν�

(−a)
�
us�(−a). (2.25)
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Since us� is a resonance function to ν�, we know that us� is a solution to (2.23).
In particular, u��

s� + (k20n
2 − ν�)us� = 0 and together with the DtN conditions

(2.23b) and (2.23c), equation (2.25) reduces to

�G(ν�), us��H1 = −2i
�
k20 − ν�us�(0). (2.26)

It remains to show that (2.26) is not equal to zero. Let us assume the contrary.
But then we have us�(0) = 0 and moreover

u�
s�(0) = DtN+ν�

us�(0) = 0, (2.27)

which implies us�(z) = 0 for all z ∈ [−a, 0], using uniqueness results from the
theory of ordinary differential equations (see Appendix). This is a contradic-
tion to our assumption that us� is a resonance function. �

Theorem 2.14. The two following statements are equivalent:

1. ν� is a pole of ν �→ R(ν).

2. ν� is a pole of ν �→ R(ν)G(ν).

Proof. Consider the mapping G : Z→ H1([−a, 0]) with G(ν) defined by

�G(ν), v�H1 =
� 0

−a
fνv dz −

�
DtN−

ν ui,ν(−a)− u�
i,ν(−a)

�
v(−a). (2.28)

One can proof the weak holomorphy of G, which means that l(G) is holomor-
phic for every l in the dual space of H1([−a, 0]), and weak holomorphy implies
holomorphy15. With the help of the Riesz representation theorem it thus suf-
fices to show that the right hand side of (2.28) depends holomorphically on ν.
This can be deduced from Lebesgue’s dominated convergence theorem. There-
fore, G is a holomorphic function in ν, and it is obvious that every pole of the
mapping ν �→ R(ν)G(ν) is a pole of ν �→ R(ν).
Let v� now be a pole of R and let us assume that it is not a pole of the mapping
ν �→ R(ν)G(ν). Then the function ϕ(ν) := R(ν)G(ν) is analytic in the vicinity
of ν� with

ϕ(ν�) := lim
ν→ν�

R(ν)G(ν). (2.29)

Moreover, ϕ(ν) fulfills the equation

(I + T (ν))ϕ(ν) = G(ν) (2.30)

for all ν in the vicinity of ν� and particularly for ν�. With a resonance function
us� to the resonance ν� by a) of Lemma 2.13 we can write

0 = �ϕ(ν�), (I + T (ν�)
∗)us��H1 = �(I + T (ν�))ϕ(ν�), us��H1 = �G(ν�), us��H1

.

But the last scalar product is not equal to zero by b) of Lemma 2.13 and the
proof is finished. �

15A proof of the fact that from weak holomorphy follows holomorphy can be found in
[Kat95, III.§1.6, Thm.1.37].
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2.5 Optimization problem using resonances

As announced before, we will formulate our optimization problem in a different
way using the concept of resonances.
So far, we have not commented on the connection between the resonant fre-
quencies and the complex resonances. We will do this later (see Section 4.3.1)
in more detail. It will turn out that the real parts of the complex resonances
approximate the resonant frequencies.
We pick the best resonance for some initial system with admissible (cf.(2.1))
refractive index ň, which supports at least one resonant state, i.e. we pick
the resonance whose corresponding resonant frequency produces the highest
field enhancement for the system with n = ň. By Theorem 2.12 we know
that this resonance is isolated. Hence, it can be separated from the other
resonances by a closed curve enclosing this resonance but no other resonances.
Let us assume that the picked resonance is simple (order of the pole of the
resolvent is one), then there exists a neighborhood of ň in which the resonance
changes continuously with n and stays simple (for a complete discussion of
this fact, we refer to Chapter 4). We choose the biggest possible neighborhood
for which this is true and can define a function ν�(n) inside, arising from the
best resonance of the system with refractive index ň. Note carefully that the
resonance does not coalesce with other resonances while changing n under the
given assumptions. This leads to the following optimization problem.

Optimization problem 2.15.

max
n

�u[Re(ν�[n]), n]�∞ under side conditions on n.

Since the infinity norm is not differentiable we replace it by the L2-norm of
the solution. It is justified by the numerical experience that both are almost
proportional in our application and may also be motivated by the fact that� 0

−a |u(z)|2 dz is proportional to the energy inside the system.

Optimization problem 2.16.

max
n

�u[Re(ν�(n)), n]�L2 under side conditions on n.

Remark 2.17. Note that we got rid of the maximum over the ν and do not
have a nested optimization problem anymore. Although we have to compute
resonances now, we have simplified the optimization problem significantly. In
particular, we have also simplified the side conditions as we have seen that
they get dependent on each other if we try to reduce the interval for ν in
Optimization Problem 2.2.

We close the section with an important result on the geometric multiplicity
of the resonances. Although we treat our equation like a partial differential
equation, we will take advantage of results for ordinary differential equations
in the proof of the following theorem.
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Theorem 2.18. All the resonances have geometric multiplicity 1, i.e. their
eigenspaces of resonance functions are all one-dimensional.

Proof. Take any admissible refractive index n and let ν� a corresponding
resonance after the first definition which means there exist non-trivial solutions
to (2.21).

Consider for ν ∈ Z the initial value problem

− v��(z)− (k20n
2 − ν)v(z) = 0 for z ∈ R (2.34a)

v(0) = γ1 (2.34b)

v�(0) = γ2 (2.34c)

which has for all pairs γ1, γ2 ∈ C of initial values a unique solution in H2
loc(R)

(see Appendix). Thus, there is a one-to-one correspondence between C2 and
the space of solutions of the homogeneous ordinary differential equation (2.34a).
For all ν ∈ Z a fundamental system for the differential equation is given by
the solutions to the two initial values problems with

γ1 = 1, γ2 = i
�
k20 − ν

and γ1 = 1, γ2 = −i
�
k20 − ν.

We denote these two solutions by v+[ν] and v−[ν], and clearly we have

v±[ν](z) = e±i
√
k2

0−νz, for z ≥ 0. (2.35)

v+[ν] and v−[ν] are linearly independent for all ν ∈ Z since their initial values
are linearly independent which implies the linear independence of the functions.
Hence, any solution v[ν] to the differential equation (2.34a) can be written as

v[ν] = c+v+[ν] + c−v−[ν] (2.36)

with some constants c± ∈ C adapted to v[ν]. For a resonance function us� to
the eigenvalue ν = ν�, which solves (2.34a) for ν�, we must have c− = 0 since
the eigenfunctions us� are required to be outgoing in the upper section, i.e. of

the form rν�
ei
√
k2

0−ν�z for z > 0, which only fulfills v+[ν�]. Thus, the eigenspace
has dimension 1. �

Remark 2.19. To give a little more insight to the look of resonance functions,
we remark that there is another possibility for the definition of resonances,
based on the considerations of the previous proof. As above, the initial value
problem

− �v��(z)− (k20n
2 − ν)�v(z) = 0 for z ∈ R (2.37a)

�v(−a) = γ3 (2.37b)

�v�(−a) = γ4 (2.37c)
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with initial values at z = −a has a unique solution for all initial values γ3, γ4 ∈
C and all ν ∈ Z. In analogy to the argument in the proof we can find for the
respective initial values linearly independent solutions �v±[ν] with

�v±[ν](z) = e±i
√
k2

0n
2
sub−νz, for z ≤ −a. (2.38)

They form a fundamental system for the differential equation (2.34a). Thus,
we can express v+[ν] by

v+[ν] = �c+(ν)�v+[ν] + �c−(ν)�v−[ν] (2.39)

for all ν ∈ Z with suitable constants �c±(ν), depending on ν only. For a res-
onance ν� we must have �c+(ν�) = 0. This means that ν ∈ Z is a resonance
if and only if v+[ν] and �v−[ν] are linearly dependent. Recall that v+[ν] and
�v−[ν] are the unique (outgoing in the upper or respectively outgoing in the
lower section) solutions to the two initial value problems (2.34) and (2.37)

with γ1 = 1, γ2 = i
�
k20 − ν and γ3 = 1, γ4 = −i

�
k20n

2
sub − ν.

Note that the obtained condition for ν to be a resonance is also not easily
checked since for general refractive indices n there are no simple analytic for-
mulas for �c±(ν) or respectively for rν and tν. The latter is a problem of its own
interest we will come back to in Chapter 3 (in particular, note the remarks in
Section 3.1).





3 Derivative of the total field and kinematic

approximation

For a general refractive index n we are not able to compute an analytic solution
of the scattering problem (2.8) and especially we have no chance to find the
resonances analytically. This is why we aim to develop a numerical optimiza-
tion algorithm to find better multilayer systems. The optimization methods
we favor will all need the derivative of the objective function.
It seems reasonable to examine the dependence of the solution to the scatter-
ing problem on n in more detail first. Doing so, we will also provide a result
which is of interest on its own. We present a mathematical derivation of the
kinematic approximation, which is widely used, especially in the x-ray com-
munity. Actually, our derivation even yields more general approximations and
error estimates. The scattering problem is written as an equivalent Lippmann-
Schwinger integral equation, making use of a Green’s function for some initial
profile. Analyticity of the corresponding solution operator with respect to n at
the initial profile is shown and approximation formulas are deduced from this.
Padé approximations promise improved accuracy in the region of the critical
angle where standard approximations usually fail. We finish this chapter with
the application of the general results to step profiles and verify the achieved
formulas numerically in an example. The approximation results are very good
and especially the Padé approximations work very well.
Before we start our examinations, we give a brief introduction to what is meant
by the kinematic approximation and a short overview of preliminary work on
this topic.

3.1 Introduction to the kinematic approximation

Recall the definitions of reflection coefficient rν and transmission coefficient tν
given in Chapter 2 (equations (2.6a) and (2.6b)). Often one is interested in
the reflectivity and transmittance

Rν := |rν |2 and Tν := |tν |2, (3.1)

which means the reflected or respectively transmitted intensity. For a general
refractive index n it is often a lot of effort to solve many scattering problems for
different values of ν to analyze the dependence of rν and tν on ν. Moreover, this
does not deliver a functional connection between the reflectivity/transmittance
and ν. Hence, one is interested in approximation formulas for reflectivity
and transmittance (or respectively reflection and transmission coefficient) as
functions of ν. The kinematic approximation is one of such approximations to
the reflectivity and has broad applications, for example in the phase retrieval
problem, an inverse problem, examined this way by Hohage, Gieweckemeyer
and Salditt in [HGS08]. Especially the functional connection between ν and
the reflectivity is important there.
First considerations on the mathematical derivation of approximation formu-
las for reflection and transmission coefficient in scattering from interfaces were

23
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done in 1995 by Caticha [Cat95] and in the context of phase retrieval problems
by Klibanov, Sacks and Tikhonravov [KST95]. In [Cat95] the differential equa-
tion is expressed as an integral equation with the help of a Green’s function
for a sharp interface between two layers where the transition point of the lay-
ers is left variable. Based on this, the approximation formulas are motivated
and derived by approximating the functions under the integral. A drawback
of this method is the arising ambiguity. Dependent on where self-consistency
is imposed, one obtains different formulas for the transmission coefficient, but
the formulas for the reflection coefficients are the same. We also rewrite our
problem as an integral equation in our derivation, but we allow more general
initial profiles adapted to the application and illustrate how the first order
approximation formulas can be understood as a linearization of a suitable so-
lution operator. In particular, we do not have any problems with ambiguity
as it occurs in the self-consistency approach in [Cat95].
A more recent article by Feranchuk et al. [FFK+03] from 2003 presents another
ansatz for the computation of reflection and transmission coefficients which
uses a different approximation for an integral equation similar to the one in
[Cat95]. It has the advantage that it does not produce ambiguity and can
be used for the computation of successive approximations by iterating the
integral equation to improve accuracy. But in contrast to our results they
are not able to prove convergence of the successive approximations for their
approach mathematically ([FFK+03, p.6]). In Section 3.2 we derive an error
estimate on the accuracy of our approximations.

3.2 General formalism

In the scattering problem (2.8) studied in Chapter 2, we want to examine the
dependence of the solution (total field) u on n2 and its sensitivity. Hence, we
are especially interested in the behavior for infinitely small perturbations in
n2 which leads to the Fréchet derivative of a suitable operator.

3.2.1 A Lippmann-Schwinger equation for steplike profiles

Before we start our analysis, we rewrite (2.8) such that both of the radiation
conditions are imposed directly on the unknown function. We define

w := u− θui, with θ(z) :=

�
1 for z > 0

0 for z ≤ 0

and w shall then fulfill the following problem:

− w�� − (k20n
2 − ν)w = 2δ0u

�
i + δ�

0ui for z ∈ R (3.2a)

(w + θui) ∈ H2
loc(R) with ui(z) = e−i

√
k0−νz (3.2b)

w is outgoing. (3.2c)

δ0 denotes the delta distribution centered at 0 and (3.2a) has to be understood
in the sense of distributions, i.e. by (3.2a) we mean

−
� ∞

−∞
wv�� dz −

� ∞

−∞
(k20n

2 − ν)wv dz = 2u�
i(0)v(0)− (uiv)

�(0) (3.3)
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for all test functions v ∈ C∞
0 (R).

Equation (3.3) for w can be verified by the following computation. Let u a
solution to (2.8), then twice partially integrating yields

−
� ∞

−∞
wv�� dz −

� ∞

−∞
(k20n

2 − ν)wv dz

=−
� ∞

−∞
(u− θui)v

�� dz −
� ∞

−∞
(k20n

2 − ν)(u− θui)v dz

=
� ∞

−∞
−uv�� dz −

� ∞

−∞
(k20n

2 − ν)uv dz +
� ∞

0
uiv

�� dz +
� ∞

0
(k20 − ν)uiv dz

=
� ∞

−∞
(−u�� − (k20n

2 − ν)u)v dz +
� ∞

0
(u��
i + (k20 − ν)ui)v dz

− ui(0)v
�(0) + u�

i(0)v(0)

= 2u�
i(0)v(0)− (uiv)

�(0) (3.4)

for all test functions v ∈ C∞
0 (R). Here we have used that n ≡ 1 for z > 0 and

that u��
i + (k20 − ν)ui = 0 and u�� + (k20n

2 − ν)u = 0 for all z ∈ R.

Remark 3.1. The following analysis does not rely on the special form of the
term (k20n

2− ν). It could be replaced by any function m ∈ L∞(R). But since n
can be easily substituted in a way to reach such a form, we do not change our
notation.

Let us fix ν ∈ Z with Im(ν) ≤ 0 for the next considerations16. The solution to
(3.2) is not known analytically for most n. Thus, we start with a well-studied
admissible initial situation that we will perturb in the following to reach a
representation of our problem as an integral equation. The admissible17 initial
refractive index is denoted by nI and the corresponding solution to (3.2) by
wI.

Lemma and Definition 3.2. Let ν ∈ Z with Im(ν) ≤ 0. There exists a
function

Gν ∈ L1loc(R2 \ {(x, x) : x ∈ R})

with the following properties:

1.
�
− ∂2

∂z2 − (k20n
2
I (z)− ν)

�
Gν(z, y) = δ (z − y), in the sense that

� ∞

−∞
−Gν(z, y)v��(z)− (k20n

2
I (z)− ν)Gν(z, y)v(z) dz = v(y)

for all test functions v ∈ C∞
0 (R) and all y ∈ R.

2. Gν(·, y) is outgoing for all y ∈ R.

Gν is called a Green’s function for the equation −w��
I − (k20n

2
I − ν)wI = 0.

Gν(·, y) is locally twice weakly differentiable on (−∞, y) and (y,∞) for all
y ∈ R. On all of R it is only locally once weakly differentiable. Moreover,
Gν |[−a,0]2 lies in L2([−a, 0]2).

16Z :=
�
ν ∈ C : Re (ν) ∈ [0, k2

0) ∧ (k2
0n

2
sub − ν) /∈ iR−

0

�
as defined in Section 2.3

17The assumptions on an admissible refractive index were given in the equations (2.1).
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Remark 3.3. In the definition above for y /∈ [−a, 0] “outgoing” has to be
understood in the following sense:
y > 0: G(·, y) is outgoing in the lower section for z < −a and outgoing in the
upper section for z > y.
y < −a: G(·, y) is outgoing in the lower section for z < y and outgoing in the
upper section for z > 0.

Proof (of Lemma 3.2). To show the existence of a Green’s function, split

Gν := GSν + �Gν (3.7)

with GSν being a Green’s function for the equation −w��− (k20n
2
S−ν)w = 0 with

the single step

nS(z) :=

�
1 for z > 0

nsub for z ≤ 0.
(3.8)

We define

κ1 :=
�
k20 − ν and κ2 :=

�
k20n

2
sub − ν. (3.9)

For fixed ν ∈ Z elementary computations show that a Green’s function for nS
is given by18

GSν (z, y) =





i (κ2 − κ1)

2κ2 (κ1 + κ2)
e−iκ2ye−iκ2z +

i

2κ2
eiκ2|z−y| for y < 0, z < 0

i

κ1 + κ2
e−iκ2yeiκ1z for y ≤ 0, z ≥ 0

i

κ1 + κ2
eiκ1ye−iκ2z for y ≥ 0, z < 0

i (κ1 − κ2)

2κ1 (κ1 + κ2)
eiκ1yeiκ1z +

i

2κ1
eiκ1|z−y| for y > 0, z > 0.

�Gν must then fulfill the equation

�
− ∂2

∂z2
− (k20n

2
I (z)− ν)

�
�Gν(z, y) = k20(n

2
I (z)− n2S(z))GSν (z, y), z ∈ R (3.10)

and has to be outgoing. �Gν(·, y) ∈ H2loc(R) since it is an outgoing solution of
(3.10) which is an elliptic partial differential equation with a right hand side
in L2(R) with support in [−a, 0]. This can be seen for all such right hand sides
like in Proposition 2.7. Note here that supp(n2I −n2S) ⊂ [−a, 0] as nI and nS are
both admissible refractive indices, and they are therefore only different from
each other in [−a, 0] (cf. (2.1a)). Now we can argue completely analogously
to Section 2.3 concerning existence, uniqueness and regularity. The assertion
on the regularity of �Gν(·, y) then follows from the continuity and differentia-
bility properties of GSν . Moreover, as in Proposition 2.7, from existence and

18Note that the ν with k2
0n

2
sub − ν = 0 is excluded (see (2.13) for the set of admissible ν).
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uniqueness we have in particular by Riesz-Fredholm theory a continuous solu-
tion operator, which maps the right hand side on the corresponding solution.
We obtain the estimate

����Gν(·, y)
���
L2([−a,0])

≤
����Gν(·, y)

���
H1([−a,0])

≤ c
���k20(n

2
I − n2S)GSν (·, y)

���
L2([−a,0])

(3.11)

for all y ∈ R with some constant c > 0 which is independent of y as the
differential operator is. Since (nI−nS) is bounded and GSν continuous, equation
(3.11) implies Gν , ∂Gν

∂z
∈ L2([−a, 0]2) because

�� 0

−a

� 0

−a
|Gν(z, y)|2 dz dy =

�� 0

−a
�Gν(·, y)�2L2([−a,0]) dy <∞ (3.12)

and analogously for ∂Gν

∂z
. �

Remark 3.4. Green’s function can also be shown to be symmetric, but since
we do not need this in the following we do not prove this property here.

A central property of Green’s function is given in the following lemma.

Lemma 3.5. Let ν ∈ Z with Im(ν) ≤ 0 and f ∈ L2(R) with supp(f) ⊂ [−a, 0].
Then the function

wf (z) :=
� ∞

−∞
Gν(z, y)f(y) dy (3.13)

is the unique solution to the problem

Find w ∈ H2
loc(R), such that

− w��(z)− (k20n
2
I (z)− ν)w(z) = f(z) for z ∈ R (3.14a)

w is outgoing. (3.14b)

Proof. Uniqueness of solutions to problem (3.14) follows again as in Propo-
sition 2.7. To show that wf is a solution to (3.14), we compute for a test
function v ∈ C∞

0 (R):

−
� ∞

−∞
wf (z)v

��(z)− (k20n
2
I (z)− ν)wf (z)v(z) dz

=−
� ∞

−∞

� ∞

−∞
Gν(z, y)f(y) dy v��(z) dz

−
� ∞

−∞
(k20n

2
I (z)− ν)

� ∞

−∞
Gν(z, y)f(y) dy v(z) dz

=−
� ∞

−∞

� ∞

−∞
Gν(z, y)v��(z)f(y) dy dz

−
� ∞

−∞

� ∞

−∞
(k20n

2
I (z)− ν)Gν(z, y)v(z)f(y) dy dz

=
� ∞

−∞

�� ∞

−∞
−Gν(z, y)v��(z)− (k20n

2
I (z)− ν)Gν(z, y)v(z) dz

�
f(y) dy

=
� ∞

−∞
v(y)f(y) dy.

(3.15)
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To find this we have used the fact that all integrals are finite because of the
compact support of nP and v, Fubini’s theorem and the first property of Gν .
By the second property of Gν we deduce that wf is in addition outgoing. �

By P we denote the set of all admissible perturbations nP ∈ L∞(R) with

support in [−a, 0] such that
�
n2I + nP defines an admissible (see conditions

(2.1)) refractive index. Define the operator

Fν : P→ H2([−a, 0]) with nP �→ w
�
ν,
�
n2I + nP

�
(3.16)

which maps admissible perturbations to the corresponding solution of (3.2)
restricted to [−a, 0]. Fν is well-defined for all ν ∈ Z with Im(ν) ≤ 0 by the
unique solvability of the scattering problem, shown in Proposition 2.7. By
Lemma 2.3 it suffices to know the values of a solution w to (3.2) at the points
−a and 0 to also know the behavior of the solution outside of [−a, 0].
Our definition of Fν is not very explicit so far, and it is not easy to see what
its Fréchet derivative is. We will make use of the formulation of problem (3.2)
as a Lippmann-Schwinger integral equation to express Fν in a more accessible
form. We start with a preparing Lemma.

Lemma 3.6. Let ν ∈ Z with Im(ν) ≤ 0. The integral operator

Sν : L
2([−a, 0])→ H2([−a, 0]) with (Sνf)(z) :=

� 0

−a
Gν(z, y)f(y) dy

is bounded.

Proof. Let f ∈ L2([−a, 0]). By Lemma 3.5 the operator Sν maps f to a
solution wf of (3.14). There exists a unique solution to problem (3.14) for
all ν ∈ Z with Im(ν) ≤ 0 (cf. Lemma 3.5). Again as in Proposition 2.7, the
solution operator to problem (3.14) is bounded from L2([−a, 0]) to H2([−a, 0]).
Thus, we deduce

�Sνf�H2([−a,0]) = �wf�H2([−a,0]) ≤ c �f�L2([−a,0]) (3.18)

with some constant c > 0. �

Recall that wI denotes the solution to (3.2) for the initial profile nI, i.e. it is
an outgoing solution to

− w��
I − (k20n

2
I − ν)wI = 2δ0u

�
i + δ�

0ui for z ∈ R (3.19)

in the sense of distributions (cf. equation (3.3)) with (wI + θui) ∈ H2
loc(R).

Theorem 3.7. Let nP ∈ P and ν ∈ Z with Im(ν) ≤ 0.

1. Every solution w ∈ L2([−a, 0]) to the Lippmann-Schwinger equation

w(z)−
� 0

−a
Gν(z, y)k20nP(y)w(y) dy = wI(z), z ∈ [−a, 0] (3.20)
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can be continued by

w(z) =
� 0

−a
Gν(z, y)k20nP(y)w(y) dy + wI(z), z ∈ R\[−a, 0] (3.21)

to a solution of (3.2) and thus in particular (w + θui) ∈ H2
loc(R) holds.

2. Vice versa, if w is a solution to (3.2), then the restriction w|[−a,0] is a
solution to (3.20).

Proof. 1. Let w ∈ L2([−a, 0]) be a solution to (3.20). By Lemma 3.6 we
have w ∈ H2([−a, 0]) (note nP ∈ L∞([−a, 0]) ⊂ L2([−a, 0])) and can continue
it by (3.21) to a function on all of R. The resulting

w(z) =
� 0

−a
Gν(z, y)k20nP(y)w(y) dy + wI(z), z ∈ R (3.22)

is outgoing in both sections which follows from the second property of Gν and
the definition of wI. Hence, we have (w+θui) ∈ H2

loc(R) by Lemma 3.5 together
with (wI + θui) ∈ H2

loc(R). Again by Lemma 3.5

�w :=
� 0

−a
Gν(z, y)k20nP(y)w(y) dy (3.23)

fulfills the equation − �w − (k20n
2
I − ν) �w = k20nPw. Adding (3.19) yields (3.2a).

2. Let now w be a solution to (3.2) and w2 be the right hand side of (3.21).
Then, as seen above, w2 can be continued to a solution of (3.2). Thus, w−w2
solves (3.2) with zero right hand side and using Proposition 2.7 we deduce
w = w2. �

We define the multiplication operator

N(nP) : L
2([−a, 0])→ L2([−a, 0]) with f �→ k20nPf. (3.24)

By E we denote the embedding operator from H2([−a, 0]) to L2([−a, 0]) and
can express (3.20) in operator form by

(I − ESνN(nP))w = wI (3.25)

with (I − ESνN(nP)) : L
2([−a, 0]) → L2([−a, 0]). For an explicit representa-

tion of Fν we have to invert the operator (I − ESνN(nP)).

Lemma 3.8. Let ν ∈ Z with Im(ν) ≤ 0. For every nP ∈ P the integral
equation (3.25) has a unique solution.

Proof. The operator N(nP) is continuous in L2([−a, 0]) as nP is bounded.
By Lemma 3.6 Sν is also bounded and by the compactness of the embedding
E (see e.g. [RR94, Thm. 6.98]), the operator ESνN(nP) is therefore compact.
Hence, (I − ESνN(nP)) is a Fredholm operator of index 0 in L2([−a, 0]), and
for the solvability of (3.25) (or respectively (3.20)) by Riesz theory it suffices
to show that it has trivial nullspace (see e.g. [Kre89, Thm. 4.17]). Solving the
integral equation (3.20) for wI = 0 is equivalent (in the sense of Lemma 3.7) to
solving problem (3.2) for ui = 0, and we already know that we have a unique
solution to this by Proposition 2.7. �
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We conclude from Lemma 3.8 that (I − ESνN(nP)) is boundedly invertible
and can write19

Fν [nP] = (I − ESνN(nP))
−1wI, (3.26)

with the bounded operator (I −ESνN(·))−1 : L2([−a, 0])→ L2([−a, 0]). Note
that Fν maps nP on the solution to problem (3.2) restricted to [−a, 0] which
can be expressed by (I − ESνN(nP))

−1wI. Respresentation (3.26) also helps
us to compute the Fréchet derivative of Fν .

3.2.2 Fréchet derivatives and error estimates

Definition 3.9. Let Y, Z be normed spaces, and let U be an open subset of
Y . A mapping F : U → Z is called Fréchet differentiable at φ ∈ U if there
exists a bounded linear operator F �[φ] : Y → Z such that

lim
h→0

1

�h�Y
�F [φ+ h]− F [φ]− F �[φ]h�Z = 0.

F �[φ] is called the Fréchet derivative of F at φ. If additionally F � : U→ L(Y, Z)
is continuous at φ, we say that F is continuously differentiable at φ.

Theorem 3.10. For every ν ∈ Z with Im(ν) ≤ 0 the operator Fν is analytic
at nP = 0, as it is given by

Fν [nP] =
∞�

j=0

(ESνN(nP))
jwI, z ∈ [−a, 0] (3.28)

in a neighborhood of nP = 0. Taking only the linear term we obtain for the
first derivative of F at nP = 0

(F �
ν [0]h) (z) =

� 0

−a
k20Gν(z, y)h(y)wI(y) dy, z ∈ [−a, 0]. (3.29)

Proof. By Lemma 3.6 and since �Ev�L2 ≤ �v�H2 for all v ∈ H2([−a, 0]), we
find

�ESνN(nP)f�L2 ≤ �E�H2→L2 �Sν�L2→H2 �N(nP)�L2→L2 �f�L2

≤ cSk
2
0 �nP�∞ �f�L2 (3.30)

for all f ∈ L2([−a, 0]), with some constant cS > 0. Thus, if we choose the
perturbation nP small enough such that �ESνN(nP)�L2→L2 < 1, the operator
(I − ESνN(nP)) is invertible with

(I − ESνN(nP))
−1 =

∞�

j=0

(ESνN(nP))
j (3.31)

by the Neumann series (for details see e.g. [Kre89, Section 2.3]). In this sense,
the Taylor series of Fν around 0 is given by

Fν [nP] =
∞�

j=0

(ESνN(nP))
jwI, z ∈ [−a, 0]. (3.32)

�

19Again we use square brackets here because Fν [nP] is itself a function for every nP.
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For small nP we may hope that the linearization

Fν [nP] ≈ Fν [0] + F �
ν [0]nP (3.33)

is already a good approximation. In other words, we have found a closed
formula which gives us an approximation to the total field u for small per-
turbations of the initial situation, which means perturbations nP with �nP�∞
small.

As explained in the introduction to this section, an approximation to the re-
flection coefficient rν is of particular interest. So pick a small nP ∈ P. To
approximate rν , by the definition of w and condition (3.2c) we only need an
approximation to w(0)− ui(0) = w(0)− 1 which can be directly deduced from
(3.33). This leads to an approximation to the reflectivity Rν . Analogously one
gets an approximation to the transmission coefficient and transmittance from
the approximation to w(−a). For a more detailed discussion of the procedure,
we refer to Section 3.3 where we apply the results to step profiles.

Clearly, it also possible to use higher derivatives of Fν . The recursion scheme

φ0 := wI, φl+1 := wI + SνN(nP)φl (3.34)

or explicitly

φl =
l�

j=0

(SνN(nP))
jwI, l = 0, 1, 2, . . . (3.35)

leads to higher order approximations to F [nP]. This scheme is known as suc-
cessive approximations ([Kre89, Section 10.5]). φl(0) − 1 always gives an ap-
proximation to rν and φl(−a) to tν . The scheme (3.34) is easy to implement
because we only need to discretize the integral operator in (3.29) via numerical
integration.

Remark 3.11. The derivation of formula (3.31) does not depend on the par-
ticular norm. It is also possible to consider the integral equation in other
spaces. The results with the Neumann series hold true whenever we can show
�SνN(nP)� < 1 in an appropriate operator norm. If we use for example the
maximum norm in [−a, 0], we get

�SνN(nP)�∞ ≤ ak20 �nP�∞ sup
z∈[−a,0]

sup
y∈[−a,0]

|Gν(z, y)| . (3.36)

We can also deduce an error estimate from the Neumann series:

������
Fν [nP]−

l�

j=0

(SνN(nP))
jwI

������
≤ �SνN(nP)�l+1

1− �SνN(nP)�
�wI� . (3.37)

In concrete applications this estimate can be made more explicit as we will see
in Section 3.3.
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3.2.3 Padé approximation

Since Fν is not differentiable with respect to ν at κ2 = 0 (if we neglect absorp-
tion, this is exactly the critical angle20), the approximation close to the critical
angle will get worse. Fν was only defined for ν ∈ Z with Im(ν) ≤ 0 where
κ2 = 0 is excluded. The crossover21 from ν-values with Re(k20n

2
sub − ν) > 0

to Re(k20n
2
sub − ν) < 0 is only continuous but not differentiable. Therefore, in

the region of the critical angle we have to use many terms of the Taylor series
of Fν , to find good approximations to the field distribution and the reflectiv-
ity in this region. Thus, we are interested in possible improvements which
might also improve the approximation everywhere. A Padé approximation is
an approximation of a function by a rational function of given numerator and
denominator degree. It often performs better than truncating the Taylor series
and can still converge in regions where the Taylor series does not.
In our definition we follow Baker (see [BGM96, p.21]). Let g : R → C be a
function that is analytic at x = 0, i.e. g can be respresented by a power series

g(x) =
∞�

j=0

ajx
j (3.38)

in a neighboorhood of x = 0 with coefficients aj ∈ C.

Definition 3.12. If there exist polynomials p and q of respectively degree K
and L such that

p(x)

q(x)
= g(x) +O(xK+L+1) (3.39)

and

q(0) = 1, (3.40)

then we call

PK,L =
p(x)

q(x)
(3.41)

a Padé approximation of g.

An equivalent definition is given if we replace (3.39) by

p(x)− g(x)q(x) = O(xK+L+1), (3.42)

provided that (3.40) is retained. A linear system for the coefficients pk, ql ∈ C

of the polynomials

p(x) :=
K�

k=0

pkx
k and q(x) :=

L�

l=0

qlx
l (3.43)

20Recall that the critical angle was given by αcr,sub = arccos(Re(nsub)).
21Note here in particular that for κ2 = 0 we have the Laplace equation in the substrate

and obviously for κ2 → 0 the Green’s function Gν does not converge to the one needed at
κ2 = 0.
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can be deduced from (3.42) by comparison of coefficients for the powers of x
up to order K + L. The equations for K + 1, . . . ,K + L do not depend on pk
such that we are led to a system for the ql which must be solved first. The
coefficients pk follow then from evaluating the first K equations. The Padé
approximation PK,0 is obviously the truncated Taylor series of g up to order
K. Definition 3.12 already implies that a Padé approximation need not exist
in general. For given g, K, L it can happen that the linear system for the
coefficients has no solution, but when it exists, it is unique. Because we do
not want to go into too much detail here, we refer to the book of Baker and
Graves-Morris [BGM96] for a complete introduction to Padé approximations
including theory and numerical methods for their computation. We only state
the formulas for the computation of the coefficients. Set q0 = 1 and if j < 0
define aj = 0. Then the other coefficients for q can be computed from




aK−L+1 aK−L+2 . . . aK
aK−L+2 aK−L+3 . . . aK+1
. . . . . . . . . . . .
aK aK+1 . . . aK+L−1







qL
qL−1
. . .
q1


 = −




aK+1
aK+2
. . .
aK+L


 . (3.44)

The coefficients for p can be computed afterwards from the equations

p0 = a0 (3.45a)

p1 = a1 + a0q1 (3.45b)

p2 = a2 + a1q1 + a0q2 (3.45c)

. . . (3.45d)

pK = aK +
min(K,L)�

l=1

aK−lql. (3.45e)

Exemplarily we give the linear systems for the Padé approximations P2,1 and
P2,2. We obtain for P2,1:

q0 = 1 (3.46a)

q1 = −
a3
a2

(3.46b)

p0 = a0 (3.46c)

p1 = a1 + a0q1 (3.46d)

p2 = a2 + a1q1, (3.46e)

and for P2,2:

q0 = 1 (3.47a)
�
a1 a2
a2 a3

��
q2
q1

�
= −

�
a3
a4

�
(3.47b)

p0 = a0 (3.47c)

p1 = a1 + a0q1 (3.47d)

p2 = a2 + a1q1 + a0q2. (3.47e)
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Padé approximations can be used for our problem as follows: In Theorem
3.10 we have shown that Fν is analytic at nP = 0, and in particular for every
z ∈ [−a, 0] we have

(Fν [nP]) (z) =




∞�

j=0

(SνN(nP))
jwI


 (z) (3.48)

for �nP� small enough (recall here especially Remark 3.11). For an h > 0 small
enough, �nP := nP

h
and a fixed z ∈ [−a, 0], the mapping

[−h, h]→ C, t �→ (Fν [t�nP])(z) (3.49)

is analytic at t = 0, and we can compute Padé approximations of this function
around zero and evaluate them at t = h. In particular, for z = 0 we get ap-
proximations of the reflection coefficient rν by evaluating Padé approximations
of the function22

[−h, h]→ C, t �→
∞�

j=0

tj
�
(SνN(�nP))jwI

�
(0)− 1 (3.50)

at t = h.
The numerical results in Section 3.3.2 show the success of Padé approximations
in our application.

3.3 Application to step profiles/Kinematic approxima-
tion

Let us apply the general formalism from Section 3.2 to step profiles, by which
we mean piecewise constant refractive profiles. We achieve an explicit error es-
timate for this case, derive the kinematic approximation and show the obtained
results in a numerical example, in particular the Padé approximations.

3.3.1 Approximation formulas

Using the notation from Section 3.2 we start with a single step as initial re-
fractive profile

nI(z) :=

�
1 for z > 0

nsub for z ≤ 0.
(3.51)

Recall the Green’s function for this situation:

GSν (z, y) =





i (κ2 − κ1)

2κ2 (κ1 + κ2)
e−iκ2ye−iκ2z +

i

2κ2
eiκ2|z−y| for y < 0, z < 0

i

κ1 + κ2
e−iκ2yeiκ1z for y ≤ 0, z ≥ 0

i

κ1 + κ2
eiκ1ye−iκ2z for y ≥ 0, z < 0

i (κ1 − κ2)

2κ1 (κ1 + κ2)
eiκ1yeiκ1z +

i

2κ1
eiκ1|z−y| for y > 0, z > 0,

22Note here again that w[nP] = F [nP] represents the total field for z < 0 and ui(0) = 1.
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with κ1 =
�
k20 − ν and κ2 =

�
k20n

2
sub − ν. Moreover, we may compute the

solution

wI(z) :=





κ1 − κ2
κ1 + κ2

eiκ1z for z > 0

2κ1
κ1 + κ2

e−iκ2z for z ≤ 0.

to (3.2) for the initial profile, from which follow the reflectivity and transmit-
tance for the single step which are often called Fresnel reflectivity and Fresnel
transmittance (of the substrate):

RF :=
����
κ1 − κ2
κ1 + κ2

����
2

and TF :=
����

2κ1
κ1 + κ2

����
2

. (3.52)

We prove the following corollary of Theorem 3.10 for the case of step profiles:

Corollary 3.13. Let ν ∈ Z and Im(ν) ≤ 0. For an admissible refractive

profile n =
�
n2I + nP with nI as defined in (3.51) and nP ∈ P we find the

approximation

�u[ν, n](z) =
2κ1

κ1 + κ2

�
e−iκ2z + k20

� 0

−a
GSν (z, y)nP(y)e−iκ2y dy

�
(3.53)

of the total field distribution u [ν, n] to problem (2.8) restricted to z ∈ [−a, 0],
and if nP is differentiable the approximation

�Rν = RF
�����1 +

κ1
κ2(1− n2sub)

� 0

−a
(nP)

�(y)e−2iκ2y dy

�����

2

(3.54)

to the reflectivity Rν.
With the additional approximations

κ1 ≈ κ2 and e−2iκ2y ≈ e−2iκ1y, (3.55)

we get the kinematic approximation

��Rν = RF
�����
1

ρ∞

� ∞

−∞
(n2)�(y)e−2iκ1y dy

�����

2

, (3.56)

where ρ∞ := 1− n2sub is the contrast.
If τ := k20aη �nP�∞ < 1 with

η := sup
z∈[−a,0]

sup
y∈[−a,0]

������
κ2 − κ1

2κ2(κ1 + κ2)
eIm(κ2)(z+y)

�����+
����
1

2κ2
e−Im(κ2)|z−y|

����

�
,

the following error estimate for approximation (3.53) holds:

����u [ν, n]− �u [ν, n]
����

∞
≤ τ 2

1− τ

�
TF. (3.57)
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Proof. We apply the results from Section 3.2, in particular the equations
(3.29) and (3.33), to find formula (3.53). Evaluating this formula at z = 0 and
using the explicit formula for GSν we deduce for the ν-dependent reflectivity
the approximation

�Rν =

�����
2κ1

κ1 + κ2
+ k20

� 0

−a

2iκ1
(κ1 + κ2)2

nP(y)e
−2iκ2y dy − ui(0)

�����

2

=

�����
κ1 − κ2
κ1 + κ2

− k20

� 0

−a

κ1
−κ2(κ1 + κ2)2

(nP)
�(y)e−2iκ2y dy

�����

2

=
����
κ1 − κ2
κ1 + κ2

����
2

·
�����1 +

k20κ1
κ2(κ1 + κ2)(κ1 − κ2)

� 0

−a
(nP)

�(y)e−2iκ2y dy

�����

2

=
����
κ1 − κ2
κ1 + κ2

����
2

·
�����1 +

κ1
κ2(1− n2sub)

� 0

−a
(nP)

�(y)e−2iκ2y dy

�����

2

(3.58)

by partial integration assuming nP to be differentiable, the fact that supp(nP) ⊂
[−a, 0] compact and since

k20κ1
κ2(κ21 − κ22)

=
k20κ1

κ2(k20 − ν − k20n
2
sub + ν)

=
κ1

κ2(1− n2sub)
.

With the approximations (3.55), again the fact that nP has compact support
in [−a, 0] and observing

1

1− n2sub

� ∞

−∞
(n2I )

�(y)e−2iκ2y dy = 1, (3.60)

equation (3.58) implies the kinematic approximation as (n2)� = (n2I )
� +n�

P. By
(n2I )

� we mean formally (n2I )
� = (1− nsub)δ0.

From (3.37), (3.36) and the fact that Im(κ2) ≥ 0 (note ν ∈ Z with Im(ν) ≤ 0,
Re(nsub) > 0 and Im(nsub) ≥ 0), we get in the maximum norm the following
error estimate

�Fν [nP]− Fν [0]− F �
ν [0]nP�∞ ≤

τ 2

1− τ
�wI�∞ if τ := k20aη �nP�∞ < 1,

where η = sup
z∈[−a,0]

sup
y∈[−a,0]

������
κ2 − κ1

2κ2(κ1 + κ2)
eIm(κ2)(z+y)

�����+
����
1

2κ2
e−Im(κ2)|z−y|

����

�

and �wI�∞ =

�����
2κ1

κ1 + κ2
sup

z∈[−a,0]
eIm(κ2)z

����� =
�
TF. (3.61)

which implies (3.57). �

Remark 3.14. Let us make a few remarks to the presented result.

1. The approximations (3.55) are valid for small contrasts in the materials
or big angles of incidence. Note that by (3.54) we have proven an approx-
imation to the reflectivity where these assumptions are not necessary.
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2. Sometimes one uses the parameter q := 4π
λ
sinα instead of ν. There is

the following relation between the two:

q =
4π

λ
sinα = 2k0

√
1− cos2 α = 2

�
k20 − k20 cos

2 α = 2
�
k20 − ν = 2κ1.

3. Equation (3.57) is an estimate on the maximal error over all points of
[−a, 0]. In particular, we can estimate the error in the approximation to
the reflection coefficient by

����Rν −Rν

��� ≤
�
2
�
�Rν +

τ 2

1− τ
�wI�∞

�
τ 2

1− τ
�wI�∞ . (3.63)

4. Higher order approximations of the total field and the reflectivity can be
obtained by iterating the integral operator

(SνN(nP))w = k20

� 0

−a
GSν (·, y)nP(y)w(y) dy (3.64)

as explained in Section 3.2.2.

3.3.2 Example

Figure 3.1: reflectivity and several approximations to the reflectivity for
a polymer film (δps = 3.5 · 10−6) of 100Å on silicon substrate (δSi =
7.56 · 10−6), plotted against the angles of incidence as multiples of the
critical angle αc; λ = 1.54 Å; absorption neglected

As a test example for the formulas from Corollary 3.13, higher order and Padé
approximations, we use an example from [Tol99, p.76]. The test system is a
polymer film (δps = 3.5 · 10−6) of 100 Å on silicon substrate (δSi = 7.56 · 10−6)
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Figure 3.2: approximation of total field distribution for a polymer film on
silicon substrate, comparision of exact solution from Paratt algorithm
to 1st and 2nd order Taylor approximation close to the critical angle
αc ≈ 0.22◦

at a wavelength of λ = 1.54 Å, sharp interfaces are assumed and absorption
effects are neglected, i.e. an example of a three layer system with piecewise
constant refractive index.

Figure 3.1 shows the exact reflectivity (computed by the Parratt algorithm) for
different angles of incidence α compared to the kinematic approximation (with
and without critical angle correction) and our approximation (3.54). The criti-
cal angle correction is a modification of the standard kinematic approximation
to slightly improve the approximation close to the critical angle23. The scale
for the angles of incidence indicates multiples of the critical angle αc. In our
test example the critical angle between air and substrate is about 0.22◦. Below
the critical angle the reflectivity is known to be 1 since we neglected absorption
effects, but for angles slightly above it the approximations are bad. One way
to improve the approximation globally is the iteration scheme given in Section
3.2. The black line in Figure 3.1 indicates the second order approximation
computed from iterating the integral operator (3.64) twice.

We also want to compare our approximation of the total field distribution to
the exact fields in the same example. The exact solutions are again computed
by the Parratt algorithm. Figure 3.2 shows the exact real part of the total
field compared with its first and second order Taylor approximation at angles
of incidence of 0.25◦ and 0.4◦.

Both figures illustrate that the second order approximation fits the exact so-
lution already a lot better than first order approximations in this example,
but in the region of the critical angle it is still quite bad. For this reason
and to test their quality in general, we also computed Padé approximations of
the reflection coefficient in the test example and plotted the resulting curves.
Figures 3.3 and 3.4 show different details of the reflectivity curve shown above.
Note that the dip in the fifth order approximation in Figure 3.4 arises from the

23For the critical angle correction in equation (3.56) the term −2iκ1(= −2ik0 sinα) in
the exponential function under the integral is replaced by −2ik0 sin

�
α2 − α2

c , see [Tol99,
p.76/77].
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Figure 3.3: kinematic and 3rd order approximation compared to Padé
P2,1 for the example from Figure 3.1

Figure 3.4: kinematic and higher order approximations compared to Padé
P2,1 and P2,2 close to the critical angle, a detail of Figure 3.3

fact that Fν is not differentiable when α reaches the critical angle (recall that
absorption effects are neglected in this example). This is also the reason for
the jags at the critical angle in the other curves and figures. One can clearly
see that the exact reflectivity curve is only continuous, but not differentiable
with respect to α (or respectively ν) at the critical angle. The approxima-
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tion to the reflectivity resulting from Padé approximations is an significant
improvement. In particular close to the critical angle the truncated Taylor se-
ries converges quite slowly while already the Padé approximation P2,1 fits the
exact reflectivity almost perfect. Even the fifth order Taylor approximation
is still relatively far away from the exact solution in this region. In contrast,
the Padé approximations P2,1 and P2,2 are hard to distinguish from the exact
reflectivity curve.

3.4 Conclusion

In Section 3.2 we have derived a general approach to linearize the solution
operator for problems of the form (2.4) whenever a Green’s function for some
initial situation is known. The approach is therefore not limited to step profiles,
shown exemplarily in Section 3.3. One can also start from other initial profiles.
Moreover, we have seen how one can come to higher order approximations to
the field distribution and in particular to the reflection coefficient/reflectivity
in an easy way by iterating a suitable integral operator. Especially in x-ray
physics, the kinematic approximation is a commonly used approximation to
the reflectivity. We have presented a rigorous derivation, applying our general
approach to step profiles in Section 3.3 and using two further approximations
(3.55). But even in the case of step profiles, compared to the kinematic approxi-
mation, our derived first order approximation formula (3.54) has the advantage
that it is neither restricted to small contrasts in the initial materials nor do we
have to neglect absorption effects. Higher order approximations improve the
approximation of the field distribution and the reflectivity significantly, but
very close to the critical angle they are in general still quite bad. We have
shown that Padé approximations can be used to improve the approximation
in this region considerably. Note here in particular that Padé approximations
can be directly computed from the derivatives which we need anyways in the
truncated Taylor series.
Although we have deduced a formula for the derivative of the solution operator,
it turns out to be very inconvenient to compute the derivative of the solution
operator to the scattering problem (2.8) by formula (3.29). To evaluate it at
an arbitrary n we need the Green’s function corresponding to this n.



4 Analysis of the optimization problem

Recall the Optimization Problem 2.16 formulated in Chapter 2 using reso-
nances and in particular the used objective function which is the L2-norm of
the solution at the resonance frequency in dependence on n. As already men-
tioned we aim for a method using derivatives. So far, we have only commented
on the derivative of the solution operator, but because of the formulation in
Optimization Problem 2.16 we also need the derivatives of the resonances.
Hence, in this chapter we analyze the differentiability of simple, isolated eigen-
values and corresponding eigenvectors of a general operator-valued function
with respect to a parameter n in a Banach space and apply the results to a
generalized eigenvalue problem as it arises by rewriting the scattering problem
in operator form using the Hardy space formulation (cf. Lemma 2.9). The
differentiability of the eigenvalues does not hold in general even if the operator
depends continuously differentiably on n. But for isolated and simple eigen-
values we can show that they depend differentiably on n when the operator
does. We derive expressions for their derivatives and for the corresponding
eigenvectors. Since the latter are non-unique, we will show the differentiability
assuming a special scaling.
In particular, the results apply to the discrete version of our problem which we
obtain by a finite elements discretization combined with Hardy space infinite
elements assuming that n can be encoded in a vector using some discretization
for it. We explain why existing results on the optimization of eigenvalues of
a parameter-dependent matrix cannot be applied and state formulas for the
derivative of our objective function.
This chapter is closed by the computation of the derivative of the discrete
operator with respect to the positions of layer changes if a piecewise constant
refractive index is assumed.

4.1 Derivatives of eigenvalues

4.1.1 Introduction to derivatives of eigenvalues

Although our analysis is not restricted to the finite-dimensional case we start
this section with some comments on such problems. All the main problems for
isolated eigenvalues already arise in this setting. As already pointed out, we
aim for the derivative of eigenvalues and eigenvectors of an operator(matrix)-
valued function. Consider the matrix-valued function r �→ A(r) depending on
the single parameter r ∈ R in a subdomain of R. The eigenvalues of A(r) are
the roots of the characteristic equation

det(A(r)− ζ) = 0. (4.1)

Let each entry of A(r) and hence A(r) depend differentiably on r. We would
like to know whether the roots of the characteristic equation also depend differ-
entiably on r. This question is far from being trivial because the dependence of
the roots of a polynomial on its coefficients is highly nonlinear, and it is well-
known that for a polynomial degree of greater than five there are no explicit
formulas for the roots.

41
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Another important issue is the definition of functions of r representing the
eigenvalues of A(r) since the number of eigenvalues may change with r in a
very complicated manner when A(r) is assumed to depend only differentiably
(not analytically) on r. Consider the following two small examples24.

AI(r) =

�
1 r
0 0

�
, AII(r) =

�
r 1
0 0

�
. (4.2)

The matrix AI has the eigenvalues 0 and 1 for all r ∈ R. We can easily
distinguish between the two eigenvalues and define functions µ1(r) = 0 and
µ2(r) = 1, and they are obviously both differentiable. In contrast, the matrix
AII has the eigenvalues 0 and r for all r ∈ R, and for r = 0 we have the double
eigenvalue 0. The eigenvalues are continuous everywhere independent of how
we connect the branches at r = 0, but the differentiability at r = 0 might
be destroyed if we sort them in ascending order for example. Everywhere else
they are obviously differentiable. These examples already give some indication
in which way the assumption of simple eigenvalues can help us.
For the case of a matrix-valued function there exists a large literature on deriva-
tives of eigenvalues and optimality conditions for certain objective functions
involving eigenvalues. We will give a short overview of the existing work in
Section 4.4 and explain in detail why the results do not apply to our problem.
Most of them are restricted to the case of symmetric/Hermitian matrices or
linear dependence on the parameters. These assumptions are not satisfied for
our problem. Moreover, we also need derivatives of eigenvectors, which is not
possible in a general way as they are not unique.
Hence, we do our analysis from a more general point of view and apply the
results to the discrete problem as a special case of the general theory. If we
use the Hardy space formulation for the continuous problem, the results of the
following sections also apply to it. We will comment on this later.

4.1.2 Basic theory

We consider an operator-valued function

W : N ⊂ Y → L(X), n �→ W (n), (4.3)

on an open subset N of a Banach space Y with values in the space of bounded,
linear operators L(X), where X is a Hilbert space. We want to find formulas
for the derivatives with respect to n of simple, isolated eigenvalues and cor-
responding eigenvectors of the eigenvalue problem: Find ν� such that there
exists a nonzero v� ∈ X with

W (n)v� = ν�v�. (4.4)

ν� is called an eigenvalue if ker(W (n)−ν�) is non-trivial. The dimension of this
null space is called the geometric multiplicity of the eigenvalue ν� which we
assume to be 1 (simple eigenvalue). We suppose that the reader is familiar with

24These examples can also be found in [Kat95, p.64].
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eigenvalues and spectra of operators in Banach spaces and therefore repeat only
a few definitions and results needed here. For a complete introduction, we refer
to [Kat95, III.§6] and standard literature on functional analysis and spectral
theory.
Our following analysis relies on results in the monograph [Kat95] by Kato. We
will often refer to results stated there but we want to present the results more
suited to our assumptions and application. Moreover, such a general result for
Fréchet derivatives is not explicitly stated there, and in particular we will need
more information on specially scaled eigenvectors.

Remark 4.1. It suffices to examine the situation for a general operator-valued
function W around 0 to deduce results for all admissible n from this result
since we can always transform the problem by introducing a shifted operator:
Consider the point n = ň, where we want to compute the derivative, as an
initial refractive index. Perturb this situation by an admissible n̂ (n̂ such that
ň+ n̂ defines an admissible refractive index) and examine the operator-valued
function Wň with

Wň(n̂) := W (ň+ n̂) (4.5)

around 0. Wň(0) = W (ň) represents the operator for the initial refractive
index. We will later assume that W is continuously differentiable for all con-
sidered n and therefore in particular Wň around n̂ = 0 for each admissible
initial ň.

For W (n) define the resolvent25

�R(ν, n) := (W (n)− ν)−1 ∈ L(X) (4.6)

for all ν ∈ C for which (W (n)− ν) is boundedly invertible. The set of these ν
is called the resolvent set Θ (W (n)) and by Σ (W (n)) we denote the spectrum
which is the complementary set of Θ (W (n)). Since W (n) ∈ L(X) for all n,
neither Θ(W (n)) nor Σ(W (n)) is empty for any n (see [Kat95, III.§6.2]), but in
contrast to finite-dimensional operators it may well happen that the spectrum
is an uncountable set. Observe that �R(ν, n), Θ (W (n)) and Σ (W (n)) define
again functions of n.
Motivated by Theorem 2.12 we are interested in the sensitivity analysis of
isolated eigenvalues of W (n). An isolated eigenvalue is an eigenvalue in the
spectrum which can be separated from the rest of the spectrum by a rectifiable,
simple closed curve enclosing this point and no other points of the spectrum.
We have not yet explained how to define functions of eigenvalues. The following
lemma and the sketched proof clarify the situation.

Lemma 4.2. Let W : N → L(X) with n �→ W (n) be continuous in n and let
ν�(0) be an isolated and simple eigenvalue of W (0). Then, in a neighboorhood
of n = 0 we can define a function n �→ ν�(n) of simple, isolated eigenvalues of
W (n) corresponding to the eigenprojection

P�(n) := −
1

2πi

�

Γ�

�R(ν, n) dν, (4.7)

25Note that the resolvent �R(ν, n) is slightly different from the one we used in Chapter 2
where the resolvent corresponded to a nonlinear eigenvalue problem.
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with a rectifiable, simple closed curve Γ� in the resolvent set of W (0) enclosing
ν�(0), but no other values in the spectrum of W (0).
Moreover, the resolvent �R(ν, n) has the following Laurent expansion around
ν = ν�(n) then:

�R(ν, n) = −(ν − ν�(n))
−1P�(n) +

∞�

m=0

(ν − ν�(n))
mS�(n)

m+1, (4.8)

where the reduced resolvent S�(n) is given by

S�(n) :=
1

2πi

�

Γ�

(ν − ν�(n))
−1 �R(ν, n) dν. (4.9)

Furthermore, S�(n), P�(n) ∈ L(X), the relations

W (n)P�(n) = ν�(n)P�(n), (4.10a)

S�(n)P�(n) = P�(n)S�(n) = 0 (4.10b)

and

(W (n)− ν�(n))S�(n) = I − P�(n) (4.10c)

hold true, and the mapping n �→ P�(n) is continuous.

Remark 4.3. Throughout this chapter we will use integrals of continuous
vector- and operator-valued functions. They can be defined as for numeri-
cal functions. We will make use of them as well as of formulas for integration
and differentiation without further comments, provided that they hold true in
this general context. Similarly we proceed with results from complex analysis
which we will need in the following. For a more detailed introduction to this
topic, see [Kat95, I.§1.7 and p.152].

Proof (of Lemma 4.2). We only briefly sketch the proof. The details can
be found in [Kat95, III.§6.4/§6.5, IV.§3.4].
Let Γ� a rectifiable, simple closed curve enclosing ν�(0) but no other values in
the spectrum of W (0). The spectrum of the operator W (0) is separated into
ν�(0) and Σ(W (0)) \ {ν�(0)} by Γ�. For sufficiently small n, i.e. with suffi-
ciently small �n�, from Γ� ⊂ Θ(W (0)) it follows Γ� ⊂ Θ(W (n)). This is due
to continuity reasons (see [Kat95, IV.§3.1, Theorem 3.1]). For all fixed suffi-
ciently small and admissible n the spectrum of the operator W (n) is therefore
separated into two parts by Γ�.
Let us restrict to these values of n in the following as we are interested in a
function of eigenvalues in a neighborhood of n = 0. A calculation shows that
for P�(n) defined by (4.7) it holds that P�(n) ∈ L(X) and

(P�(n))
2 = P�(n), (4.11)

i.e. P�(n) is a projection. In particular, if we denote its range by B�(n) and by
Bc

�(n) the range of (I − P�(n)), then X = B�(n)⊕Bc
�(n), and one can show
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that both subspaces are invariant under W (n) (see [Kat95, III.§6.4, Theorem
6.17]) or equivalently that W (n) and P�(n) commute (see [Kat95, III.§5.6]).
Moreover, it can be shown that for all sufficiently small n the spectrum of
W (n)|B�(n) consists of exactly one simple eigenvalue which we denote by ν�(n).
This follows from the continuity of the eigenprojection P� in n, which we discuss
at the end of the proof, as it implies that the ranges of the eigenprojection are
isomorphic for all sufficiently small n (cf. [Kat95, IV.§3.4,I.§4.6]). Hence, we
can define a function n �→ ν�(n) of simple, isolated eigenvalues of W (n) in a
neighborhood of n = 0, corresponding to P�. For any fixed sufficiently small
and admissible n the spectrum of the operatorW (n) is separated into ν�(n) and
Σ(W (n))\{ν�(n)} by Γ�. W (n)|Bc

�(n) has the spectrum Σ(W (n))\{ν�(n)} and
its resolvent is holomorphic at ν�(n). Thus, the complete resolvent for W (n)
can then be splitted in the form

�R(ν, n) = �R(ν, n)P�(n) + �R(ν, n) (1− P�(n)) (4.12)

and shown to have the expansion

�R(ν, n) = −(ν − ν�(n))
−1P�(n) +

∞�

m=0

(ν − ν�(n))
mS�(n)

m+1. (4.13)

Equation (4.13) is the Laurent expansion of �R(ν, n) at the isolated singularity
ν�(n).
The relations (4.10b) and (4.10c) for the reduced resolvent can be found in
[Kat95, III.§6.5, (6.34)]. Exemplarily we compute

(W (n)− ν�(n))S�(n) =
1

2πi

�

Γ�

(ν − ν�(n))
−1(W (n)− ν�(n)) �R(ν, n) dν

=
1

2πi

�

Γ�

(ν − ν�(n))
−1I + �R(ν, n) dν = I − P�(n)

(4.14)

by adding a zero and noting that Γ� winds around ν�(n) once and therefore
the integral over (ν − ν�(n))

−1 yields the factor 2πi.
It remains to show the continuity of the mapping n �→ P�(n). This can be
deduced from the continuity of the resolvent in ν and n which follows directly
from the continuity result shown in [Kat95, IV.§3.3, Theorem 3.15]. Since Γ�
is compact, for any sufficiently small n0 ∈ N it holds the following: for any
� > 0 there exists a δ(n0), independent of ν, such that

��� �R(ν, n)− �R(ν, n0)
��� < � if �n− n0� < δ(n0). (4.15)

Regarding (4.7), this implies the continuity of n �→ P�(n). �

As mentioned in the lemma above, we call P�(n) eigenprojection for ν�(n).
The dimension of its range is called the algebraic multiplicity of the eigen-
value. Thus, in our examinations P�(n) is a degenerated operator with one-
dimensional range for all admissible n ∈ N with sufficiently small �n� as we
want to assume that ν�(0) is an isolated and simple eigenvalue of W (0) (or
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respectively with some initial ň ∈ N, note Remark 4.1). Throughout this and
the following section we consider only such n and assume that W depends at
least continuously on n such that a function n �→ ν�(n) of simple, isolated
eigenvalues is always well-defined in the sense of the lemma above. Before we
turn to the derivatives, we need some theory for degenerated operators and
especially how one may define the trace of such operators.

Let X still be a Hilbert space. We call an operator A ∈ L(X) degenerate if
rank(A) := dim(R(A)) <∞, whereR(A) denotes the range of A. Therefore, A
is in particular compact and by singular value decomposition (see e.g. [Kat95,
V.§2.3]) there exist orthonormal sequences v1, . . . , vm and g1, . . . , gm in X and
values µ1, . . . , µm > 0, where m = rank(A), such that for all v ∈ X

Av =
m�

j=1

µj �v, gj� vj, (4.16)

gj =
1
µj
A∗vj and vj =

1
µj
Agj. The adjoint operator A∗ is given by

A∗g =
m�

j=1

µj �g, vj� gj (4.17)

for all g ∈ X, and A∗ is degenerate as well with rank(A) = rank(A∗).

In accordance with the finite-dimensional case the trace of a degenerated op-
erator A can be defined26 as

tr(A) :=
m�

j=1

�Avj, vj� (4.18)

with some orthonormal basis v1, . . . , vm of R(A) and m = rank(A). The trace
is linear and its value is independent of the choice of the orthonormal basis27.
Moreover,

tr(A1A2) = tr(A2A1) (4.19)

for all degenerate operators A1, A2. For a detailed discussion of the properties
of the trace, we refer to [Kat95, III.§4.3 and X.§1.4]).

Lemma 4.4. Let X be a Hilbert space. For any degenerate operator A : X →
X the inequality

|tr(A)| ≤ rank(A) �A� (4.20)

holds with the canonical operator norm on L(X).

26Actually, the trace can be defined for a much wider class of operators (for operators in
Hilbert spaces see e.g. [Kat95, X.§1.3/4]), but for our purpose the degenerate operators are
sufficient.

27In fact, tr(·∗·) defines an inner product on the space of Hilbert-Schmidt operators, and
by the polarization principle the definition of the trace is therefore independent of the chosen
basis (see [Kat95, V.§2.4]).
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Proof. Let m = rank(A) and v1, . . . , vm ∈ X be an orthonormal basis of
R(A). Then

|tr(A)| ≤
m�

j=1

|�Avj, vj�| ≤
m�

j=1

�Avj� �vj� ≤
m�

j=1

�A� �vj�2 = m �A� . (4.21)

�

Corollary 4.5. Let Q : N ⊂ Y → L(X) be an operator-valued mapping
with Q(n) degenerate and with rank(Q(n)) ≤ m1 for all n. Further, let Q be
differentiable at n = n0 ∈ N with derivative Q�(n0) and let the derivative also
be a degenerate operator with rank(Q�(n0)h) ≤ m2 for all h ∈ Y . Then the
function tr(Q) is differentiable at n = n0 with

(tr(Q))�(n0)h = tr(Q�(n0)h). (4.22)

If Q is even continuously differentiable at n0 and rank(Q�(n)h) ≤ m2 for all
h ∈ Y and all n in a neighborhood of n0, then also tr(Q) is continuously
differentiable at n0.

Proof. With the help of Lemma 4.4 we find

lim
h→0

1

�h� |tr (Q(n0 + h))− tr (Q(n0))− tr (Q�(n0)h)|

= lim
h→0

�����tr
�

1

�h� (Q(n0 + h)−Q(n0)−Q�(n0)h)

������

≤ lim
h→0

(2m1 +m2)
1

�h� �Q(n0 + h)−Q(n0)−Q�(n0)h� = 0 (4.23)

by the differentiability of Q at n = n0.
If Q is even continuously differentiable at n0, the continuous differentiability
of tr(Q) follows from

|tr(Q�(n)h−Q�(n0)h)| ≤ 2m2 �Q�(n)h−Q�(n0)h�
≤ 2m2 �Q�(n)−Q�(n0)� �h� (4.24)

for all h ∈ Y . �

For the eigenprojection P�(n) we find the following:

Lemma 4.6. Let n ∈ N and v�[n] be an eigenvector to the simple, isolated
eigenvalue ν�(n) of W (n). Then there exists an eigenvector b�[n] of W

∗(n) to
the eigenvalue ν�(n). If additionally b�[n] is normalized by

�v�[n], b�[n]� = 1, (4.25)

then:

1. The eigenprojection P�(n) to the eigenvalue ν�(n) of W (n) can be written
as

P�(n)v = �v, b�[n]� v�[n] (4.26)

for all v ∈ X.
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2. For any operator A ∈ L(X) it holds

tr(AP�(n)) = �Av�[n], b�[n]� and tr(P�(n)) = 1. (4.27)

Proof. For any fixed n we have: P�(n) is a degenerated operator with one-
dimensional range since the eigenvalue ν�(n) is assumed to be simple. Thus, by
our discussion of degenerate operators (see equation (4.16)) to any eigenvector
v�[n] there exists some vector b�[n] to write P�(n) in the form (4.26). It is left
to prove that b�[n] must be an eigenvector of W ∗[n] to the eigenvalue ν�(n),
normalized by (4.25). Since P ∗

� (n) is given by

P ∗
� (n)g = �g, v�[n]� b�[n], (4.28)

for all g ∈ X, and is the eigenprojection to the simple and isolated eigenvalue
ν�(n) of W ∗(n) ([Kat95, III.§6.6, Thm. 6.22, (6.54)]), b�[n] is an eigenvector
to ν�(n). The normalization condition follows from the fact that the eigenpro-
jection maps on the eigenspace and P�(n)

2 = P�(n) (cf. proof of Lemma 4.2),
as

v�[n] = P�(n)v�[n] = �v�[n], b�[n]� v�[n]. (4.29)

For any A ∈ L(X) the operator AP�(n) is degenerate, of rank ≤ 1 and can be
expressed by

AP�(n)v = �v, b�[n]�Av�[n] (4.30)

for all v ∈ X. We obtain for the trace of AP�(n)

tr(AP�(n)) =
1

�Av�[n]�2
�AP�(n)Av�[n], Av�[n]�

=
1

�Av�[n]�2
�A �Av�[n], b�[n]� v�[n], Av�[n]�

= �Av�[n], b�[n]� . �

4.1.3 Derivatives of the eigenvalues

We now prove formulas for the derivatives of simple isolated eigenvalues and
corresponding eigenprojections.

Lemma 4.7. Let W : N → L(X) with n �→ W (n) be continuous. A simple
and isolated eigenvalue ν�(n) of W (n) can be expressed as

ν�(n) = tr (W (n)P�(n)) (4.31)

and the mapping n �→ ν�(n) defined in Lemma 4.2 is continuous.

Proof. If ν�(n) is a simple and isolated eigenvalue of W (n), the operator
W (n)P�(n) is degenerate and of rank 1. Let v�[n] be an eigenvector of W (n)
to ν�(n) with �v[n]� = 1. Then R(W (n)P�(n)) is spanned by this eigenvector
and

tr (W (n)P�(n)) = �W (n)v�[n], v�[n]� = ν�(n). (4.32)
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Since W is assumed to be continuous in n and n �→ P�(n) is continuous by
Lemma 4.2, with Lemma 4.4, we obtain for any n0 ∈ N:

|ν�(n0)− ν�(n)| = |tr (W (n0)P�(n0))− tr (W (n)P�(n))|
≤ 2 �W (n0)P�(n0)−W (n)P�(n)� → 0, (4.33)

if �n0 − n� → 0. This shows the continuity of the mapping n �→ ν�(n). �

Theorem 4.8. Let W : N → L(X) with n �→ W (n) be continuously differ-
entiable at n = 0 with the derivative W � : Y → L(X) and let n �→ ν�(n) be
the function of simple, isolated eigenvalues from Lemma 4.2. Then the eigen-
projection, i.e. the mapping n �→ P�(n), and the eigenvalue, i.e. the mapping
n �→ ν�(n), are both continuously differentiable at n = 0 with

P �
�(0)h = −P�(0) (W �(0)h)S�(0)− S�(0) (W

�(0)h)P�(0) (4.34)

and

ν �
�(0)h = tr ((W �(0)h)P�(0)) , (4.35)

for all h ∈ Y . S�(n) and P�(n) are defined as in Lemma 4.2.

Proof. The operator inversion is differentiable for bounded operators A ∈
L(X) whenever A−1 ∈ L(X) exists (This can be seen via the Neumann series,
for details see e.g. [Zei86, 4.7, p.154].). Thus, for a differentiable mapping
Q : N → L(X) the mapping Q−1 : N → L(X), n �→ Q(n)−1 is differentiable
as a composition of differentiable mappings (see e.g. [Zei86, Proposition 4.10])
whenever Q(n)−1 exists in L(X) and Q�(n) exists. It holds the formula

(Q−1)�(n)h = −Q(n)−1 (Q�(n)h)Q(n)−1 (4.36)

for all h ∈ Y . If Q is even continuously differentiable, so is Q−1.
Hence, the continuous differentiability of n �→ W (n) at n = 0 implies the
continuous differentiability of the resolvent �R(ν, n) at n = 0 with

�
∂

∂n
�R(ν, n)

�

n=n0

h = − �R(ν, n0) (W �(n0)h) �R(ν, n0) (4.37)

for all n0 in a small neighborhood of n = 0, h ∈ Y.
In equation (4.15) we have already seen that � �R(ν, n) − �R(ν, n0)� is small
uniformly (in the sense stated there) for ν ∈ Γ�, if �n− n0� is sufficiently
small. In this sense also the derivative (4.37) exists uniformly in ν. If we recall
the expression (4.7) for P�(n), equation (4.37) then implies the continuous
differentiability of the mapping n �→ P�(n) at n = 0 with

P �
�(n0)h = − 1

2πi

�

Γ�

�
∂

∂n
�R(ν, n)

�

n=n0

h dν

=
1

2πi

�

Γ�

�R(ν, n0) (W �(n0)h) �R(ν, n0) dν. (4.38)
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for all n0 in a small neighborhood of n = 0. For each n0 the resolvent �R(ν, n0)
has by Lemma 4.2 the Laurent expansion

�R(ν, n0) = −(ν − ν�(n0))
−1P�(n0) +

∞�

m=0

(ν − ν�(n0))
mSm+1� (n0). (4.39)

We plug (4.39) into (4.38) and note that only terms with (ν − ν�(n0))
−1 con-

tribute to the integral because all the other terms possess antiderivatives. For
all n0 in a small neighborhood of n = 0 we find

P �
�(n0)h = −P�(n0) (W �(n0)h)S�(n0)− S�(n0) (W

�(n0)h)P�(n0), (4.40)

where we have also used that Γ� winds around ν�(n0) once and therefore the
integral of (ν − ν�(n0))

−1 yields the factor 2πi.
Applying Lemma 4.7 and (2.) of Lemma 4.6 we can write

ν�(n) = tr (W (n)P�(n)) = tr (W (n)P�(n)− ν�(n0)P�(n)) + ν�(n0)tr (P�(n))

= ν�(n0) + tr ((W (n)− ν�(n0))P�(n)) (4.41)

for all n0 with sufficiently small �n0� (such that ν�(n0) is simple and isolated).
We have seen above that the mapping n �→ P�(n) is continuously differen-
tiable at n = 0, and since W is continuously differentiable by assumption,
also n �→ (W (n)− ν�(n0))P�(n) is continuously differentiable at n = 0. Since
(W (n)− ν�(n0))P�(n) and the derivative (4.40) are degenerate and of rank
1 respectively, the continuous differentiability of n �→ ν�(n) at n = 0 follows
from Corollary 4.5. Using the product rule ([Zei86, Prop.4.11]) we find

d

dn
((W (n)− ν�(0))P�(n))|n=0 h = (W �(0)h)P�(0) + (W (0)− ν�(0))P

�
�(0)h

= P�(0) (W
�(0)h)P�(0). (4.42)

The last equality can be deduced from (4.40) as

(W (0)− ν�(0))P
�
�(0)h = 0− (W (0)− ν�(0))S�(0) (W

�(0)h)P�(0)

= − (W �(0)h)P�(0) + P�(0) (W
�(0)h)P�(0), (4.43)

where we also used the two identities (W (0)− ν�(0))S�(0) = I − P�(0) and
(W (0)− ν�(0))P�(0) = 0 (cf. equation (4.10)).
We obtain

ν �
�(0)h = tr (P�(0) (W

�(0)h)P�(0)) (4.44)

and conclude
ν �
�(0)h = tr ((W �(0)h)P�(0)) , (4.45)

because the trace does not change if we commute the operators (see (4.19)).�

We want to avoid the computation of P�(n) as an integral. With our results for
the eigenprojections and degenerate operators, we can rewrite the statement
for the eigenvalues.
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Corollary 4.9. Let W : N → L(X) be continuously differentiable for all
admissible n and have the simple, isolated eigenvalue ν�(ň) for some ň ∈ N.
Then there exists a continuous function n �→ ν�(n) of simple isolated eigenval-
ues in a neighborhood of ň.
Let further v�(n) be an eigenvector of W (n) corresponding to the eigenvalue
ν�(n), then there exists an eigenvector b�(n) of W (n)∗ corresponding to the
eigenvalue ν�(n). If additionally b�(n) is normalized by �v�(n), b�(n)� = 1,
the function n �→ ν�(n) is continuously differentiable and has at n = ň the
derivative

ν �
�(ň)h = �(W �(ň)h) v�(ň), b�(ň)� . (4.46)

Proof. In virtue of Remark 4.1 the result follows directly from Theorem 4.8
and Lemma 4.6. �

4.2 Derivatives of eigenvalues and eigenvectors for a
generalized eigenvalue problem

Let us consider now the generalized eigenvalue problem

B(n)v� = ν�Mv�, (4.47)

with the differentiable operator-valued function B : N �→ L(X), where N is an
open subset of a Banach space Y and X a Hilbert space. We want to assume
that M ∈ L(X) does not depend on n and is boundedly invertible. Then
(ν�, v�) is a classic eigenpair of the operator M−1B(n) and we can define func-
tions of eigenvalues n �→ ν�(n) as in the previous section in the sense of Lemma
4.2. In particular, we choose the largest possible subset of admissible n around
some initial ň ∈ N in which we can define a function of eigenvalues. Moreover,
we assume that B(n) and M are conjugation-symmetric (C-symmetric):

Definition 4.10. Let X be a Hilbert space. We call a mapping

C : X → X (4.48)

a conjugation if it has the following properties:

1. C2 = I

2. C(cv) = cC(v) for all v ∈ X and all c ∈ C

3. �C(v)� = �v� for all v ∈ X.

An operator A ∈ L(X) is called conjugation-symmetric (C-symmetric) if it
fulfills

�Av, C(w)� = �v, C(Aw)� (4.49)

for all v, w ∈ X.

If X is a Hilbert space of complex-valued functions, there is a canonical con-
jugation given by complex conjugation: C(f) := f . However, since we work in
an abstract Hilbert space setting so far, the existence of a conjugation has to
be assumed in the following.
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4.2.1 Derivatives of the eigenvalues

Lemma 4.11. Assume that X is equipped with a conjugation C and thatM and
B(n) are C-symmetric for all n ∈ N. Let B : N→ L(X) depend continuously
differentiably on n, M be boundedly invertible and let v�(n) be a simple and
isolated eigenvalue to (4.47) in a neighborhood of some ň ∈ N. Further, let
v�[n] ∈ X be a corresponding eigenvector, scaled28 such that

�v�[n], C(Mv�[n])� = 1. (4.50)

Then n �→ ν�(n) is continuously differentiable and the Fréchet derivative is
given by

ν �
�(n)h = �(B�(n)h) v�[n], C(v�[n])� . (4.51)

Proof. (ν�(n), v�[n]) is a classic eigenpair of the operator M−1B(n). Thus,
by Corollary 4.9 we find

ν �
�(n)h =

�
M−1 (B�(n)h) v�[n], b�[n]

�
, (4.52)

with b�[n] being an eigenvector of (M−1B(n))
∗
to the eigenvalue ν�(n) and the

normalization condition

�v�[n], b�[n]� = 1. (4.53)

Since B(n) and M are C-symmetric it holds

�
v,
�
M−1B(n)

�∗ C(Mv�[n])
�
=
��
M−1B(n)

�
v, C(Mv�[n])

�

= �B(n)v, C(v�[n])� = �v, C(B(n)v�[n])�
=
�
v, ν�[n]C(Mv�[n])

�
(4.54)

for all v ∈ X. Therefore, C(Mv�[n]) is an eigenvector of (M−1B[n])
∗
to the

eigenvalue ν�[n], and by (4.50) it fulfills the normalization condition (4.53).
Hence,

ν �
�(n)h =

�
M−1 (B�(n)h) v�[n], C(Mv�[n])

�
= �(B�(n)h) v�[n], C(v�[n])� .

(4.55)

�

Remark 4.12. Under the assumptions of Lemma 4.11 the eigenprojection
P�(n) (corresponding to M−1B(n)) is given by

P�(n)v = �v, C(Mv�[n])� v�[n] (4.56)

for all v ∈ X. This follows from Lemma 4.6 and the fact that C(Mv�[n]) is an
eigenvector of (M−1B(n))

∗
to the eigenvalue ν�(n) (see equation (4.54)).

28The scaling is possible since the eigenspace is one-dimensional, M is invertible and
�cv, C(Mcv)� = c2 �v, C(Mv)� for all v ∈ X and c ∈ C.
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4.2.2 Derivatives of the eigenvectors

As our objective will also involve eigenvectors, we also comment on derivatives
of generalized eigenvectors with respect to n. So far, we have only worked
with the closely related eigenprojections. In contrast to eigenprojections, the
eigenvectors are not uniquely determined. But as we assume simple, isolated
eigenvalues, with the normalization

�v�[n], C(Mv�[n])� = 1 (4.57)

the eigenvector v�[n] is uniquely determined up to its sign since

1�
�cv�[n], C(Mcv�[n])�

cv�[n] =
c√
c2
v�[n] = ±v�[n] (4.58)

for all c ∈ C. We will later see that the eigenvector only appears in quadratic
terms in the objective function such that we can choose one sign without
changing the values of the objective function or its derivative.

Lemma 4.13. Let the assumptions of Lemma 4.11 be fulfilled. Then there ex-
ists a continuous function n �→ v�[n] of eigenvectors corresponding to ν�(n)
and fulfilling the normalization condition (4.57). It is even continuously dif-
ferentiable, and its derivative is given by

v�
�[n]h = −SM� (n) (B�(n)h) v�[n]+

1

2
v�[n]

��
SM� (n) (B�(n)h) v�[n], C (Mv�[n])

�

+
�
Mv�[n], C

�
SM� (n) (B�(n)h) v�[n]

���
(4.59)

with

SM� (n) :=
1

2πi

�

Γ�

(ν − ν�(n))
−1 (B(n)− νM)−1 dν, (4.60)

where Γ� is a rectifiable, simple closed curve in the resolvent set enclosing ν�(ň)
but no other values in the spectrum of M−1B(ň).

Proof. As in Section 4.1, it suffices to analyze the situation for a general
operator around n = 0. Let v�[0] be a generalized eigenvector of (4.47) (and
thus an usual eigenvector of M−1B(n)) to the simple and isolated eigenvalue
ν�(n), normalized such that �P�(0)v�[0], C (MP�(0)v�[0])� = 1. Note that we
mean here always the eigenprojection P�(n) to W (n) = M−1B(n), and the
same is true for the reduced resolvent S�(n) used later.
By Theorem 4.8 for simple and isolated eigenvalues ν�(n) the mapping n �→
P�(n) is differentiable and therefore in particular continuous. Thus, we have
P�(n)v�[0] �= 0 for all n with sufficiently small �n� because

P�(0)v�[0] = v�[0] �= 0. (4.61)

From the assumption that the eigenvalue ν�(n) is simple we know that P�(n) is
one-dimensional which ensures that P�(n)v�[0] can only map on an eigenvector
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v[n] to ν�(n) or be equal to 0. This means P�(n)v�[0] defines a continuous
function of eigenvectors in a neighborhood of n = 0.
Therefore, we have the following appropriate representation of the scaled eigen-
vector

v�[n] =
P�(n)v�[0]�

�(P�(n)v�[0]), C(MP�(n)v�[0])�
, (4.62)

for all n with sufficiently small �n�. This is exactly what need for the derivative
at n = 0. Moreover, we can now define a continuous function n �→ v�(n) for
all admissible n since the scaled eigenvector is unique up to its sign. We have
already shown the continuous differentiability of the mapping n �→ P�(n) at
n = 0 in Theorem 4.8 and therefore n �→ v�[n] is continuously differentiable
at n = 0. Note that we can differentiate into scalar product and conjugation
since both are continuous with respect to the norm on X.
We compute

v�
�[0]h = (P �

�(0)h) v�[0]−
1

2
v�[0] (�(P �

�(0)h) v�[0], C (Mv�[0])�
+ �v�[0], C (M (P �

�(0)h) v�[0])�) , (4.63)

using the product rule and �P�(0)v�[0], C (MP�(0)v�[0])� = 1.
Again by Theorem 4.8 we have

P �
�(0)h = −P�(0)

�
M−1B�(0)h

�
S�(0)− S�(0)

�
M−1B�(0)h

�
P�(0) (4.64)

with

S�(n) =
1

2πi

�

Γ�

(ν − ν�(n))
−1
�
M−1B(n)− ν

�−1
dν

=
�

1

2πi

�

Γ�

(ν − ν�(n))
−1 (B(n)− νM)−1 dν

�
M.

Since S�(0)P�(0) = 0 (see Lemma 4.2, (4.10b)), the expression (P �
�(0)h) v�[0]

simplifies to

(P �
�(0)h) v�[0] = −SM� (0) (B�(0)h) v�[0]. �

To evaluate the derivative (4.59) of the eigenvector, we need the operator
SM� (n), defined in (4.60). Like the eigenprojection we do not want to compute
it as an integral. The following lemma gives us insight.

Lemma 4.14. Let the assumptions of Lemma 4.13 be fulfilled. For the modi-
fied reduced resolvent, defined in (4.60), it holds

SM� (n) = (B(n)− ν�(n)M +MP�(n))
−1 − P�(n)M

−1. (4.65)

Proof. Let us consider some fixed n. By the relations (4.10) we find

[M−1B(n)− ν�(n) + P�(n)] [S�(n) + P�(n)] = (M−1B(n)− ν�(n))S�(n)

+ P�(n)S�(n) + (M−1B(n)− ν�(n))P�(n) + (P�(n))
2 = I, (4.66)
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with P�(n) and S�(n) (for ν�(n)) corresponding to M−1B(n). We conclude
that the operator (M−1B(n)− ν�(n) + P�(n)) is invertible and

S�(n) =
�
M−1B(n)− ν�(n) + P�(n)

�−1 − P�(n). (4.67)

By definition we have SM� (n) = S�(n)M
−1 and therefore

SM� (n) =
��
M−1B(n)− ν�(n) + P�(n)

�−1 − P�(n)
�
M−1

=
�
M
�
M−1B(n)− ν�(n) + P�(n)

��−1 − P�(n)M
−1

= (B(n)− ν�(n)M +MP�(n))
−1 − P�(n)M

−1.

(4.68)

�

Remark 4.15. Observe that under the given assumptions for all admissible
n the operator P�(n)M

−1 is given by

P�(n)M
−1v = �v, C(v�[n])� v�[n] (4.69)

for all v ∈ X, where we used equation (4.56).

In the next section we discuss how the shown results apply to our problem.
We have shown in Chapter 2 that the resolvent has only isolated poles (the
resonances) and assumed that the examined best physical resonance is simple.
If we consider the resonance problem on the whole real axis, we have to deal
with H2

loc(R) which is not a Hilbert space. In the weak formulation (2.15),
which is a way out, the linear structure in ν of the problem is lost due to the
DtN numbers. This inconvenience can be overcome using the Hardy space
formulation (see Lemma 2.9), and our results can be applied.

4.3 Objective function and discretization

As explained in Chapter 2, we want to optimize the field enhancement as a
function of the refractive index n. We have already pointed out in Section 2.5
that we replace the non-differentiable infinity-norm in our objective function
by the L2-norm of the field. But the dependence of the L2-norm at the best
resonant frequency on the refractive index is not very explicit so far. We are
interested in an explicit formula of a suitable differentiable objective function.

4.3.1 Approximation to the L2-norm and asymptotic expansion of
scattering solutions in the vicinity of resonances

Let us briefly discuss how the results from Sections 4.1 and 4.2 apply to our
problem formulated in Chapter 2. For simplicity let us assume we have rewrit-
ten the scattering problem (2.8) as an operator equation of the form

(B(n)− νM)us = Mf (ν), (4.70)

with a differentiable operator-valued function B : N ⊂ Y �→ L(X), a bound-
edly invertible operator M ∈ L(X) and some right hand side Mf (ν) ∈ X,
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where X is a Hilbert space. N ⊂ L∞(R) is in our problem the set of admissi-
ble refractive indices as defined in (2.1) and Mf (ν) is an analog to the G(ν)
in the weak formulation (2.15). Furthermore, we assume that X is equipped
with a conjugation C and that the operators B(n) and M are C-symmetric for
all n ∈ N and that (B(n) − νM) is boundedly invertible for all n ∈ N and
all ν, except for a discrete set of isolated poles. Such a formulation can be
achieved by the Hardy space formulation (cf. Lemma 2.9). In particular, we
have X = XH, and us and f (ν) are defined as in Lemma 2.9. A conjugation
on X = XH, for which B(n) and M are C-symmetric, is given by

C : XH → XH with C
�
u�, us, u

⊕
s

�
:=
�
u�(·), us, u⊕

s (·)
�
, (4.71)

where the bar is the standard complex conjugation (for details, see [HN09,
p.978, eq.(2.20)]). By Lemma 2.9 the operator (B(n) − νM) is a Fredholm
operator of index 0 for all n ∈ N and all ν ∈ Z. It is injective for all ν ∈ Z
except for a discrete set, which follows from Theorem 2.12 together with the
equivalence of Hardy space formulation and weak formulation (cf. remarks
below Lemma 2.9).
Choose some admissible refractive index ň supporting at least one resonant
state, and choose a resonance ν�(ň) (generalized eigenvalue of (4.70)) to it,
which we assume to be simple. Then by Lemma 4.2 in a neighborhood of ň
the resolvent �R(ν, n) = (M−1B(n)− ν)−1 has the expansion

�R(ν, n) = −(ν − ν�(n))
−1P�(n) +

∞�

m=0

(ν − ν�(n))
mS�(n)

m+1. (4.72)

Hence, when ν tends to ν�(n), the expression (4.72) is dominated by the
first term (the second term is a convergent geometric series for |ν − ν�(n)| <
�S�(n)�) and

�R(ν, n)f (ν) ≈ −(ν − ν�(n))
−1P�(n)f (ν�(n)) (4.73)

is a first order approximation of the solution us[ν, n] to (4.70), provided that
P�(n)f (ν�(n)) �= 0 and P�(n)f (ν) ≈ P�(n)f (ν�(n)). We discuss in the equa-
tions (4.78) how one can motivate that these conditions are fulfilled in our
problem. Before, recall that if v�[n] is an eigenvector corresponding to ν�(n)
and scaled such that

�v�[n], C(Mv�[n])�X = 1, (4.74)

the eigenprojection P�(n) is given by

P�(n)v = �v, C(Mv�[n])�X v�[n] (4.75)

for all v ∈ X (see Remark 4.12).
We explain now the application to the Hardy space formulation. Elements
us ∈ XH consist of three components. The one in the middle is in H1([−a, 0])
and is the restriction to [−a, 0] of a solution us to problem (2.18) (cf. Lemma
2.9). Therefore, by the middle component of (4.73) we get an approximation
to the solution of problem (2.18), and by adding ui we get an approximation
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to the solution u of problem (2.8) in [−a, 0]. We also remind that Mf (ν) in
Lemma 2.9 has no parts in the Hardy spaces (see again the remarks below
Lemma 2.9), and find

P�(n)f (ν) =
�
Mf (ν), C(v�[n])

�
X
v�[n] =

�
Mf (ν), v�[n]

�
H1
v�[n], (4.76)

where the underlined quantities indicate that we only use the part correspond-
ing to the H1-part of XH there. In Lemma 2.13 we have shown the relation

�
G(ν�(n)), v�[n]

�
H1

= −2i
�
k20 − ν�(n)v�[n](0) �= 0. (4.77)

Since the Hardy space formulation of problem (2.18) is equivalent to the weak
formulation (2.15) (see Lemma 2.9), we conclude

P�(n)f (ν�(n)) �= 0. (4.78a)

Simultaneously, G(ν) depends holomorphically on ν as already discussed in
the proof of Theorem 2.14. This implies

P�(n)f (ν) ≈ P�(n)f (ν�(n)) (4.78b)

if |ν − ν�(n)| is sufficiently small.
We are interested in the L2-norm of us in [−a, 0]. Hence, we again want to use
only the part of (4.76), which corresponds to the H1-component. With the
approximation (4.73) we obtain the following approximation to the L2-norm
of us in [−a, 0]:

�us[ν, n]�2L2 ≈
1

|ν − ν�(n)|2
�
P�(n)f (ν�(n)), P�(n)f (ν�(n))

�
L2

=
1

|ν − ν�(n)|2
���
�
Mf (ν�(n)), v�[n]

�
H1

���
2 ���v�[n]

���
2

L2

≈ 4 |k20 − ν�(n)|
|ν − ν�(n)|2

���v�[n](0)
���
2 ���v�[n]

���
2

L2
,

(4.79)

where the last approximation is again motivated by equation (4.77).
Note that approximation formula (4.79) is differentiable by the results from
the previous sections, as long as we are away from zero29. We have provided
all necessary derivatives to obtain a closed formula for its derivative. As we
cannot compute the resonances analytically, we discretize our problem now and
derive a discrete analog of (4.79) as the objective function for our optimization
process. Its derivative can be computed by applying the results of the previous
sections.
Observe that approximation formula (4.79) also indicates that the real parts
of the resonances approximate the (real-valued) resonant frequencies as the
expression (4.79) is maximized by ν = Re(ν�(n)) for ν in the real numbers.
Also observe that the width of the peak in the intensity decreases if Im(ν�(n))
does (cf. comments in Section 2.2.2).

29This is important for the absolute values to be differentiable and will be discussed in
the discrete setting, see Section 4.4.2.
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4.3.2 Discretization

The discretization of the scattering problem is done by finite elements com-
bined with Hardy space infinite elements. The Hardy space method is a
Galerkin method with special ansatz functions based on the Hardy space for-
mulation. Finite elements basis functions in the bounded domain (−a, 0) are
coupled with basis functions in the Hardy space to incorporate the radiation
conditions. A favorable feature of this method is the preservation of the linear
eigenvalue structure, which is surprising if one looks at the form of the DtN
numbers which are nonlinear in ν. Since the assembly of the finite elements
matrices is rather standard and a complete explanation of the Hardy space
method leads us too far away from our purpose, we refer again to [HN09,
Section 2.4] and [Nan08].

Remark 4.16. For the finite elements discretization one can use Lagrange
elements or other standard finite elements. In our numerical experiments we
use basis functions based on integrated Legendre polynomials (see e.g. [Sch98])
which stay stable for high polynomial orders.
Also the grid for the finite elements can be chosen quite arbitrarily but some-
times it will turn out to be helpful to choose a certain discretization to make the
computation of the derivatives easier. For example in the case of a piecewise
constant approximation of the refractive index we often choose our discretiza-
tion in a way such that the index of refraction does not change inside finite
elements, but on intersection points between two elements. Nevertheless, our
analysis does not rely on a certain kind of finite elements discretization.

We find the following discrete equation:

B(n)us[ν, n]− νMus[ν, n] = Mf [ν, n] (4.80)

with vectors f [ν, n],us[ν, n] ∈ CJ and matrices B(n),M ∈ CJ×J which are
complex(-conjugation)-symmetric (non-Hermitian) for all admissible n, i.e.

B�(n) = B(n) and M� = M for all admissible n. (4.81)

The matrix M is invertible and the matrix B(n) depends on n, but also con-
tains parts (the stiffness matrix) which do not depend on n. Equation (4.80)
is a discrete approximation to the weak formulation (2.15) of the scattering
problem and the vector us[ν, n] approximates the solution to problem (2.14)
(see [HN09, Section 2.4]).
Hence, (4.80) is a special case of equation (4.70) and the resonances may be
computed as generalized eigenvalues of

B(n)us = νMus. (4.82)

Let νj(n) be a simple eigenvalue of (4.82) and vj[n] a corresponding eigenvec-
tor, scaled such that

(vj[n])
�Mvj[n] = 1. (4.83)
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Clearly, all eigenvalues of a matrix are isolated and applying the results from
Section 4.3.1, we can represent us[ν, n] by the following sum30:

us [ν, n] =
−1

ν − νj(n)
Pj(n)f [νj(n), n] +

∞�

m=0

(ν − νj(n))
mSj(n)

m+1f [νj(n), n],

(4.84)
with the reduced resolvent31

Sj(n) :=
1

2πi

�

Γj(n)
(ν − νj(n))

−1
�
M−1B(n)− νI

�−1
dν (4.85)

and the eigenprojection

Pj(n) := −
1

2πi

�

Γj(n)

�
M−1B(n)− νI

�−1
dν. (4.86)

As explained above (see equation (4.75)), the eigenprojection is given by

Pj(n) = vj[n](Mvj[n])
�, (4.87)

and as a first order approximation to us [ν, n] in the vicinity of the resonance
νj(n), we use the formula

us [ν, n] ≈
−1

ν − νj(n)
vj[n]vj[n]

�Mf [νj(n), n]. (4.88)

(4.88) is a discrete analog to (4.73). Before we proceed, we want to emphasize
by an example what we have derived here.

4.3.3 Example

Let us return to our motivating example from Section 2.2.1. Figure 4.1 shows
the same plot as Figure 2.3, but here we have also plotted the numerically
computed32 resonances (blue crosses in the lower panel) and an approximation
of the maximal field intensity in the vicinity of the different resonances (red
lines in the lower panel) which was computed from approximation (4.88) of
the scattered field.
The results show how nice the resonant frequencies meet the points of maxi-
mal field enhancement, and also the approximation formula fits the observed
curves around the resonant frequencies very well, in particular the values at
the resonant frequencies themselves.

30The reader should keep in mind that this holds for all n in a neighborhood of some
initial ň.

31Γj(n) is again a rectifiable, simple closed curve enclosing νj(n) but no other generalized
eigenvalues of (4.82).

32The computations were done with an averaged length of 50Å per finite element, a
polynomial degree of 10 and 50 degrees of freedom in each of the Hardy spaces for the
modelling of the two radiation conditions.
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Figure 4.1: upper panel: field intensity along the z-axis for different angles
of incidence α, lower panel: maximum field intensity for different angles
of incidence α, resonances and approximation of field intensity using
formula (4.88); values: Table 2.1

4.3.4 Discrete objective function

The approximation formula (4.88) leads as in Section 4.3.1 to an approximation
of the L2-norm of the solution in [−a, 0] in dependence of ν in the vicinity of
the resonance νj(n):

�us[ν, n]�2L2 ≈ us[ν, n]
∗M us[ν, n] = us[ν, n]

�
M us[ν, n]

≈ 1

|ν − νj(n)|2
���vj(n)

�Mf [νj(n), n]
���
2
vj[n]

�
Mvj[n]. (4.89)

The underlined vectors shall indicate that we use there only terms from the
interior and no entries corresponding to the Hardy space parts. Motivated by
equation (4.79) we rewrite this to33:

�us[ν, n]�2L2 ≈
4 |k20 − νj(n)|
|ν − νj(n)|2

���vj[n](0)
���
2
vj[n]

∗Mvj[n]. (4.90)

By this formula we can make our optimization problem more accessible. Choos-
ing j such that νj(ň) is the best resonance for some initial system with n = ň,
we will use the following formulation in the discrete setting:

33The expression vj [n](0) has to be interpreted as the entry of the j-th (discrete) eigenvec-
tor vj which corresponds to the position z = 0. This degree of freedom exists independently
of the finite elements discretization because z = 0 is a boundary point of our interior domain.



4.3 Objective function and discretization 61

Optimization problem 4.17.

max
n

f(n) under side conditions on n,

with

f(n) :=
4 |k20 − νj(n)|
|Im(νj(n))|2

���vj[n](0)
���
2
vj[n]

∗Mvj[n]. (4.92)

With (4.92) we have found a suitable objective function defined by a handy
formula. By the results from the preceding sections, it is also differentiable
when B(n) depends differentiably on n.

Remark 4.18. To Optimization Problem 4.17 we remark the following:

1. It is not sufficient to minimize the absolute value of the imaginary part of
the resonance in dependence of n since in (4.90) not only the eigenvalue
νj(n) changes with n, but also the eigenvectors which influence the other
terms. These terms should be as big as possible while the imaginary
part of νj(n) gets small. In particular, the term vj[n]

�Mf [νj(n), n] in
(4.89) would be zero if the excitation Mf [νj(n), n], corresponding to the

incident field, was orthogonal to vj[n]. But this can be excluded as already
discussed in Section 4.3.1 (see equation (4.78a)). Nevertheless, the term
can get small when n changes and has to be taken into account.

2. One may further be interested in the width of the peak around Re(νj(n)),
produced by formula (4.88). We ask for which value ν = ν1/p ∈ R only
1/p of its maximum value at Re(νj(n)) is left. An elementary computa-
tion shows:

ν1/p =
√
p− 1 | Im(νj(n))|. (4.93)

Thus, better resonances will in general produce more narrow peaks, as
already mentioned. Note here that the cosine is strictly monotonically
increasing in [0, π/2] such that the peak is also more narrow if we plot it
against α as in the previous examples.
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4.4 Derivative of the discrete objective function

4.4.1 Existing work

There exists a large literature on derivatives of eigenvalues and optimality con-
ditions for certain objective functions involving eigenvalues since eigenvalue
optimization problems arise in many areas (e.g. optimal design problems and
problems of optimal control) as already shortly described in the introduction
to this thesis. Of course, it was our first idea to carry over these results to
our problem and apply them to the discrete version of our problem. How-
ever, it turned out that most of the results are not applicable here as they are
restricted to symmetric matrices, special dependencies on the parameters or
other objective functions. Usually they also do not cover derivatives of eigen-
vectors. We give a brief overview which may be incomplete and subjective. For
further details, we refer to the articles we mention and the references therein.
Mainly motivated by applications from control theory there are plenty of ar-
ticles (for example [Ove92] by Overton and [LO96] by Lewis and Overton)
dealing with the problem of a matrix depending on parameters and optimiz-
ing some objective function involving its eigenvalues. For instance, it may be
desirable to minimize the largest34 eigenvalue of a symmetric matrix in depen-
dence on some parameters to control stability of a certain system (see [Ove92]).
Most of the literature is restricted to symmetric or Hermitian matrices like the
article [Ove92]. As we have seen, this assumption is not fulfilled in our prob-
lem. Let us briefly explain the main difference. In the case of symmetric or
Hermitian matrices the largest eigenvalue is a convex function of the matrix
entries. More precisely, one can show that the maximum eigenvalue may be
written as the pointwise maximum of a set of linear functions which always
defines a convex function. The subdifferential of a convex function f : Rk → R

at a point x0 ∈ Rk is defined as

∂f(x0) =
�
g ∈ Rk : f(x)− f(x0) ≥ g�(x− x0) for all x ∈ Rk

�
. (4.94)

It turns out (see Overton [Ove92, Theorem 1 and 2]) that for a symmetric
matrix B the subdifferential of the largest eigenvalue µ1 with respect to the
matrix entries is given by

∂µ1(B) = conv
�
bb� : b is a normalized eigenvector to µ1(B)

�
, (4.95)

where conv denotes the convex hull and identifying Rk×k and Rk2
in the canon-

ical way. This leads to formulas for generalized derivatives of the largest eigen-
value when the matrix is assumed to depend continuously differentiably on the
parameters. One makes use of so-called generalized gradients introduced by
Clarke [Cla83] and expressions for the generalized derivatives follow from a
chain rule (see Lewis and Overton [LO96, Theorem 3]). Whether the depen-
dence of the matrix on the parameters is linear or nonlinear is not so important
here as long as it depends differentiably on them. Note that the calculation

34The eigenvalues may be ordered in that case as they are all real since the considered
matrix-valued function is assumed to map on symmetric matrices.
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of (4.95) at many different points is not altogether easy whenever the largest
eigenvalue is not simple since it requires a complete set of orthonormal eigen-
vectors corresponding to the largest eigenvalue (see e.g. Overton [Ove92]).

But why are such results not applicable to our problem? First of all and
most important, we do not have symmetric/Hermitian matrices. The results
for standard eigenvalue problems with symmetric/hermitian matrices would
directly carry over to generalized eigenvalue problems of the form B(n)us =
νMus if B and M are assumed to be symmetric/Hermitian and moreover
M is assumed to be positive semidefinite (see e.g. [Ove92, Section 7]). But
none of these assumptions is fulfilled in our case because of the entries in the
matrices which come from the radiation conditions or rather the Hardy space
infinite elements. In the case of non-symmetric matrices the situation for points
where the eigenvalues coalesce is much worse. What is particularly lost in the
non-symmetric/non-Hermitian case is the existence of a complete orthonormal
system with respect to the standard scalar product or to the one induced by
M in the generalized eigenvalue problem respectively. This goes along with
the loss of the standard Rayleigh representation for the largest eigenvalue.

To clarify this point, we consider again a small example. The matrix-valued
function

B(q) =

�
0 1
−1 2q

�
(4.96)

depends analytically on q in every subdomain of R but B(q) is not symmetric.
Its eigenvalues are given by q±

√
q2 − 1 for all q ∈ R but one cannot define two

independent functions µ1(q), µ2(q) for the eigenvalues which are differentiable
at q = 1. Even worse, the function

Im(µj(q)) =




0, q ≥ 1

±
√
1− q2, q < 1

(4.97)

is not only non-differentiable at q = 1, it is even not a Lipschitz function any-
more such that the theory of generalized gradients also fails. But such things
only happen at points where eigenvalues coalesce. We assumed simple eigen-
values anyway. However, it is also possible to work out variational properties
of certain objective functions at points where two eigenvalues coalesce but then
we need knowledge on the Jordan form of the matrix at these points (see e.g.
Burke, Lewis and Overton [BLO00] and Burke and Overton [BO01]) and the
theory gets quite complicated.

In general, there are much less articles dealing with non-symmetric matrices.
Lewis and Overton [LO96] show that many eigenvalue optimization problems
can be rephrased into semidefinite programming (SDP) which they analyze
from a Fenchel duality perspective and can be solved by primal-dual interior
points algorithms. But again the analysis heavily relies on the assumption
of symmetric/Hermitian matrices. The suggestions made in Section 16 of
[LO96] to rephrase non-Hermitian problems into Hermitian ones have serious
drawbacks like many extra variables or even ill-conditioning. Another very
general article by Burke and Overton [BO94] works out variational properties
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of the spectral radius/spectral abscissa35 for the general case that the blocks
corresponding to the considered eigenvalues may have any Jordan structure,
but only under the stronger assumption that the examined matrix depends
analytically on the parameters. The article most closely related to our purpose
is a quite old one by Overton and Womersley from 1988 [OW88], providing
necessary and sufficient conditions for the spectral radius to have a first-order
local minimum, for the case of a nonsymmetric real-valued matrix depending
affinely on a real parameter and assuming that all eigenvalues achieving the
minimum are semisimple at the point where it is achieved. They make use of
the eigenvalue perturbation theory by Rellich [Rel69] and Kato [Kat95] to find
directional derivatives. This theory is also the basis for our considerations.
To overcome the assumption of an affine-linear dependence on the parameters
they suggest to locally expand the matrix into a Taylor series and to truncate it
as an approximation to the exact matrix. Since such an advance may produce
additional errors and requires higher order derivatives of the matrix-valued
function, we do not follow it.

Another crucial point, we have already touched upon, is the objective function.
Our objective function not only involves eigenvalues as in most of the articles
(largest or smallest eigenvalue: Overton [Ove92], spectral radius: Burke and
Overton [BO94] and Overton and Womersley [OW88], spectral abscissa: Burke
and Overton [BO94] and [BO93]) but also eigenvectors, and thus we also need
their derivatives. Minimizing the spectral abscissa, which is the maximal real
part of the eigenvalues of a matrix-valued function, seems at first sight to
be closely related to a reasonable objective function for our problem, namely
minimizing the minimal imaginary part of the eigenvalues. But to focus on
the imaginary part of the best resonance in the optimization process is not
sufficient as explained above and moreover we would have to deal with the
problem that some artificial resonances coming from the discretization might
have smaller imaginary parts and we would then optimize physically meaning-
less values. Or to put it in another way, we have to analyze the eigenvalues
which are true resonances and not necessarily the ones with smallest imagi-
nary part or biggest real part (corresponding to smallest angle of incidence)
computed from our discretized problem.

A basis for algorithms with very general objective functions and dependen-
cies on the parameters (like the non-Lipschitz function above) can be found
for example in Burke, Overton and Lewis [BLO02] and Vanbiervliet et al.
[VVMV08]. Burke, Lewis and Overton [BLO02] suggest the use of so-called
“gradient sampling” for problems where the gradient or respectively the subd-
ifferential is very hard to compute. The gradient at a point is approximated by
surrounding points where the gradient is easy to calculate under the assump-
tion that the considered function is differentiable almost everywhere. Such
techniques require in general many function evaluations but are on the other
hand often the only way to allow for practicable algorithms for very general

35The spectral abscissa of a matrix-valued function q �→ B(q) for q in a subdomain of Rk

is defined as max {Re(µ) : µ is an eigenvalue of B(q)} and the spectral radius is defined as
max {|µ| : µ is an eigenvalue of B(q)}.
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problems. But since under suitable assumptions it is possible to compute the
derivative of our objective function directly, we do not make use of the exist-
ing algorithms for efficiency reasons and more reliable results using the exact
derivative.
We have only given a short overview of the work by Overton et al. There
is a tremendous number of further nice publications concerning optimization
problems with eigenvalues and related topics. A list of those can be found on
Overton’s homepage http://cs.nyu.edu/overton/papers.html.

4.4.2 Application of results from Section 4.2

To reach a fully discrete formulation of our optimization problem we also have
to discretize n. We do this before we discretize the problem with finite elements
to avoid inconveniences. Let us assume that we can encode n in a vector

n = [�n1, �n2, . . . , �nL] ∈ RL, (4.98)

which is for example the case when the refractive index n is approximated
by a piecewise constant function or by a spline of higher order. In the case
of a piecewise constant approximation the vector n can consist of refractive
indices36 and/or layer widths. The air that surrounds the system and the
substrate are kept fix as well as the width of the whole system and are not
included in n. In the case of higher order approximations the vector n consists
of the coefficients of higher order spline which approximates n in [−a, 0] (see
Section 5.2 for details).
To compute the derivatives of our objective function

f[n] =
4 |k20 − νj(n)|
|Im(νj(n))|2

|vj[n](0)|2 vj[n]
�
Mvj[n], (4.99)

we need the derivatives of the generalized simple eigenvalue νj(n) and the
corresponding scaled eigenvector of

B(n)us = νMus. (4.100)

with the complex-symmetric (non-Hermitian) matrices B(n) and M. This
is a special case of the problem discussed in Section 4.2 if we assume that
n �→ B(n) depends continuously differentiably37 on n. To present the result
clearly arranged, we define the functions

q(n) :=
���vj[n](0)

���
2
, r(n) := vj[n]

∗Mvj[n],

s(n) := |Im(νj(n))|2, t(n) := 4
���k20 − νj(n)

��� (4.101)

36We can put real and imaginary part as independent variables into the n, but as we will
later see, it makes more sense to couple the absorption to the real part of the refractive
index (see Section 5.1).

37That n �→ B(n) depends continuously differentiably on n will be discussed for different
types of discretizations of the refractive index in Section 4.5 and Chapter 5.
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and their l-th partial derivatives we denote by

gl(n) :=
∂g

∂�nl
(n), g = q, r, s, t. (4.102)

In this notation f is given by

f(n) =
t(n)q(n)r(n)

s(n)
(4.103)

and has the gradient

∇f =
�
1

s2

��
(tlq+ tql) r+ tqrl

�
s− tqrsl

��

l=1,...,L
. (4.104)

Computing the partial derivatives of q, r, s and t completes the derivative of
the objective function. We obtain

ql(n) = 2Re (vj[n](0)) Re

�
∂vj
∂�nl

[n](0)

�
+ 2 Im (vj[n](0)) Im

�
∂vj
∂�nl

[n](0)

�
,

rl(n) =

�
∂vj
∂�nl

[n]

�∗
M
�
vj[n]

�
+
�
vj[n]

�∗
M

�
∂vj
∂�nl

[n]

�
,

sl(n) = 2 Im (νj(n)) Im

�
∂νj
∂�nl

(n)

�
and

tl(n) =
−2

|k20 − νj(n)|

�
2Re

�
k20 − νj(n)

�
Re

�
∂νj
∂�nl

(n)

�
+ sl(n)

�
. (4.105)

Note that we have differentiated real and imaginary part of the functions sep-
arately as functions from RL to R and that we are away from zero due to our
assumptions38 on n (or respectively n) and ν such that the norms and absolute
values are differentiable.
What is left to do, is to write down formulas for the derivatives of the eigen-
values and eigenvectors. Applying the results from Section 4.2 we find for the
partial derivative of the eigenvalue νj(n)

∂νj
∂�nl

[n] = vj[n]
�
�
∂B

∂�nl
(n)

�
vj[n] (4.106)

and for the partial derivatives of the eigenvector vj[n]

∂vj
∂�nl

[n] =−SM

j (n)

�
∂B

∂�nl
(n)

�
vj[n]+

1

2
vj[n]



�
SM

j (n)

�
∂B

∂�nl
(n)

�
vj[n]

��
Mvj[n]

+vj[n]
�M

�
SM

j (n)

�
∂B

∂�nl
(n)

�
vj[n]

��
, (4.107)

38We assumed Re (ν) ∈ [0, k2
0) and by the second part of Theorem 2.12 the imaginary part

of the resonances is positive. Also vj [n](0) �= 0 as the value it approximates is not equal to
zero by part b) of Lemma 2.13.
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with

SM

j (n) =
�
B(n)− νj(n)M+Mvj[n]vj[n]

�M
�−1 − vj[n]vj[n]

� (4.108)

and always using the normalization

vj[n]
�Mvj[n] = 1. (4.109)

For the representation (4.108) of SM

j (n), recall Lemma (4.14) and the equations
(4.69) and (4.56).

Remark 4.19. Observe that we mainly need the the partial derivatives with
respect to n of n → B(n) and the matrix SM

j (n) to compute the gradient of
the objective function (see formula (4.104)) or respectively the derivatives of
the eigenvalues and eigenvectors. The best eigenvalue and its corresponding
eigenvector have to be computed anyways, when we solve the resonance prob-
lem. But since we do not need any other eigenvalues or eigenvectors, we can
use numerical methods which compute only this or a few eigenpairs. Moreover,
only the application of the matrix SM

j (n) to vectors is required in the partial
derivatives (4.107) of the scaled eigenvectors. By (4.108) we basically have to
solve a linear system for this. If we also implement the partial derivatives of
n→ B(n) by their application to vectors, the evaluation of the derivative can
be done in a very efficient way. This is in particular true for the derivative
with respect to layer changes which we discuss now.

4.5 Derivative with respect to layer changes

As already mentioned in a side note, we are not only interested in the optimal
choice of the refractive indices for a fixed number of layers, but also in the op-
timal thicknesses for given materials (or respectively given refractive indices).
If we model n by a spline of higher order, this is done implicitly, but let us
consider here the idealized setting of a piecewise constant approximation of
the refractive index n. We want to examine the dependence of the objective
function on the positions of layer change in this setting while the index of
refraction in the layers is kept fix. This means the vector n in the objective
function (4.99) does not encode the indices of refraction, but the positions of
layer change now. To avoid confusion in the notation we rather denote the
vector for the positions of layer change by s instead of n.
We keep the width of the whole system fixed, i.e. −a and 0 are kept fix, and
encode all other positions, where the refractive index changes, in the vector
s := [s1, . . . , sL] ∈ RL. L layer changes correspond to a system of L + 1
layers. The set of all admissible s we denote by S, and it is determined by the
conditions

−a < sl+1 < sl < 0, for l = 1, . . . , L− 1. (4.110)

Define the mapping

S ⊂ RL → N ⊂ L∞([−a, 0]), s �→ n[s], (4.111)
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which maps the position vector s to the corresponding admissible piecewise
constant refractive index with inner layer changes at the positions s. This
means

n[s](z) :=





1, z > 0

n1, s1 < z ≤ 0

n2, s2 < z ≤ s1

. . .

nl, sl < z ≤ sl−1

. . .

nL+1, −a < z ≤ sL

nsub, z ≤ −a,

(4.112)

with fixed nl ∈ C, l = 1, . . . , L+ 1.
As explained, our objective reads now

f(s) :=
4 |k20 − νj(s)|
|Im(νj(s))|2

|vj[s](0)|2 vj[s]∗Mvj[s], (4.113)

and the optimization problem in the fully discrete version reads

max
s

f(s) under the side conditions (4.110).

The formulas from Section 4.4.2 can be applied if we can show continuous
partial differentiability of the matrix-valued function B : S �→ CJ×J with

B(s) := B(n[s]) (4.115)

for all s ∈ S. Note that for a finite-dimensional matrix all norms are equiva-
lent. Thus, from continuous partial differentiability of all entries follows con-
tinuous differentiability of every column and using the column-sum-norm the
continuous differentiability of the whole matrix-valued function. But we have
to be careful because the mapping in (4.111) is not differentiable with respect
to s in the classical sense.
For the l-th partial derivative consider the point sl which is the changing point
between the l-th and the (l + 1)-th layer. The part of B(s) corresponding to
the stiffness matrix39 does not change with sl since the stiffness matrix does
not depend on n. Also the Hardy space parts (which approximate the DtN
operators) are not involved since we do not change the refractive index outside
(−a, 0) (In particular, we do not change starting and end point of the system
where exterior domain and interior domain couple.). The part that changes,
is the discrete version K(n) of the operator K given by the relation

�K(n)u, v�H1 =
� 0

−a
−k20n2uv dz, (4.116)

for all u, v ∈ H1([−a, 0]).
39The stiffness matrix approximates the operator A given by the relation �Au, v�H1 =� 0

−a
u�v� dz for all u, v ∈ H1([−a, 0]).
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We are interested in the following limit

lim
h→0

1

h
(B(s+ hel)−B(s)) = lim

h→0

1

h
(K(s+ hel)−K(s)) , (4.117)

where el denotes the l-th standard basis vector of RL.
To avoid inconveniences in the notation we only discuss the case h > 0, the
case h < 0 is completely analogous. In the matrix K(s) we have entries of the
form

kj,i(s) = �K(n[s])bi, bj�H1 (4.118)

with finite element basis functions bi, bj with i, j = 1, . . . ,DOFFEM, where
DOFFEM denotes the number of degrees of freedom in the finite elements part.
For every h > 0 with sl+1 < sl + h < sl−1 (s0 := 0 and sL+1 := −a if needed) it
holds

(n[s+ hel])
2 − (n[s])2 = clχ[sl,sl+h], (4.119)

where cl := n2l+1−n2l ∈ C denotes the jump between the l-th and the (l+1)-th
layer and χ[sl,sl+h] is the indicator function40 of the interval [sl, sl + h]. We
compute

∂

∂sl
kj,i(s) = lim

h→0

1

h

�
�B(s+ hel)bi, bj�H1 − �B(s)bi, bj�H1

�

= lim
h→0

1

h

� 0

−a
−k20

�
(n[s+ hel])

2 − (n[s])2
�
bibj dz

= lim
h→0

1

h

� 0

−a
−k20clχ[sl,sl+h]bibj dz

= −k20cl lim
h→0

1

h

� sl+h

sl

bibj dz = −k20clbi(sl)bj(sl), (4.120)

for all i, j = 1, . . . ,DOFFEM and all l = 1, . . . , L, using the mean value theorem
for integration (applied to real and imaginary part separately) and (4.119).
The partial derivatives are all continuous in s since standard finite element
basis function are continuous.
Moreover, the computed partial derivatives of B have the following property:

v∗
�
∂B

∂sl
(s)

�
u = −k20clu(sl)v(sl) (4.121)

for all u,v ∈ CJ×J, where u(sl) and v(sl) have to be interpreted as the approx-
imation of the function they represent, evaluated at the point z = sl.

Remark 4.20. 1. The computation (4.120) can be done in the same way
for the continuous operator K(n[s]). This leads to derivatives with respect
to s of the operator B(n[s]) in the Hardy space formulation (2.20) or some
other similar weak formulation. Again only the part which corresponds
to K(n) changes with s. The partial derivatives also fulfill an analog to
(4.121) for all continuous functions u, v.

40The indicator function χ[sl,sl+h](z) is 1 for z inside the interval [sl, sl +h] and 0 outside.
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2. As already pointed out in Remark 4.16, we are free to choose our dis-
cretization for a piecewise constant approximation of the refractive index
in a way such that the changing point between two layers is always a
boundary point of two neighboring finite elements. The choice of the dis-
cretization adapted to the current s does not cause any difficulties in the
derivatives as, apart from resolution and accuracy, the discrete approx-
imations of resonances and resonance functions are independent of it.
For the described discretization there is only one basis function which is
not equal to zero at z = sl. This holds for Lagrange elements as well
as for the finite elements we use, following [Sch98], because z = sl is a
nodal point. Hence, we can evaluate expression (4.121) by simply picking
the values from the vectors u and v which correspond to the position sl
and multiplying them by −k20cl.



5 Numerical results

In the preceding chapter we have provided the theory needed to set up a
numerical optimization algorithm for the optimization problem described in
Section 2. The derivatives of s �→ B(s) with respect to the layer changes
have already been computed in Section 4.5. What is left to compute, are the
derivatives of n �→ B(n) for other discretizations of n, encoded in n. We
discuss piecewise constant approximations of n and approximations by splines
of higher order and explain how to deal with absorption effects in both cases.
Afterwards we present our optimization results, first for piecewise constant
approximations and then also for splines. At the end of this Chapter we
modify our objective function to take a further aim (angular acceptance, see
Section 5.3.6) into account.
The computations in the subsequent sections were all done with the following
discretization parameters41:

averaged width per finite element: 25(Å)
polynomial degree for finite element basis: 10
degrees of freedom in the Hardy space for air: 20
degrees of freedom in the Hardy space for substrate: 70

Table 5.1: discretization parameters

The number of degrees of freedom in the Hardy space for the substrate has
to be chosen higher to accurately cover two different cases. Dependent on
the angle of incidence the resulting field may decrease exponentially in the
substrate or keep on oscillating (cf. Section 2.1). The achieved accuracy
with the discretization parameters from Table 5.1 is absolutely sufficient. On
the one hand, for the considered (very small) angles of incidence the solution
to the scattering problem (2.8) oscillates very slowly (at most two or three
wavelengths) inside the multilayer system, and on the other hand in practice
the angle of incidence can only be adjusted up to a precision of 0.0001◦ due to
experimental limitations.

5.1 Introductory examples

Let us motivate our procedure and discuss some central features based on
a few small examples. Recall the multilayer system with piecewise constant
refractive index already considered in Sections 2.2.1 and 4.3.3 which consists of
a carbon layer between two nickel layers on silicon substrate (cf. Table 2.1 for
the exact values). The parameter, we want to vary first, is the location of the
interface between the top layer (nickel) and the guiding layer (carbon) while
all the other parameters are kept fix. This means an optimization of the top
layer thickness while in particular the width of the complete system (585Å)
is kept fixed. Figure 5.1 shows the effect on the three best resonances if we

41Moreover, in all our computations we used the wavelength λ = 0.62Å which corresponds
to a photon energy of about 20keV.

71
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Figure 5.1: top layer thickness varied from 20 to 120Å, absorption in-
cluded; blue, red and green line show the results for the three best reso-
nances of Ni-C-Ni system; λ = 0.62Å; refractive indices: Table 2.1

vary the location of the interface between nickel and carbon from z = 20 to
z = 120(Å). The upper left panel shows the dependence of the resonant angles42

(computed as real parts of complex resonances) and the upper right panel the
imaginary part of the resonances on a logarithmic scale. In the lower left panel
the approximate field enhancement, given by formula (4.88), at the resonant
frequencies Re(νj) (or respectively the resonant angles) is plotted and in the
lower right panel the approximation (4.90) to the L2-norm at Re(νj). The plots
in the lower panels confirm our formulated conjecture that the L∞-norm and
the L2-norm are approximately proportional and thus interchangeable in our
problem. The use of the L2-norm changes the values of the objective function,
but the position of the optimum only slightly. In our objective function (4.113)
we just use the best resonant frequency, i.e. the green line of the lower right
panel, which has a readily identifiable maximum at about z = 70(Å) in this
simple example.

A lot of comments and results stated in the previous chapters show up in
this small example. In the upper panels of Figure 5.1 one may observe that
the functions of eigenvalues do not coalesce and that it is not sufficient to
minimize the imaginary part to achieve our aim to maximize the L2-norm.
Whereas the best resonance (green line) reaches the minimal imaginary part
at about z = 100 and stays almost constant for larger z, the corresponding

42One should carefully note, if one compares the results to the discussion in [Pfe02, p.30],
that not only the top layer thickness but also the guiding layer changes here.
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field enhancement and the L2-norm, shown in the lower panels, attain their
maximum at about z = 70 and their values decrease significantly for larger
top layer thicknesses. The decrease can be explained physically by absorption
effects combined with a decreasing guiding layer thickness. Our observations
also indicate that other terms than (Im(νj)) in (4.88) or respectively (4.90)
vary for larger thicknesses and cannot be neglected.

Figure 5.2: top layer thickness varied from 20 to 120Å, absorption ne-
glected; blue, red and green line show the results for the three best
resonances of Ni-C-Ni system; λ = 0.62Å; refractive indices: Table 2.1

One can also see that absorption effects cannot be neglected in general. This
is illustrated in Figure 5.2, where the same quantities as in Figure 5.1 are
shown, but absorption is neglected. The behavior is completely different. One
may observe that the imaginary part of the best resonance (green line) now
decreases more strongly and the two target values in the lower panels increase
with the top layer thickness. Thus, for the L2-norm of the solution at the best
resonant frequency we have a maximum at the boundary of the considered
interval of thicknesses. If we keep increasing the location of the interface
between top and guiding layer to values larger than z = 120, field enhancement
and L2-norm will decrease from some point on. Note that this can already be
observed for the weakest (blue line) of the three resonances in the considered
interval. However, this is only due to the fact that we keep the width of the
complete system fixed and therefore the guiding layer gets too small for a better
resonance effect at some point. The increase of the top layer thickness with
no decrease of the guiding layer was also examined under the given conditions.
For this, we left the system width variable and found the following result. If
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we neglect absorption, the top layer thickness should go to infinity leading to
an infinitely large field enhancement. But this result is useless in practice (in
physical experiments), because absorption effects can indeed be reduced (using
higher photon energies), but not be eliminated completely. In particular, for
fixed energies we have to take absorption effects into account to get practically
relevant results.

Figure 5.3: dependence of resonances and resonant states on the refractive
index in the coating for different treatments of absorption; red line: no
absorption, green line: fixed absorption, blue line: relative absorption
(5.1) with cβ/δ = βNi

δNi
; thicknesses: 50/335/200Å; guiding layer: air;

λ = 0.62Å

In a second example, shown in Figure 5.3, the refractive index in the coating
(the two nickel layers) was varied. The thicknesses (50/335/200Å) were kept
fixed, and we replaced carbon by air in the guiding layer. Recall that the
refractive index for x-rays can be written as n = 1− δ + iβ and δair = 0. The
refractive index in the coating nco was varied by the δco (from 2.5 ·10−6 (nickel)
to 10.5·10−6), and the absorption term βco was handled in three different ways:

1. no absorption: βco = 0

2. fixed absorption: (βco = βNi = 1.37 · 10−7, independent of δco)

3. relative absorption:

βco = cβ/δδco, (5.1)

with a constant cβ/δ ∈ R describing the relation between β and δ.
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The use of the relative absorption can be motivated by physical reasons: It
is a commonly accepted approach in x-ray physics, e.g. in the selection of
materials for x-ray optics, to use the ratio between absorption (β) and dis-
persion (δ) which dictates the performance. In the upper left panel of Figure
5.3 the change of the best resonance with the refractive index in the complex
plane is shown for the three different absorption models. The other parts of
the figure display our objective function (4.99) in dependence of δco for the
three possibilities to handle absorption; for the relative absorption cβ/δ =

βNi

δNi

was chosen. One can observe that the real part of the resonances (i.e. the
corresponding resonant frequency) is not changed by the different absorption
models while the objective function changes dramatically. Note carefully the
different scales in the subfigures. If we neglect absorption effects, the objective
grows unbounded with δco, i.e. when the potential barrier is increased. Adding
a fixed absorption in the coating changes the situation mainly quantitatively,
which is clear as the layer thickness is kept fixed. The more realistic model of
relative absorption changes the situation substantially. It is no longer optimal
to choose δco as big as possible to maximize our objective function. The max-
imum is attained at about δco ≈ 7 · 10−6. To compare the resulting objective
function to the ones with other absorption models, we plotted them again as
dashed lines in the lower right panel. The intersection between the blue and
the green curve is of course δNi. Note that the relative absorption has no effect
on the guiding layer as δair = 0. Again it becomes obvious that the decrease
of the imaginary parts of the resonances alone does not describe the behavior
of the blue curve in an appropriate way.
To sum up, we have to take absorption effects into account, but we cannot
model it as an independent variable since this would always lead to the smallest
admissible absorption as these simple examples already show. A coupling of δ
and β, in particular by the relative absorption introduced here, can help us to
find the best compromise between the height of the potential barrier and low
energy losses due to absorption.

5.2 Matrix derivatives

Having these facts in mind, we now want to compute derivatives of the dis-
cretized operator with respect to n since they are needed in the derivatives of
the objective function we have obtained in Section 4.4. A piecewise constant
approximation of the refractive index and B-splines of higher order will be
used in the following. We always assume a fixed system width, i.e. 0 and −a
are the fixed starting and end point of the regarded systems.
So, let us assume that we are given an approximation to the refractive index
which can be encoded in a vector n := [�n1, . . . , �nL], i.e. a mapping

Ndis ⊂ RL → N ⊂ L∞([−a, 0]), n �→ �n[n], (5.2)

with N the set of admissible refractive indices and Ndis the corresponding set
of admissible values for n. Let the mapping (5.2) further be continuously
differentiable with respect to n. Then as in Section 4.5, for the derivatives of
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the matrix-valued function n �→ B(n) ∈ CJ×J in (4.100), it suffices to consider
the discrete version K(n) of the operator K(n), given by the relation

�K(n)u, v�H1 =
� 0

−a
−k20 (�n[n])2 uv dz (5.3)

for all u, v ∈ H1([−a, 0]). The rest of B(n) does not change with n. In the
matrix K(n) we have again entries of the form

kj,i(n) = �K(n)bi, bj�H1 (5.4)

with finite element basis functions bi, bj with i, j = 1, . . . ,DOFFEM, where
DOFFEM denotes the number of degrees of freedom in the finite elements part
of B(n). We deduce

∂B

∂�nl
(n) =

∂K

∂�nl
(n), l = 1, . . . , L (5.5a)

with

∂kj,i
∂�nl

(n) =
� 0

−a
−2k20�n[n]

�
∂�n
∂�nl

[n]

�
bibj dz, i, j = 1, . . . ,DOFFEM, (5.5b)

and the partial derivatives are all continuous in n. Hence, for the continuous
differentiability of the mapping Ndis → CJ×J with n �→ B(n), the continuous
differentiability of appropriate discretizations for n is left to be discussed.

5.2.1 Piecewise constant approximation

In the case of a piecewise constant approximation, the refractive index in [−a, 0]
is approximated by L layers in each of which the refractive index is constant.
Starting from z = 0 we denote the (admissible) constant refractive values in
the layers by nl = 1− δl + iβl, l = 1, . . . , L and encode them in a vector

n = [�n1, �n2, . . . , �n2L] = [1− δ1, β1, 1− δ2, β2, . . . , 1− δL, βL] ∈ R2L. (5.6)

For z > 0 we have by assumption n ≡ 1 and for z < −a we have n ≡ nsub =
1−δsub+ iβsub. Both values are kept fixed as well as finite elements and Hardy
space discretization.
As already pointed out in Section 5.1, we do not want to model the absorp-
tion as an independent variable since this would always lead to the minimal
admissible absorption. Instead we model the absorption as a continuously
differentiable function �β : R→ R of δ, i.e.

βl = �β(δl), l = 1, . . . , L. (5.7)

Therefore, we only have to analyze the dependence of

B(δ) := B
��
1− δ1, �β(δ1), 1− δ2, �β(δ2), . . . , 1− δL, �β(δL)

��
(5.8)

on δ := [δ1, . . . , δL] ∈ RL. The mapping

�n[δ] = (δ1 + i �β(δ1))χlayer1 + . . .+ (δL + i �β(δL))χlayerL (5.9)
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with the indicator functions χlayerl for the layers depends continuously differ-
entiable on δ. For a constant absorption in all layers (i.e. independent of δl)
we obtain

�β(δl) = βall ∈ C and �β�(δl) = 0 (5.10)

for all admissible δl. In Section 5.1 we have already discussed the possibility
to choose the absorption proportional to δ. If we use the relative absorption

�β(δ) = cβ/δδ (5.11)

with a constant cβ/δ ∈ C, we find �β�(δ) = cβ/δ.

Remark 5.1. If we choose a discretization such that the refractive index only
changes on intersection points (the layer thicknesses are assumed to be fixed in
this examination) between two elements, the matrix B(n) in (4.100) is given
by

B(n) = B0 + n21B1 + n22B2 + . . .+ n2LBL

= B0 + (�n1 + i�n2)
2B1 + (�n3 + i�n4)

2B2 + . . .+ (�n2L−1 + i�n2L)
2BL,
(5.12)

where B0 contains the Hardy space parts and all parts of our discretization that
do not depend on n. The matrix Bl contains the contribution of all finite ele-
ments in the l-th layer to the matrix B(n), l = 1, . . . , L. For this discretization
the partial derivatives of B with respect to δ are simply

∂B

∂δl
(δ) = 2

�
1− δl + i �β(δl)

� �
−1 + i �β�(δl)

�
Bl, l = 1, . . . , L. (5.13)

Note that the derivative of B(δ) in the form (5.13) is rather easy to implement
as it only involves matrices we have to compute anyways when we assemble
B(δ).

5.2.2 Approximation by splines of higher order

For a more accurate approximation of the refractive index in [−a, 0] we use
B-splines (basis splines) of higher order. This allows us in particular to model
continuous refractive indices more exactly. An introduction to B-splines can
be found e.g. in [DR06] and [Kre98]. The B-splines Ψl are a special basis for
spline spaces and have the advantage that one may compute the correspond-
ing coefficients in a stable way. Furthermore, B-splines have the following
properties:

1. positivity: Ψl(z) ≥ 0 for all z ∈ [−a, 0], l = 1, . . . , L

2. partition of unity:
�L

l=1Ψl(z) = 1, z ∈ [−a, 0]

3. local support: Ψl is non-zero only in a subinterval of [−a, 0], l = 1, . . . , L,
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where L is the dimension of a considered spline space (see below). From the
local support it follows that local changes in the spline coefficients, change
the resulting spline only locally. Especially in our application, changes of the
refractive index in some subinterval shall not influence the refractive index
globally. For a proof of the mentioned facts, see e.g. [dB78] and [dB90].
We want to approximate a refractive index n = 1 − δ + iβ, where δ and β
are real-valued functions, by a spline. As in the case of a piecewise constant
approximation, we write β as a function of δ, i.e. β(z) = �β(δ(z)) with a
continuously differentiable function �β : R→ R. We approximate the function
δ by a spline of order m with respect to some fixed subdivision −a = z0 <
z1 < . . . < zr = 0, r > m, i.e.

δ(z) ≈
L�

l=1

δlΨl(z), z ∈ [−a, 0] (5.14)

with L := r + m, the B-splines Ψl of order m and coefficients δl. Collecting
the new variables in a vector δ = [δ1, δ2, . . . , δL] we have discretized43 δ. The
corresponding refractive index is then approximated by

n(z) ≈ �n[δ](z) := 1−
L�

l=1

δlΨl(z) + i �β
�

L�

l=1

δlΨl(z)

�
, (5.15)

and with respect to δ we have the partial derivatives

∂�n
∂δl

[δ] = −Ψl(z) + i �β�
�

L�

l=1

δlΨl(z)

�
Ψl(z). (5.16)

Observe that neither the B-splines nor the finite elements basis functions de-
pend on δ. Thus, as above all the partial derivatives depend continuously on
δ, and B is continuously differentiable with the derivative (5.5). In contrast
to the piecewise constant approximation of n we have to assemble necessarily
additional matrices for the partial derivatives of B, but each of them has only
very few entries since the B-splines have local support. Hence, for the l-th
derivative it suffices to evaluate (5.5b) on elements which have a non-empty
intersection with supp(Ψl).
As the B-splines are all positive and form a partition of unity, the box con-
straints

δ�l ≤ δl ≤ δ�l , l = 1, . . . , L (5.17)

with the lower and upper bounds δ�l , δ
�
l ∈ R guarantee that the spline (5.14)

fulfills

min
l

δ�l ≤
L�

l=1

δlΨl(z) ≤ max
l

δ�l (5.18)

43Note here that one can also use other basis functions in (5.14) to approximate δ, provided
that this leads to a differentiable dependence on the coefficients δ.
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for all z ∈ [−a, 0]. Therefore, in an optimization algorithm we can prescribe
realizable refractive indices using box constraints. In particular, we can control
that the approximation of the refractive index is always below 1. Apart from
physical admissibility, refractive indices above 1 would cause problems if we
use for example relative absorption as the imaginary part of the refractive
index gets negative then and does no longer act absorbing.

5.3 Optimization results

The question of an optimal system among all feasible systems is much too
general. This is due to several reasons as already discussed partly in the
introductory examples. There are only systems which are optimal in different
situations.
Our optimization is done for a continuous range of refractive indices although
only a discrete set of values is realizable practically because of the existing
materials. Clearly, the optimization techniques we favor, are restricted to
this assumption, but there is also a lot of practical motivation for this. First
of all, the systems are very complicated to produce which leads to surface
roughness. Therefore, a theoretically promising system cannot be reproduced
perfectly either way. Moreover, one might think of the possibility to mix
different materials to achieve a certain refractive index. And even if we cannot
produce a certain optimal system, we get an impression of what is achievable
under certain conditions.
Side conditions will always be necessary to avoid unrealistic refractive indices
or infinite layers. As already shown in Section 5.1, higher potential barriers are
often desirable and with an initial guess close to 1 the optimization algorithm
might move to refractive indices bigger than 1 which is even more likely with
the relative absorption model as the absorption effect is then inverted and
enlarges the energy inside the system. But this is an unrealistic effect since
there are no sources inside the system. Note in this context that the solution
to the scattering problem (2.8) depends continuously on the refractive index n
(see Chapter 3) and in none of our arguments we used that Re(n) is close to
1. The assumption Re(n) > 0 was sufficient.

5.3.1 Optimization algorithms

With the objective function and its gradient we have provided all what is
needed to apply the optimization algorithms (using derivatives of the objective
function) we favor. It is not in the focus of this thesis to develop new optimiza-
tion algorithms. Hence, we have rather implemented a routine which evaluates
our objective function and its derivatives in the way explained above, involving
resonances and resonance functions which are computed by the Hardy space
method. This routine is handed over to the optimization toolbox of MAT-
LAB44 which we use for the optimization. We have mainly used a sequential
quadratic programming (SQP) algorithm and an interior points algorithm. We
only explain in a couple of words what is behind these algorithms. For details,

44A numerical computing environment developed by MathWorks, www.mathworks.de
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we refer to the MATLAB documentation for the function fmincon45 and the
references we mention below.

• SQP: The algorithm seeks for a solution of the Karush–Kuhn–Tucker
(KKT) conditions which are necessary conditions for optimality in a
constrained optimization problem. In each major optimization step a
constrained quadratic programming subproblem is solved. This sub-
problem results from a positive definite approximation of the Hessian
of the Lagrangian function, using a quasi-Newton update formula, e.g.
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update. The solution
of the subproblem is used to form a search direction in an appropriate
line search which is performed afterwards. For a detailed introduction to
SQP, we refer to [Fle87], and for the basic version of the SQP-algorithm
implemented in fmincon, we refer to [NW06, Chapter 18].

• interior points: The algorithm solves a family of minimization problems
with equality constraints approximating the original problem. The solu-
tion of the approximating problems is either done by searching a solution
to the KKT conditions of this problem using a linearization approach or
if this is impossible, a conjugate gradient (CG) method is applied in a
trust region. For a description of the complete algorithm, we refer to
[BHN99].

5.3.2 Optimization of refractive indices for fixed layer thicknesses

We start with the presentation of optimization results for piecewise constant
refractive indices. In this section we consider two examples where we only opti-
mize the refractive index in a fixed number of layers, but not their thicknesses
(cf. Section 5.2.1). The system is subdivided into L pieces with refractive
indices nl = 1− δl + iβl. We use the box constraints

0 ≤ δl ≤ 8 · 10−6, for l = 1, . . . , L (5.19)

and the relative absorption (5.11) with

cβ/δ =
βNi
δNi

≈ 0.030786. (5.20)

Figure 5.4 shows the results for a subdivision into 6 pieces. The exact values of
the subdivision and the optimization results can be found in Table 5.2. Here
and below, “true” in the tables has always to be understood as the immediate
finite elements approximation, and by “approximated” we mean the values of
the approximation formulas (4.88) and (4.89). A comparison of the values
demonstrates the accuracy of the approximation formulas. As the initial value
for the optimization process we used a profile where a vacuum layer is enclosed
by silicon substrate (nsub = nSi = 1−1.2 ·10−6+4.56 ·10−9i). Recall again that
n ≡ 1 for z > 0 and n ≡ nsub for z < −a. In this example we chose a = 550(Å)

45http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html
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to get an equidistant subdivision except for the first layer. Motivated by the
standard Ni-C-Ni system we set the thickness of the first layer to 50. The
initial profile and the field intensity of the best resonant frequency of the
system are plotted in blue, and by the green line the same is displayed for
the optimal profile. With the dashed red line we indicate the energy of the
incident field needed to excite the best resonant frequency46. We use this color
scheme in all of following optimization figures. The initial system in Figure
5.4 is a very flat potential well producing a field enhancement of about 20,
whereas the optimal system achieves about 150, which is an improvement of
approximately 30% compared to the standard system with nickel and carbon
(field enhancement: 114). The calculations in this section were done using
SQP (see Section 5.3.1), and the optimal solution mainly profits from higher
potential barriers. But the constraint in the first layer is inactive, which is
already a strong indication that variable layer thicknesses should be taken into
account. This becomes even more evident if we refine the subdivision. Figure
5.5 presents the optimization result for a subdivision into 14 pieces. The
optimal solution is not too different from the solution for 6 pieces concerning
its shape the and achieved field enhancement. A more detailed analysis of the
result suggests a thinner top layer. Another undesirable effect in the optimal
solution of Figure 5.5 is the reduction of the system width by setting the first
layer to air. Here, the optimization stuck in a local minimum, which we know,
as increasing the guiding layer (in this case consisting of air) by moving the
top layers to the right, leads to an improved L2-norm (4.0516 · 104) and field
enhancement (161.7450). However, we decided to present the local optimum
result to motivate how we advance in the following: We want to keep the
system width fixed as thicker systems promise larger L2-norms. Since the
core of the system can still be narrowed by additional substrate layers as the
lowermost and non-varied layer is modelled as an infinite substrate anyways,
the described effect from Figure 5.5 is avoided in the following by requiring
that the first layer is at least as high as the substrate, i.e. the side condition

δ1 ≥ 1.2 · 10−6. (5.21)

This condition is very reasonable since we cannot expect the described res-
onance effect (cf. Section 2.2) if we do not have at least a small potential
barrier.
Generally, in the optimization of the refractive indices in a fixed number of
layers, concerning the layer thicknesses we observed even for fine subdivisions
a strong dependence of the optimization result on the initial value. This can
be explained as follows. Since the thickness of the layers cannot be varied in
this regard, small changes of a promising potential well (local optimum) debase

46energy of incident field for the resonant angle: When we neglect the comparatively small
absorption term, the behavior of a wave under the fixed angle of incidence α in a medium
with refractive index n = 1−δ is determined by κα(δ) := k2

0((1−δ)2−cos2(α)). If κα(δ) < 0
we have an exponentially decaying wave (

�
κα(δ) ∈ iR) and if κα(δ) > 0 the wave oscillates

with wave number
�

κα(δ) ∈ R. The crossover is located at δ = 1− cos(α) and corresponds
to the energy the incident field has. For a top layer with δ > 1 − cos(α) the incident field
only tunnels into it as an evanescent wave.
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the value of the objective function. Only very large changes increase the value
of the objective function, but as our optimization procedure is local we cannot
leave the local optimum. By the optimization of the layer thicknesses we
overcome this problem.

Figure 5.4: optimization of refractive index in 6 layers subject to the box
constraints (5.19), fixed layer widths, relative absorption with cβ/δ =

βNi
δNi

,
silicon substrate starts at z = −550; blue lines: initial situation, green
lines: optimal situation, dashed red line: energy of the incident field to
excite best resonant frequency; data: Table 5.2
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Figure 5.5: optimization of refractive index in 14 layers subject to the box
constraints (5.19), relative absorption with (5.20), fixed layer widths,
silicon substrate starts at z = −550; blue lines: initial situation, green
lines: optimal situation, dashed red line: energy of the incident field to
excite best resonant frequency; data: Table 5.2
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true/approximated L2-norm true/approximated resonance
enhancement angle [deg]

Fig. 5.4
initial 0.5654 · 104 / 0.7040 · 104 23.7821 / 20.6890 0.03218
optimal 3.4061 · 104 / 3.4154 · 104 149.7230 / 146.8158 0.03907
Fig. 5.5
initial 0.5654 · 104 / 0.7040 · 104 23.7821 / 20.6890 0.03218
optimal 3.6974 · 104 / 3.7285 · 104 155.3513 / 151.3044 0.03719

refractive profile
Fig. 5.4
layer 1 2 3 4 5 6

thickness [Å] 50 100 100 100 100 100
initial δ · 106 1.2 0 0 0 0 1.2
optimal δ · 106 6.1465 0 0 0 0 8.0000
Fig. 5.5
layer 1 2 3 4 5 6 7

8 9 10 11 12 13 14

thickness [Å] 25 25 25 25 50 50 50
50 50 50 50 50 25 25

initial δ · 106 1.2 1.2 0 0 0 0 0
0 0 0 0 1.2 1.2 1.2

optimal δ · 106 0 3.8888 8.0000 0 0 0 0
0 0 0 0 0 8.0000 8.0000

Table 5.2: results for the optimization of refractive indices subject to fixed
layer thicknesses and the box constraints (5.19), relative absorption with
cβ/δ =

βNi
δNi

; λ = 0.62Å
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5.3.3 Optimization of layer thicknesses for fixed refractive indices

In this section we turn to the optimization of the layer thicknesses. In a system
of L layers we optimize the positions of layer change under the side constraints

−a < sl+1 < sl < 0, for l = 1, . . . , L− 1 (5.22)

for the positions of layer change sl (cf. (4.110)), and the refractive indices in
the layers are kept fix. For the optimization process we have used an interior
points algorithm (see Section 5.3.1) in this section as it did not stuck in local
minima as easily as SQP in this application.
We start with the Ni-C-Ni system considered before and optimize the thickness
of the three layers while keeping the width of the system fixed at 585Å. The
result can be found in Figure 5.6 and Table 5.3 which have to be read as in
the preceding section. By only optimizing the layer thicknesses one gains an
improvement of about 60% to a value of approximately 183.27 in the field
enhancement and even 80% in the L2-norm. The result can be improved
significantly, if we enlarge the width of the whole system to 985Å. We achieve
a field enhancement of around 366.15 which corresponds to an improvement
of about 220%, see Figure 5.7 and Table 5.3. The improvement in the L2-
norm is even in the region of 500% but this is also due to the enlarged system
width. If we enlarge the system width further, the L2-norm increases by the
larger guiding layer but the field enhancement cannot be improved any further.
This is no contradiction to the argument that the L2-norm behaves almost
proportional to the L∞-norm in our application as this only holds for fixed
system widths. More complicated initial profiles with more layers have been
also tried, but as can be seen in Figure 5.8 for a system of carbon and nickel this
leads to a similar optimal solution. The additional layers are pushed together
to the smallest admissible value (we forbid layer thicknesses smaller than some
� > 0 to avoid the layer thickness 0) in the optimal solution. In Table 5.3 their
thicknesses are summed in the interest of readability. This also explains the
small deviation of the values from those for Figure 5.7.
In general, the optimization of the layer thicknesses alone is more independent
of the initial values than the optimization of the refractive indices with fixed
widths. Also it promises better improvements of the field enhancement when a
good combination of materials is known, and we can use the exact absorption
values here as the materials do not change.

Remark 5.2. To keep the number of degrees of freedom low and for a better
distinguishability between true resonances and spurious modes produced by the
discretization, the Hardy space method includes a tuning parameter for the
radiation conditions (cf. [HN09, Remark 2.8]). This tuning parameter takes
the behavior of the wave (oscillating or exponentially decaying) in regard. The
adaptive choice of this tuning parameter during the optimization is challenging
when the refractive index changes, and different heuristics were used. If we
change in a piecewise constant profile the layer thicknesses only and keep the
refractive indices fixed, this question does not arise as the general behavior of
the waves does not change.
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Figure 5.6: optimization of layer thicknesses for Ni-C-Ni-system under the
side constraints (5.22), silicon substrate starts at z = −585; blue lines:
initial situation, green lines: optimal situation, dashed red line: energy
of the incident field to excite best resonant frequency; data: Table 5.3
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Figure 5.7: optimization of layer thicknesses for larger Ni-C-Ni-system
under the side constraints (5.22), silicon substrate starts at z = −985;
blue lines: initial situation, green lines: optimal situation, dashed red
line: energy of the incident field to excite best resonant frequency; data:
Table 5.3
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Figure 5.8: optimization of layer thicknesses for larger system under the
side constraints (5.22) with different initial profile of 7 Ni-layers and 7 C-
layers, silicon substrate starts at z = −985; blue lines: initial situation,
green lines: optimal situation, dashed red line: energy of the incident
field to excite best resonant frequency; data: Table 5.3
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true/approximated L2-norm true/approximated resonance
enhancement angle [deg]

Fig. 5.6
initial 2.5643 · 104 / 2.4118 · 104 114.8201 / 121.1057 0.09689
optimal 4.7262 · 104 / 4.6293 · 104 183.2719 / 186.7537 0.09382
Fig. 5.7
initial 0.2606 · 105/ 0.2412 · 105 114.8900 / 121.1057 0.09689
optimal 1.6931 · 105 / 1.6793 · 105 366.1464 / 369.4400 0.08903
Fig. 5.8
initial 0.0958 · 105 / 0.0822 · 105 56.2603 / 58.6575 0.10754
optimal 1.6787 · 105 / 1.6645 · 105 364.9238 / 367.0513 0.08905

layer thicknesses [Å]
Fig. 5.6
initial profile 50Ni—335C—200Ni
optimal profile 63.9547Ni—423.3082C—97.7370Ni
Fig. 5.7
initial profile 50Ni—335C—200Ni
optimal profile 56.5890Ni—836.8955C—91.5156Ni
Fig. 5.8
initial profile 50Ni—200C—200Ni—50C—50Ni—50C—50Ni—

50C—50Ni—50C—50Ni—50C—50Ni—35C
optimal profile 56.7301Ni—832.7744C—95.4955Ni

Table 5.3: optimization results for layer thicknesses subject to the side
conditions (5.22) in Ni-C-systems of fixed width: 585Å in Figure 5.6 and
985 Å in Figure 5.7 and Figure 5.8; λ = 0.62Å
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5.3.4 Refractive indices and thicknesses simultaneously

We now combine the optimization of refractive indices and thicknesses in a
piecewise constant setting for a fixed number of layers L, i.e. the piecewise
constant approximation to the refractive index is now encoded in a vector with
2L− 1 entries (L deltas and L− 1 points of layer change). Again we use the
relative absorption (5.11) with cβ/δ =

βNi

δNi
and the side conditions

1.2 · 10−6 ≤δ1 ≤ 8 · 10−6, (5.23a)

0 ≤δl ≤ 8 · 10−6, for l = 2, . . . , L (5.23b)

for the refractive indices and

−a < sl+1 < sl < 0, for l = 1, . . . , L− 2 (5.23c)

for the layer changes. The optimization result for 6 layers using the SQP-
algorithm is shown in Figure 5.9. A computation with 24 pieces (and therefore
23 points of layer change) led to a mainly identical result, which means that
the optimum for piecewise constant refractive indices is not very sensitive to
the number of layers. As in the computations in Section 5.3.2, we used an
initial profile which consists of a vacuum layer between two substrate layers
producing a quite poor field enhancement. The optimal profile, which consists
of only three layers (including the substrate), produces a highly enhanced
field of about 312.35, which means an improvement of approximately 180%
compared to the standard Ni-C-Ni system considered in Section 2.2.1. But
this optimal profile has also a drawback. Figure 5.11 presents the resonant
frequencies and corresponding field enhancements of this system. The angular
acceptance, i.e. the interval of angles of incidence around a resonant frequency
for which one gains at least half of the field enhancement at the resonant
frequency itself, is quite small. In Remark 4.18 we have already discussed
the decrease of the width of the peaks in the intensity with their height. We
explain the experimental disadvantage of this effect in Section 5.3.6 and show
how to avoid it by changing our objective function.
For another computation we used as an initial system the real parts of the
refractive indices and the thicknesses of the standard Ni-C-Ni-system. The
side conditions for the refractive indices were modified to

2 · 10−6 ≤δ1 ≤ 8 · 10−6, (5.24a)

1.2 · 10−6 ≤δl ≤ 8 · 10−6, for l = 2, . . . , L, (5.24b)

where the enlarged lower constraint for δ1 shall again avoid local minima,
and the other lower constraints forbid to set δ to zero in any layer. Thus,
we have absorption everywhere in this example. We reduced the relative ab-
sorption constant to cβ/δ = βNi

20δNi
≈ 0.0015393 such that we reach a similar

field enhancement for the initial system as the standard Ni-C-Ni-system has
for the exact absorption values since the absorption in the carbon layer is
much smaller than the relative absorption with cβ/δ =

βNi

δNi
. In the applications

above, this effect was compensated by allowing any nonnegative value for δ.
The fundamentally different result can be found in Figure 5.10.
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Figure 5.9: optimization of layer thicknesses and refractive indices with 6
layers under the side conditions (5.23), relative absorption with cβ/δ =
βNi
δNi

, silicon substrate starts at z = −585; blue lines: initial situation,
green lines: optimal situation, dashed red line: energy of the incident
field to excite best resonant frequency; data: Table 5.4
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Figure 5.10: optimization of layer thicknesses and refractive indices with
6 layers under the side conditions (5.24) and (5.23c), relative absorption
with cβ/δ =

βNi
20δNi

, different initial profile, silicon substrate starts at z =
−585; blue lines: initial situation, green lines: optimal situation, dashed
red line: energy of the incident field to excite best resonant frequency;
data: Table 5.4
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Figure 5.11: optimal system from Figure 5.9; upper panel: field intensity
along the z-axis for different angles of incidence α, lower panel: maximum
field intensity for different angles of incidence α

true/approximated L2-norm true/approximated resonance
enhancement angle [deg]

Fig. 5.9
initial 0.4535 · 104 / 0.5682 · 104 20.7127 / 17.1903 0.03545
optimal 9.8791 · 104 / 9.8704 · 104 312.3521 / 309.7945 0.02793
Fig. 5.10
initial 2.4435 · 104 / 2.3528 · 104 105.2961 / 108.4751 0.10406
optimal 4.9480 · 104 / 4.6246 · 104 366.5472 / 384.6734 0.11377

refractive profile
Fig. 5.9
layer 1 2 3 4 5 6

initial thickness [Å] 50 250 50 50 50 135
initial δ · 106 1.2 0 0 0 1.2 1.2

optimal thickness [Å] 40.5137 544.4863 - - - -
optimal δ · 106 8 0 - - - -
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refractive profile
Fig. 5.10

initial thickness [Å] 50 250 50 50 50 135
initial δ · 106 4 1.4 1.4 1.4 4 4

optimal thickness [Å] 68.7731 194.7981 182.2602 139.1686 - -
optimal δ · 106 8 1.2 8 4.4496 - -

Table 5.4: results for the simultaneous optimization of layer thicknesses
and refractive indices in a piecewise constant setting under the side con-
ditions (5.23) in Fig. 5.9 and the side conditions (5.24) and (5.23c) in Fig.
5.10, fixed system width of 585Å and relative absorption with cβ/δ =

βNi
δNi

in Fig. 5.9 and with cβ/δ =
βNi
20δNi

in Fig. 5.10; λ = 0.62Å

5.3.5 Optimization with splines

In this section we allow in the approximation more general refractive profiles
by the use of splines of higher order, as explained in Section 5.2.2. We use the
box constraints

0 ≤ δl ≤ 8 · 10−6, l = 1, . . . , L (5.25a)

for the spline coefficients (cf. equation (5.17)) and B-splines of order 3 where
the knots are chosen equidistantly in steps of 12.5(Å). Moreover, we require
that the splines fit together continuously with the air and the substrate, i.e.

L�

l=1

δlΨl(0) = 0 and
L�

l=1

δlΨl(−a) = 1.2 · 10−6. (5.25b)

In Figure 5.12 we used the relative absorption (5.11) with cβ/δ = βNi/4δNi and
a start profile comparable to the one in Figures 5.4 and 5.9. The optimal profile
looks almost the same as in Figure 5.4, and the achieved field enhancement
can absolutely keep up with the result there. This is quite nice as the non-
sharp profiles can be interpreted as systems with surface roughness, and the
efficiency of the resonator is not too much affected by this. For the results in
this section we used again the SQP-algorithm.
In Figure 5.13 we tried out a different initial profile which approximates 3
Gaussians but the found optimum is again a potential well. For this calculation
we had to reduce the constant for the relative absorption to cβ/δ = βNi/4δNi ≈
0.007697 as the initial profile does not produce any significant resonance effect
otherwise. This also explains the higher field enhancement in the optimal
solution compared to the one in Figure 5.12. That the solution is different
from the one in Figure 5.9 may have several reasons, e.g. our method is local
and different values for the relative absorption were used.
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Figure 5.12: optimization with spline of order 3 with 26 B-splines under
the side conditions (5.25), relative absorption with cβ/δ = βNi

δNi
, silicon

substrate starts at z = −585; blue lines: initial situation, green lines:
optimal situation, dashed red line: energy of the incident field to excite
best resonant frequency; data: Table 5.5
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Figure 5.13: optimization with spline of order 3 with 28 B-splines under
the side conditions (5.25), different initial value, lower relative absorption
with cβ/δ =

βNi
4δNi

, silicon substrate starts at z = −585; blue lines: initial
situation, green lines: optimal situation, dashed lines: energy of the
incident field to excite best resonant frequency; data: Table 5.5
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true/approximated L2-norm true/approximated resonance
enhancement angle [deg]

Fig. 5.12
initial 0.5815 · 104 / 0.7103 · 104 25.0276 / 21.5616 0.03386
optimal 3.0954 · 104 / 3.1295 · 104 132.9332 / 130.9108 0.03795
Fig. 5.13
initial 0.0388 · 105 / 0.0266 · 105 19.8577 / 25.0583 0.09059
optimal 1.0279 · 105 / 1.0187 · 105 526.1897 / 529.6697 0.04605

Table 5.5: optimization results for B-splines under the side conditions
(5.25), relative absorption with cβ/δ =

βNi
δNi

in Figure 5.12 and cβ/δ =
βNi
4δNi

in Figure 5.13; λ = 0.62Å

5.3.6 Advanced aims and objective functions

So far, we have optimized the energy inside the multilayer structure but some-
times it can be useful to examine slightly different objective functions to model
further aims coming from the practical physical application. We assumed the

Figure 5.14: objectives fhw and fpen to optimize the top layer thickness
under further aims on the example from Figure 5.1

incident field to be a plane wave which is a simplified model. Actually, the
beam is divergent, i.e. we do not only excite at the one resonant angle for which
we adjust the angle of incidence, but also at neighboring angles of incidence.
Therefore, not only the field enhancement but also the angular acceptance of
the best resonant frequency is of interest, i.e. the interval around the resonant
angle in which at least half of the field enhancement at the resonant angle it-
self is achieved. In our model this corresponds to the width of the peak in the
intensity curve arising from the best resonant frequency. The width of a peak
can be measured by its half-width which can be approximated by 2| Im(νj(n))|
(see Remark 4.18). Hence, this aim is contrary to the maximization of the
energy in some sense, and we could use as a new objective function

fhw(n) = 2| Im(νj(n))|f(n) =
8 |k20 − νj(n)|
|Im(νj(n))|

���vj[n](0)
���
2
vj[n]

∗Mvj[n]. (5.26)



98 Numerical results

But it turned out in numerical experiments that this objective function rewards
broad peaks too much, which is in particular the case since (5.26) does not
take the shape of the incident beam into account. Figure 5.14 shows in the
left panel the objective function fhw, evaluated for the example considered in
Section 5.1 in the optimization of the top layer thickness (cf. Figure 5.1). The
new objective has a maximum at the boundary of the examined region, and
the resulting “optimal” resonator produces a very low field enhancement and
a very low L2-norm at its best resonant frequency.
Therefore, we aim for a more appropriate objective function. Let us denote
the width of the incident field in the angle regime by ∆ray, i.e. the interval
of angles which is excited by the incident field. Common values for ∆ray are
below 0.001◦ for synchrotron and between 0.001◦ and 0.1◦ for standard beams.
Define for m ≥ 2 the penalty function

κ(α) :=

α
∆ray

m

�
1 +

�
α
∆ray

�m , (5.27)

which is a smooth approximation to the function

�κ(α) =





α
∆ray

, 0 < α ≤ ∆ray

1, α > ∆ray.
(5.28)

By this function we want to linearly penalize peaks in the intensity which have
a half-width below ∆ray, i.e. those for which only a part of the incident beam
leads to good field enhancement. Peaks with a half-width above ∆ray shall not
be penalized by κ.
Let again ν�(n) = νj(n) be the best resonance, i.e. the one whose corre-
sponding resonant frequency gives rise to the highest field enhancement, of the
system with refractive index encoded in n. Then the half-width (in the alpha
regime) around the resonant frequency Re(ν�(n)) with corresponding resonant
angle

α�(n) := arccos




�
Re(ν�(n))

k0


 (5.29)

is given by

αhw(n) = 2


arccos




�
Re(ν�(n)) + | Im(ν�(n))|

k0


− α�(n)


 . (5.30)

Hence, we may use the objective

fpen(n) = κ(αhw(n))f(n). (5.31)

The resulting curve for our example can be found in the right panel of Figure
5.14 using the values ∆ray = 0.001◦ and m = 6. With these parameters the
objective fpen achieves its maximum at a top layer thickness of approximately
42Å.
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Remark 5.3. One may also think of other objective functions which take the
angular acceptance into account. We discuss this for the continuous setting.
For fixed z ∈ [−a, 0] consider the function

�
α� −

∆ray
2

, α� +
∆ray
2

�
→ R, with α �→

���u[k20 cos
2(α), n](z)

���
2

(5.32)

and integrate it over the interval ∆(α�)
ray := [α� − ∆ray

2
, α� +

∆ray

2
]. This corre-

sponds for each z to the integrated field intensity, and we could use the objective
functions

fint(n) = max
z

�

∆
(α�)
ray

|u[k20 cos2(α), n](z)|2 dα, (5.33)

or

fint,int(n) =

�����

�

∆
(α�)
ray

u[k20 cos
2(α), n](·)I(α�)(α) dα

�����
L2([−a,0])

, (5.34)

where I(α�) is a model for the intensity of the beam whose angle of incidence is
adjusted to the resonant frequency. The objective functions fint and fint,int are
generalizations of the ones presented in Optimization Problems 2.15 and 2.16.
Therefore, they cause again the same problems discussed before, which were the
reason to use the more accessible objective function f (approximation formula
for the L2-norm). Clearly, we could again consider us, discretize everything in
the same way as before and use the approximation formula (4.88) in (5.34).
Note that this simplifies the integral expression considerably as only the term
1/(νj(n)−ν) in (4.88) changes with α. But there occurs an additional difficulty
in the derivative of fint,int as the location of the intensity distribution I and the
integration interval also depend on α�. The integration interval cannot simply
be enlarged since the approximation (4.88) decays only linearly with α. Hence,
we would reward narrow peaks too much by contributions from angles which
are far away from the resonant frequency. In particular, for these angles the
approximation formula (4.88) loses in general its validity. Of course, it is
possible to overcome these problems, but this is not part of this thesis.
First tests with the objective function fint,int in simple examples have not shown
significantly better results than the ones we present in the following.

As pointed out in Section 5.3.4, the angular acceptance of the best resonant
frequency of the optimal system in Figure 5.9 is very bad. Therefore, we
performed an optimization process with the modified objective function fpen,
using the optimal solution of Figure 5.9 as initial system. Figure 5.15 and
Table 5.6 show the results. We assumed a beam width of ∆ray = 0.001◦ and
chose m = 6 in the penalty function κ. The optimal solution is quite different
now, and the potential barrier (δ in the coating minus δ in the guiding layer)
for the optimal profile is not too different from the one of the standard Ni-C-
Ni-system examined in Examples 2.2.1 and 4.3.3. To visualize the influence of
the angular acceptance, Figure 5.15 does not show the field intensity along the
z-axis, but the integrated field intensity, i.e. for the best resonant angle α� we
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computed for every fixed z ∈ [−a, 0] a discrete approximation to the integral
of the function (5.32) over the interval ∆(α�)

ray . This corresponds to what is
excited by a beam of width 0.001◦ that is adjusted at the resonant angle α�.
One can observe a considerable improvement, and the objective function fpen
approximately even doubled its value. Naturally, for the optimal system under
the objective function fpen the field enhancement is clearly reduced compared
to the initial system, but the angular acceptance of the best resonant frequency
lies in the region of the beam width. In this way, not only a small part but
most of the beam is used to excite highly enhanced fields, and this improves
the overall performance of the resonator. This phenomenon is illustrated in
Figure 5.17, where the peaks in the intensity produced by the best resonant
frequencies of the two optimal systems (for f and fpen) are compared.
In the example considered above, the layer thicknesses were left almost fixed
during the optimization process although they were variable. We have also
done experiments where we only optimized the layer thicknesses for the stan-
dard Ni-C-Ni example and could corroborate the observation in [Pfe02, p.31]
that one cannot gain too much from optimizing angular acceptance and field
enhancement simultaneously for a system with fixed materials. However, our
example shows that it is possible to find a better compromise between angular
acceptance and achieved field enhancement/L2-norm. We did another compu-
tation using the reduced relative absorption, already employed in Figure 5.10.
All the other parameters were left unchanged and the results can be found in
Figure 5.16. The L2-norm of the integrated field intensity stayed almost con-
stant, but the maximal integrated field intensity increased. One should note
here in particular that our observation that the L2-norm is approximately pro-
portional to the L∞-norm only holds at the resonant frequency itself and is
wrong for values too far away from it.
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Figure 5.15: optimization of layer thicknesses and refractive indices with
6 layers with the objective function fpen under the side conditions (5.23),

relative absorption with cβ/δ = βNi
δNi

, penalty function κ with m = 6
and ∆ray = 0.001◦, upper panel shows field intensity integrated over
an interval of width ∆ray around the best resonant frequency, silicon
substrate starts at z = −585; blue lines: initial situation, green lines:
optimal situation, dashed red line: energy of the incident field to excite
best resonant frequency; data: Table 5.6



102 Numerical results

Figure 5.16: optimization of layer thicknesses and refractive indices with
6 layers with the objective function fpen under the side conditions (5.23),

relative absorption with cβ/δ = βNi
20δNi

, penalty function κ with m = 6
and ∆ray = 0.001◦, upper panel shows field intensity integrated over
an interval of width ∆ray around the best resonant frequency, silicon
substrate starts at z = −585; blue lines: initial situation, green lines:
optimal situation, dashed red line: energy of the incident field to excite
best resonant frequency; data: Table 5.6
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(a) optimal result from Fig. 5.9 (b) optimal result from Fig. 5.15

Figure 5.17: comparison of best resonant frequency for optimal results
neglecting angular acceptance (a) and taking it into account (b), upper
panels: field intensity along the z-axis for different angles of incidence α,
lower panels: maximum field intensity for different angles of incidence α

true/approximated L2-norm true/approximated resonance
enhancement angle [deg]

Fig. 5.15
initial 9.8791 · 104 / 9.8704 · 104 312.3521 / 309.7945 0.02793
optimal 2.5081 · 104 / 2.3165 · 104 74.5948 / 70.0789 0.02655
Fig. 5.16
initial 3.0430 · 105 / 3.0525 · 105 960.134 / 956.8649 0.02793
optimal 0.3986 · 105 / 0.4100 · 105 171.4189 / 166.0157 0.03739

approx. fpen fhw max. int. L2-norm of
half-width intensity int. intensity

Fig. 5.15
initial 0.9822 · 10−4 0.9695 · 104 9.6947 0.0452 14.2976
optimal 7.5721 · 10−4 1.8453 · 104 18.9916 0.0553 17.4275
Fig. 5.16
initial 0.5619 · 10−4 0.9695 · 104 17.0986 0.0812 25.6684
optimal 5.4398 · 10−4 2.2207 · 104 21.6847 0.1003 24.1390
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refractive profile
Fig. 5.15
layer 1 2 3

initial thickness [Å] 40.5137 544.4863 -
initial δ · 106 8 0 -

optimal thickness [Å] 40.5137 544.4863 -
optimal δ · 106 2.4427 0 -
Fig. 5.16
layer 1 2 3

initial thickness [Å] 40.5137 544.4863 -
initial δ · 106 8 0 -

optimal thickness [Å] 40.5137 409.4863 135.0000
optimal δ · 106 4.1830 0 8

Table 5.6: results for the simultaneous optimization of layer thicknesses
and refractive indices with the objective function fpen under the side
conditions (5.23) in a piecewise constant setting, fixed system width of
585Å and relative absorption with cβ/δ = βNi

δNi
in Fig. 5.15 and with

cβ/δ = βNi
20δNi

in Fig. 5.16, penalty function κ with m = 6 and ∆ray =

0.001◦; λ = 0.62Å

5.3.7 Conclusions

We conclude by drawing some conclusions from the results presented in this
chapter:

1. The idealized situation of a piecewise constant refractive index, i.e. sharp
layer changes, seems at the same time to be the desirable situation as
optimizations with general refractive profiles converge again to such sys-
tems (cf. Section 5.3.5).

2. In a piecewise constant setting the optimization of the layer thicknesses
for fixed refractive indices is very promising, when one is interested in the
optimization of the field enhancement (cf. Section 5.3.3). We have seen
improvements of over 200% by only optimizing the layer thicknesses.

3. If we neglect absorption effects, the field enhancement can be raised
arbitrarily by larger systems and thicker top layers. In practice this
cannot be achieved due to energy loss by absorption. One may reduce
absorption effects, but not eliminate them completely (cf. Section 5.1).

4. The optimal solutions highly depend on the absorption model and one
has to carefully check which assumptions are fulfilled in a certain ap-
plication. For our purpose we used the relative absorption model (cf.
equation (5.1)).

5. For very high field enhancements, the angular acceptance gets worse.
If one is also interested in good angular acceptance, one should use a
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modified objective function such as fpen in equation (5.31), leading to
different optimization results and showing a good compromise between
angular acceptance and field enhancement (cf. Section 5.3.6).





6 Summary and Outlook

Let us summarize the main results of this thesis. The starting point was the
question how to improve the field enhancement which is achieved by multi-
layer x-ray resonators for one-dimensional beam concentration. In Chapter
2 we derived a mathematical model for the multilayer systems in form of the
scattering problem (2.8) and also for the arising optimization problem (cf. Op-
timization Problem 2.2). Because of the complicated form of the optimization
problem, we introduced the concept of resonances to make it more accessi-
ble. Existence and uniqueness results for the scattering problem have been
provided as well as results on the excitation and location of resonances. Fur-
thermore, we have shown the eigenvalues to be isolated with one-dimensional
eigenspaces. Aiming for an optimization algorithm involving derivatives, we
analyzed in Chapter 3 the sensitivity of the solution to the scattering problem
with respect to the refractive index n. This was done by rewriting the problem
into an equivalent integral equation and computing the Fréchet derivative. As
a side product we obtained approximation formulas for the reflectivity, in par-
ticular we gained a mathematical justification for the widely used kinematic
approximation. Higher order Taylor approximations and Padé approximations
have led to significant improvements of the standard approximation formulas,
in particular close to the critical angle.

In Chapter 4 we have presented a general formalism to compute the derivatives
of simple, isolated eigenvalues of a operator on a Hilbert space depending on
a parameter n in a Banach space, provided that the operator is differentiable
itself. For a generalized eigenvalue problem with operators that are symmetric
with respect to a conjugation, we have worked out formulas for the derivative,
with respect to n, of simple, isolated eigenvalues and corresponding eigenvec-
tors using a special scaling. We applied the general results to appropriate
objective functions for our problem which were worked out in Section 4.3.1
and to their discrete analogs (obtained by applying the Hardy space method).
However, the general results are not restricted to our problem. One can apply
them to all problems which can be transformed into an eigenvalue problem (or
generalized eigenvalue problem) of the described form. The required differen-
tiability and derivatives of the involved operator were obtained for our problem,
in the continuous setting in Chapter 3 as mentioned above and for different
discretizations of n in Sections 4.5 and 5.2. In particular, the derivative with
respect to the layer changes in a piecewise constant refractive index turned
out to be very useful in numerical experiments. By the numerical results in
Chapter 5 we illustrated the successful application of our results in an opti-
mization algorithm and presented relevant conclusions for the optimal design
of multilayer x-ray resonators under certain conditions (see Section 5.3.7).

In general, it is not sufficient to find a refractive index n (or respectively a
multilayer structure) such that the imaginary part of the best resonance is as
small as possible. Therefore, other terms have to be taken into account in
the objective function (cf. Remark 4.18). Another difficulty occurred in the
consideration of the absorption which cannot be modelled as an independent
variable as this would always lead to the smallest admissible absorption. In-
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stead, we have coupled the absorption to the real part of the refractive index
(see Section 5.1). Moreover, the optimization of the field enhancement is not
the only aim one is interested in, but also the angular acceptance of a reso-
nant frequency is of interest. Thus, we have also examined a modification of
the objective function taking this aim into account (see Section 5.3.6). An-
other advantage of our method is that one can use very general approximation
spaces for the refractive index (here we have seen splines and piecewise con-
stant approximations), provided that the operator depends differentiably on
the discretziation.
It remains to point out to open problems and further plans. The main questions
concerning the multilayer x-ray resonators we were interested in, have been
answered. We have not shown that the algebraic multiplicity of the resonances
is one. This has only been proven for their geometric multiplicity, but it is
our conjecture that resonances with algebraic multiplicities greater than one
cannot exist. For the particular optimization problem considered in this thesis,
a generalization to the two-dimensional case does not make sense for physical
reasons. Mainly, the energy loss compared to the achieved field enhancement
is too high. One uses different techniques to focus x-ray beams in higher
dimensions, e.g. structures of special shapes. But these techniques do not
lead to resonance problems. Nevertheless, it would be very interesting to
apply our results in a higher-dimensional problem. Whenever one can derive a
similar eigenvalue problem and an objective function involving simple, isolated
eigenvalues, the framework can be used without modifications. In particular,
the derivatives can be computed quite fast compared to the solution of the
eigenvalue problem which has to be done anyways.



Appendix

In fact, we treat the problem, examined in this thesis, by methods for partial
differential equations. But since the underlying differential equation (2.4) is
also an ordinary differential equation, at some points we take advantage of
results for initial value problems. As the existence and uniqueness result for
such a general ordinary differential equation is not so much standard, we cite
it here.
For the theorem stated now, we rely on the common notation for initial value
problems, as for example used in [Wal96]. Note in this context that a system of
m differential equations with complex-valued coefficients and complex-valued
solutions is equivalent to a system of 2m real differential equations by the
canonical identification C = R× R.

Theorem 6.1. Let D := I × Cm with I := [ξ, ξ + b] ⊂ R and a function
f : D → Cm with f(z,u) := [f1(z,u), . . . , fm(z,u)]

�. Consider the system of
ordinary differential equations

v� = f(z,v). (6.1a)

We call a function v : I → Cm with v(z) := [v1(z), . . . , vm(z)]
� a solution

to the initial value problem (6.1) if v is absolutely continuous47, v fulfills the
system (6.1a) for almost all z ∈ I and it fulfills the initial condition

v(ξ) = [η1, . . . , ηm]
�. (6.1b)

Under the assumptions

• f is continuous in v ∈ Cm for fixed z ∈ I,

• f(z,v) ∈ L1(I) for fixed v ∈ Cm,

• and there is a function l ∈ L1(I) with

|f(z,v)− f(z, �v)| ≤ l(z)|v− �v| in D, (6.2)

there exists a unique solution, in the sense stated above, to the initial value
problem (6.1) for [ξ, η1, . . . , ηm]

� ∈ D.

Proof. A proof can be found in [Wal96, §10, XII]. �

Corollary 6.2. Let �D ⊂ R×Cm an open set. For every subset I×B ⊂ �D,
where I ⊂ R is a closed subset and B a closed ball, let the assumptions of
Theorem 6.1 be fulfilled (with I × B instead of D). Then the initial value
problem

v� = f(z,v), v(ξ) = [η1, . . . , ηm]
� (6.3)

for [ξ, η1, . . . , ηm]
� ∈ �D has a unique solution up to the boundary.

Proof. Again a proof can be found in [Wal96, §10, XIV]. �

47The absolute continuity of a function v in an interval [b, c] is equivalent to the following:
v has a first derivative v� almost everywhere, the derivative is Lebesgue integrable and it
holds v(z) = v(b) +

� z

b
v�(z)dz for all z ∈ [b, c]. This is a generalization of the fundamental

theorem of integral theory to Lebesgue integrable functions and can simultaneously be used
as a definition for weak differentiability on subsets of R (see e.g. [Eva98, 5.2, p.259]).
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[RSKL05] R. Röhlsberger, K. Schlage, T. Klein, and O. Leupold. Acceler-
ating the spontaneous emission of x rays from atoms in a cavity.
Phys. Rev. Lett., 95(097601), 2005.

[Sch98] C. Schwab. p- and hp-Finite Element Methods (Theory and Ap-
plications in Solid and Fluid Mechanics. Oxford University Press
Inc., New York, 1998.

[Sch09] A. Schneck. Bounds for optimization of the reflection coefficient by
constrained optimization in hardy spaces. Universitätsverlag Karl-
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Nomenclature

Ck(Ω) space of on Ω k-times continuously differentiable functions, 25

Ck
0 (Ω) functions in Ck(Ω) with compact support in Ω, 25

DtN+ν , DtN−
ν the Dirichlet-to-Neumann numbers, 13

α angle of incidence, 7

αcr,nj
critical angle between air and the material with refractive index
nj, 10

β absorption: n = 1− δ + iβ, 7

δ n = 1− δ+ iβ or the delta distribution, clear from the context,
7

k0 k0 = 2π/λ, 7

λ wavelength, 7

PK,L Padé approximation of numerator degree K and denominator
degree L, 32

ν ν = k20 cos
2 α, 8

W operator-valued function W : N ⊂ Y → L(X), n �→ W (n),
X a Hilbert space, Y a Banach space, 42

rν reflection coefficient, 8

θ θ(z) = 1 for z > 0 and θ(z) = 0 for z ≤ 0, 24

tν transmission coefficient, 8

ui incident field, e−i
√
k2

0−ν z, 8

us scattered field, 9

�E electric field, 7

�Ei incident electric field, 7

a system width, 7

fν right hand side in DtN formulation: fν(z) = k20(n
2(z)−1)ui(z),

13

iR−
0 the negative imaginary axis including 0, 9

n refractive index, 7

nsub refractive index in lowermost layer (substrate), 7
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118 Nomenclature

u total field, 8

E embedding operator from H2([−a, 0] to L2([−a, 0]), 29

Fν solution operator, 28

G(ν) right hand side in weak formulation, 13

Hs(Ω) Sobolev space of order s on the domain Ω, 9

H+(S1) Hardy space on the unit disk, 14

Hs
loc(R) space of functions which are locally Hs, 9

I the identity, 13

K(n) operator corresponding to n-dependent part in weak formula-
tion, 68

Lp(D) the space Lp(D) on the set D, p ∈ {1, 2, . . .∞}, 7

Lploc(D) the space of functions which are locally in Lp, 7

R the resolvent arising from the weak formulation of problem
(2.14), 16

Sν integral operator in the Lippmann-Schwinger equation, 28

S�(n) reduced resolvent to the eigenvalue ν�(n) of W (n), 44

T (ν) operator in weak formulation, 13

XH XH = H+(S1)×H1([−a, 0])×H+(S1), solution space for Hardy
space formulation (2.19), 14

Σ(W (n)) spectrum of the operator W (n), 43

Θ(W (n)) resolvent set of the operator W (n), 43

b�[n] eigenvector to the eigenvalue ν�(n) of W ∗(n), normalized by
condition (4.25), 47

Pj(n) eigenprojection to the eigenvalue νj(n) in the discrete problem
(4.82), 59

P�(n) eigenprojection to the eigenvalue ν�(n) of W (n), 44

v�(n) eigenvector to isolated eigenvalue ν�(n) of W (n), 44

κ1, κ2 κ1 :=
�
k20 − ν and κ2 :=

�
k20n

2
sub − ν, 26

B(n) B(n) at the n encoded by n, 65

B(n) discrete operator depending on refractive index n, containing
the stiffness matrix and n-dependent part, 58



Nomenclature 119

B(s) B(s) := B(n[s]), 69

K(n) discrete version of K(n), 68

M mass matrix, discrete version of operator M , 58

Sj(n),S
M

j (n) reduced resolvent and modified reduced resolvent in the discrete
problem (4.82), 66

us[ν, n] discrete approximation to us[ν, n], 58

f [ν, n] discrete approximation to right hand side fν , 58

C a conjugation, 51

Gν Green’s function for the equation −w��
I − (k20n

2
I − ν)wI = 0, 25

GSν Green’s function for the single step profile nS, 26

L(X) set of bounded linear operators on a normed vector space X,
13

N open subset on which W is defined, 42

P set of all admissible perturbations nP of n2I , 28

Z set of admissible values of ν, 13

f (ν) right hand side in the Hardy space formulation (2.19), f (ν) ∈
XH, 14

us solution to the Hardy space formulation (2.19) in XH, 14

M bounded and boundedly invertible operator in generalized eigen-
value problem, C-symmetric, 51

N(nP) multiplication operator in the Lippmann-Schwinger equation,
29

nI initial profile, 25

nP perturbation of n2I , 28

ν�(n) isolated eigenvalue of the operator W (n), consider Lemma 4.2
for the definition of functions of eigenvalues, 44

ν� a resonance, 16

ň some initial refractive index, where we want to compute the
derivative in Chapter 4, 43

n discretized version of refractive index n encoded in the vector
n = [�n1, �n2, . . . , �nL] ∈ RL, 65



120 Nomenclature

B operator-valued function B : N �→ L(X) in generalized eigen-
value problem, C-symmetric, 51

φl successive approximations to the field distribution, 31

RF Fresnel reflectivity, 35

�R resolvent �R(ν, n) := (W (n)− ν)−1 for ν ∈ (Θ(W (n))), 43

s positions of layer changes s = [s1, . . . , sL] in a piecewise constant
refractive index, 67

TF Fresnel transmittance, 35

us� a resonance function, 16

wI solution to problem (3.2) with n = nI, 25

�Rν approximation to Rν for step profiles, 36

��Rν kinematic approximation to Rν , 35

n[s] discretized piecewise constant refractive index, encoded by po-
sitions of layer changes s, 67

nS single step with nS = 1 for z > 0 and nS = nsub for z ≤ 0, 26

w solution to problem (3.2), 24

SM� (n) modified reduced resolvent, 53

rank(A) the rank of an operator A, 46

tr(A) the trace of an operator A, 46
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Resonances in open systems can be described by eigenvalue problems with a 
radiation condition at infinity and arise in various fields including acoustics, 

classical mechanics, quantum mechanics, and x-ray physics. This thesis fo cusses 
on the optimization of resonances for multilayer x-ray resonators which consist 
of several layers and support certain resonant states. These resonant states can 
be excited by x-ray beams under special grazing angles of incidence (correspon-
ding to resonant frequencies of the system) leading to a very high field enhan-
cement inside the system compared to the incident field. X-ray res onators or 
waveguides can be used for filtering, guiding, and concentration of x-rays, which 
is for example useful in nanoscale x-ray structure analysis and x-ray imaging. 
The multilayer structures can be characterized by the refrac tive index n. We want 
to find a function n for which the field enhancement in the multilayer structure 
for a resonant angle of incidence is maximized subject to side constraints on 
n. For the optimization problem we use an objective function involving com-
plex resonances and corresponding resonance functions. Analytic expressions 
for the derivatives of resonances and resonance functions with respect to n are 
derived using perturbation theory of linear operators. As a side product, appro-
ximation formulas for the reflectivity are obtained, in particular a mathematical 
justification for the widely used kinematic ap proximation. Higher order Taylor 
approximations and Pad´e approximations lead to significant improvements of 
the standard approximation formulas, es pecially close to the critical angle. We 
explain how the optimization problem can be discretized and finish with nume-
rical computation leading to improved multilayer x-ray resonators for several 
situations. 
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