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ABSTRACT

Dysregulated protein synthesis is a major underlying

cause of many neurodevelopmental diseases includ-

ing fragile X syndrome. In order to capture subtle

but biologically significant differences in translation

in these disorders, a robust technique is required.

One powerful tool to study translational control is ri-

bosome profiling, which is based on deep sequenc-

ing of mRNA fragments protected from ribonuclease

(RNase) digestion by ribosomes. However, this ap-

proach has been mainly applied to rapidly dividing

cells where translation is active and large amounts

of starting material are readily available. The appli-

cation of ribosome profiling to low-input brain tis-

sue where translation is modest and gene expres-

sion changes between genotypes are expected to be

small has not been carefully evaluated. Using hip-

pocampal tissue from wide type and fragile X men-

tal retardation 1 (Fmr1) knockout mice, we show that

variable RNase digestion can lead to significant sam-

ple batch effects. We also establish GC content and

ribosome footprint length as quality control metrics

for RNase digestion. We performed RNase titration

experiments for low-input samples to identify optimal

conditions for this critical step that is often improp-

erly conducted. Our data reveal that optimal RNase

digestion is essential to ensure high quality and re-

producibility of ribosome profiling for low-input brain

tissue.

INTRODUCTION

Regulated protein synthesis in the synapto-dendritic com-
partment of neurons is essential to establish and maintain
the brain circuitry that underlies higher cognitive function
(1). Dysregulation of local protein synthesis is known to
cause several neurological disorders including autism and
fragile X syndrome (FXS) (2). FXS is caused by a CGG

repeat expansion in the 5′ untranslated region (UTR) of
fragile X mental retardation 1 (FMR1), which leads to epi-
genetic silencing and loss of its protein product, fragile X
mental retardation protein (FMRP). FMRP is a complex
RNA binding protein that mediates gene expression at mul-
tiple levels, but acts most prominently as an inhibitor of
translation (3). In Fmr1-de�cient mouse brain (hippocam-
pus), general protein synthesis is ∼15% greater than in wild
type (4), which is thought to be suf�cient for driving several
autism and FXS-like characteristics such as learning and
memory de�cits and synaptic de�ciencies (5). How a rela-
tively modest change of protein synthesis can be responsible
for large phenotypic alterations is at last partly explained by
signal ampli�cation resulting from kinase cascades that em-
anate from the synapse (6). Additionally, FXS pathophys-
iologies may also result from low abundance mRNAs that
undergo large changes in translation or from the aggrega-
tion of small changes in translation of numerous mRNAs.
Moreover, in contrast tomost cells, neurons are particularly
vulnerable to disruption of dosage and dynamics of RNA-
binding proteins involved in RNA metabolism (7,8). These
unique features plus the fact that the brain is composed of
multiple cell types pose signi�cant challenges for reliably de-
tecting differences in translation between normal versus dis-
ease conditions.
Ribosome pro�ling is a genome-wide approach to mon-

itor protein synthesis by sequencing ribosome protected
mRNA fragments (RPFs) after ribonuclease (RNase) di-
gestion (9). Ribosome pro�ling has been widely utilized
to study various aspects of mRNA translation, including
translational ef�ciency regulation (10), alternative initiation
(11), elongation pausing (12), co-translational protein fold-
ing (13) and codon usage (14). Since its initial development
in yeast (15), ribosome pro�ling has been rapidly applied to
many othermitotic cell systems (16) andmore recently post-
mitotic somatic tissues (17). For the central nervous system,
application of ribosome pro�ling has beenmostly limited to
the whole brain (18) or pooled brain regions (19,20). Given
the complex cell composition and circuit organization of the
brain, there is an urgent need to apply ribosome pro�ling to
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more de�ned brain regions or speci�c cell types where bio-
logical material is limited.
Although ribosome pro�ling is a very powerful technique

to study mRNA translation with high resolution, it can suf-
fer from biases introduced by translational inhibitor pre-
treatment (21), RNase digestion (22), and library prepara-
tion (23). Biases can also be introduced bioinformatically
and computationally (24–26). These issues have led to in-
consistent results from different laboratories and contradic-
tory �ndings, especially for elongation pausing and codon
usage studies that rely on the localized ribosome footprint
densities (27,28). Therefore, accurate methods that mini-
mize technical biases and reveal the true biological signal
are necessary in analyses of the brain, especially when con-
sidering neurological disease models such as FXS where
translational changes are modest between genotypes.
We used the study of translational dysregulation in FXS

model mice as a proof-of-principle to address the major
issues of ribosome pro�ling for low-input brain samples
where the differences between mouse genotypes (i.e. WT
and Fmr1 KO) are expected to be small. Here, for the �rst
time, we describe signi�cant sample batch effects caused by
the inconsistency of RNase digestion, which may help ex-
plain contradictory �ndings (29). This type of batch effect
can be indirectly quanti�ed by the GC content and length
of ribosome footprints. We establish a work�ow of RNase
titration experiments for low-input samples to determine
the optimal enzyme concentration. We proposed a better
practice of this critical RNase digestion step that is often
improperly conducted. In summary, our data reveal that
optimal RNase digestion is essential to ensure high qual-
ity and reproducibility of ribosome pro�ling especially for
low-input brain tissue.

MATERIALS AND METHODS

Mouse brain tissue collection

Mouse protocols were reviewed and approved by the insti-
tutional animal care and use committee (IACUC), and all
colonies were maintained following animal research guide-
lines. FXS affects bothmales and females, but females often
have milder symptoms and a lower rate of cognitive impair-
ment than males (30). Thus, historically, most preclinical
studies have employed male mice, including electrophysiol-
ogy (31) and expression pro�ling experiments (32). There-
fore, to compare our results to previous studies, we chose
to proceed with male mice. Acute hippocampal brain slices
were prepared from P28–35 C57BL/6J wild-type or Fmr1
KO male mice littermates (6–8 mice per batch) as previ-
ously described (33). For intact brain tissues, cortical or hip-
pocampal tissues were collected from P35 C57BL/6 wild-
type male mice as previously described (32), snap-frozen in
liquid nitrogen, and stored at −80◦C.

iPSC differentiation and collection

Human induced pluripotent stem cell (iPSC) colonies
were maintained in mTeSR1 medium (STEMCELL Tech-
nologies). Neural progenitor cells (NPCs) were derived

from iPSCs using STEMdiff Neuron Differentiation Kit
(STEMCELL Technologies) and maintained in STEMd-
iff Neural Progenitor Medium (STEMCELL Technolo-
gies). For the neural differentiation, NPCs were plated at 2
× 104 cells/cm2 onto poly-L-ornithine/laminin coated 15-
cm dishes in neural differentiation medium [Neurobasal
Medium (Gibco), 1× N-2 supplement (Gibco), 1× B-27
supplement (Gibco), 1× GlutaMAX (Gibco), 0.2 �M L-
ascorbic acid (Sigma), 1 �M cAMP (Sigma), 10 ng/ml
BDNF (Peprotech), 10 ng/ml GDNF (Peprotech)] supple-
mented with 0.1 �M Compound E (Millipore) and 5 �M
ROCK inhibitor (Millipore). Neural cultures were main-
tained in neural differentiation medium for 1 month before
collection. For the iPSC sample collection, cyclohexmide
was added to the medium to a �nal concentration of
100 �g/ml and cells were incubated at 37◦C for 1 min. The
cells were subsequently washed with ice-cold PBS contain-
ing 100 �g/ml CHX, collected by scraping from the dish,
pelleted by centrifugation at 15 000g 4◦C for 3 min, snap-
frozen in liquid nitrogen, and immediately stored at −80◦C.

Sucrose gradients of intact brain tissues

Frozen cortices or hippocampi from P35 WT male mice
were thawed in ice-cold homogenization buffer [20 mM
Tris–HCl pH 7.4, 5 mM MgCl2, 100 mM KCl, 1 mM
DTT, 100 �g/ml CHX, 25 U/ml Turbo DNaseI (Ambion,
#AM2238), 1× EDTA-free protease inhibitor (Roche),
avoid detergent, in nuclease-free water] on ice for 10 min.
Wide ori�ce tips were used to transfer tissue to a pre-chilled
detergent-free Dounce homogenizer. Tissues were slowly
homogenized by hand (10 strokes of loose pestle A, and 10
strokes of tight pestle B).Homogenateswere carefully trans-
ferred to clean 1.5 ml tubes with clean glass Pasteur pipets
and bulbs. Homogenates were clari�ed by centrifugation
at 2000g 4◦C for 10 min. The supernatants were collected
and clari�ed again by centrifugation at 20 000g 4◦C for
10 min. The supernatants were collected and the amounts
of nucleic acid were measured with Nanodrop (A260 units).
The homogenates were adjusted and diluted with homog-
enization buffer to 0.3 ml for each gradient. The samples
were digested with RNase A (Sigma, # R4875; or Ambion,
#AM2270 for the titration), RNAse T1 (Thermo Fisher
Scienti�c, #EN0542), or RNase I (Ambion, #AM2294)
as indicated in the �gure legends. The digestion reactions
were stopped by chilling on ice and adding 50 U SU-
PERase In RNase inhibitor (Ambion, #AM2694). 1% NP-
40 was added to the homogenates and incubated on ice for
10 min. Digested homogenates were clari�ed again by cen-
trifugation at 20 000g 4◦C for 10 min. The supernatants
were applied to 10%-50% sucrose gradients prepared in 1×
polysome buffer (20 mM Tris–HCl pH 7.4, 5 mM MgCl2,
100 mM KCl, 1 mM DTT, 100 �g/ml CHX in nuclease-
free water). After the ultracentrifugation in a SW41Ti rotor
(Beckman Coulter) at 35 000 rpm (average 151 263g) 4◦C
for 2.5 h, gradients were fractionated at 1.5 ml/min and 12 s
collection interval through a fractionation system (Brandel)
that continually monitored A260 values. Monosome frac-
tions were identi�ed, pooled, and extracted with TRIzol LS
(Invitrogen, #10296028).
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Sucrose gradients of hippocampal slices

Frozen hippocampal slices were thawed in ice-cold homog-
enization buffer on ice for 5 min.Wide ori�ce tips were used
to transfer slices to a pre-chilled detergent-free Dounce ho-
mogenizer. Tissues were slowly homogenized by hand (20
strokes of loose pestle A, and 20 strokes of tight pestle
B). Homogenates were carefully transferred to clean 1.5 ml
tubes with clean glass Pasteur pipets and bulbs. 1% NP-40
was added to the homogenates and incubated on ice for
10 min. Homogenates were clari�ed by centrifugation at
2000g 4◦C for 10 min. The supernatants were collected and
clari�ed again by centrifugation at 20 000g 4◦C for 10min.
The supernatants were collected and the amounts of nucleic
acid were measured with Nanodrop (A260 units). The sam-
ples were digested with 100ng RNase A (Sigma, # R4875)
and 60U RNase T1 (Thermo Fisher Scienti�c, #EN0542)
per A260 at 25

◦C for 30 min and stopped by chilling on ice
and adding 50 U SUPERase In RNase inhibitor (Ambion,
#AM2694). Digested lysates were applied to 10–50% su-
crose gradients similarly as the intact brain tissues above.
For each new lot of RNase, we recommend performing a

quality control test for the enzymatic activity. For instance,
similar RNase titration experiments with a new lot of en-
zyme could be performed as in Figure 5. If the new lot
of RNase also causes noticeable monosome disassembly at
Conc.5, it has comparable enzymatic activity and the opti-
mized digestion condition determined by the titration test
could be used with the new lot.

Sucrose gradients of iPSC samples

Frozen cell pellets were thawed in ice-cold polysome lysis
buffer [20 mM Tris–HCl pH 7.4, 5 mM MgCl2, 100 mM
KCl, 1 mM DTT, 100 �g/ml CHX, 25 U/ml Turbo DNa-
seI (Ambion, #AM2238), 1×EDTA-free protease inhibitor
(Roche), 1%NP-40 in nuclease-free water] and lysed by trit-
uration through a 25-G need for 10 times. The remaining
steps are the same as the hippocampal slices above. See Sup-
plementary Table S1 for the summary of all samples used in
this paper.

Ribosome pro�ling

Ribosome pro�ling libraries were prepared following the
published protocols (34). Brie�y, rRNA was depleted from
the puri�ed monosomal RNA samples with RiboZero (Il-
lumina, #MRZG12324). Remaining RNA samples were
separated on a 15% TBU gel (National Diagnostics, #EC-
833) and the ribosome footprints were size-selected be-
tween the 26 and 34nt markers. RNA was eluted from
the crushed gel pieces in RNA elution buffer (300 mM
NaOAc pH 5.5, 1 mM EDTA, 0.25% SDS) at room tem-
perature overnight, �ltered with Spin-X Centrifuge Tube
Filters (Corning, #8162) and precipitated with equal vol-
ume of isopropanol. Recovered RNA was dephosphory-
lated with T4 Polynucleotide Kinase (NEB, #M0201S) and
ligated with preadenylated adaptor in miRCat®-33 Con-
version Oligos Pack (IDT) using T4RNL2Tr.K227Q lig-
ase (NEB, #M0351L). Reverse transcription (RT) was per-
formed with primers containing 5nt-barcodes and 8nt-
unique molecular identi�ers (UMIs) and SuperScript III

(Invitrogen, #18080-044) in 1X �rst-strand buffer without
MgCl2 (50 mM Tris–HCl, pH 8.3, 75 mM KCl). RT prod-
ucts were separated on a 10%TBUgel and the 130–140nt re-
gion was selected. cDNA was eluted in DNA elution buffer
(10 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA) at
room temperature overnight, �ltered and precipitated with
isopropanol. Puri�ed cDNA was circularized with CircLi-
gase (Epicentre, #CL4115K). Except for the RNase titra-
tion samples, cDNA derived from remaining rRNA was
hybridized to biotin-labelled antisense probes (IDT) and
further depleted with Dynabeads MyOne Streptavidin C1
(Invitrogen, #65001). The sequences and ratio of antisense
probes need to be determined based on the RNase diges-
tion condition used. Optimal PCR cycle number was de-
termined empirically by test PCR reactions with titrated
cycle numbers. Final PCR ampli�cation was performed
with KAPA Library Ampli�cation Kit (Kapa Biosystems,
#KK2611) and 180–190 bp products were size-selected on
an 8% TBE gel. DNAwas eluted in DNA elution buffer, �l-
tered, and precipitated with isopropanol. The �nal library
DNAwas puri�edwithAMPureXPbeads (BeckmanCoul-
ter, #A63880). Oligos used for the library preparation are
listed in Supplementary Table S2.
The size distributions of �nal libraries were measured by

Fragment Analyzer (Advanced Analytical, performed by
Molecular Biology Core Labs at UMMS). The concentra-
tions were quanti�ed with KAPA Library Quanti�cation
Kit (Kapa Biosystems, #KK4835). Libraries were pooled
with equal molar ratios, denatured, diluted, and sequenced
with NextSeq 500/550High Output Kit v2 (Illumina, #FC-
404-2005) on a Nextseq500 sequencer (Illumina).
For low-input samples, we recommend adding 10 mM

MgCl2 to the isopropanol precipitations of short
RNA/cDNA fragments and incubating the reactions
at −20◦C overnight to increase the yields. In our hands,
as compared to other popular brands, the combination of
20 �g glycogen carrier (Ambion, #AM9510) and 1.5 ml
tubes (LPS, # L250901) for the precipitation improves the
ef�ciencies of pellet formation and nucleic acid recovery
signi�cantly after centrifugation at 20 000g 4◦C for at least
30 min.

Read mapping and quality control

Individual samples were separated from the raw fastq
�les based on the barcode sequences. Adaptor sequences
(TGGAATTCTCGGGTGCCAAGGAGATCGGAA
GAGCGGTTCAGCAGGAATGCCGAGACCG)
were removed with cutadapt (1.7.1). Trimmed fastq
�les were uploaded to the Dolphin platform (https:
//www.umassmed.edu/biocore/introducing-dolphin/) at
the UMMS Bioinformatics Core for the mapping steps.
Trimmed reads were quality �ltered with Trimmomatic
(0.32) and mapped to the mouse rRNA and then tRNA
references with Bowtie2 (2.1.0). Unmapped reads were next
mapped to the mm10 mouse genome with Tophat2 (2.0.9).
Reads mapped to >1 loci of the genome were classi�ed
as ‘multimapped’ reads and discarded. PCR duplicates
were marked based on the UMI sequences with custom
scripts and only uniquely mapped reads without duplicates
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were retained with samtools (0.0.19) for the downstream
analyses.
Reads mapped to 5′ untranslated region (5′UTR), cod-

ing sequences (CDS), and 3′UTR regions were counted
after intersecting the bam �les with bed annotation �les
(USCS genome browser) using bedtools (2.22.0). Sequences
of reads uniquely mapped to CDS were extracted with sam-
tools (0.0.19). The nucleotide composition and the distribu-
tion of RPF length were calculated with custom scripts. The
mean GC percentages within 10–20nt window for RPF or
10–65nt window for mRNA were calculated for each sam-
ple. The peak of RPF length distribution was selected as
the representative length for the scatter plots. P-site offsets
and frame preference were calculated with plastid (0.4.8).
Counts at each nucleotide position were extracted using
P-sites of RPFs, normalized to the library size, averaged
across replicates, and plotted along mRNA positions with
custom scripts.

Differential gene expression analysis

Cleaned bam�les of uniquelymappedRPFswere converted
to fastq �les with bedtools. Gene expression was quanti-
�ed with RSEM (1.2.11) using the cleaned fastq �les and
Refseq (V69) mouse CDS without the �rst and last 30nt
to avoid the translation initiation and termination peaks.
Genes were �ltered with minimum 5 average reads across
all replicates. Read counts were transformed with regular-
ized logarithmon the log2 scale and normalizedwith respect
to library size. Scatter plots with rlog transformed counts
were used to evaluate the correlations among samples. Top
1000 most variable genes were selected for PCA analysis us-
ing the ‘prcomp’ function of ‘stats’ package and the results
were plotted with ‘ggbiplot’ package. Counts were batch-
corrected with the ‘Combat’ function in ‘sva’ (3.24.4) us-
ing a full model matrix. Differential gene expression anal-
ysis was performed with batch-corrected counts and DE-
Seq2 with a 0.05 cut-off for adjusted P-value. Based on the
Refseq mouse reference transcriptome, the most abundant
transcript isoform estimated by RSEM with Batch1 WT1
RNA-seq data was picked as the representative transcript
for each gene. Then, GC contents of the annotated se-
quences for various mRNA regions were calculated across
the transcriptome and plotted inFigure 2D. In contrast,GC
contents based on all the RNA-seq reads mapped to CDS
were calculated in Figure 2E, so reads from well-expressed
mRNAs are over- represented.

RESULTS

Sample batch effects dramatically compromise the power of
ribosome pro�ling

Ribosome pro�ling was initially established by Ingolia et al.
in yeast with RNase I, a nucleotide-indiscriminate endori-
bonuclease that preferentially hydrolyzes single-stranded
RNA, to generate loaded 80S monomers (15). Although
RNase I generates high-resolution yeast ribosome pro�l-
ing data, it causes signi�cant or even complete disassem-
bly of mammalian ribosomes under similar conditions (22)
(Supplementary Figure S1). Because actively translating ri-
bosomes in post-mitotic neuronal tissue are substantially

fewer than in mitotic cells, we decided to use a cocktail of
RNaseA andT1 thatmaintains the integrity ofmonosomes
for mammalian samples (35) (Supplementary Figure S1).

Most ribosome pro�ling studies as well as a commer-
cially available TruSeq Ribo Pro�le kit (Illumina) adjust the
amounts of RNase to digest the polysomes based on the
amounts of nucleic acids in the lysate typically estimated by
the total A260 units. For example, TruSeq Ribo Pro�le kit
suggests to digest lysate with 5 units TruSeq Ribo Pro�le
Nuclease perA260 unit at 25

◦C for 45 min. To determine the
optimal RNase concentration for neuronal tissues, we per-
formed an RNase titration experiment with mouse cortical
samples and used the heights of monosome peaks as read-
outs (Supplementary Figure S1).We reasoned that the opti-
mal RNase concentration should be the concentration that
converts polysomes to monosomes without substantial ri-
bosomal disassembly and therebymaximizes theRPF yield.
Following this rationale, we determined 100 ng RNase A +
60 U RNase T1/A260 at 25

◦C for 30 min as the optimal di-
gestion condition (Supplementary Figure S1).
We then applied this protocol to investigating the trans-

lational dysregulation in fragile X syndrome. This proto-
col worked well for high-input samples, such as whole cor-
tex from one P35 mouse (∼20 A260) and cultured mouse
adult neural stem cells (∼10A260) (36). Next, we applied the
same digestion condition to low-input samples: mouse hip-
pocampal slices (∼3 A260). We �rst processed two batches
of samples, each containing 1–2 replicates of pooled hip-
pocampal slices from wild type (WT) and Fmr1 KO litter-
mates (6–8 mice/replicate). The principal component anal-
ysis (PCA) revealed that ∼60% variances of RPF abun-
dance could be explained by the genotype differences while
∼20% might be caused by batch effects (Figure 1A). How-
ever, when we processed a third and fourth batches six
months later,∼50% variances of RPF abundance were from
batch effects with only ∼20% variances from genotype dif-
ferences (Figure 1B). As a result, we detected 2049 differ-
ential expressed genes (DEGs) from batch1–2, many more
than 250 DEGs from batch 3–4 (Figure 1C and D). Notice-
ably, the magnitudes of changes were quite modest (<50%)
for this comparison, emphasizing the importance of mini-
mizing technical bias to detect low levels of biological sig-
nals. To estimate potential false negatives, we compared
the overlap between the DEGs found by ribosome pro�l-
ing and mRNAs directly bound by FMRP uncovered by
cross-linking immunoprecipitation (CLIP) (32). DEGs de-
tected with batch1–2 overlapped signi�cantly (P= 2.3e–43,
hypergeometric test) with FMRP CLIP genes, suggesting
that changes of many DEGs were the direct result of the
loss of FMRP. In addition, DEGs detected with batch1–2
revealed a decrease of expression formany cell adhesion and
synaptic molecules based on Gene Ontology (GO) analy-
sis, which is consistent with the dysregulated neural func-
tions in Fmr1 KO mice (Supplementary Figure S2). How-
ever, signi�cance of the overlap between batch3–4 DEGs
andFMRPCLIP genes was onlymarginal (P= 0.03, hyper-
geometric test), implying a potentially high false negative
rate. A number of speci�c mRNAs such as serine (or cys-
teine) peptidase inhibitor, clade A, member 3N (Serpina3n)
and gamma-aminobutyric acid (GABA) A receptor, sub-
unit alpha 2 (Gabra2) that were the most differentially
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Figure 1. Sample batch effects dramatically compromise the power of ribosome pro�ling. (A) Ribosome protected footprints (RPFs) frombatch1–2 samples
were mapped to Refseq mouse coding sequence (CDS) reference and quanti�ed with RSEM. Counts were regularized log transformed, normalized with
DESeq2, and used for principal component analysis (PCA) using the ‘prcomp’ function from the ‘stats’ package. Samples with the same genotypes are
labeled with the same color and circled to show the genotype separation. Batches are labelled with different shapes. PCA analysis shows that the major
(PC1) variance (var.) of ribosome pro�ling data from batch1–2 samples was derived from genotypes. (B) PCA analysis shows that the major (PC1) variance
(var.) of ribosome pro�ling data from batch3–4 samples was derived from experimental batches. (C) Counts of RPFs mapped to CDS from batch1–2 were
batch-corrected with the ‘Combat’ function from ‘sva’ package and used for the differential gene expression analysis with DESeq2. Volcano plot of batch1–
2 shows the log2 fold changes (KO/WT) of RPF abundance with –log10 adjusted P value. Differentially expressed genes (DEGs) with adjusted P value less
than 0.05 are colored red. (D) Volcano plot of batch3–4 shows the log2 fold changes (KO/WT) of RPF abundance with –log10 adjusted P value. DEGs
with adjusted P value less than 0.05 are colored red. (E) Overlap between the top FMRP CLIP genes (32) and DEGs identi�ed with batch1–2 samples (red
points in C, P = 2.3e–43, hypergeometric test) or batch3–4 samples (red points in D, P = 0.03, hypergeometric test). (F) RPF distributions on the serine
peptidase inhibitor, clade A, member 3N (Serpina3n) gene. RPF number at each mRNA nucleotide position was calculated with the ‘plastid’ package,
normalized to the library size, averaged across all replicates of batch1–2 (top panel) or batch3–4 (bottom panel), and plotted along the mRNA nucleotide
positions with green and red triangles for annotated start and stop codons respectively. For visualization purposes, the curves were smoothed within a 30nt
window. (G) RPF distributions on the gamma-aminobutyric acid (GABA) A receptor, subunit alpha 2 (Gabra2) gene.
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expressed in batch1–2 have been previously reported to be
dysregulated in Fmr1KO brain (37) (Figure 1F andG). De-
creased expression of the GABAA receptor was reported in
FXS and many drugs that modulate the GABAergic sys-
tem have already been tested in animal models and clinical
trials (38,39). However, both Serpina3n andGabra2 showed
no difference in batch3–4. This again strongly indicates that
sample batch effects dramatically compromise the power of
ribosome pro�ling.

RPF GC content is correlated with sample batch effect

To identify the potential source(s) of batch effects, we re-
analyzed various aspects of our ribosome pro�ling data.
One major concern was the cutting preferences of RNases.
RNase A cuts after C and U residues while RNase T1 cuts
after G residues, thus a cocktail of RNase A and T1 can-
not cut after A residues. To evaluate the potential bias in-
troduced by the cutting preferences, we calculated the base
composition at each nucleotide position of RPFs mapped
to CDS. As expected, the 5′ ends of RPFs were biased to A
(Figure 2A and B). Surprisingly, we found that the batch3–4
RPFs with strong batch effects were slightly GC rich across
the entire length of the footprint read, which could not
readily be explained by the speci�cities of RNases (Figure
2B). We also observed a correlation between higher RPF
GC content and strong batch effect (Figure 2C, Supple-
mentary Table S1). Because RPFs are derived from mRNA
CDS, we calculated the base compositions for the mouse
reference transcriptome (Figure 2D) and RNA-seq reads
mapped to CDS (Figure 2E). We found that GC content of
mRNA CDS was >50%, which is counterintuitive, because
GC contents are expected to be similar for both mRNA
reads mapped to CDS and RPFs.

RPF GC content is RNase-species independent

To determine the experimental step in which the GC-
content correlated batch effects were introduced, we com-
pared a series of factors including fresh vs frozen samples,
lysis buffer with or without detergent, lysate quanti�ca-
tion with Nanodrop or Qubit assays, RNA extraction with
TRIzol and isopropanol precipitation versus Zymo column
(40), monosome fraction sample with or without sucrose,
and the M. Moore library preparation protocol (34) com-
pared to the N. Ingolia protocol (41). None of the above
caused the GC-content correlated batch effects (data not
shown). The most prominent remaining variable was the
RNase digestion step.
Most ribosome pro�ling studies utilize RNase I and re-

port no correlation between batch effects and GC content.
Thus, we were concerned that the issue of GC content/
batch effects might be related to the RNase A+T1 cock-
tail. To assess this possibility, we performed ribosome pro-
�ling on a WT mouse hippocampal sample treated with ei-
ther RNase A+T1 or RNase I. Because RNase I cuts after
all four bases without preference, the stronger activity of
this enzyme led to partial disassembly of monosomes (Fig-
ure 3A and B). For this particular experiment, RPFs with
RNase A+T1 were not GC-rich (Figure 3C), but RNase I
led to RPFs with higher GC content (Figure 3D). To ex-

clude the possibility that the high GC content was intro-
duced from our library preparation protocols, we calculated
the GC contents of RNase I-generated RPFs from multi-
ple published studies. Most RPFs from proliferative cells
were not GC rich, for example, the RPFs from mouse ES
cells generated by Ingolia et al. (Figure 3E) (16). However,
RPFs from neuronal cultures showed substantially higher
GC content in several studies, for example RPFs from hu-
man ES cell-derived neurons by Grabole et al. (Figure 3F)
(42). Therefore, RPFGC content is independent of the par-
ticular RNase used and appears to mainly occur in samples
with low input amount or low translational activity.

RPF GC content and length depend on the RNase digestion
protocol

To examine whether there is indeed a correlation between
RPF GC content and sample amount, we analyzed ribo-
some pro�ling data from a batch of human iPSC-neuron
samples with a wide range of lysate amounts. Different
iPSC lines showed distinct capabilities of differentiation
into various neural lineages, including progenitors, glia, or
post-mitotic neurons. Thus, samples of iPSC neuron cul-
tures had vastly different translational activities and input
amounts. Those samples were processed at the same time as
one batch. A clear and strong negative correlation was ob-
served between the GC content and 80S monosomal RNA
amount, which is an indirect estimate of lysate amount (Fig-
ure 4A). Initially, we reasoned that the low-input samples
might be sensitive to over-digestion by RNase, whereby re-
tained ribosomeswould preferentially containGC-enriched
footprints. To test this hypothesis, we processed another
batch of samples with 5-fold diluted RNase concentra-
tions. However, the negative correlation between GC con-
tent and lysate amount remained (Figure 4B). Furthermore,
Zappulo et al. performed ribosome pro�ling on neurite-
localized ribosomes (43), an extremely low abundance sam-
ple, leaving those investigators to omit the ribosome iso-
lation step. Even with this modi�ed method, the yield of
monosomal RNA (400 ng) was still much lower than our
samples (Figure 4A and B). However, their RPFs did not
have a high GC content (Figure 4C). Collectively, these re-
sults suggest that high RPF GC content is not necessarily
caused by low sample amount.
When we carefully compared the experimental methods

used by Grabole et al. (Figure 3F) and Zappulo et al. (Fig-
ure 4C), we recognized that the RNase amounts used for
digestion were dramatically different. Grabole et al. fol-
lowed the manual of TruSeq Ribo Pro�le kit and digested
the lysates with 5 U TruSeq Ribo Pro�le Nuclease/A260 at
25◦C for 45 min. In contrast, Zappulo et al. did not adjust
the RNase I amount based on the A260 but instead digested
the lysates with the �xed amount of 70U RNase I at 25◦C
for 40min. Considering the extremely low amounts of ri-
bosomes in the neurites, the RNase to RNA ratio in Zap-
pulo et al. was much higher than that in Grabole et al. This
seemed counterintuitive: low-input samples digested with
high amounts of RNase generated RPFs without GC bias
and presumably with smaller batch effects. Thus, we rea-
soned that RPF GC content depends on the RNase diges-
tion protocol.
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Figure 2. RPF GC content is correlated with sample batch effect. (A) Sequences of RPFs mapped to CDS were extracted from bam �les with bedtools
and samtools. Nucleotide composition at each position of RPFs for a representative sample from batch1 in Figure 1A was calculated and plotted. The
mean GC percentage within the 10–20nt window was calculated and shown on the top. (B) Nucleotide composition at each position of RPFs mapped
to CDS for a representative sample from batch3 in Figure 1B. (C) GC contents of RPFs from all the batch1-4 samples were calculated and plotted as a
heatmap showing the correlation with the sample batches. Darker blue represents higher GC content. (D) The most abundant mRNA isoform in Batch1
WT1 sample estimated by RSEMwas selected as the representative transcript for each gene across the Refseq transcriptome. GC contents of sequences for
different mRNA regions in the curated and nonredundant transcriptome were calculated and plotted to visualize the medians. The lower and upper hinges
correspond to the �rst and third quartiles. The whiskers extend from the hinges to the largest and smallest values no further than 1.5 fold of inter-quartile
range. Outliers are not shown. Using full length of mRNAs as the reference, all pair-wise comparisons are statistically signi�cant (***P< 0.001, Wilcoxon
rank sum test). (E) Nucleotide composition at each position of RNA-seq reads mapped to CDS for the same sample in (D). The mean GC percentage
within the 10–65nt window was calculated and shown on the top.

The GC-content correlated batch effects are caused by in-
complete RNase digestion

In addition to GC content, we also found a negative cor-
relation between RPF lengths and sample amounts (Fig-
ure 4A and B). Low-input samples had longer RPFs, an
indication of incomplete RNase digestion. Therefore, we
hypothesized that the GC-content correlated batch effects
are caused by the incomplete RNase digestion. The prob-
lem arises from the adjustment of RNase amount based on
the sample amount, which leads to varied RNase concen-
trations in the digestion reaction. The input mRNA is GC-
rich (∼60%) for CDS in the lysate. For low-input samples,
the adjusted RNase concentration is low and the batch ef-
fects re�ect the extents of limited RNase digestion (various
GC contents and RPF lengths). For large input samples,

the RNase concentration is suf�ciently high, so most sam-
ples are completely digested (∼50% GC and ∼28nt RPF
length), resulting in much smaller batch effects.
To directly test this hypothesis, we performed a 5-fold se-

rial titration experiment of RNase A+T1 with low-input
hippocampal lysates from a P35 WT mouse. 100 ng RNase
A+ 60 U T1 per A260 was the condition we �rst estab-
lished with high-input mouse cortical samples (Supplemen-
tary Figure S1). For one experiment (not shown), we used
a new aliquot of RNase A (Sigma, #R4875, dissolved in
water) that did not go through freeze-thaw cycles and fol-
lowed the same formula. The digestion resulted in a com-
plete disassembly of ribosomes, so we realized that the old
RNase A activity had declined through freeze-thaw cycles.
For the titration experiments, we decided to switch to a bet-
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Figure 3. RPF GC content is RNase-species independent. (A) 3.8 A260 homogenate from hippocampi of one P35 male mouse was digested with 100ng
RNase A (Sigma, # R4875) + 60U RNase T1 (Thermo Fisher Scienti�c, #EN0542)/A260, at 25

◦C for 30min and applied to a 10–50% (w/v) sucrose
gradient. (B) 3.8 A260 homogenate from hippocampi of one P35 mouse was digested with 5U RNase I (Ambion, #AM2294)/A260, at 25

◦C for 45min and
applied to a 10–50% (w/v) sucrose gradient. (C) Nucleotide composition at each position of RPFs mapped to CDS from ribosomes in (A). (D) Nucleotide
composition at each position of RPFs mapped to CDS from ribosomes in (B). (E) Nucleotide composition at each position of RPFs mapped to CDS from
mouse embryonic stem cells (mESCs) (data from Ingolia et al.) (16). A 600 �l aliquot of lysate was treated with 15 �l RNase I at 100 U/�l for 45 min at
25◦C. (F) Nucleotide composition at each position of RPFs mapped to CDS from human embryonic stem cell (hESC)-derived neurons (data fromGrabole
et al.) (42). 5 U TruSeq Ribo Pro�le Nuclease/A260 at 25

◦C for 45 min.
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Figure 4. RPF GC content and length depend on the RNase digestion protocol. (A) Lysates from human iPSC neuron samples spanning a wide range of
amounts were digested with 100 ng RNase A + 60U RNase T1/A260 at 25

◦C for 30 min. Monosomal RNA was extracted from monosomal fractions of
sucrose gradients and quanti�ed with Nanodrop. GC contents were calculated as in Figure 2A and the peaks of length distributions of RPFs mapped to
CDS were also determined. Scatter plots with Pearson correlation coef�cients show the negative correlation between 80S monosomal RNA amounts (log2
scale) and the GC contents (black) or RPF lengths (red). (B) Lysates from human iPSC samples were digested with 20 ng RNase A + 12 URNase T1/A260

at 25◦C for 30 min. Scatter plots with Pearson correlation coef�cients show the negative correlation between 80S monosomal RNA amounts (log2 scale)
and the GC contents (black) or RPF lengths (red). (C) Nucleotide composition at each position of RPFs mapped to CDS from mESC-derived neurons
with an alternative protocol of RNase digestion (data from Zappulo et al.) (43). 70 U RNase I at 25◦C for 40 min.

ter quality controlled and more stable RNase A (Ambion,
#AM2270). This brand of enzyme is stored in a buffer with
50% glycerol that hopefully could reduce the rate of activity
decline.
Across a wide-range of RNase concentrations (Conc.1–

3), no obvious difference was observed for monosome peak
heights in the sucrose gradient pro�les, suggesting that this

is not a particularly informative readout for the optimal
RNase concentration (Figure 5A–C). With higher RNase
concentrations, the monosomes were slightly disassembled
(Conc.4) and substantially disassembled (Conc.5) (Figure
5D–E). Next, we con�rmed that both the GC contents and
RPF lengths negatively correlatewith theRNase concentra-
tions and only very high RNase concentrations (Conc.4–5)
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Figure 5. TheGC-content correlated batch effects are caused by incompleteRNase digestion. (A) Hippocampi fromone P35WTmousewere homogenized
and the homogenate was aliquoted for the titration experiment. 0.5 unit A260 homogenate containing 2 �g RNA (measured with Qubit HS RNA kit) in
0.3 ml volume was used for digestion at each RNase concentration. Digested homogenates were separated on 10–50% (w/v) sucrose gradients. Pro�le of
hippocampal ribosomes after the digestion at the lowest concentration1 [Conc.1, 4.8ng RNase A (Ambion, #AM2270) + 0.6 U RNase T1 (Thermo Fisher
Scienti�c, #EN0542)/�g RNA × 2 �g RNA in 0.3 ml at 25◦C for 30 min] and sucrose gradient fractionation. (B) Pro�le of hippocampal ribosomes after
the digestion at the concentration2 (Conc.2, 24 ng RNase A + 3U RNase T1/�g RNA × 2 �g RNA in 0.3 ml at 25◦C for 30 min) and sucrose gradient
fractionation. (C) Pro�le of hippocampal ribosomes after the digestion at the concentration3 (Conc.3, 120 ng RNase A + 15 U RNase T1/�g RNA × 2
�g RNA in 0.3 ml at 25◦C for 30 min) and sucrose gradient fractionation. (D) Pro�le of hippocampal ribosomes after the digestion at the concentration4
(Conc.4, 600 ng RNase A + 75 U RNase T1/�g RNA × 2 �g RNA in 0.3 ml at 25◦C for 30 min) and sucrose gradient fractionation. (E) Pro�le of
hippocampal ribosomes after the digestion at the highest concentration5 (Conc.5, 3000 ng RNase A + 375 U RNase T1/�g RNA × 2 �g RNA RNA in
0.3 ml at 25◦C for 30 min) and sucrose gradient fractionation. (F) Scatter plots with Pearson correlation coef�cients show the negative correlation between
RNase concentrations (log5 scale) and the GC contents (black) or RPF lengths (red).

generated RPFs with the optimal GC content (∼50%) and
length (28–29nt), as in the batch1–2 samples without strong
batch effects (Figure 2). These results directly validate the
idea that theGC-content correlated batch effects are caused
by the incomplete RNase digestion.

OptimizedRNase digestion generates ribosome pro�ling data
with higher quality and reproducibility

We next asked whether the extent of RNase digestion in�u-
enced the quality and reproducibility of ribosome pro�ling.
Although monosome peak heights looked comparable, the
uniquely mapped reads increased while rRNA/tRNA con-
taminants decreased with increasing RNase concentrations
(Figure 6A). For the lowest Conc.1 concentration, sub-
stantial amounts of reads were mapped to regions outside
of CDS, suggesting incomplete digestion and false signals
not representative of true translation (Figure 6B). In addi-
tion, the Conc.4 condition produced RPFs with the best
three-nucleotide periodicity, which was considerably com-

promised with incomplete- (Conc.1–3) or over-digestion
(Conc.5) (Figure 6D).

In addition to general quality, we also evaluated repro-
ducibility with increasing RNase concentrations. Although
the pair-wise correlations of gene expressions all seemed
high, the variances were larger with lower RNase concen-
trations (Figure 6D). In contrast, almost all genes were
clustered tightly along the diagonal line when comparing
Conc.4 and 5. PCA analysis consistently revealed that sam-
ples Conc.4 and 5 with higher RNase concentrations were
clustered together, indicating lower variances introduced by
enzyme digestion (Figure 6E). Finally, because local ribo-
some densities are often used to infer translational paus-
ing, we also examined the impact of RNase digestion on
this property. Consistent with the distribution of footprints
on various RNA regions shown in Figure 6B, a substan-
tial number of reads were mapped to 3′UTR regions under
Conc.1 conditions (Figure 6F and G), which may represent
mRNA fragments protected by RNA binding proteins. Im-
portantly, local ribosome densities and peaks varied dra-
matically among RNase concentrations and became more
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Figure 6. Optimized RNase digestion generates ribosome pro�ling data with higher quality and reproducibility. (A) rRNA and tRNA contaminates were
�ltered out from RPF reads with Bowtie2 and unmapped reads were next mapped to mm10 with Tophat2. ‘Unmapped’ and ‘Multimapped’ reads were
de�ned based on the Tophat2 outputs. PCR-derived ‘Duplicates’ were identi�ed based on the unique molecule identi�er (UMI). The uniquely mapped
reads after all the upstream �ltering were classi�ed as ‘Unique’ and used for downstream analyses. Stacked bar plots show the percentage of RPFs uniquely
mapped to the transcriptome under different RNase concentrations. (B) The number of ‘Unique’ reads in (A) mapped to various gene regions were
calculated by intersecting bam �les with USCS bed annotations by bedtools and samtools. Stacked bar plots show the percentage of ‘Unique’ RPFs in
(A) mapped to CDS under different RNase concentrations. (C) The P-site offsets and frame preferences of ‘Unique’ RPFs in (A) mapped to CDS were
calculated with ‘plastid’ package. The best frame resolution across all the RPF lengths was selected to represent each RNase concentration. Stacked bar
plots show the percentage of ‘Unique’ RPFs in (A) mapped to the same frame as the annotated CDS (Frame1) under different RNase concentrations. (D)
‘Unique’ reads in (A) were mapped to Refseq mouse CDS reference and quanti�ed with RSEM. Counts of mapped RPFs were regularized log transformed
and normalized with DESeq2. Scatter plots and Pearson correlation coef�cients show the reproducibility of RPF abundance quanti�cation among various
RNase concentrations. (E) Principal component analysis (PCA) shows the similarity between Conc.4 and Conc.5 samples. (F) Distinct RPF distributions
under different RNase concentrations on actin beta (Actb) mRNA. RPF number at each mRNA nucleotide position was calculated with the ‘plastid’
package, normalized to the mean read density on CDS, and plotted along the mRNA nucleotide positions with green and red triangles for annotated start
and stop codons respectively. (G) Distinct RPF distributions under different RNase concentrations on the calcium/calmodulin-dependent protein kinase
II alpha (Camk2a) mRNA.

reproducible under higher RNase concentrations. In sum-
mary, optimal RNase digestion is essential to ensure high
quality and reproducibility of ribosome pro�ling data espe-
cially for low-input samples where modest changes in ribo-
some densities are expected.

DISCUSSION

Ribosome pro�ling is a valuable tool for studying mRNA
translation because of its unprecedented resolution. Dra-
matic translational changes could be reliably captured by ri-
bosome pro�ling, for instance in cultured cells under a stress
response (15) or upon mTOR pathway manipulation (44).

In contrast, the magnitude of translational changes in neu-
ral systems are often much more modest. One possible ex-
planation is that chronic loss of function inmouse knockout
models leads to an adaptation response by compensatory
mechanisms at the transcription, RNA stability, or trans-
lational levels. Another possibility is that the cell-type spe-
ci�c changes might be ‘diluted’ by diverse cell types in the
brain. Translating ribosome af�nity puri�cation (TRAP) is
an alternative approach tomonitor cell-type speci�c expres-
sion changes (45), but TRAP is generally unable to delineate
the number of ribosomes bound to an mRNA, thus fur-
ther complicating determinations of translational ef�ciency.
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Therefore, with currently available technologies, it is imper-
ative to improve the reproducibility of ribosome pro�ling to
capture subtle changes when comparing across genotypes
or disease models such as the FXS example (Figure 1).

Mammalian ribosome pro�ling has been performed us-
ing various RNase species with distinct cutting patterns, in-
cluding RNase I and RNase A+T1 cocktail (22). When the
sample amounts are not limited, RNase I has the major ad-
vantage of high frame resolution. However, we noticed that
RNase I caused a substantial disassembly of monosomes
for mouse cortical samples (Supplementary Figure S1) as
previously reported for other types of mammalian samples
(35). For low input samples from brain tissue or neural
cultures, RNase I results in very low yields of monosomal
RNA, making the library preparation extremely dif�cult
(the minimum input for the RiboZero kit is 1�g) and prone
to technical biases. TheRNaseA+T1 cocktailmaintains the
integrity of monosomes better thus leads to higher yields of
monosomal RNA but at the cost of lower frame resolution
due to the base cutting preferences (Supplementary Figure
S1 and Figure 6C). mRNA-level resolution is suf�cient for
calculating translational ef�ciencies, so we chose the RNase
A+T1 cocktail to maximize the yield of monosomal RNA
for the input of library preparation.
Our data revealed that inconsistent RNase digestion

was a major contributor to poor reproducibility in ri-
bosome pro�ling, especially, of low-input samples with
small changes in footprint densities. Theoretically, the most
consistent results can be obtained by digesting the same
amounts of lysates with the same amounts of RNase at
a �xed volume, temperature and time (46). However, de-
scriptions of how to optimize the RNase concentration for
different types of samples are lacking. In practice, differ-
ent samples can have a wide range of RNA amounts, mak-
ing it unfeasible to adjust the digestion amounts for low-
input samples. Instead, many ribosome pro�ling studies ad-
just the amount of RNase in the digestion based on the
amounts of nucleic acids (usually A260 units) in the lysates
and scale down linearly for low-input samples. However,
we �nd that this step, while seemingly appropriate, intro-
duces unexpected inconsistences. Therefore, we propose a
better practice of RNase digestion optimization. In design-
ing new ribosome pro�ling experiments, an RNase titra-
tion experiment covering a wide-range of concentrations
should be performed on representative test samples that
mimic the amounts of real samples. Because sucrose gradi-
ent pro�les are not reliable readouts for determining the op-
timal RNase concentration (Figure 5A–E), libraries should
ideally be prepared, sequenced at a relatively low depth and
assessed for speci�c quality control metrics, primarily the
GC content and length of RPF (Figure 5 and 6). Ideally,
the same RNA to RNase ratio in a �xed digestion volume
should be maintained for all samples to obtain most consis-
tent results. However, tomaximize theRNAyield, it is often
dif�cult to adjust low-input samples to the same amount. In
this case, we suggest to use a relatively high concentration
of RNase to achieve more complete digestion and conse-
quently more reproducible results (Figure 6D and E). The
initial RNase concentration that we used for the FXS hip-
pocampi batch1–2 might be marginally enough. However,
the RNase activity was probably reduced through freeze-

thaw cycles over the six month period and led to incomplete
digestion as well as strong batch effects for batch3–4 (Figure
1). Batch3–4 samples were collected freshly and processed
within one week. In addition, iPSC samples (Figure 4A and
B) were collected within one week but still showed variable
GC contents. These results argue against the sample degra-
dation as a major contributor of GC content.
One puzzling result is the inconsistency between the GC

contents of input mRNA CDS and RPFs without batch ef-
fects. If RPFs are samplings of mRNA CDS, they should
have a similar GC content. However, the mRNA CDS was
slightly GC-rich (∼60%), while the RPFs with little batch
effect had ∼50% GC. Those RPFs exhibited higher repro-
ducibility statistically, but it is unclear whether they re-
�ect the true ribosome occupancies in vivo. One explana-
tion is that complete RNase digestion only retains a subset
of RPFs that are most resistant to RNase and most repro-
ducible across conditions. Another interesting observation
is that different species of RNases seem to have dramatically
different kinetics to achieve complete digestion.RNase I cut
after all four bases as compared to only U,C,G for RNase
A+T1, thus RNase I should have stronger activity. Indeed,
RNase I caused more monosome disassembly than RNase
A+T1 shown in sucrose gradient pro�les (Figure 3A and
B), but the corresponding RNase I digestion was not com-
plete for ribosome pro�ling as indicated by high RPF GC
content and long RPF length (Figure 3D). This result em-
phasizes once again that the integrity of monosome peak is
not a reliable readout of ribosome pro�ling quality. Indeed,
generation of high quality ribosome pro�ling data required
much more RNase I, which almost completely dissembled
the monosome peak (22). The underlying mechanism for
this kinetic difference is unclear, indicating that each RNase
must be characterized empirically.
Several recent studies compared the impact of different

RNases on ribosome pro�ling data (22,47) and found that
different RNases generated ribosome footprints with dis-
tinct size distributions. Combined with our results, the dif-
ferences were not only caused by distinct enzymatic speci-
�cities but probably also the extent of digestion. Frag-
ment length metric (FLOSS) analysis has been used to
identify true ribosome footprints bioinformatically (48),
which could be seriously compromised with various levels
of RNase digestion. Gerashchenko et al. (22) also showed
that different RNases yielded comparable estimations of
gene expression when ribosome integrity is not compro-
mised. Similarly, our data describing different concentra-
tions of the same RNase also exhibited high correlation of
RPF abundance (Figure 6D). However, the ‘completeness’
of RNase digestion did in�uence the identi�cation of dif-
ferentially expressed genes with subtle changes signi�cantly
(Figure 1). Finally, Gerashchenko et al showed that ribo-
some coverage patterns of individual transcripts had little
in common among the RNases. In addition to the distinct
cutting preferences of RNases, various extents of digestion
of the same RNase also led to dramatically different ribo-
some coverage patterns (Figure 6F and G). Therefore, in-
consistent RNase digestion might partially explain the sub-
stantial variation of local ribosome densities across labora-
tories (29). This observation also implies that certain peaks
of ribosome footprints might not represent true elongation
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pausing sites, which could be a major cause of inconsistent
results on translational pausing and codon usage (27,28).
In summary, we present a comprehensive analysis of the

impact of RNase digestion on the quality and reproducibil-
ity of ribosome pro�ling data especially for low-input sam-
ples with small changes in footprint densities. We establish
a complete work�ow with quality control metrics for the
optimization of RNase digestion, which is often underap-
preciated. Our data provide guidance for a better interpre-
tation of ribosome density data and pave the way for the
application of ribosome pro�ling to investigating neurolog-
ical diseases.
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