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Abstract 

To ensure all products as perfect, inspection is essential, even though it is not possible to inspect all products 

after producing them like some special type products as plastic joint for the water pipe. In this direction, this 

paper develops an inventory model with lot inspection policy. With the help of lot inspection, all products 

need not to be verified still the retailer can decide the quality of products during inspection. If retailer founds 

products as imperfect quality, the products are sent back to supplier. As it is lot inspection, mis-clarification 

errors (Type-I error and Type-II error) are introduced to model the problem. Two possible cases are 

discussed for sending back products as defective lots are immediately withdrawn from the system and send 

back to supplier with retailer’s payment and for second case, retailer sends defective products during 

receiving next lot from supplier with supplier’s investment, like in food industry or in hygiene product 

industry. The model is solved analytically and results indicate that optimal order size and sample size are 

intrinsically linked and maximize the total profit. Numerical examples, graphical representations, and 

sensitivity analysis are given to illustrate the model. The results suggest that sending defective products 

maintaining the first case is the more profitable than the second case. 
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1. Introduction 

Since the establishment of the economic order quantity (EOQ) model by Harris (1913), this model has 

become a “well-known” inventory problem and many studies have followed and studied this 

problem. Andriolo et al. (2014) developed a good review of all the research that has been taken for this last 

century. Throughout its evolution, the EOQ model keeps receiving attention for several research studies and 

publications, which tried to fill the weaknesses of the model’s assumptions that are never met. 

One of these assumptions stated that the received items are perfect quality. This problem has received 

considerable attention for the last thirty years. Porteus (1986) first considered investments for the quality 

improvement problem and setup cost reduction. He believed that the number of defective items in a lot 

depends of the probability of the production process (machine) becoming out of control and he concluded 

that quality of items can be improved by reducing lot sizes. After dealing with the same issue, Rosenblatt 

and Lee (1986) came to the same conclusion. 

After almost a decade, Salameh and Jaber (2000) worked on this similar problem of quality related issue 

with a different approach. Instead of focusing on how to reduce defective items in production, they tried to 

determine how to compensate this quality problem on the traditional EOQ model. They suggested a model 

where the lot is 100% screened. At the end of the inspection, the items of imperfect quality are not 

considered defective, but they are sold as a single batch with a discounted price. 

However, in some modern supply chains areas, the inspection of each product or component is nowadays no 

longer possible. The quantities of products have increased significantly; the inspection cost of each item 

might be too high. A sampling method is then required and applied in most of these sectors. Another reason 

for using sampling methods is in the requirement of a sample inspection, i.e., after inspection of a product 

might render it unmarketable. Some examples of industries requiring this method are for example food 

products, hygiene products or even matches. 

Another trend in today’s industry concerns the quality warranty from suppliers. As the power of retailer is 

increasing, some suppliers could offer the possibility of returning back the defective lots. This usually 

occurs when the retailer obtains strict quality requirements from the customers and can’t sell the defective 

items at a lower price in the market.  

This study fills the gap described previously; it presents an inventory model, in which defective lots are 

detected through a sampling inspection. As soon as the inspection reduction from the whole shipment is 

concluded, defective lots are sent back to the supplier and are not charged. The mathematical model 

develops in this paper to determine the optimal order size and the optimal sample size, which minimizes the 

system costs, taking into account this quality related problem. The items used in the sampling inspection are 

no more marketable and withdraw from the supply chain stream. This study doesn’t investigate the policy to 

accept or reject a lot. It simply supposes that a lot accepted by the quality office contains only perfect quality 

items. This last assumption is applicable in sectors, where the probability of having identical items 

throughout the lot is high, (examples: products issued from the same recipe process or same raw material). 

 

This proposed study is extended from Salameh and Jaber’s (2000) model, described previously. Since 17 

years, this publication has received a lot of interest. Cárdenas − Barrón (2000)  updated this study, 

Goyal and Cárdenas − Barrón (2002)  simplified the model, and Rezaei (2005) made an extension by 

allowing shortages. Huang (2002) extended the model into a two-stage vendor-buyer supply chain. 

Papachristos and Konstantaras (2006) clarified a point about the conditions ensuring that shortages will not 

occur in the original model of Salameh and Jaber (2000) they also propose an extension, supposing that the 

withdrawing of defectives takes place at the end of the planning horizon. Skouri et al. (2014) built a model 
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illustrating what would happened if there is a probability that the entire shipment may be defective. In short, 

Khan et al. (2011) gave a good review of the research areas and extensions of this model. 

Most of the research always considered that the items are subject to a 100% screening. Tai (2013) proposed 

a model, where items are subject to multiple of successive 100% screening. However, only a few models 

have considered a sampling process. Moussawi-Haidar et al. (2012) investigated the case, where only a 

sample is inspected instead of the whole lot. If the number of defective items is below a certain “acceptance 

number’’, the lot is accepted. Otherwise, the lot is subject to a 100% screening. They determined the optimal 

lot size and the optimal sampling plan to achieve the requirements of quality established. However, they 

obtained a profit significantly higher when compared to the optimal profit using Salameh and Jaber’s (2000) 

model, but couldn’t guarantee a zero defective item on the output quality. 

Al-Salamah (2011) developed an inventory model with a sample inspection, and an acceptance sampling 

and possible Type II errors of miss-classification, but didn’t consider the Type I errors. He assumed that a 

lot could be classified as non-defective if it is less than a certain percentage of items that are found as 

defective items. It means that a lot could still present defective items even though it has passed the 

inspection process. Finally according to his model, defective lots are withdrawn as soon as detected and sold. 

 

Many studies have reflected about other solutions to make efficient use of the defective items rather than 

selling as second quality goods. Chan et al. (2003) proposed a production-inventory model, extension to the 

Salameh and Jaber’s (2000) model, and provided a framework to integrate three possible uses of the 

defectives: sell at a lower price/rework/reject. Jaber et al. (2014) proposed an inventory model as defective 

items are either sent for reworking or replaced by good ones from a local supplier. They found that there 

exists a threshold value to the replacement unit cost and the fraction of defectives to which it is more 

beneficial to either buy or repair. Yu et al. (2012) established an inventory model, where a portion of the 

defective items (called the acceptable defective parts) can be used as perfect quality. 

However, only some studies have already investigated some models which return defected items as soon as 

detected. Only Hsu and Yu (2011) proposed an inventory model in which all items are immediately returned 

back, as soon as they are detected.  Yu et al. (2013) proposed the same model with an integrated policy. 

However, we consider in our proposed model that the retailer is still responsible for the safekeeping of the 

defective lots during the inspection. Indeed, the retailer has to keep defective lots, and send them back to the 

supplier as soon as the inspection phase for all the lots is concluded. 

 

Khan et al. (2011) proposed an extension by considering that the inspector may commit errors while 

screening. They build an inventory to depict this scenario. However, this model is based again on a 100% 

screening process and the defectives are sold at a lower price. This model has been updated by Hsu (2012a, 

b) and extended by allowing shortages in Hsu and Hsu’s (2013c) model. The same approach has been used 

to build the analogue production-inventory model (Hsu and Hsu, 2013b). Thereafter, Khan et al. (2013) 

extended the model of Khan et al. (2011) for a two-stage vendor-buyer supply chain, similar as Huang’s 

(2002) model with the incorporation of learning in production. 

 

Sarkar (2013) addressed a production-inventory model with defective items, but those defective items were 

due to deterioration. Due to improvement of the quality of defective products, Sarkar and Moon (2014), 

Sarkar et al. (2015) developed integrated inventory models. Even though the system contains defective 

products, how the service level can be maintained, that is given by Sarkar et al. (2015). During 

transportations of products (perfect or defective), how transportations cost and carbon emission cost effect 

on total cost, that is discussed by Sarkar et al. (2015). In this direction, several research are done by Skouri 

et al. (2011), De and Sana (2013), Cárdenas-Barrón et al. (2014), Sarkar et al. (2015), Roy et al. (2015), 
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Wang et al. (2015), Sarkar et al. (2015), Cárdenas-Barrón  et al. (2015), Lashgaril et al. (2015), Sarkar 

(2016), Jaggi et al. (2016), Sarkar and Saren (2016),  Taleizadeh et al. (2016), Sarkar et al. (2016), Tayyab 

and Sarkar (2016),  Taleizadeh et al. (2016), Sarkar and Lee (2017), Misra et al. (2017).             

 

This study extends the model of Salameh and Jaber (2000). The model considers a sampling process to 

identify and reject the defective lots. It includes Type I and Type II errors resulting from an imperfect 

inspection, following the approach of Khan et al. (2011). However, this model doesn’t consider sales return. 

After the inspection process, the defective lots follow two scenarios. In the first one, defectives are 

immediately returned back to the supplier by the retailer. In the second scenario, defective items are kept in 

inventory and are taken back during the next shipment from the supplier. We don’t allow shortages and 

don’t consider an integrated supply chain model.  

  

Table 1 summarizes the contribution of this study compared with other models from the literature review.  

 
Table 1 Literature review 

                    Study EOQ model 

 

 

 

Defective 

items 

withdraw 

as a single 

batch 

 

 

 

Defective 

items are 

sent back 

to 

supplier 

  Sampling   

inspection 

 

 

Assuming 

errors in 

inspection 

process 

Salameh and Jaber (2000)     ✓ ✓    

             Hung (2002)  ✓    

            Rezaei (2005) ✓ ✓    

Papachristos and 

Konstantars (2006) 
✓ ✓    

Al-Salamah (2011) ✓   ✓ ✓ 

Hsu and Yu (2011) ✓ ✓ ✓   

Khan et al. (2011) ✓     

Moussawi-Haidar et al.  

(2012) 
✓ ✓  ✓  

Yu et al. (2012) ✓ ✓    

Tai (2013) ✓     

Sarkar (2013) ✓     

     Yu et al. (2013)  ✓ ✓   

Khan et al. (2013)  ✓   ✓ 

          Hsu and Hsu (2013 c) ✓     

Skouri et al. (2014) ✓     

  Sarkar et al. (2014)  ✓ ✓   

Sarkar and Moon (2014)   ✓  ✓ 

Cárdenas-Barrón et al. 

(2014) 
✓     

Wang et al. (2015)    ✓   

Cárdenas-Barrón et.al. 

(2015) 
✓ ✓    

Sarkar et al. (2015)    ✓  

Sarkar et al. (2015)  ✓    
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                    Study EOQ model 

 

 

 

Defective 

items 

withdraw as 

a single 

batch 

 

 

Defective 

items are sent 

back to 

supplier 

Sampling 

inspection 

 

 

Assuming 

errors in 

inspection 

process 

Sarkar et al. (2015) ✓ ✓    

Taleizadeh et al. (2016) ✓ ✓    

   Sarkar (2016)    ✓  

Taleizadeh et al. (2016) ✓  ✓   

Sarkar and Saren (2016)     ✓ 

   Sarkar et al. (2016) ✓     

Tayyab and Sarkar 

(2016) 
 ✓    

This study ✓ ✓ ✓ ✓ ✓ 

 

 

The remainder of this paper is organized as follows: Section 2 gives a list of assumptions and nomenclatures 

used in our study; Section 3 presents the mathematical model itself. A numerical example and managerial 

insights are given for illustration in Section 4 and a sensitivity analysis is given in Section 5. Finally, some 

concluding remarks about the study are provided in Section 6. 

 

2. Assumptions and notation 

The assumptions, taken in this paper, are as follows: 

1. The study considers an inventory model for single-type of products with a certain percentage of 

imperfect quality product’s shipments. Based on Sarkar et al. (2014), the model assumes the rate of 

defective production follows a random variable, which follows any probability distribution (for this 

model, it is assumed as uniform distribution). 

2. Shipment of product contains several lots without inspection as supplier sends products without 

inspection and the retailer inspects to ensure the brand image of retailer in the market.  

3. As soon as the shipment is received, a sampling process is applied. A quality inspection to 𝑛 items in 

each lot is applied. If the lot passes the quality inspection, one can consider that all items in the lot 

are of perfect quality. Otherwise, the lot is intended to return to the supplier. The inspection is not 

error-free. During inspections, some imperfect products are accepted and some perfect products are 

wrongly rejected, thus Type I and Type II errors are incorporated within the model. 

4. Lots, which do not meet the quality standard, have to be kept in inventory until they are sent back to 

the supplier. Either defective lots are sent back immediately after inspection, or the supplier will take 

them back in the next shipment. 

5. The inspection phase and the demand proceed simultaneously. However, the study considers that the 

number of perfect lots identified is greater than the demand rate. 

6. The demand rate is constant and uniform over the entire planning horizon. 

7. Shortages are not allowed and the time horizon is infinite. 
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Notation 

Decision variables 

𝑦  order quantity size (units) 

𝑛  number of items inspected per lot (integer) 

Parameters 

𝑐𝑙  unit inspection cost ($/unit) 

𝑐𝑈  lot purchase cost ($/lot) 

𝑐𝑎  cost of falsely accepting a defective lot ($/lot) 

𝑐𝑟  cost of falsely rejecting a non-defective lot ($/lot) 

𝐷  demand rate (units/year) 

ℎ  holding cost of a good quality item ($/unit/year) 

ℎ𝑑  holding cost of a defective item kept in inventory (for the second subcase model) ($/unit/year) 

𝐾  ordering cost ($/order) 

K𝑑  transport cost of defective lots back to supplier (for the first subcase model) ($) 

𝐿  number of items per lot 

𝑚1  random variable representing the Type I error 

𝑚2  random variable  representing the Type II error 

𝑃  unit selling price ($/unit) 

ρ  fraction of defective lots supplied 

𝑋  screening rate (units/year) 

𝐸[. ]  expected value of a random variable 

𝑡𝑙  time to screen a shipment (years) = 
𝑦

𝑋
 

HC𝑛  Holding costs of the subcase 𝑛 

IC  Inspection costs 

IEC  Inspection error costs 

PC𝑛  Purchase costs of the sub-case 𝑛 

TP𝑛  Total profit of the sub-case 𝑛 

T0  cycle time (years) 

𝑦∗  optimal order quantity size (units) 

 

3. Mathematical model 

  The study develops an inventory model with imperfect items. The items are detected with 100% inspection 

process is not possible during delivery time. This model emphasizes about a sample inspection to avoid 

maximum possibility of Type I and Type II errors of defective items. The mathematical model analyzes two 

ways how to reduce defective lots.  Retailer chooses the way, after inspection of defective items, they are 

immediately sent back to the supplier or wait for next shipment from supplier to send defective items.  The 

model mainly stands on two major factors: order size (𝑦∗) and sample size (𝑛∗), which are related each other. 

Actually, products depend on taking quantity of sample products and number of quantity lots, which are 

ordered from supplier. Applying both related factors, the model obtains the total profit (TP) of retailer. 
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In this section, the mathematical model is introduced. Let  𝑦 represents the order quantity size of lots, a new 

constant 𝐿 is introduced, which represents the number of items per lots. 

In order to satisfy the demand 𝐷  of items per year, a shipment containing several lots is received 

every 𝑇 unit of time. In a perfect model and without defected items, the relation D = 𝑦𝐿/𝑇 is established in 

the stationary state, where 𝑇 represents the cycle time. To calculate the total cost of the model, the following 

costs hand to be calculated.  

 

Inspection costs 

Upon receiving an order, an inspection based on a sample is applied. Let 𝑛 represents sample size and 

satisfying constraint 1 ≤ 𝑛 ≤ L and 𝑛 ∈ ℕ . It is supposed that the arbitrary number of items used for the 

inspection is sufficient to provide a trustfully test. In other words, there isn’t a single defected item in the lot 

inspected if the inspection phase had been successful. It is also considered that the inspection time for a 

shipment 𝑡𝑙 depends from the order size and from the number of samples used for inspection. Thus, one can 

obtain relation 𝑡𝑙 =  
𝑦𝑛

𝑋
, where 𝑋 is the screening rate (constant). 

A unit inspection cost 𝑐𝑙 is introduced, which represents the cost for applying a quality inspection on an item. 

The inspection cost (IC) for a shipment is 

 

 IC = cln y (1) 

 

Inspection errors 

 

As described in the model by Khan et al. (2011), their screening process is assumed to be error free. But it is 

quite realistic to account for Type I and Type II errors committed by inspectors as it is offline inspection by 

the inspectors, thus there is a chance for accepting imperfect products as perfect and rejecting perfect 

product as imperfect. For this reason, the increased number of samples permits to reduce the risk of falsely 

qualifying a lot. Depending on the sample size 𝑛, inspectors classify some non-defective lots as defectives, 

i.e. (1 − ρ)𝑚1
𝑛, while some defective units as non-defectives, i.e.  ρ 𝑚2

𝑛. For this reason, the percentage of 

defective items perceived by the retailer ρ𝑒 is different from the actual one ρ. Thus, the fraction of defectives 

units perceived can be obtained as  

 

𝐸[ρ𝑒] = (1 − 𝐸[ρ])𝐸[𝑚1]𝑛 +  𝐸[ρ]( 1 − 𝐸[𝑚2]𝑛) 

 

It is considered a cost of misclassification due to an insufficient number of samples to qualify the quality 

of the lot. One can assume that the number of items, which goes into Type I error (false rejection) is 

dependent on 𝑛. The inspectors falsely reject a lot if the inspectors have a Type I error, which happens on 

each non-defective item from the sample. 

𝑦(1 − 𝐸[ρ])𝐸[𝑚1]𝑛 

 

The number of items, that goes into Type II error (false acceptation), is dependent on 𝑛. The inspectors 

falsely accept a lot if they have a Type II error, which happens on each defective item from the sample. 

 

𝑦𝐸[ρ]𝐸[𝑚2]𝑛 
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Let 𝑐𝑟 and 𝑐𝑎, respectively be the cost of rejecting a non-defective lot (Type I error) and the cost accepting 

a defective lot (Type II error). In case of critical products, such as food, medical, or parts of an aircraft, the 

cost of acceptance 𝑐𝑎 is much more than that of a false rejection (see for reference Raouf et al., 1983). 

Costs of inspection error (IEC) per cycle can be expressed as 

 

IEC = 𝑐𝑎𝑦𝐸[ρ]𝐸[𝑚2]𝑛 + 𝑐𝑟𝑦(1 − 𝐸[ρ])𝐸[𝑚1]𝑛 

 

Figure 1 represents the behavior of the inventory level. It can be noticed that the number of items that are 

withdrawn from the inventory is ρ𝑒yL + ny(1 − ρ𝑒), which represents the number of defective lots plus the 

number of items used for the inspection in the accepted lots. Under this condition, the inventory cycle T0 is 

determined as 

 

 
T0 =

𝑦𝐿 − (𝑝𝑦𝐿 + 𝑛𝑦(1 − ρ𝑒))

𝐷
=

𝑦(1 − ρ𝑒)(𝐿 − 𝑛)

𝐷
 (2) 

   

 

The remainder of the model is subdivided in two cases. The first case (Case 1) considers a special transport 

is organized to send the defective lots back to the supplier. The model has an additional transport costs K𝑑 , 

but the defective products are no longer stored in the warehouse to avoid additional holding costs. The 

second case (Case 2) considers that for the sake of convenience, the supplier can take back the defective 

items in the next shipment. These two cases are the more efficient possibilities as it is logically be more 

expensive to send a transportation cost not immediately after the screening process (because of the holding 

costs of defective items). 

Case 1 Defective items are immediately sent back to supplier with an additional transportation 

cost 

 

Figure 1 Behavior of the inventory model sub-case (1) 

As ℎ is the holding cost per unit per item, the holding costs per cycle for the first case (HC1) can be 

determined from the Figure 1 (summing the 2 areas, see Appendix 1 for the complete development) as  

 

 
HC1 = ℎ (

𝑦2(1 − ρ𝑒)2(𝐿 − 𝑛)2

2𝐷
+  

𝑦2𝑛L(ρ𝑒L + 𝑛(1 − ρ))

𝑋
) (3) 

 

T0 

ρ𝑒yL + ny(1 − ρ𝑒) 

𝑡𝑙 

𝑦𝐿 

Inventory 

levelLevel 

𝑦𝐿 − 𝐷𝑡𝑙 
  

Time 
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In this case, the defective lots are sent back to the supplier with an additional cost for transportation cost K𝑑. 

The purchasing costs (PC) per cycle is determined as 

 

 PC1 = K𝑑 + 𝑦(1 − ρ𝑒)𝑐𝑈 (4) 

 

Total revenue (TR) in a cycle is 

 

 TR =  𝑃(𝑦𝐿 − ρ𝑒yL − (1 − ρ𝑒)𝑛𝑦) = P𝑦((𝐿 − 𝑛)(1 − ρ𝑒)) (5) 

 

where 𝑃 is the unit’s selling price. Total profit TP(y, n) is the total revenue per cycle less the total cost per 

cycle divided by the cycle time, and is given as follows: 

 

 

 
TP1(𝑦, 𝑛) =

TR − PC1 − IC − IEC − HC1

T0

= PD −
𝐷𝑐𝑈

(𝐿 − 𝑛)
−

𝑐𝑙𝑛𝐷

(𝐿 − 𝑛)(1 − E[ρ𝑒])
−

(K + K𝑑)𝐷

𝑦(1 − 𝐸[ρ𝑒])(𝐿 − 𝑛)

−
𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
−

𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
− ℎ

𝑦(1 − E[ρ𝑒])(𝐿 − 𝑛)

2

− ℎ
𝐷𝐿𝑦𝑛(E[ρ𝑒]L + 𝑛(1 − E[ρ𝑒]))

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)
 

(6) 

 

For maximization of the profit, by taking partial derivatives with respect to 𝑦 and 𝑛, one can obtain 

 

 𝛿TP1(𝑦, 𝑛)

𝛿𝑦
=  

(K + K𝑑)𝐷

𝑦2(1 − E[ρ𝑒])(𝐿 − 𝑛)
− ℎ

(1 − E[ρ𝑒])(𝐿 − 𝑛)

2
− ℎ

𝐷𝐿𝑛(E[ρ𝑒]L + 𝑛(1 − E[ρ𝑒]))

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)
 

 

(7) 

 

and  

 𝛿TP1(𝑦, 𝑛)

𝛿𝑛
= −

𝐷𝑐𝑈

(𝐿 − 𝑛)2
−

𝑐𝑙𝐷𝐿

(1 − 𝐸[ρ𝑒])(𝐿 − 𝑛)2
−

(K + K𝑑)𝐷

𝑦(1 − E[ρ𝑒])(𝐿 − 𝑛)2

−
𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
 [

1

(𝐿 − 𝑛)
+ ln(𝐸[𝑚2])]

−
𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
[

1

(𝐿 − 𝑛)
+ ln(𝐸[𝑚1])] + ℎ

𝑦(1 − E[ρ𝑒])

2

− ℎ
𝐷𝐿𝑦(E[ρ𝑒]L2 ∓ 2𝑛𝐿(1 − E[ρ𝑒]) − 𝑛2(1 − E[ρ𝑒]))

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)2
 

(8) 

 

 

For sufficient condition, the second order derivative can be obtained as follows:  

All terms of Hessian matrix are obtained as follows: 

 

 𝛿2TP1(𝑦, 𝑛)

𝛿𝑦2
= −

2(K + K𝑑)𝐷

𝑦3(1 − E[ρ𝑒])(𝐿 − 𝑛)
< 0 (9) 
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 𝛿2TP1(𝑦, 𝑛)

𝛿𝑛𝛿𝑦
=  

𝛿TP1(𝑦, 𝑛)

𝛿𝑦𝛿𝑛

=
(K + K𝑑)𝐷

𝑦2(1 − E[ρ𝑒])(𝐿 − 𝑛)2
+ ℎ

(1 − E[ρ𝑒])

2

− ℎ
𝐷𝐿(L2E[ρ𝑒] + 2𝐿𝑛(1 − E[ρ𝑒]) − 𝑛2(1 − E[ρ𝑒]))

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)2
 

(10) 

 

 

 𝛿2TP1(𝑦, 𝑛)

𝛿𝑛2
= −

2𝐷𝑐𝑈

(𝐿 − 𝑛)3
−

2𝑐𝑙𝐷𝐿

(1 − E[ρ𝑒])(𝐿 − 𝑛)3
−

2(K + K𝑑)𝐷

𝑦(1 − E[ρ𝑒])(𝐿 − 𝑛)3

−
𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
∗ [

2

(𝐿 − 𝑛)2
+

ln(𝐸[𝑚2])

(𝐿 − 𝑛)
+ ln(𝐸[𝑚2])2]

−
𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
[

2

(𝐿 − 𝑛)2
+

ln(𝐸[𝑚1])

(𝐿 − 𝑛)
+ ln(𝐸[𝑚1])2]

− ℎ
2𝐷𝑦𝐿3

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)3
< 0 

(11) 

 

 

Proposition 1 For 𝑛 < 𝐿 and for 𝑋 more than 1, the expected profit function TP1(𝑦, 𝑛) is concave. Thus, 

there always exist an order size 𝑦 and a sample size 𝑛 which maximizes the total profit. 

 

Proof The function TP (y, x) is concave and have the global maximum if the principal minors are 

alternating in sign. For the 1st principal minor, it is found that 
𝛿2TP1(𝑦,𝑛)

𝛿𝑛2  and 
𝛿2TP1(𝑦,𝑛)

𝛿𝑦2  are negative definite. 

Thus if the 2nd principal minor is positive definite, then the profit function has the global maximum. 

 

To prove, the 2nd condition, the relation 
𝛿2TP1(𝑦,𝑛)

𝛿𝑦2  ∗
𝛿2TP1(𝑦,𝑛)

𝛿𝑛2 − (
𝛿2TP1(𝑦,𝑛)

𝛿𝑛𝛿𝑦
)

2

> 0 should be verified. As 

the terms 
𝛿TPU1(𝑦,𝑛)

𝛿𝑦𝛿𝑦
 and 

𝛿TPU1(𝑦,𝑛)

𝛿𝑛𝛿𝑛
 are always strictly negative according to the conditions, the determinant 

is negative if: 

 

1. |
𝛿2TP1(𝑦,𝑛)

𝛿𝑦2 | > |
𝛿2TP1(𝑦,𝑛)

𝛿𝑛𝛿𝑦
|  

 

and 

 

2. |
𝛿2TP1(𝑦,𝑛)

𝛿𝑛2 | > |
𝛿2TP1(𝑦,𝑛)

𝛿𝑛𝛿𝑦
| 

 

The 1st condition is obviously true for every  𝑦 > 1 . The complete explanation of the 2nd condition is 

provided in Appendix 2. Consequently, it could be stated that the function is always concave and has a 

solution, which maximizes the total profit. 
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Case 2 Supplier will take back defective lots in the next shipment 

 

Figure 2 Behavior of the inventory, sub-case (2) 

In this case, the holding costs are the same as in Equation 3 increased by an additional term corresponding to 

the holing costs of the defective items (grey area on Figure 2). The holding costs are determined as 

 

 
HC2 = ℎ [

𝑦2(1 − ρ𝑒)2(𝐿 − 𝑛)2

2𝐷
+ 

𝐿𝑦2(ρ𝑒L + 𝑛(1 − ρ𝑒))

𝑋
]

+ ℎ𝑑 [
𝑦2ρ𝑒(1 − ρ𝑒)(𝐿 − 𝑛)2

𝐷
+ 

L𝑦ρ𝑒(L + 𝑛)

𝑋
] 

(12) 

 

 

Supplier takes back defective items in the next shipment. Thus, there isn’t any additional cost for 

transportation. The purchase costs (PC) per cycle is determined as 

 

 PC2 = 𝑦(1 − ρ𝑒)𝑐𝑈 (13) 

 

Total profit TP(𝑦, 𝑛) is determined in the same way and is given as 

 

 
TP2(𝑦, 𝑛) =

TR − PC2 − IC − HC2

T0

= PD −
𝐷𝑐𝑈

(𝐿 − 𝑛)
−

𝑐𝑙𝑛𝐷

(𝐿 − 𝑛)
−

K𝐷

𝑦(1 − E[ρ𝑒])(𝐿 − 𝑛)
−

𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)

−
𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
− ℎ

𝑦(1 − E[ρ𝑒])(𝐿 − 𝑛)

2

− ℎ
𝐷𝐿𝑦(E[ρ𝑒]L + 𝑛(1 − ρ))

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)
− ℎ𝑑𝑦E[ρ𝑒](L − 𝑛) − ℎ𝑑

𝐷𝐿E[ρ𝑒](L + 𝑛)

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)
 

(14) 

 

 

 

If one can consider a transportation cost is zero and a holding cost of the defective lots is zero, i.e. K𝑑 = 0 

and ℎ𝑑 = 0, one can observe that Equation 6 and Equation 14 are the same, supporting the evidence that the 

two cases are based on the same model. 

 

Time T0 

𝑦𝐿 − 𝐷𝑡𝑙 − 𝑛𝑦 
  𝐿ρ𝑒𝑦 − 𝑛𝑦ρ𝑒 

  

𝑦𝐿 

Inventory level 

𝑦𝐿 

− 𝐷𝑡𝑙 

 

𝑡𝑙 
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A similar statement on Proposition 1 can be proposed regarding the existence of a maximum for the 

TPU2(𝑦, 𝑛) function.  

 

Proposition 2 Based on this model, there exists a threshold value of K𝑑  consider K𝑑
∗, after which it is more 

profitable to conduct a transporting of defective items to a supplier rather than to keep the defective items in 

a warehouse. This threshold value is dependent from the optimal couple (𝑦, 𝑛) and is given by 

 

 
K𝑑

∗ < ℎ𝑑 (
𝑦2E[ρ𝑒](1 − E[ρ𝑒])(𝐿 − 𝑛)2

𝐷
+  

L𝑦E[ρ𝑒](L + 𝑛)

𝑋
) (15) 

 

Proof As Equation 6 shows the total profit TP1(𝑦, 𝑛) and Equation14 shows explicitly TPU2(𝑦, 𝑛). The 

validity of the theorem that TP1(𝑦, 𝑛) − TP2(𝑦, 𝑛) > 0. After an arrangement of the terms, the Equation 15 

is obtained. Hence, this implies the proof. 

NBBARY algorithm 

As the solutions are dependent to each other, thus we need an algorithm for the numerical study. Here one 

can present a procedure in order to find the optimal solution of the problem. 

- Step 1 Find the maximum values of TP1(𝑦, 𝑛) and TP2(𝑦, 𝑛) by solving the zero value of gradients, 

using Newton- Raphson’s method. 

- Step 2 Compare both cases and select the more profitable one. If the two cases give profits then 

more profitable case can be accepted and less profitable case can be rejected. Otherwise, Step 3 must 

be applied for both cases. 

- Step 3 Let (𝑦∗, 𝑛∗) be the optimal values obtained corresponding to the optimal total profit function. 

The aim is to obtain an integer value of 𝑛  and  𝑦  corresponding to convenient practical cases. 

Compute the values of TP(⌊𝑦⌋, ⌊𝑛⌋), TP(⌊𝑦⌋ + 1 , ⌊𝑛⌋) , TP(⌊𝑦⌋, ⌊𝑛⌋ + 1) and  TP(⌊𝑦⌋ + 1 , ⌊𝑛⌋ + 1), 

choose finally between the four results with the twin value which gives the highest profit. 

4. Numerical examples 

In this section, the behavior of mathematical model is presented for practical cases. Five relevant numerical 

experiments are conducted. In the first numerical example, parametric values, similar to the numerical 

example by Salameh and Jaber (2000), are considered. The above solution procedure in order to obtain the 

optimal twin (𝑦∗, 𝑛∗) is applied. In the second numerical example, the ratios between the total profits (TP) 

of both cases are observed, while varying the holding costs and transport costs of defective items. In the 

third numerical example, the behavior of the optimal values (𝑦∗, 𝑛∗) are analyzed, while varying the lot size. 

On the fourth example, the implication of ordering costs and inventory costs are observed on the optimal 

values (𝑦∗, 𝑛∗). Finally, the same scenario is replicated on the fifth example, while varying the screening 

rate. 

 

Example 1 NBBARY algorithm to obtain the optimal order size and sample size is applied. Table 2 gives 

the values adopted by this numerical example; similar to the work of Salameh and Jaber (2000). A lot size of 

300 has been arbitrary chosen, the remaining values are adjusted in order to correspond with the same range 

of costs. 
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Table 2 Standard values adopted for the numerical example 

Description Symbol Value Units Description Symbol Value Units 

Demand  rate D 50,000 units/year Screening cost 𝑐𝑙 15 $/unit 

Number of items per lot L 300 units Lot purchase cost 𝑐𝑈 500 $/lot 

Ordering cost 𝐾 3,000 $/order 
Cost of falsely accepting a 
defective lot 

𝑐𝑎 900,000 $/lot 

Transport cost of defectives to 

supplier 
K𝑑 5,000 $ 

Cost of falsely reject a non-

defective lot 
𝑐𝑟 700 $/lot 

Holding cost ℎ 2 $/unit Fraction of defective lots supplied ρ 𝑈~(0.04)  

Holding cost of defectives ℎ𝑑 5 $/unit Type I error in inspection 𝑚1 𝑈~(0.05)  

Screening rate 𝑋 5,840 units/year Type II error in inspection 𝑚2 𝑈~(0.10)  

Selling price 𝑃 8 $/unit     

 

Prior to computing the TP(𝑦, 𝑛) and find the optimal twin (𝑦∗, 𝑛∗), it is necessary to compute 

 

 
𝐸[ρ] =  ∫ 𝜌𝑓(ρ)

𝑏

𝑎

𝜌𝑑𝜌 = ∫ 𝜌
1

𝑏 − 𝑎

𝑏

𝑎

𝑑𝜌 =  
𝑏 + 𝑎

2
=

0.04 + 0

2
= 0.02 (16) 

 

Following the same process, the values of 𝐸[𝑚1] = 0.025 and 𝐸[𝑚2] = 0.05 are obtained. Finally, 

 

 𝐸[ρ𝑒] =  0.98 ∗ 0.005𝑛 +  0.02( 1 − 0.01𝑛) (17) 

 

By numerical experiment, a maximum profit of 248,291 occurs for an order size 𝑦 of 47.04 and a sample 

size 𝑛 of 2.48. The second case has a maximum profit of 278,924 for an order size of 37.45 and a sample 

size of 2.79. The second case is consequently the model to adopt as in these conditions it is more profitable 

to keep defective lots in inventory until the next shipment. After analyzing the four possible values of 

integer parameters, the optimum combination of decision variables reveals to be (𝑦∗, 𝑛∗)  =  ( 2 , 37 ) with 

a profit of 278,924. It can be found from the results that with such parameters, the total profit among all 

four values is almost the same. In order to validate these results, the curve of the profit function is 

represented on Figure 3. 

 

Figure 3 Total profit (TP) behavior for parameters issued from Table 2 
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Example 2 The ratio between the two total profits for relatively different values of the ratio 𝐾𝑏/ℎ𝑑  is 

represented (𝐾𝑏 is fixed in this numerical example). The results are represented for three fixed values of the 

lot size 𝐿, the lot purchase costs 𝑐𝑢 has been adapted in each case in order to maintain the proportionality to 

the lot size. All others parameters remain unchanged from Table 2. 

One can notice from the results of Figure 4 that the bigger the lot sizes, the more the ratio between the two 

cases differ. Also, one can observe on the same figure that the bigger lot sizes, the more profitable the first 

case is (𝑇𝑃1/𝑇𝑃2 > 1). This deduction is quite intuitive as it can be more expensive to conduct the second 

sub-case. Thus, the holding costs considerably increase with bigger lot sizes. 

 

 

Figure 4 Ratio of total profit while varying the parameters Kd & hd 

Example 3 The optimal order size and the optimal sample size are represented on Figure 5 for different 

levels of lot sizes. The results are obtained with the application of the NBBARY algorithm. In order to 

interpret the model and study specifically the values resulting from the increase of the lot size, the lot 

purchase price 𝑐𝑢  has been adapted and set proportional to the lot size. In that way, there is no 

misunderstanding with other parameters, which can be compared with the essential results. 

The exponentially decreasing behavior of curve from the optimal order size 𝑦∗ can be noticed. However, 

there’s a sudden fall of the curve for a lot size around 100. This corresponds to a change in the optimal 

sample size from 3 samples to 2 samples. This behavior is intuitive as, in this Example 3, the cost of 

accepting a lot is constant whatever the lot size is. Naturally, the model considers that one should take a 

higher number of samples in order to prevent a too costly error in the wrong classification of the lot. 
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Figure 5 Optimal order size and sample while varying the lot size 

 

Example 4 The optimal order size is represented for different ratios of ordering costs versus holding costs 

𝐾/ℎ. Two curves are represented on Figure 6, illustrating the results obtained for two fixed values of  𝐾. 

The other parameters remain unchanged from those of Table 2. These results are obtained for successive 

applications of the solution algorithm. It could be noticed the increasing value of the optimal order size 𝑦∗ as 

𝐾 became high based on the value of ℎ. Also, the higher 𝐾 and ℎ are, the lower the optimum order size is. 

The sample size is not represented in this numerical example as it stays constant at value of  𝑛∗ = 2 for both 

cases. 

 

Figure 6 Optimal order size while varying the ratio K/h 

 

Example 5 The optimal order size and the optimal sample size are represented on the same figure for 

different values of the expected Type II errors 𝐸[𝑚2]. These results, observed on Figure 7, are obtained for 

successive applications of the NBBARY algorithm. It could be noticed that the optimal sample size 

𝑛∗increases as 𝐸[𝑚2] became high. However, for every change of 𝑛∗, the optimal order size 𝑦∗ changes 

itself also and follows a decreasing curve. One of the reasons for such behavior is that for a higher Type II 

error, there are much more defective items, which will be classified as non-defective, thus it starts to 

decrease the fraction of defective items perceived. 
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Figure 7 Optimal sample size versus expected Type II error. 

Managerial insight 

As always full inspection is not possible, the managers of different industries have problems to inspect items 

and they cannot take decision that after getting defective items, they immediately send to the supplier or wait 

for next lot arrival. For the second case, the retailer does not have to pay the transportation cost, but the 

retailer has to pay the holding cost for carrying defective items. If the retailer sends immediately after 

receiving from the system as defective products, the retailer has to pay the transportation cost. Therefore, 

there is a trade-off between the extra holding cost for carrying the defective products or invested 

transportation cost for transporting the defective products. The results, obtained by this proposed model, 

suggest that the retailer should transport defective products immediately after the detection as defective 

through lot inspection. If the input data of the numerical results are changed, the results may vary with the 

existing one. 

For many plastic industries, the inspection are done by checking all of its chemical components and the 

capacities for which it is made. To check the product is harmful or not for human health, it is tested through 

several process. For those tests, the plastic products have to melt into liquid forms. In the liquid form, they 

are tested and after testing they cannot be used any more for general use. Therefore, full inspection is never 

be possible for these types of products. Lot inspection is the best policy for those industries. The proposed 

model gives the solution for the managers for those industries.  

As lot inspection is conducted, there is a chance for inspection errors, it means that defective lot may be 

considered as perfect or perfect lot may be considered as imperfect. Thus Type-I and Type-II error are 

introduced, which gives the accurate results for industry manager to predict the chances or percentages of 

errors.  

 

5. Sensitivity analysis 

In this section, the results of our sensitivity analysis are discussed. Table 3 presents the sensitivity analysis 

of the parameters representing costs in the model for the first case. The values from the parameters used in 

this analysis are those from Table 2. 

It can be observed from the results that an increasing value of costs has a negative influence on the TP, 

which is intuitive. However, the optimal sample size 𝑛∗ and the optimal order size 𝑦∗ don’t follow always 

the same behavior. For example, increasing value of the cost 𝑐𝑎 (cost of falsely accepting a defective lot) has 
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a positive effect on the optimal sample size 𝑦∗. Also, the increasing value of the cost 𝐾(order cost) has a 

positive effect on the optimal order size 𝑦∗. 

The cost 𝑐𝑎 (cost of falsely accepting a defective lot) is the parameter, which less influences the total profit. 

For an increment of 50% , the total profit only decreases by 0.006%. On the contrary, the cost 𝑐𝑈  (lot 

purchase cost) is the parameter, which more influences the total profit. For an increment of 50%, the total 

profit decreases by 16.9 %. However, these results can slightly differ from other parameters and should be 

analyzed with precautions. 

 

Table 3 Sensitivity analysis of the model in a numerical example for sub-case 1 

Parameters change 

(in %) 
 TPU (%) 𝑛∗(%) 𝑦∗(%) 

𝐾 -50 2.32 1.07 -10.16 

 -25 1.13 0.49 -4.95 

 +25 -1.07 -0.44 4.73 

 +50 -2.10 -0.89 9.28 
     

ℎ -50 6.91 3.47 39.88 

 -25 3.15 1.47 14.94 

 +25 -2.76 -1.16 -10.23 

 +50 -5.25 -2.14 -17.80 

     

𝑐𝑙 -50 1.17 1.74 -0.54 

 -25 0.58 0.84 -0.26 

 +25 -0.58 -0.80 0.25 

 +50 -1.15 -1.56 0.49 

     

𝑐𝑈 -50 16.91 0.18 -0.05 

 -25 8.45 0.09 -0.03 

 +25 -8.45 -0.09 0.03 

 +50 -16.91 -0.18 0.06 

     

𝑐𝑎 -50 1.00 -9.35 2.94 

 -25 0.42 -3.96 1.25 

 +25 -0.33 3.12 -0.98 

 +50 -0.61 5.70 -1.78 

     

𝑐𝑟 -50 0.006 -0.09 0.03 

 -25 0.003 -0.04 0.01 

 +25 -0.003 0.04 -0.01 

 +50 -0.006 0.09 -0.03 

6. Conclusions 

This paper developed an economic order quantity model for a sampling, sample quality inspection, and a 

returned policy of defective items. This model filled the research gap in the literature in providing a model, 

which took into account the impairment loss resulting from the sample inspection. It also highlighted the 

strong link between order sizes, sample sizes, and lot sizes and. Thus, these values were considered all 

together to obtain the optimal twin (𝑦∗, 𝑛∗). Two cases were discussed with two policies of returning 

defective items. The return of defective items to a supplier was relevant nowadays as it might occur in 

several supplies chain sectors in which retailers maintained strict quality requirements. 

A threshold value was defined upon which the first case was obtained as more profitable and a solution 

procedure to find the best couple (𝑦, 𝑛) was provided. Numerical examples were conducted and a sensitivity 
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analysis was established. From numerical study, it was found that global optimal results gave several 

conditions for the policy related solutions and amount of defective products.  This work can be enhanced in 

a number of ways. There are still plenty of hypothesis that cannot always be considered yet by any 

researches. A model with shortages can be developed. Another direction is to extend the model by 

considering stochastic demand rates or integrate this model in a two-level supply chain (Sarkar et al., 2015). 

This paper does not consider any inspection errors with warranty cost i.e., Type-I and Type-II errors with 

warranty cost [Sarkar and Saren, (2016)]. For further research work, this paper can be extended by 

introducing these two types of errors with warranty cost. Warranty cost and machine breakdown can be 

added to this model for further extension. It will be a nice contribution if this model will assume finite 

inspection time during production run. Variable transportation costs along with carbon-emission costs can be 

introduced to this model for future study [see for reference Sarkar et al. (2016)]. 

 

Appendix 1 

To determine holdings costs, we split the total area in two parts like in the Figure 8 and express each area 

separately. The screening time could be expressed as 𝑡𝑙 =
𝑦𝐿

𝑋
 . 

 

Figure 8 Behavior of the inventory  

The blue area is expressed as 

 

(ρL + 𝑛(1 − ρ))
𝑦𝑛𝐿

𝑋
=  

𝑦2𝑛𝐿(ρL + 𝑛(1 − ρ))

𝑋
 

 

The yellow area is expressed as a single triangle 

 

(𝑦𝐿 − (ρL + 𝑛(1 − ρ)))2

2𝐷
=

𝑦2(1 − ρ)2(𝐿 − 𝑛)2

2𝐷
 

 

1. Appendix 2: Proof of  |
𝛿2TP1(𝑦,𝑛)

𝛿𝑛2
| > |

𝛿2TP1(𝑦,𝑛)

𝛿𝑛𝛿𝑦
| 

 

To demonstrate the second condition, it is necessary to prove that 

Time T0 

ρyL + ny(1 − ρ) 

𝑡𝑙 

𝑦𝐿 

Inventory Level 

𝑦𝐿 − 𝐷𝑡𝑙 
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 2𝐷𝑐𝑈

(𝐿 − 𝑛)3
+

2𝑐𝑙𝐷𝐿

(1 − E[ρ𝑒])(𝐿 − 𝑛)3
+

2(K + K𝑑)𝐷

𝑦(1 − E[ρ𝑒])(𝐿 − 𝑛)3

−
𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
 [

2

(𝐿 − 𝑛)2
+

ln(𝐸[𝑚2])

(𝐿 − 𝑛)
+ ln(𝐸[𝑚2])2]

−
𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
[

2

(𝐿 − 𝑛)2
+

ln(𝐸[𝑚1])

(𝐿 − 𝑛)
+ ln(𝐸[𝑚1])2]

+ ℎ
2𝐷𝑦𝐿3

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)3

>
(K + K𝑑)𝐷

𝑦2(1 − E[ρ𝑒])(𝐿 − 𝑛)2
+ ℎ

(1 − E[ρ𝑒])

2

− ℎ
𝐷𝐿(L2E[ρ𝑒] + 2𝐿𝑛(1 − E[ρ𝑒]) − 𝑛2(1 − E[ρ𝑒]))

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)2
 

(18) 

 

In order to prove this step, some previous mathematical operations are required. Let’s first assume some 

obvious considerations and numerical range estimations as: 

1. 0 ≪ (𝐿 − 𝑛) ≪ 𝑦 

2. E[ρ] ≈ 0 andE[ρ𝑒]  ≈ 0, but strictly positive and therefore (1 − E[ρ𝑒]) ≈ 1 

3. For 𝐸[𝑚2] and 𝐸[𝑚1] strictly positive tending to zero. 

 
lim

0≪(𝐿−𝑛)≪𝑦
E[ρ𝑒]→0

E[ρ]→0

E[𝑚2]→0

E[𝑚1]→0

2𝐷𝑐𝑈

(𝐿 − 𝑛)3
+

2𝑐𝑙𝐷𝐿

(1 − E[ρ𝑒])(𝐿 − 𝑛)3
+

2(K + K𝑑)𝐷

𝑦(1 − E[ρ𝑒])(𝐿 − 𝑛)3

+ −
𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
 [

2

(𝐿 − 𝑛)2
+

ln(𝐸[𝑚2])

(𝐿 − 𝑛)
+ ln(𝐸[𝑚2])2]

−
𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(1 − E[ρ𝑒])(𝐿 − 𝑛)
[

2

(𝐿 − 𝑛)2
+

ln(𝐸[𝑚1])

(𝐿 − 𝑛)
+ ln(𝐸[𝑚1])2]

+ ℎ
2𝐷𝑦𝐿3

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)3

> lim
0≪(𝐿−𝑛)≪𝑦

E[ρ𝑒]→0

E[ρ]→0

E[𝑚2]→0

E[𝑚1]→0

(K + K𝑑)𝐷

𝑦2(1 − E[ρ𝑒])(𝐿 − 𝑛)2
+ ℎ

(1 − E[ρ𝑒])

2

− ℎ
𝐷𝐿(L2E[ρ𝑒] + 2𝐿𝑛(1 − E[ρ𝑒]) − 𝑛2(1 − E[ρ𝑒]))

𝑋(1 − E[ρ𝑒])(𝐿 − 𝑛)2
 

 

(19) 

and with simplifications 

 

 
lim

0≪(𝐿−𝑛)≪𝑦
E[ρ𝑒]→0

E[ρ]→0

E[𝑚2]→0

E[𝑚1]→0

2𝐷𝑐𝑈

(𝐿 − 𝑛)3
+

2𝑐𝑙𝐷𝐿

(𝐿 − 𝑛)3
+

2(K + K𝑑)𝐷

𝑦(𝐿 − 𝑛)3
−

𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(𝐿 − 𝑛)
 [

2

(𝐿 − 𝑛)2
]

−
𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(𝐿 − 𝑛)
[

2

(𝐿 − 𝑛)2
] + ℎ

2𝐷𝑦𝐿3

𝑋(𝐿 − 𝑛)3

> lim
0≪(𝐿−𝑛)≪𝑦

E[ρ𝑒]→0

E[ρ]→0

E[𝑚2]→0

E[𝑚1]→0

(K + K𝑑)𝐷

𝑦2(𝐿 − 𝑛)2
+

ℎ

2
− ℎ

𝐷𝐿(L2ρ𝑒 + 2𝐿𝑛(1 − ρ𝑒) − 𝑛2(1 − ρ𝑒))

𝑋(𝐿 − 𝑛)2
 

(20) 
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As it can be stated that 
2(K+K𝑑)𝐷

𝑦(𝐿−𝑛)3 >
(K+K𝑑)𝐷

𝑦2(𝐿−𝑛)2  for (𝐿 − 𝑛) ≪ 𝑦, the inequality becomes 

 

 
lim

0≪(𝐿−𝑛)≪𝑦
E[ρ𝑒]→0

E[ρ]→0

E[𝑚2]→0

E[𝑚1]→0

2𝐷𝑐𝑈

(𝐿 − 𝑛)3
+

2𝑐𝑙𝐷𝐿

(𝐿 − 𝑛)3
+

2𝐷𝑐𝑎𝐸[ρ]𝐸[𝑚2]𝑛

(𝐿 − 𝑛)3
+

2𝐷𝑐𝑟(1 − 𝐸[ρ])𝐸[𝑚1]𝑛

(𝐿 − 𝑛)3
+ ℎ

2𝐷𝑦𝐿3

𝑋(𝐿 − 𝑛)3

> lim
0≪(𝐿−𝑛)≪𝑦

E[ρ𝑒]→0

E[ρ]→0

E[𝑚2]→0

E[𝑚1]→0

ℎ

2
− ℎ

𝐷𝐿(L2E[ρ𝑒] + 2𝐿𝑛 − 𝑛2)

𝑋(𝐿 − 𝑛)2
 

(21) 

 

The first term of the inequality is always positive and the second term of the inequality is always negative as 

it is supposed that (𝐿 − 𝑛) ≪ 𝑦 and therefore L ≪ 𝑦. The inequality is therefore true and the statement 

|
𝛿TPU1(𝑦,𝑛)

𝛿𝑛𝛿𝑛
| > |

𝛿TPU1(𝑦,𝑛)

𝛿𝑛𝛿𝑦
| is verified.∎ 
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