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Optimization of Sampling Locations for Variogram Calculations 
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A method is presented and demonstrated for optimizing the selection of sample locations for vario- 
gram estimation. It is assumed that the distribution of distance classes is decided a priori and the 
problem therefore is to closely approximate the preselected distribution, although the dispersion within 
individual classes can also be considered. All of the locations may be selected or points added to an 
existing set of sites or to those chosen on regular patterns. In the examples, the sum of squares 
characterizing the deviation from the desired distribution of couples is reduced by as much as 2 orders of 
magnitude between random and optimized points. The calculations may be carried out on a micro- 
computer. Criteria for what constitutes best estimators for variogram are discussed, but a study of 
variogram estimators is not the object of this paper. 

INTRODUCTION 

Geostatistics is applicable to a variety of problems in hy- 
drology and soil science. The variogram is the key function 
which quantifies the interdependence of sampling locations; 
i.e., two samples from nearby locations tend to be more alike 
than two taken from widely separate locations. 

One of the first steps in the application of geostatistics is the 
determination of the variogram. The variogram must, in gen- 
eral, be estimated from the data, and then a model is selected 

which satisfies the positive definite condition, as well as being 
compatible with the data in some appropriate sense, such as 
cross-validation. Whether the sample variogram is used or one 
of other proposed estimators, it is necessary to generate paired 
differences. The characteristics of the set of paired differences 
are crucial to the efficiency of the variogram estimator. In 
turn, these characteristics are strongly influenced by the sam- 
pling plan. 

For any sampling exercise, the location of sites is a con- 
sideration. There are two obvious considerations for sample 
site selection: one pertains to the estimation of variogram and 
the second concerns the use of data for kriging but assumes 
the variogram has previously been determined. In the latter 
case, the kriging variance can be used to construct an objec- 
tive function and that problem has attracted the interest of a 
number of authors [cf. Burgess et al., 1981; McBratney and 
Webster, 1983]. We shall only consider the problem of vario- 
gram estimation and only the problem of site selection, rather 
than that of the derivation of alternative estimators. Our work 

extends that of Russo 1-1984], who discussed the optimization 
of location selection based on homogeneity within classes of a 
given lag tolerance. Bresler and Green [1982] discuss the use 
of randomly generated sample locations to ensure that the 
distribution of class numbers be as close to uniform as possi- 
ble. 

The objective of this paper is to develop a method to choose 
sample locations, optimized with respect to prespecified distri- 
butions of couples for the distance classes. A second criterion 
based on the dispersion of separation distances within each 
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class is given. The scheme may be used either for choosing a 
complete set of points or to select additional points in order to 
augment an existing set of points or those of a specified pat- 
tern, such as along a transect or on a regular grid. The com- 
plete problem of what constitutes the best selection of points is 
not our objective; however, we will suggest appropriate cri- 
teria for that characterization. It is assumed that the ideal 

distribution is decided a priori. We are simply developing a 
scheme to meet prespecified constraints. 

REVIEW OF THEORY 

Let Z(x) denote the value of the characteristic or attribute 
of interest at the point x' x could be a point on a transect or 
in an area or in a volume. If Z(x) is modeled by a random 
function satisfying the intrinsic hypothesis then the variogram 
is given by 

7(h) = (1/2) Var [Z(x + h) - Z(x)] 

= (1/2)E{[Z(x + h) -- Z(x)] 2} (1) 

If x• .... , x• are N sample locations then the sample vario- 
gram is given by 

n(h) 

7*(h) = [1/2n(h)] • [Z(x i + k) - Z(xi)] 2 (2) 
i=1 

where 

Ihl- e • Ikl • Ihl + e (3) 

O n --• < O R < O n + • (4) 

with Ihl being the length of the vector h; 0 n the direction of h; 
2e the width of the distance class; and 26 the width of the 

angle window. Finally, n(h) is the number of pairs (x i q- k, xi) 
satisfying the distance and angle conditions. 

The y*(h) is an unbiased estimator of y(h) for each h, but, as 
is noted by Cressie and Hawkins [1980] and Armstrong and 
Delftnet [1980], it is not robust. Since it is not our intention to 
derive a new estimator but rather to enhance known esti- 

mators by appropriate sampling patterns, we will focus on the 
sample variogram. The results are equally relevant for others 
that have been proposed. 

Davis and Borgman [1978, 1982] obtained a central limit 
property for y*(h) assuming fourth-order properties which sug- 
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Fig. l. Distribution of points initially (a), after 100 iterations (b), 
and after 500 iterations (c) for example 1. Also presented are results 
for example 3 based on minimum moments about class mean results 
(d) after starting with Figure lb. 
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gests that n(h) should be as large as possible. The problem is 
complicated by the fact that ?(h) must be estimated for many 
values of h and not just one; i.e., it is the function that must be 
estimated and not just the values of ?(h) at a finite number of 
points. Without additional multivariate distributional assump- 
tions for Z(x), statistical inference is not possible. It is known 
that the behavior of ?(h) is most critical for Ihl small; hence 
n(h) should be large for Ihl small. In addition to a large 
number of h's, in general, a number of angle classes must be 
considered. After these choices of h and of directional classes 

are made, the site locations must be chosen. One would like to 
make the selection to optimize one or more desirable charac- 
teristics, such as the confidence level and confidence width for 

estimates of ?(h). In general, this is not possible without ad- 
ditional distributional assumptions and it does not guarantee 
optimal estimation of the variogram function. We will consid- 
er then conditions which are clearly necessary or desirable or 
both. 

Suppose then that N locations are to be selected, then there 
are N(N - 1)/2 pairs. In general, the number of pairs for short 
lag distances is small as is the number for large lag distances. 
The greatest number of couples occurs at approximately half 
the maximum separation distance. Moreover, there may be 
excessive dispersion within each distance-angle class, resulting 
in excessive averaging. Without loss of generality assume dis- 
tance classes are defined by 0, h•, ---, hNo whre NC is the 
number of classes. For the isotropic case the hi's are simply 
distances. For the class h i, let f• denote the number of pairs; 
i.e.,f• = n(hi). It is immediate that 

NC 

hence we can only apportion the pairs between classes in some 
optimal way. 

We can now identify a number of properties that are neces- 
sary or desirable but which, in general, are in conflict, as 
follows. 

1. For each distance-angle class, the number of pairs 
should be as large as possible, particularly for short distances. 

2. The average of the distances in each class should be 
close to the plotted lag. 

3. The variance of the distances in each class should be 

4. The average of the angles in each class should be close 
to the plotted angle. 

5. The variance of the angles in each class should be small. 
It should be noted that a regular grid will tend to ensure 

conditions 2-5, but N will have to be large to satisfy condition 
1. An alternative choice, random selection of the sample lo- 
cations does not ensure any of the five conditions. 

Suppose f•*, "', fNc* is a prespecified distribution and we 
wish to obtainf•, .-., f•c close to this distribution while satis- 
fying 2-5 to some degree. For example, we might take all 
f•* = N(N- 1)/(2NC). With this in mind, we define SS to be 
minimized: 

NC NC NC 

SS = a •. w,(f•* _f•)2 + b • rn,i + c •'. rn2, (6) 
i=1 i=1 i---1 

where w•, ..., WNC; a, b, and c are user-selected weighting 
coefficients; the rn• are absolute or second moments of the 
distance classes; and the m2i are the absolute or second mo- 
ments for the angle classes. For the most part, the isotropic 
case is considered, and c is taken as 0. In addition, we will 
concentrate on the case b - 0. 

The case w i = l/a, all f•*'s are the same, and b = c - 0 is the 
same as the criterion given by Bresler and Green [1982]. The 
case where a - 0, b - 1, and c - 0 is very nearly the criterion 
used by Russo [1984]. 

We can equally well assume that M sites have already been 
selected; 0 < M < N and hence consider this option. Note 
that no a priori assumptions are made about the variogram 
type nor about the range of dependence although this infor- 
mation might be used in choosing the h/s and the desired 
distribution for the number of pairs. While we have focused on 
the use of the sample variogram, conditions 2-5 are still rele- 
vant for all of the other variogram estimators that have been 
proposed. 

EXAMPLES AND CALCULATIONS 

For our first two examples we will choose a = 4[N(N 
-- 1)]-2, wi = 1, and b = c = 0 in (2). A procedure to find a 

minimum value of SS is as follows. 

1. Specify M fixed points at x•, x 2, --., x M and the total 
number of points N. 

2. Specify the number of classes of couples NC along with 

TABLE 1. Distribution of Couple Separation Distances for 
Examples 1-3 

Iterations 

Example 1 Example 2 Example 3 
Class, 

m 0 100 500 0 100 500 0 100 500 

0-20 8 31 40 2 11 17 31 25 25 

20-40 12 47 45 6 15 18 47 25 29 

40-60 20 32 41 10 13 17 32 30 30 

60-80 18 32 42 21 12 19 32 33 46 

80-100 27 36 42 17 33 32 36 28 51 
100-120 20 41 44 45 61 51 41 30 25 

120-140 32 31 44 21 43 31 31 27 28 
140-160 23 39 41 42 45 46 39 36 28 

160-180 44 41 41 19 23 23 41 35 25 

180-200 30 50 42 24 22 26 50 42 25 

>200 201 55 13 228 157 155 55 124 123 

SS 0.026 0.0038 0.0002 0.037 0.027 0.020 1.0 0.886 0.80 

mavg 5.1 4.9 5.2 5.5 5.5 5.4 4.9 4.3 3.9 

small. N = 30. In each case, f•* = 43.5 for every class. 
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the class limits hx, h2, .-- , hNc and the desired number f• for 
each class or the fraction of the total in each class (f•/[N(N 
- •)/2]). 

3. Choose N--M random points giving x•t+x, '", xN 
(note each xi defines a point in one, two, or three-dimensions). 

4. Calculate $S from (2). 
5. Choose a substitute point x* randomly. 
6. Calculate $$* by (2), where x* is substituted for any xi, 

with M < i < N. 

7. If $$* < $$, then substitute x* for x• and set $$ equal 
to $$*. Then either stop or return to step 5 and search for a 
still smaller $$. 

8. If $$* > $$, then return to step 6 and substitute x* for 
__another x_• or return to step 5 and choose another trial x*. 

Steps 1 and 2 are problem specifications and 5-8 are itera- 
tive. The process is concluded when the f• no longer change 
significantly or a specified number of iterations has been 
made. Whether an absolute minimum is reached is not critical 

as any reduction in $$ results in the actual distribution being 
closer to the specified. The $$ may or may not approach zero. 
The use of random points could be constrained, if desired, to 
random points within finite blocks or on a given grid network, 
for example. 

Example 1 

Assume a 400 x 400-m field. Assume the smallest reason- 

able sampling element is 2 x 2 m and N = 30 random samples 
are to be chosen. Assume that the desired class sizes are in 20 

m intervals; i.e., the upper limits of the classes are hx = 20 and 
h 2 -40 etc. Furthermore, assume 10 classes each containing 
equal number of couples are sought; i.e., f•* =f2* ..... 
fxo* -- (0.1)N(N -- 1)/2 -- 43.5, and the weights w i are all set to 
unity. The initial random points are shown in Figure la and 
result in a sum of squares of $$-0.026. Of the total 
30(29)/2 = 435 couples about «; in fact, 201 are outside of the 
last specified class limit of 200 m (see Table 1). Only 8 and 12 
couples are in each of the 2 smallest classes. After 100 iter- 
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Fig. 2. Distribution of points initially (a) and after 500 iterations (b) 
for 14 random overlying a grid of 16 fixed locations (example 2). 

ations the result is as in Figure lb with $$ = 0.0038. The 
points are selected closer together and give a very even distri- 
bution of class sizes. After 500 iterations the distribution of 

points appear visually about the same (Figure lc) but the $$ is 
reduced to only 0.0002. The distribution of couples is very 
uniform (Table 1) with a maximum of 45, a minimum of 40, 
and only 13 outside the 200-m limit. If repeated, we would 
anticipate a similar cluster, but centered at some other spot in 
the field. In fact, if we wished, we could move the centroid of 

the samples elsewhere in the field, and the separation classes 
would be unaffected. The spread of the cluster can be in- 
creased by increasing the largest class specified (compare ex- 
ample 4 which follows). The average of the absolute moments 
m• about the mean of each class remained at about 5 (but was 
not used as a fitting criterion). If we repeated the exercise with 
a smaller maximum specified couple separation, the cluster 
would be more dense. (The calculation time for the 100 iter- 
ations was about 1 hour, 50 min on a Rainbow 100 in GW- 
BASIC;for the 500 it was nearly 7 hours.) 

Example 2 

Assume the above field already has M = 16 samples regu- 
larly spaced with 1 sample/hectare; repeat as in example 1, 
with M = 16 and choosing 30-16 = 14 new samples lo- 
cations. The initial sampling pattern is shown as Figure 2a 
with the 16 fixed and 14 random sites. The initial value of $$ 

is 0.037, slightly higher than for the random patterns. With the 
16 existing locations, the uniform distribution cannot be met 
as before because many of the couple separation distances are 
already fixed at high values. At the end of 100 iterations, the 
random values are moved toward the center, and $$ = 0.027. 
After 500 iterations the results are as in Figure 2b showing a 
cloud of random points chosen around the center, and the $$ 
is reduced to 0.020. The distribution is somewhat sparse for 
the short distances, where fx = 17 compared to fx* = 43.5 etc. 
(Table 1). The classes which have small frequencies, of course, 
are balanced by classes with larger frequencies, and the 
number of couples for distances exceeding 200 m, which is 
already at 78 for the 16 fixed points alone, is now 155. 

Example 3 

In this case, we take a - 0 in (6) and optimize on the basis 
of minimum moments within classes of separation distances. 
The moments chosen are the absolute deviation about each 

class median, hopefully leading to separation values close to 
the middle of the class. A constraint was added that the mini- 

mum number of couples in any class should be greater than 25 
or about one half of that sought in example 1. In order that 
the constraint be met, the starting point for example 3 was 
taken to be the results of example 1 after 100 iterations. (Runs 
were also made with both a and b nonzero, but the specifi- 
cations of a minimum number of couples accepted in any 
class, and a = 0 is deemed more appropriate.) 

The b was chosen such that the initial $$ was 1. Of course, 
the initial average of absolute moments was 4.9, as in example 
1. After 100 and 500 iterations, the average class moment was 
reduced to 4.3 and 3.9, respectively. The reduction from 4.9 to 
3.9 is about 20%, which is roughly comparable to reductions 
in class standard deviations of 16 and 66% for two examples 
of Russo [1984, especially below equation (14b)]. Our criterion 
is more rigorous in that the moment is minimized about the 
class median and not a fluctuating class mean. Graphically, 
the results are in Figure ld. 
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Fig. 3. Distribution of 50 points based on 30 classes out to 450 m 
separation (a) (example 4) and directional classes (b) (example 5). 

Example 4 

We choose 50 points at random, take a = 1, b- 0, and 
extend to 30 classes of 0-15, 15-30, -.-, 435-450 more in line 
with the examples of Bresler and Green [1982, cf. their Figure 
6]. The initial distribution given in Table 2 is close to their 
results for N - 50. The fitted results after 100 iterations are 

much closer to an idealized uniform distribution with a re- 

duction in SS from 0.010 to 0.0016. Their result was the "best" 

realization of 27 runs based on a sum of squares similar to (6), 
with a - 1 and b - 0. The criterion of equal numbers for large 
separation classes led to a sorting of points out of the center 
and toward the edge of the field (see Figure 3a). The simula- 
tion was cut-off after 350 iterations for which the minimum 

couples in a class was 33 (see Table 2). 

Example 5 

As a final example, we choose 30 points at random and 
choose classes according to direction as well as separation 
distance. The couples are separated into horizontal and verti- 
cal with coarse windows of _ 45 ø so as to include all couples. 
The distance increments are specified as in example 1. The 
resulting pattern after 100 and 300 iterations are shown as 
Figure 3b. The p6ints initially move toward two small clusters 
of 8 and 22 points, respectively. The SS goes from an original 
0.31 to 0.0071 and 0.0049 after 100 and 300 iterations. After 

300 iterations, the largest deviation is at the lowest class inter- 
vals where 12 and 8 couples were found for the horizontal and 
vertical compared to just under 22 for exactly 5% of the cou- 
ples. The maximum couples in any size was 28, and only 5 
couples were separated by more than 200 m. 

DISCUSSION 

Too often data are collected prior to determination of the 
intended statistical analysis. For some techniques it is suf- 
ficient to utilize random sampling with a large sample size. 
When applying geostatistics, however, it is not sufficient to 
simply choose a sample size, nor is random sampling sufficient 
to allow statistical inference on the variogram. The procedure 
given herein shows that reasonable criterion may be used to 
choose sample locations and to assure satisfying conditions 
designed to enhance the reliability of the sample variogram as 

TABLE 2. Distribution of Couple Separation Distances for 
Examples 4 (N = 50) and 5 (N = 30) 

Example 4 

Iterations 

Class, 
m 0 100 350 

0-15 1 14 33 

15-30 10 36 36 

30-45 35 30 37 

45-60 35 38 37 

60-75 52 42 40 

75-90 44 43 43 

90-105 48 51 43 

105-120 51 46 45 

120-135 64 42 41 

135-150 57 43 41 

150-165 75 45 37 

165-180 66 43 37 

180-195 68 46 35 

195-210 63 46 39 

210-225 71 43 46 

225-240 56 39 47 

240-255 61 51 35 

255-270 62 47 36 

270-285 59 49 41 

285-300 43 43 42 

300-315 51 45 37 

315-330 37 48 39 

330-345 32 47 44 

345-360 19 38 45 

360-375 17 39 44 

375-390 15 33 42 

390-405 13 48 36 

405-420 3 33 41 

420-435 7 20 41 

435-450 5 20 40 

>450 5 9 25 

SS 0.010 0.0016 0.0003 

Example 5 

Iterations 

Class, 
m 0 100 300 

H, 0-20 1 7 12 
V, 0-20 2 2 8 
H, 20-40 2 18 22 
V, 20-40 5 18 20 
H, 40-60 5 25 18 
V, 40-60 6 25 24 
H, 60-80 7 29 23 
V, 60-80 6 29 27 
H, 80-100 11 33 22 
•, 80-100 14 22 22 
H, 100-120 17 28 25 
V, 100-120 11 28 22 
H, 120-140 12 21 20 
V, 120-140 12 26 20 
H, 140-160 13 26 26 
V, 140-160 18 22 28 
H, 160-180 14 20 27 
V, 160-180 18 17 27 
H, 180-200 18 15 17 
V, 180-200 9 14 20 

>200 234 15 5 

SS 0.31 0.0071 0.0049 

H, horizontal' V, vertical. 

an estimator while satisfying constraints on sample size. The 
algorithm may easily be programmed on a personal computer. 
Previously fixed sampling sites or specific regular patterns can 
be incorporated in the overall scheme. 
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Whether an absolute minimum of the SS function (equation 
(6)) is found is a moot point, since any reduction more closely 
meets the desired specifications. The minimization procedure 
can likely be improved, but for the moment, a more pressing 
question is what constitutes a best choice of the "SS" or an 
appropriate alternative. 

What is the best scheme for locating sampling sites? This 
problem does not have a simple solution, but some observa- 
tions are possible. If the only purpose is to satisfy preset vario- 
gram couples, then a pattern can be generated to come very 
close to meeting the specifications, even for large class separa- 
tion distances. The system will lead to a total set of points 
concentrated in area which is about equal to the largest class 
specified (see Figure lb). If the maximum class separation is 
large, the points will be over most of the field (compare exam- 
ple 4). A combination of a coarse fixed grid and some random 
points (compare example 2) would seem to provide sufficient 
uniformity in the distribution of separation distances and at 
least sparse coverage of the overall field. Thus the data could 
also be used to interpolate for unsampled sites after modeling 
the variogram. The success of the directional search (example 
5) suggests that patterns optimized for at least two directions 
can be set up with little extra effort. Debatably, a sound gener- 
al strategy would be to use a fixed grid for half the points with 
the other half selected to give half vertical, half horizontal and 
class sizes specified up to about one half the maximum dimen- 
sion of the field. Another possibility would be to choose lo- 
cations in stages, but with sites randomly chosen for each 
stage, if the desire is to have at least a few sites in all parts of 
the field. The number of samples necessary can be gauged by 
dividing the total couples N(N -- 1)/2 by the number of couple 
classes to observe whether each group contains at least 30 
couples or whatever is desired. 

Determining the full consequences of the sampling pattern 

on the estimation of the variogram is an important problem, 
but beyond the scope of this study. What we have done here is 
to illustrate that we can meet reasonable specifications of sep- 
aration groups. 
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