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Abstract: This work presents the multi-objective optimization results of three experimental cases in-
volving the laser sintering/melting operation and obtained by a virus evolutionary genetic algorithm.
From these three experimental cases, the first one is formulated as a single-objective optimization
problem aimed at maximizing the density of Ti6Al4V specimens, with layer thickness, linear energy
density, hatching space and scanning strategy as the independent process parameters. The second
one refers to the formulation of a two-objective optimization problem aimed at maximizing both the
hardness and tensile strength of Ti6Al4V samples, with laser power, scanning speed, hatch spacing,
scan pattern angle and heat treatment temperature as the independent process parameters. Finally,
the third case deals with the formulation of a three-objective optimization problem aimed at mini-
mizing mean surface roughness, while maximizing the density and hardness of laser-melted L316
stainless steel powder. The results obtained by the proposed algorithm are statistically compared to
those obtained by the Greywolf (GWO), Multi-verse (MVO), Antlion (ALO), and dragonfly (DA) algo-
rithms. Algorithm-specific parameters for all the algorithms including those of the virus-evolutionary
genetic algorithm were examined by performing systematic response surface experiments to find
the beneficial settings and perform comparisons under equal terms. The results have shown that the
virus-evolutionary genetic algorithm is superior to the heuristics that were tested, at least on the basis
of evaluating regression models as fitness functions.

Keywords: virus-evolutionary genetic algorithm; optimization; selective laser sintering; heuristics;
additive manufacturing; hardness; density; tensile strength

1. Introduction

Setting advantageous values for the process parameters in manufacturing processes
constitutes a crucial task in process planning, requiring extensive experience in manufac-
turing engineering operations, deep knowledge of establishing and conducting systematic
experiments, a mathematical background concerning the statistical analysis of experimental
results and comprehensive know-how for formulating machining modeling problems for
optimization [1–4]. Unfortunately, such elements can hardly be implemented in real-world
applications owing to the tedious efforts of process planners under pressing timespans and
high productivity/quality requirements. Consequently, industrial practices still suggest
the usage of handbooks, manuscripts and tool catalogues in order to examine the opera-
tional ranges for different process parameters which try to determine advantageous—if
not optimal—settings for them as a combination of parameter values that will affect the
whole process. This approach continues to be applied since systematic experimentation and
parameter examination are time-consuming processes that also contribute to higher costs.

To set an “optimum” combination for the parameter values, several researchers have
developed and implemented various algorithmic modules following the principles of
dynamic programming [5,6], goal programming [7], integer linear programming [8] and
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fuzzy environments [9]. Even though such systems have succeeded in solving several
engineering optimization problems, they come with certain drawbacks in regards to their
objective-dependent searching mechanisms, as well as their constraint-type functions (i.e.,
non-linear and/or linear ones). In addition, they are unable to maintain the same efficiency
when they are altering the size of the solution domain or its structure (i.e., convex, concave
and saddle ones, etc.).

To solve the numerous engineering optimization problems with the highest rate of
success, researchers have proposed the implementation of algorithms that adhere to either
population or swarm intelligence. In the work presented in [10], the authors took advan-
tage of an optimization problem related to the abrasive water jet machining, which was
originally studied in [11]. In their work, they implemented the Greywolf algorithm [12] to
maximize the material removal rate (MRR), with the nozzle diameter, the feed of nozzle,
the mass flow rate of the abrasives, the water mass flow rate and the water pressure at
the nozzle as the independent process parameters. In the same work presented in [10],
a second case was solved by the Greywolf algorithm related to a bi-objective problem
that was originally examined in [13]. In this case, the objectives of MRR and Ra were
simultaneously optimized, exhibiting their trade-off, owing to MRR maximization and
Ra minimization requirement. The authors in [14] implemented their Teaching/Learning
optimization algorithm (TLBO) to solve three non-conventional machining processes based
on previous experimental works conducted by others, namely, ultrasonic machining (USM),
abrasive jet machining (AJM) and wire electro-discharge machining (wEDM). The TLBO
algorithm was also applied in [15] to solve three single-objective and two multi-objective
problems concerning fused deposition modeling (FDM). All five case studies reported in
this work were based on previous experimental works [16–20]. Under the same research
concept, the authors of [21] implemented the MO-Jaya algorithm to optimize the previously
investigated machining operations; wire electro-discharge machining [22], the laser cutting
process [23], electrochemical machining [24] and focused ion beam (FIB) micro-milling [25].
Other machining and micro-machining processes based on the experiments of others were
also optimized using the TLBO algorithm [26], while some other abrasive waterjet ma-
chining operations were optimized using the Jaya algorithm along with the PROMETHEE
method [27].

The initial variant of the virus-evolutionary genetic algorithm (VEGA) was developed
and implemented in several research works with emphasis to those that are presented in [28]
and [29]. An enhanced version of this algorithm was later proposed in [30]. A noticeable
characteristic of the original variant of the VEGA was the transformation of the multi-
objective optimization problems to single-objective ones through the adaptation of the
“weighted summation” strategy [31].

This paper implements a virus-evolutionary genetic algorithm that is capable of con-
trolling both the techniques for solving optimization problems (single and multi-objective
ones). To enable this control, a sub-routine that activates the functions related to single or
multi criteria processing has been programmed. Emphasis is given to the multi-objective
optimization selection, where a single simulation run can prompt the algorithm to evaluate
an entire set comprising many non-dominated solutions existing in a Pareto front. In
the case of a multi-objective problem represented by using the “weighted summation”
approach, the proposed virus-evolutionary genetic algorithm investigates the problem
with the determination of all the possible combinations among the weights applied to the
objectives. The multi-objective virus-evolutionary genetic algorithm is called MOVEGA
in the paper. The MOVEGA is applied to solve three problems related to a cutting-edge
additive manufacturing process that is widely known as selective laser sintering—selective
laser melting (SLS-SLM). All the problems have been formulated with reference to the
regression equations that are derived from original experiments, and they are quadratic and
parameter bounded. In the first case, the processing layer thickness, linear energy density,
hatching space and scanning strategy are treated as the independent process parameters,
with the maximum density of the manufactured specimens being the objective of interest.
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The second case uses the laser power, scanning speed, hatch spacing, scan pattern angle
and heat treatment temperature as the independent variables, while maximum hardness
and maximum tensile strength are considered as the optimization objectives. Finally, the
third case presents a three-objective optimization problem where the laser power, scanning
speed and hatch spacing are the independent variables, whilst the minimum mean surface
roughness, maximum density and maximum hardness are treated as the optimization
objectives. The regression models used for optimizing the aforementioned problems have
been previously validated with regard to the corresponding experiments conducted by
previous researchers.

2. Virus-Evolutionary Genetic Algorithm for Multi-Objective
Optimization (MOVEGA)

Two methods are distinguished for creating new candidate solutions to solve a com-
binatorial problem. The first method is based on a stochastic philosophy, whereas the
second method is associated with local information that characterizes the problem. Even
though genetic algorithms (GAs) are primarily considered as stochastic search modules,
local information is very useful in order to escape from local optima and increase the
possibility of finding the global optimum solution to a problem. Crossover and selection
operators are used for creating new candidate solutions, and they provide local information
for the search space. The mechanism of generating new effective individuals under the
concept of producing robust schemata is prone to premature local convergence when one
applies only a proportional selection. On the contrary, MOVEGA targets a promising
substring from the binary encoded string of an individual and creates the virus individual.
By combining the strings of the individuals and viruses, the algorithm manages to produce
new candidate solutions in horizontal propagation. This strategy is quite promising since
the coevolution among hosts and viruses (global and local information) facilitates fast
optimization problem solving.

The virus theory of evolution suggests that virus transduction is of paramount im-
portance for transporting genetic segments across species [32]. Transduction implies the
genetic modification of a bacterium by the genes from another bacterium transported
though a bacteriophage. The majority of the viruses found in nature may easily cross
species barriers, and they are usually transferred directly from individuals of one phylum
to another. This means that natural viruses may transfer their gene to the host populations
in horizontal propagation. In addition, the viruses may be included into germ cells, and
thus, transmitted from generation to generation, following vertical inheritance. As a result,
this paper applies a virus-evolutionary genetic algorithm that implements two operators;
one of them is used for simulating vertical inheritance, and the other one is used simulating
horizontal propagation. Two populations are created and co-evolve in this algorithm: the
host population (candidate solutions) and the virus population (substrings of the selected
host individuals). Typical genetic operators (i.e., selection and crossover ones) are imple-
mented for performing standard activities in genetic algorithms, whilst the viral infection
operators, which are the “reverse transcription” and “transduction” ones, are applied to
simulate the natural operations of viruses. Figure 1 illustrates the functions of the two
operators for performing viral infection.

In the program developed to build the functions of the proposed algorithm, Cinit
Pop

is the initial chromosomes population; Var is an independent parameter; NVar
b i,j is the

number of bits necessary for representing the accuracy of each parameter Var for the ith
chromosome of the jth population; Lgthi is the ith length of the chromosome. By considering
the independent parameter Vari, along with its corresponding bound DVari = [Ubi, Lbi] and
the ith chromosome length Lgthi, the formula given in Equation (1) can used for switching
from binary to real encoding.

Vari = Lbi + f nc(BinStr)× Ubi − Lbi

2Lgthi − 1
(1)
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where Ubi and Lbi are the parameters’ upper and lower bounds, respectively, whilst
f nc(BinStr) denotes the function for returning the decimal values referring to binary
encoding based on their accuracy. When it comes to algorithmic simulations, there is a
low possibility that an already evaluated individual from a previous run might be selected
again. To avoid possibly selecting an already evaluated individual, a routine has been
developed based on flag statements either 0 (a new individual) or 1 (an already examined
individual from previous runs) in the Microsoft® Visual Basic® for Applications environment.
Objective function computation is conducted for all the candidates in a population. Thereby,
the results are examined by the ranking function, which ranks them based on their objective
scores. The ranking is sorted into ascending order. The fitness evaluation follows next, and
it is applied to every individual in a population. Elite individuals are those having attained
the lowest scores in the ranking operation. The individuals are finally stored along with
their corresponding fitness scores in a file (“fitnessScores.dat”), and they are sorted into
descending order.
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transcription operation performed by a virus.

The process continues further by applying selection operator, where some individ-
uals are selected for reproduction according to their fitness. Equation (2) represents the
cumulative sum Fitsum of the entire population after importing the fitness scores of the
individuals. The election range is formulated according to the lower and upper bounds, i.e.,
zero and Fitsum, respectively (0, Fitsum). Further, the individuals are subsequently ranked
with regard to their fitness score; i.e., (0, Fit1), (Fit1, Fit2), . . . , (FitN-1, Fitsum), whereas a
random generator is used to create the values within this region. The random generator
produces as many random values as the number of selected individuals for the crossover.
Random values exist between one of the above sub-ranges that denote the individuals
that are to be selected. Thereby, elite individuals are favored according to their fitness so
that the elitist behavior is maintained during the entire operation. After the selection of a
particular individual is achieved, both the selection range [0, Fitsum] and the individual’s
sub-range are redefined by applying Equation (2) to prevent the iterative selection of this
particular outstanding individual.

Fiti = Fiti −
Fitsum

2N
(2)

where Fiti is the fitness function score of ith individual; N is the population’s size; Fitsum
is the aggregate sum of the entire population. The selected individuals are stored in a
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dedicated file (“Selected.dat” file) to be further handled by the crossover operator. Pairs
of individuals are randomly selected to produce offspring. When the crossover function
is completed, all the individuals—the parents and offspring—are imported into a new
candidate population (individual pool), whose size is twice as big as the initial population’s
size. The objective function is computed again, and the individuals are ranked accordingly
by applying a ranking function. Based on their ranking N, the best individuals are deter-
ministically selected, where N is the original number of initial individuals that constitute
the first population. Finally, the individuals are mutated to give a new population of
candidate solutions.

The next operation is mutation. Mutation involves the number of individuals, the
number of mutated variables in terms of binary digits (i.e., 0 and 1) and the mutation
rate. A population—as a result of selection and crossover—is imported and processed
in order to determine the pointers for the selected offspring to indicate the locations in
chromosomes where the change between “0” and “1” digits are to be made. Mutation
begins with a rather high initial probability to preserve the diversity of exploration, while
it gradually lowers via a linear expression that involves the initial mutation rate value and
the number of generations to prevent a completely scattered random search, thus, it has a
high computational cost.

Viruses are created after the fitness evaluation of all the individuals comprising the
main population is conducted. The number of viruses is actually a fraction of the main
population’s magnitude. The MOVEGA algorithm manages to conduct both the targeted
and random selection of individuals for infection. The former selection is applied to the
elite of some outstanding individuals, whilst the latter one is normally applied to the rest
individuals according to the probability. This ensures that there is an unbiased selection
scheme. The successfully infected individuals appear as offspring. If their fitness score is
improved after the infection, they replace their ancestors. Therefore, these individuals sur-
vive in the next generation. The initial chromosomes population Cinit

Pop is randomly created,
and then, a following transduction operation is applied to the fitted and randomly selected
individuals for the creation of the virus population Vinit

Pop . The viruses are stored in a binary
representation of a related archive (“virus_population.dat”). A single virus individual
Vrsi j is created by transducing from the ith chromosome of the jth population. The cut sub-
strings represent the viruses’ chromosomes, whose length is VrsLgthi. i = 1 is the starting
point from which the VrsLgthi length is specified, while Locus imax denotes the end point.
These two points are randomly selected and constrained to the original host’s chromosome
length Lgthi. The chromosome length (Lgthi) of the individuals in the main population
is constant, whereas the length of the virus individuals (VrsLgthi) increases as the evo-
lution process continues

(
VrsLgthi = Vstrlengthmax

)
. The population index from which

selected individuals have been attacked is stored in the “infected_host_population.dat”
archive. The phenotypes of the individuals that are candidates for infection are stored
in the “virus_phenotype.dat” archive. The objective results of the virus individuals are
finally stored in the “virusobjvalues.dat” archive. Transduction and reverse transcription
constitute the two fundamental operations of viral infection. The transduction operator
is applied to the host individuals to generate the virus population. Viruses Vrsij attack to
infect the individuals by applying reverse transcription to overwrite their own substrings
to randomly selected segments of the individuals’ Idvj strings. The indices of Vrsi j and Idvj
are “a priori” declared so as to perform the subsequent replacement of the binary digits
according to the predetermined references.

An assessment of the virus individuals is achieved with the use of their fitness scores,
which are denoted as FitVrsi,j, reflecting their infection strength. This fitness is computed
after the successful infection of Idvj by Vrsi j, as it is presented by Equation (3):

FitVrsi,j = FitIn f Idvj − FitIdvj (3)
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The value obtained by Equation (3) is the difference between the two fitness values of
individual Idvj before and after its infection by Vrsi j. Given that Vrsi j might infect more
than a single individual (let S be the set of infected individuals), FitVrsi,j reveals the im-
provement of fitness values of all the infected individuals, and as Equation (4) determines:

FitVrsi = ∑
j∈S

FitVrsi,j (4)

A virus Vrsij has a maximum viral infection rate VinfRatemax for controlling the number
of viral infections satisfying the relation 1 ≤ VinfRatemax ≤ 10. As a consequence, the
number of reverse transcriptions that a single virus may perform will depend on its viral
infection rate. The maximum viral infection rate VinfRatemax is related also to its fitness
value FitVrsi,j. The higher the fitness FitVrsi,j is, then the higher the VinfRatemax will be.
Equation (5) gives the relation adopted to relate the viral infection parameters mentioned
above and control VinfRatemax with regard to virus fitness FitVrsi,j. In Equation (5), a(> 0)
is a fixed parameter that is used to improve or degrade VinfRatemax with regard to either
the positive or negative results referring to virus fitness Vrsij.

VinfRatemaxi,G+1 =

{
(1 + a)×VinfRatemaxi,G
(1− a)×VinfRatemaxi,G

}
,
FitVrsi ≥ 0
FitVrsi < 0

(5)

A virus Vrsij has a life force indicator that represents its contribution to the main
population in terms of its successful infections. The life force of a virus Vrsij is denoted
as VrsLi f orcei,G, where i is the index of the virus Vrsij and G the current generation.
VrsLi f orcei,G depends also upon the virus fitness Vrsij, and it is compared to the one
obtained by the virus Vrsi j in a previous generation. It its value is negative, then a new
transduction operation is applied by the virus Vrsi j to alter its scheme by randomly selecting
an individual. Otherwise, Vrsi j cuts a partially new substring by a successfully infecting
an individual. The magnitude of VrsLi f orcei,G is computed in each generation according
to the virus life reduction rate rate ↓ Vli f e , satisfying 0.001 ≤ rate ↓ Vli f e ≤ 1.0 . Therefore,
the maximum viral infection rate VinfRatemax and the virus life reduction rate rate ↓ Vli f e
are related through the expression given in Equation (6).

VrsLi f orcei,G+1 = rate ↓ Vli f e ×VrsLi f orcei,G + FitVrsi (6)

The VinfRatemax and VrsLi f orcei,G parameters are initialized in MOVEGA as
VinfRatemaxinit = VinfRatemaxi,0 and VrsLi f orcei,0 = 0, respectively. The operation of partial
transduction in the case where VrsLi f orcei,G < 0 is presented in Figure 2 with reference to
transduction and reverse transcription operations presented in Figure 1 above.
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3. Performance Metrics

When it comes to multi-objective optimization, a diverse group of multiple non-
dominated solutions are obtained. To examine and characterize the performance of an
algorithm, some discrete performance metrics can be used. Two of the most important and
commonly implemented metrics are the coverage of two sets Cvg(NDSi−1, NDSi) and the
spacing S [33]. The coverage of two groups of non-dominated solutions (NDSi−1, NDSi)
refers to the percentage of dominance exhibited by the individuals of one group on the
solutions of the other group. This metric can be computed by using the relation given in
Equation (7).

Cvg(NDSi−1, NDSi) =
|{b ∈ NDSi|∃__a ∈ NDSi−1 : a ≤ b}|

|NDSi|
(7)

where NDSi−1, NDSi represent two non-dominated solution sets to compare; a ≤ b im-
plies that a either dominates it, or it is equal to b. Cvg(NDSi−1, NDSi) = 1 implies that
all the non-dominated solutions in NDSi are dominated, or they are equal to all the
non-dominated solutions in NDSi−1, whilst Cvg(NDSi−1, NDSi) = 0 implies that none
of the non-dominated solutions of NDSi are covered by those found in NDSi−1. Note
that both Cvg(NDSi−1, NDSi) and Cvg(NDSi, NDSi−1) should be considered since there
is a possibility that Cvg(NDSi−1, NDSi) 6= 1 − Cvg(NDSi, NDSi−1). In the case that
Cvg(NDSi−1, NDSi) = 1 and Cvg(NDSi, NDSi−1) = 0, the solutions of NDSi−1 entirely
dominate those of NDSi, and thus, this would be the ideal result for NDSi−1. Thereby,
Cvg(NDSi−1, NDSi) gives the percentage of the non-dominated points in NDSi which
are inferior or equal to the points in NDSi−1, whereas Cvg(NDSi, NDSi−1) gives the per-
centage of non-dominated points in NDSi−1 which are inferior or equal to the points
in NDSi.

Spacing is a performance metric used for quantifying the spread of the non-dominated
solutions, or equivalently, how uniform the distribution among the different solutions is.
The spacing metric is determined according to Equation (8) as follows:

S =

√
1

|n− 1|

n

∑
i=1

(
d− di

)2
(8)

In Equation (8), n is the number of the different non-dominated solutions in a Pareto

front, whilst di = min
i,i 6=j

ObjMax
∑

Obj=1

∣∣∣ f i
Obj − f j

Obj

∣∣∣, i, j = 1, 2, . . . , n is the distance variance. ObjMax

is the maximum number of objectives, Obj is an objective number, and fObj is the objective
function that corresponds to Obj objective. Since the objectives of interest might have
different magnitudes, it is important to remove their inherent bias by normalizing them.
Normalization can be achieved by using Equation (9).

d =
n

∑
i=1

(
di
|n|

)
(9)

In the case where S = 0 (ideal and optimal case), all the non-dominated solutions are
uniformly spread and equidistantly spaced to the entire Pareto front. The spacing indicator
is suitable for evaluating the non-dominated solutions of the regular Pareto fronts, which
are obtained by different algorithms. However, it is important that the solutions are unique,
i.e., they cannot be duplicated.

4. Optimization Problems Related to Selective Laser Sintering/Melting—SLS/SLM

Selective laser sintering/melting (SLS/SLM) constitutes a very important, rapid proto-
typing process, where the materials in the form of powder are used for fabricating parts
from computer-aided design (CAD) models. In the wide range of materials that are used for
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SLS/SLM, one may distinguish engineering thermoplastics such as polymers, polyamides,
ABS, nylons and polycarbonates, as well as metallic materials such as titanium and its
alloys, stainless steel alloys and tool steels, etc. SLS/SLM is a very challenging operation
owing to weak strength, dimensional inaccuracy and poor surface finish that characterize
most of the products fabricated using SLS/SLM technology. As it occurs in any other
manufacturing process, choosing the different settings for the values of process-related
parameters is an important aspect. Since the problems presented in this research are ex-
amined in terms of optimization for the first time in the literature, no other reports were
found to retrieve information about the algorithm-specific parameters and related settings.
MOVEGA has been applied to solve all three problems with reference to preliminary
research work concerning the tuning of the algorithm-specific parameters related to the
proposed algorithm. Consequently, the settings applied for MOVEGA’s parameters are(

Cpop = 20
)

for the population size,
(
Vpop = 12

)
for the virus population size, the maxi-

mum variable number of bits in the virus chromosome substring, which is equal to 25 (given
as a fraction of the 100-digit chromosome string of the individuals in the main population)(

Vstrlengthmax = 25 = 1
4 Cstrlengthmax

)
, the maximum virus life reduction rate, which is

equal to −0.5
(

rate ↓ Vli f e = −0.5
)

, and the maximum infection rate, which is equal to
70% of the maximum viral infectivity (VinfRatemax = 7). The same problems have been
solved by applying other intelligent algorithms, with their algorithm-related parameters
having been tuned to the best possible extend for rigorous comparisons to be made. These
algorithms are mentioned in each problem, and they represent three population-based ones
and one swarm-based one.

4.1. Optimization of SLM Parameters for Forming Ti6Al4V Alloy Specimens with
Maximum Density

The optimization procedure for the case study is based on the experimental results
found in the work presented in [29]. In the aforementioned work, a custom SLM machine
(DiMetal-280) was used for conducting the experiments. The major specifications of their
machine are a continuous fiber laser with a wavelength of 1075 nm, the X-Y galvanometer
scanning mode, which was focused by the f-θ lens with a scanning velocity ranging from
5 to 5000 mm/s, the beam quality factor M2 ≤ 1.1, the laser spot diameter of 70 µm and the
thickness, which was layered by a roller and ranged from 20 to 80 µm. The material was a
gas-atomized spherical Ti6Al4V powder, while the average diameter of 95% powder was
under 20 µm. During the SLM operation, the oxygen content was below 0.02%. Based on
the results in [29], a regression equation for estimating the mean density of produced parts
was generated and adopted in this case for maximizing the mean density (%). However, the
process parameters along with their corresponding ranges are the same as those considered
by the authors of [29]. The parameters are: the processing layer thickness PT (mm), the
linear energy density LED (J/mm) and the hatching space HS (mm). As a categorical
factor, the scanning strategy was kept constant in the “X-Y inter-layer stagger scanning”
mode. The ranges for the parameters were: (0.02 ≤ PT ≤ 0.035), (0.2 ≤ LED ≤ 0.5) and
(0.04 ≤ HS ≤ 0.07), according to [29]. Equation (10) gives the regression equation that
was used as the objective function for maximizing the mean density maxρ in this single-
optimization case.

maxρ = −
(

96.3 + 136 ∗ PT + 13.1 ∗ LED− 216 ∗ HS− 630 ∗ PT2 − 46.4 ∗ LED2 − 1861 ∗ HS2 − 901 ∗ PT ∗ LED− 60 ∗ PT ∗ HS+
974 ∗ LED ∗ HS)

(10)

The authors of [29] optimized (maximized) the objective of the mean density maxρ by
applying numerical optimization, and they achieved the value of 94.4424 (%) as the optimal
solution. In [34] the optimal solution for the same problem was found equal to 94.4424.
An attempt was conducted to further improve this result by applying the MOVEGA using
its single-objective module. The same procedure was used for the rest of the optimizers
used for comparison: the Greywolf algorithm (GWO), the Multiverse algorithm (MVO),
the Antlion algorithm (ALO) and the Dragonfly algorithm (DA) [12,35–37]. The MOVEGA
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as well as the competitive algorithms ran with a population size that was equal to 20 for
200 iterations, thus, resulting in 4000 function evaluations. All the algorithms managed
to obtain the same maximum result for the mean density maxρ, which was equal to
94.4751 against the maximum value of 94.4424 reported in [34]. From the results obtained
by the algorithms tested, in terms of the convergence speed and iteration number at
which the best result was achieved, it is revealed that there is no need for setting such
a large number of iterations, however, this has been intentionally considered in order to
examine whether the algorithms become trapped in a local optimum solution or not. the
MOVEGA (in this single-objective optimization case, it is referred as VEGA) exhibited the
best convergence speed against the rest algorithms, whilst it obtained the maximum result
for the mean density maxρ in the 6th iteration (120 function evaluations). The GWO, MVO,
ALO and DA algorithms converged to the 17th, 53rd, 25th and 23rd iterations, respectively.
The total execution timespan for the algorithms was approximately the same, ranging from
10 s to 13 s. Optimal values obtained were found that were equal to 0.02, 0.5 and 0.07 for
the processing layer thickness PT (mm), linear energy density LED (J/mm) and hatching
space HS (mm), respectively. These outputs are in full agreement with the experimental
ones in [34]. Note that the algorithms were ran 20 times to examine their stochastic nature
and repeatability for obtaining the best result. Figure 4 gives the best convergence trends
exhibited by all the algorithms with regard to the total of 20 algorithmic simulation tests.
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Figure 4. Convergence speed exhibited by VEGA, GWO, MVO, ALO and DA algorithms for maxi-
mizing mean density, with 200 iterations.

4.2. Case 2: Maximization of Density and Tensile Strength of Laser-Melted Ti6Al-4V
Alloy Specimens

The optimization problem examined here is formulated by considering the experi-
mental results presented in [38], where a Taguchi experimental design was established,
with the laser power LP (W), scanning speed SS (mm/min), hatch spacing HS (µm), scan
pattern angle SPA (◦) and heat treatment temperature HTT (◦C) being the independent
process parameters, to characterize the Brinell hardness HB (HB) and tensile strength TS
(MPa) of the laser-melted Ti6Al4V alloy specimens. The experimental design involved a
total of 25 runs based on the number of parameters and their corresponding levels. The
SLM equipment that was used was an SLM-125HL equipped with YLR-fiber-laser with a
minimum spot size of 5µm, while the material used was a powdered Ti6Al4V Titanium
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alloy. The authors of [38] measured the hardness of their experimental specimens using a
DuraJet® G5 apparatus for the Brinell hardness. The load and indenter values that were
applied were 30 N and 1/30, respectively. The regression equations found in [38] were
adopted to play the role of objective functions for the MOVEGA and the rest of the algo-
rithms. The scanning strategy was kept constant. The ranges for the parameters were:
(90 ≤ LP ≤ 110), (600≤ SS≤ 800), (65≤ HS≤ 85), (36≤ SPA≤ 75) and (20≤ HTT ≤ 1050).
Equations (11) and (12) give the regression equations that were used as objective functions
for simultaneously maximizing the hardness maxHB and the tensile strength maxTS in this
two-objective optimization case.

maxHB = −(10376 − 152.9 ∗ LP − 4.20 ∗ SS − 52.2 ∗ HS + 43.3 ∗ SPA + 0.336 ∗ HTT + 0.638 ∗ LP2 + 0.00264 ∗
SS2 + 0.204 ∗ HS2 + 0.0471 ∗ SPA2 − 0.000091 ∗ HTT2 + 0.0059 ∗ LP ∗ SS + 0.376 ∗ LP ∗ HS − 0.114 ∗ LP ∗ SPA −
0.00499 ∗ LP ∗ HTT − 0.00844 ∗ SS ∗ SPA + 0.000486 ∗ SS ∗ HTT − 0.376 ∗ HS ∗ SPA + 0.00175 ∗ HS ∗ HTT −
0.00465 ∗ SPA ∗ HTT)

(11)

maxTS = −(−11916 + 389 ∗ LP + 1.3 ∗ SS − 240 ∗ HS + 92 ∗ SPA + 4.23 ∗ HTT − 1.93 ∗ LP2 + 0.00276 ∗ SS2 +
1.443 ∗ HS2 + 0.549 ∗ SPA2 − 0.000429 ∗ HTT2 − 0.0161 ∗ LP ∗ SS + 0.51 ∗ LP ∗ HS − 1.077 ∗ LP ∗ SPA − 0.0003 ∗ LP
∗ HTT − 0.0272 ∗ SS ∗ SPA − 0.00316 ∗ SS ∗ x(5) − 0.362 ∗ HS ∗ SPA − 0.0225 ∗ HS ∗ HTT + 0.0034 ∗ SPA ∗ HTT)

(12)

The two-objective optimization problem was solved by applying the MOVEGA, MOGWO,
MOMVO, MOALO and MODA algorithms using a population size that was = equal to 20 for
200 iterations (4000 function evaluations). To examine the efficiency of the MOVEGA
and the rest of antagonizing algorithms, 30 independent algorithmic simulations were
conducted, resulting in 30 non-dominated Pareto fronts. From these 30 sets, the coverage
has been computed among the pairs of two independent sets per two algorithms, while
the spacing refers to the best non-dominated set obtained out of 30 trials. The standard
deviation results refer to the 30 coverage results computed for the five multi-objective opti-
mization algorithms. Figure 5 presents the best Pareto fronts obtained by the algorithms.
Table 1 summarizes the results for the best 145 non-dominated solutions set obtained by
the MOVEGA, whilst Table 2 gives the results for best results, the mean and the standard
deviation for coverage values, as well as the spacing among the solutions for the best
non-dominated set obtained by each algorithm. It is evident that the MOVEGA exhib-
ited the best performance in terms of the metrics selected. As an example, the result of
Cvg(MOVEGA, MOGWO) = 0.8328 implies that, with reference to the best values, 83.28% of
MOGWO’s non-dominated solutions are dominated by those obtained by MOVEGA. On
the contrary, the result of Cvg(MOGWO, MOVEGA) = 0.7213 implies that, with reference to
the best values, 72.13% of MOVEGA’s non-dominated solutions are dominated by those
obtained by MOGWO. With the same philosophy, the rest of the outputs for the cover-
age indicator can be similarly interpreted. The best results for the spacing indicator are
0.0257, 0.0912, 0.0922, 0.0697 and 0.0984 for the MOVEGA, MOGWO, MOMVO, MOALO
and MODA optimizers, respectively. By considering all three statistical parameters (the
best results, the mean and the St.Dev.), MOVEGA is superior to the rest algorithms. By
reviewing the Pareto fronts given in Figure 5, it is evident that MOVEGA’s Pareto front
is more well-spread and continuous, with its 145 non-dominated points being uniformly
distributed throughout the entire trend curve.

Table 1. Optimal non-dominated solutions set obtained by MOVEGA using the regression equations
of case 2.

Sol. No. LP (W) SS (mm/min) HS (µm) SPA (◦) HTT (◦C) maxHB maxTS

1 90.0000 600.0070 65.0000 74.9992 96.0606 724.1530 1676.6300
2 90.0000 600.0830 65.0000 75.0000 189.6659 716.3600 1768.1500
3 90.0002 600.8099 65.0002 74.9999 369.0359 696.4140 1922.2800
4 90.0004 600.2490 65.0015 74.9992 512.6129 677.2990 2025.6600
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Table 1. Cont.

Sol. No. LP (W) SS (mm/min) HS (µm) SPA (◦) HTT (◦C) maxHB maxTS

5 90.0004 600.0346 65.0005 74.9990 572.3014 668.2410 2063.6400
6 90.0004 600.0497 65.0005 74.9991 572.4180 668.2090 2063.7000
7 90.0002 600.0021 65.0014 74.9992 638.1319 657.2870 2101.8300
8 90.0002 600.0349 65.0013 74.9995 687.7818 648.4690 2128.1600
9 90.0013 600.4803 65.0001 74.9994 74.0921 725.1940 1654.4900

10 90.0020 600.1857 65.0008 74.9994 115.8210 722.4130 1696.6500
11 90.0001 600.7364 65.0004 74.9993 213.9841 713.4070 1790.9200
12 90.0002 600.0025 65.0002 74.9973 48.2313 727.4620 1626.9200
13 90.0001 600.0005 65.0009 74.9910 100.7152 723.7120 1681.0100
14 90.0002 600.0005 65.0009 74.9910 111.3896 722.9010 1691.7700
15 90.0007 600.0103 65.0001 74.9973 322.8056 702.6660 1885.1000
16 90.0003 600.0176 65.0007 74.9885 436.4406 688.3110 1972.6600
17 90.0006 600.0850 65.0001 74.9961 537.9085 673.5970 2042.0900
18 90.0010 600.0852 65.0000 74.9962 575.7634 667.6140 2065.6100
19 90.0037 600.0031 65.0004 74.9998 662.0168 653.0600 2114.7800
20 90.0001 600.0041 65.0001 74.9997 704.9853 645.3690 2136.8900
21 90.0002 600.0046 65.0001 74.9994 740.2719 638.7320 2153.8000
22 90.0055 600.0059 65.0003 74.9959 825.6876 621.5840 2190.0900
23 90.0030 600.0004 65.0006 74.9958 883.3804 609.4070 2211.2500
24 90.0001 600.0022 65.0018 74.9999 959.8236 592.3350 2235.0000
25 90.0000 600.0024 65.0009 74.9995 1049.9481 570.7760 2256.4100
26 90.0009 600.0032 65.0008 74.9997 72.2267 725.8430 1652.1300
27 90.0000 600.1076 65.0023 75.0000 211.0341 714.3050 1787.8900
28 90.0000 600.0121 65.0004 74.9986 300.1269 705.2500 1866.2800
29 90.0000 600.0203 65.0004 74.9984 304.2338 704.7820 1869.7200
30 90.0000 600.0722 65.0004 74.9967 362.5610 697.8850 1917.1000
31 90.0000 600.0714 65.0004 74.9970 362.6760 697.8740 1917.2000
32 90.0000 600.0657 65.0001 74.9993 423.4337 690.1280 1963.6000
33 90.0000 600.0660 65.0002 74.9993 431.3230 689.0670 1969.3800
34 90.0005 600.1135 65.0005 74.9996 482.8846 681.8100 2005.8100
35 90.0005 600.1110 65.0007 74.9997 531.7765 674.5350 2038.2600
36 90.0009 600.0268 65.0031 75.0000 608.8342 662.2050 2085.2100
37 90.0004 600.1641 65.0076 74.9999 689.8788 647.8650 2128.7900
38 90.0007 600.1651 65.0079 74.9999 710.0763 644.1420 2138.8300
39 90.0003 600.0472 65.0192 75.0000 811.1128 624.3400 2183.5100
40 90.0006 600.0391 65.0091 74.9999 875.5373 611.0010 2208.2300
41 90.0001 600.0028 65.0100 74.9999 936.3248 597.5660 2227.8300
42 90.0000 600.0027 65.0050 74.9998 1001.2611 582.5420 2245.5100
43 90.0043 600.0114 65.0043 74.9999 81.6854 725.0330 1661.7300
44 90.0002 600.0909 65.0436 74.9995 353.1494 698.1930 1907.9500
45 90.0002 600.0898 65.0461 74.9995 354.1915 698.0200 1908.6800
46 90.0000 600.0104 65.0133 75.0000 487.6573 680.9800 2008.5600
47 90.0001 600.3778 65.0084 75.0000 552.4658 670.9590 2050.8700
48 90.0003 600.4747 65.0014 74.9992 756.6315 635.1890 2160.6100
49 90.0002 600.4659 65.0014 74.9992 798.6468 626.8870 2178.7200
50 90.0005 600.7370 65.0019 74.9616 860.6133 613.5870 2200.6600
51 90.0000 600.0007 65.0044 74.9999 928.7629 599.3840 2225.8800
52 90.0000 600.0000 65.0019 74.9999 972.2506 589.4500 2238.3600
53 90.0000 600.0231 65.0003 75.0000 1021.0095 577.8650 2250.3200
54 90.0000 600.0224 65.0002 75.0000 1049.6006 570.8650 2256.3600
55 90.0004 600.6827 65.0039 74.9999 280.1177 706.7060 1849.3300
56 90.0000 600.1879 65.0004 74.9928 180.6262 716.9880 1759.4200
57 90.0008 600.1150 65.0002 74.9970 246.9769 710.7680 1820.2900
58 90.0003 600.0007 65.0000 74.9992 20.1417 729.2480 1596.9400
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Table 1. Cont.

Sol. No. LP (W) SS (mm/min) HS (µm) SPA (◦) HTT (◦C) maxHB maxTS

59 90.0003 600.0007 65.0001 74.9999 88.6743 724.7030 1669.1200
60 90.0002 600.0009 65.0001 74.9999 115.1837 722.7150 1695.9400
61 90.0001 600.0007 65.0001 74.9999 150.1976 719.8930 1730.4600
62 90.0001 600.0009 65.0001 75.0000 185.7119 716.8010 1764.3900
63 90.0042 600.0007 65.0015 74.9996 229.7076 712.5410 1804.7900
64 90.0005 600.0004 65.0026 74.9996 291.2892 706.1940 1858.7500
65 90.0018 600.0028 65.0023 74.9988 424.0614 690.0180 1963.9300
66 90.0018 600.0004 65.0023 74.9989 436.8278 688.3010 1973.2600
67 90.0075 600.0098 65.0006 74.9999 504.0405 678.6600 2020.0500
68 90.0073 600.0096 65.0004 74.9999 527.3985 675.1570 2035.4100
69 90.0028 600.0066 65.0001 74.9998 580.7397 666.8640 2068.7700
70 90.0031 600.0065 65.0001 74.9998 589.3602 665.4540 2073.9200
71 90.0101 600.0036 65.0005 74.9898 656.1425 653.8770 2111.1400
72 90.0000 600.0052 65.0013 74.9980 718.4244 642.8350 2143.3300
73 90.0000 600.0051 65.0013 74.9980 725.1892 641.5640 2146.5800
74 90.0004 600.0005 65.0003 74.9994 791.4698 628.6960 2176.4300
75 90.0003 600.0001 65.0005 74.9998 806.9547 625.5700 2182.8500
76 90.0009 600.0003 65.0003 74.9981 916.3233 602.2180 2222.1800
77 90.0286 600.0030 65.0050 74.9999 120.2652 721.6730 1700.3900
78 90.0041 600.0147 65.0003 74.9999 192.6370 716.0760 1770.8200
79 90.0041 600.0148 65.0002 74.9999 224.1196 713.1030 1799.8000
80 90.0019 600.0978 65.0022 74.9992 350.5860 699.2630 1907.5900
81 90.0018 600.0980 65.0013 74.9993 377.1215 696.0260 1928.5200
82 90.0010 600.0072 65.0009 75.0000 460.2781 685.1080 1990.1300
83 90.0020 600.0121 65.0008 74.9999 496.3530 679.9050 2014.9700
84 90.0023 600.0167 65.0009 75.0000 562.1374 669.8410 2057.4200
85 90.0002 600.0046 65.0001 74.9985 619.2623 660.5290 2091.2900
86 90.0002 600.0067 65.0000 75.0000 654.6460 654.4410 2110.9200
87 90.0004 600.0434 65.0002 74.9980 760.4103 634.7950 2162.8600
88 90.0006 600.0443 65.0017 74.9988 823.3227 622.1490 2189.2300
89 90.0003 600.0844 65.0009 74.9996 882.0087 609.7240 2210.8200
90 90.0003 600.0177 65.0015 74.9979 943.9839 595.9530 2230.4200
91 90.0002 600.0176 65.0015 74.9979 951.1902 594.3050 2232.4900
92 90.0004 600.0176 65.0004 74.9979 1018.4691 578.4620 2249.6600
93 90.0002 600.0319 65.0009 74.9998 48.8745 727.4000 1627.7000
94 90.0006 600.0274 65.0009 74.9999 101.5424 723.7010 1682.2000
95 90.0006 600.0512 65.0009 74.9998 136.2923 720.9600 1716.8700
96 90.0003 600.0261 65.0000 74.9913 368.4556 697.1580 1921.5300
97 90.0004 600.0854 65.0001 74.9977 443.7262 687.3420 1978.2900
98 90.0006 600.0226 65.0000 74.9978 445.0121 687.2210 1979.2300
99 90.0042 600.0567 65.0008 74.9919 520.7453 676.1180 2030.7800

100 90.0023 600.0569 65.0003 74.9919 526.9859 675.2190 2034.8800
101 90.0165 601.4028 65.0000 74.9997 676.4436 649.0900 2120.7600
102 90.0093 601.0325 65.0000 74.9995 782.6755 629.4820 2171.1900
103 90.0001 600.0025 65.0001 74.9998 891.3549 607.7680 2214.1800
104 90.0001 600.0033 65.0001 74.9998 916.9145 602.1180 2222.4500
105 90.0008 600.1868 65.0000 75.0000 995.3963 583.8910 2243.9900
106 90.0050 600.2147 65.0001 74.9740 36.8009 727.6280 1614.0400
107 90.0354 600.0887 65.0000 75.0000 339.2562 699.9920 1898.0800
108 90.0345 600.1149 65.0000 75.0000 369.8654 696.2760 1922.4300
109 90.0008 600.3937 65.0001 74.9969 543.6894 672.4330 2045.6000
110 90.0001 600.0295 65.0001 74.9962 586.9384 665.8660 2072.3700
111 90.0080 600.8088 65.0015 74.9783 785.2215 628.9980 2171.6700
112 90.0010 600.1271 65.0004 74.9988 874.0360 611.4080 2207.9800
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Table 1. Cont.

Sol. No. LP (W) SS (mm/min) HS (µm) SPA (◦) HTT (◦C) maxHB maxTS

113 90.0007 600.1159 65.0004 74.9988 893.1665 607.2660 2214.5200
114 90.0016 600.0141 65.0000 74.9992 988.4006 585.6400 2242.5500
115 90.0000 600.0025 65.0008 74.9991 20.3040 729.2250 1597.0900
116 90.0000 600.0005 65.0008 74.9991 33.4874 728.4180 1611.2800
117 90.0002 600.0437 65.0000 74.9975 130.6390 721.4280 1711.2500
118 90.0002 600.0452 65.0000 74.9968 255.4522 709.9870 1827.7600
119 90.0004 600.6115 65.0009 75.0000 310.5811 703.4860 1875.1500
120 90.0001 600.0099 65.0000 74.9991 412.8274 691.5840 1955.7500
121 90.0000 600.0305 65.0000 74.9945 486.1262 681.3920 2007.8800
122 90.0000 600.0510 65.0000 74.9944 519.8299 676.3860 2030.3800
123 90.0002 600.1056 65.0001 74.9994 629.5712 658.6990 2097.0500
124 90.0004 600.0521 65.0002 74.9998 698.4567 646.5270 2133.5900
125 90.0001 600.0234 65.0010 74.9995 774.9020 631.9700 2169.3000
126 90.0001 600.0352 65.0021 74.9992 793.4223 628.2500 2177.1100
127 90.0008 600.2279 65.0000 74.9988 831.5273 620.3430 2192.2400
128 90.0008 600.2258 65.0000 74.9988 850.5332 616.3640 2199.4100
129 90.0073 600.0691 65.0014 74.9974 1011.2398 579.9870 2247.7200
130 90.0011 600.0000 65.0001 74.9997 33.3880 728.4230 1611.2000
131 90.0015 600.0003 65.0000 74.9999 99.9996 723.8460 1680.6300
132 90.0011 600.0006 65.0000 74.9935 175.7097 717.6130 1754.6800
133 90.0001 600.0113 65.0002 74.9997 228.5262 712.7510 1803.8400
134 90.0004 600.0113 65.0002 74.9999 263.4553 709.2120 1834.8800
135 90.0003 600.0115 65.0002 74.9999 287.0514 706.6990 1855.2500
136 90.0012 600.0139 65.0001 74.9987 418.1687 690.8460 1959.6800
137 90.0008 600.0165 65.0001 74.9994 450.2061 686.5170 1983.0000
138 90.0026 600.0003 65.0029 74.9998 524.5331 675.6510 2033.5100
139 90.0017 600.0001 65.0004 74.9954 648.2606 655.4900 2107.2500
140 90.0005 600.0005 65.0011 74.9997 699.6744 646.3240 2134.2100
141 90.0005 600.0005 65.0017 74.9997 733.9239 639.9090 2150.7700
142 90.0097 600.0000 65.0000 74.9954 788.8330 628.9920 2175.0300
143 90.0099 600.0009 65.0001 74.9954 863.4788 613.5420 2204.1900
144 90.0099 600.0009 65.0001 74.9954 864.0086 613.4290 2204.3800
145 90.0119 600.0029 65.0002 74.9701 926.9109 599.4130 2224.1300

Table 2. Best, mean and standard deviation results for the non-dominated solutions obtained by
MOVEGA, MOGWO, MOMVO, MOALO and MODA optimizers for case 2.

Performance Metric Statistical Results

Best Mean St.Dev.

Cvg(MOVEGA, MOGWO) 0.8328 0.7641 0.0442
Cvg(MOGWO, MOVEGA) 0.7213 0.0912 0.0753
Cvg(MOVEGA, MOMVO) 0.8412 0.7327 0.0548
Cvg(MOMVO, MOVEGA) 0.2674 0.1668 0.0349
Cvg(MOVEGA, MOALO) 0.8227 0.7808 0.0648
Cvg(MOALO, MOVEGA) 0.2942 0.2105 0.0599
Cvg(MOVEGA, MODA) 0.7828 0.3571 0.0642
Cvg(MODA, MOVEGA) 0.2118 0.2942 0.0341
S(MOVEGA) 0.0257 0.0274 0.0035
S(MOGWO) 0.0912 0.1077 0.0094
S(MOVMVO) 0.0922 0.1752 0.0104
S(MOALO) 0.0697 0.1777 0.0149
S(MODA) 0.0984 0.2101 0.0211
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4.3. Case 3: Three-Objective Optimization Problem for 316 L Stainless Steel Powder Bed
Fusion Operation

The optimization problem examined in this case is formulated by considering the ex-
perimental results presented in [39]. In [39], a Taguchi experimental design was established,
with the laser power LP (W), scanning speed SS (mm s−1), and hatch spacing HS (mm) be-
ing the independent process parameters, to characterize the top surface roughness Ra (µm),
Vickers hardness HV (HV) and density in percentage ρ (%) of laser-melted 316 L stainless
steel specimens. Their experimental design involved a total of 27 runs based on the number
of parameters and their corresponding levels. The SLM equipment used was the EP250
with a fiber-laser with 400 W maximum indicative power and 80 µm beam diameter. The
oxygen content was maintained at approximately 1000 ppm during the conduction of SLM
experiments. The results corresponding to the three objectives, the top surface roughness
Ra (µm), Vickers hardness HV (HV) and density in percentage ρ (%), were the average
values as a result of taking series of measurements. The authors of [39] succeeded on
presenting a factor analysis, which was accompanied by normalized quantities along with
the Taguchi design of the experiments, however, the kind of trade-off these objectives
yielded and the type of solution space in the form of a Pareto front were not discussed.
The regression equations found in [39] were adopted to serve as the objective functions
for the MOVEGA and the rest algorithms for the simultaneous optimization efforts of the
three objectives. From these objectives, one of them should be minimized (top surface
roughness Ra) and two of them should be maximized (Vickers hardness HV and density in
percentage, ρ). The ranges for the parameters were: (44.36 ≤ LP ≤ 64.17), (6.69 ≤ SS ≤ 9.67)
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and (1.88 ≤ HS ≤ 2.63). Equations (13) and (15) give the regression equations that were
used as objective functions for simultaneously minimizing the surface roughness minRa,
maximizing the Vickers hardness maxHV and the maximizing density in percentage maxρ
in this three-objective optimization case.

minRa = 21.3 − 1.735 ∗ LP + 3.10 ∗ SS + 21.8 ∗ HS + 0.00811 ∗ LP2 − 0.261 ∗ SS 2 − 3.65 ∗ HS2 + 0.0610 ∗ LP ∗ SS
+ 0.051 ∗ LP ∗ HS − 0.782 ∗ SS ∗ HS

(13)

maxHV = −(−206 + 0.73 ∗ LP + 38.8 ∗ SS + 234 ∗ HS − 0.1111 ∗ LP2 − 3.62 ∗ SS2 − 61.6 ∗ HS2 + 0.836 ∗ LP ∗ SS
+ 2.40 ∗ LP ∗ HS − 13.57 ∗ SS ∗ HS)

(14)

maxρ= −(94.76 − 0.0235 ∗ LP + 0.553 ∗ SS + 3.29 ∗ HS − 0.002043 ∗ LP2 − 0.0505 ∗ SS2 − 0.761 ∗ HS2 + 0.01875
∗ LP ∗ SS + 0.0530 ∗ LP ∗ HS − 0.4188 ∗ SS ∗ HS)

(15)

In this case, the algorithms ran for 4000 function evaluations using a population size
that was equal to 20 for 200 iterations, whilst 50 non-dominated solutions were stored
in corresponding archives. To examine the efficiency of the MOVEGA and the rest of
antagonizing algorithms, 30 independent algorithmic simulations were conducted, result-
ing in 30 non-dominated Pareto fronts. From these 30 sets, the coverage was computed
among the pairs of two independent sets per two algorithms, while the spacing refers to
the best non-dominated set obtained out of 30 trials. The standard deviation results refer to
the thirty coverage results computed for the five multi-objective optimization algorithms.
Figure 6 illustrates the best Pareto fronts obtained by the algorithms.
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Figure 6. Pareto fronts of non-dominated solutions for the best simulation experiment exhibited by:
(a) MOVEGA, (b) MOGWO, (c) MOMVO, (d) MOALO and (e) MODA algorithms for case 3, with
20 individuals and 200 iterations.
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Table 3 summarizes the results for the best 145 non-dominated solutions set obtained
by the MOVEGA, whilst Table 4 gives the results for best results, and the mean and the
standard deviation for the coverage values, as well as spacing among the solutions for
the best non-dominated set obtained by each algorithm. It is revealed that the MOVEGA
exhibited the best performance in terms of the metrics selected. As an example, the result
of Cvg(MOVEGA, MOGWO) = 0.8745 implies that, with reference to the best values, 87.45%
of MOGWO’s non-dominated solutions are dominated by those obtained by MOVEGA. On
the contrary, the result of Cvg(MOGWO, MOVEGA) = 0.4249 implies that, with reference to
the best values, 42.49% of MOVEGA’s non-dominated solutions are dominated by those
obtained by MOGWO. Similarly, the rest of the outputs referring to the coverage indicator
were interpreted. The best results for the spacing indicator are 0.0177, 0.0181, 0.0102,
0.0125 and 0.0184 for the MOVEGA, MOGWO, MOMVO, MOALO and MODA optimizers,
respectively. Note that MOMVO and MOALO achieved the best spacing results, however,
their solution sets are poorer compared to the rest algorithm results. That is, MOVEGA’s
non-dominated solutions offer a wider range for selecting optimal solutions according
to the operation’s requirements. By reviewing the Pareto fronts given in Figure 6, it is
evident that MOVEGA’s front is spread more, continuous and wider than the others, with
its 50 non-dominated points being uniformly distributed throughout the entire trend curve.

Table 3. Optimal non-dominated solutions set obtained by MOVEGA by applying the regression
equations of case 3.

Sol. No. LP (W) SS (mm/min) HS (µm) minRa maxHV maxρ

1 63.0920 6.6900 1.8800 3.22026 184.430 99.0131
2 57.0923 7.0746 2.0314 6.08493 208.998 99.3881
3 56.5919 7.2272 2.0667 6.55576 211.269 99.4072
4 63.3478 6.7351 1.8882 3.30673 184.917 99.0189
5 59.7448 6.6900 1.8800 4.00626 193.844 99.1784
6 57.6960 6.8654 1.9544 5.26003 203.770 99.3269
7 59.0302 7.0065 2.0128 5.40195 205.081 99.3343
8 59.6797 6.7893 1.8937 4.27655 196.154 99.2116
9 57.5663 7.0654 1.9750 5.68598 206.682 99.3604
10 57.4215 7.0615 2.0316 5.97916 208.501 99.3817
11 60.6645 6.7139 1.8846 3.84318 192.136 99.1468
12 62.3797 6.6900 1.8800 3.37229 186.642 99.0521
13 62.3644 6.7182 1.8866 3.46950 187.562 99.0662
14 58.7394 6.9052 1.9771 5.15238 203.262 99.3139
15 58.4793 7.0090 1.9913 5.44380 205.308 99.3399
16 62.3863 6.7290 1.8862 3.48354 187.657 99.0675
17 58.4011 6.9702 1.9761 5.33356 204.510 99.3308
18 58.6260 6.7573 1.9064 4.57371 198.665 99.2541
19 60.9559 6.8512 1.9448 4.35574 196.533 99.2082
20 61.2156 6.7024 1.8862 3.69831 190.570 99.1197
21 61.8754 6.7370 1.8812 3.58157 188.985 99.0912
22 60.6341 6.7259 1.8868 3.88524 192.521 99.1526
23 58.8913 6.8463 1.9457 4.86012 201.031 99.2839
24 60.6267 6.8324 1.9279 4.30814 196.244 99.2062
25 58.4646 6.9468 1.9886 5.34328 204.607 99.3322
26 58.1004 6.9805 1.9960 5.52379 205.786 99.3483
27 59.5401 6.9638 1.9837 5.07353 202.676 99.3008
28 59.6232 6.9664 1.9792 5.03499 202.370 99.2962
29 58.2348 6.9789 1.9901 5.45795 205.362 99.3423
30 59.2099 6.9712 1.9831 5.16324 203.357 99.3115
31 59.5973 6.9073 1.9500 4.80039 200.538 99.2722
32 58.3600 6.9500 1.9838 5.35188 204.644 99.3331



Machines 2023, 11, 95 18 of 21

Table 3. Cont.

Sol. No. LP (W) SS (mm/min) HS (µm) minRa maxHV maxρ

33 59.5956 6.8831 1.9562 4.79400 200.511 99.2722
34 58.2513 6.9896 1.9909 5.47262 205.466 99.3434
35 57.0567 7.1305 2.0458 6.22802 209.792 99.3950
36 60.6599 6.8332 1.9296 4.31110 196.260 99.2062
37 58.2678 6.9376 1.9778 5.32860 204.455 99.3314
38 60.4834 6.9424 1.9605 4.69952 199.536 99.2528
39 59.2840 7.0080 1.9910 5.23907 203.907 99.3178
40 61.9641 6.7711 1.9043 3.76112 190.613 99.1149
41 60.5560 6.8732 1.9534 4.53106 198.169 99.2338
42 59.5237 6.9291 1.9660 4.93497 201.613 99.2871
43 61.6147 6.8326 1.9338 4.11536 194.069 99.1683
44 59.0104 6.9904 1.9925 5.28737 204.261 99.3241
45 61.5612 6.8335 1.9305 4.11072 194.054 99.1684
46 60.1161 6.8770 1.9438 4.59124 198.773 99.2449
47 62.7393 6.7634 1.9016 3.56492 188.083 99.0715
48 60.7520 6.8414 1.9321 4.31713 196.273 99.2057
49 60.5726 6.9424 1.9639 4.69620 199.484 99.2515
50 58.3231 7.0466 2.0144 5.64501 206.650 99.3565

Table 4. Best, mean and standard deviation results for the non-dominated solutions obtained by
MOVEGA, MOGWO, MOMVO, MOALO and MODA optimizers for case 3.

Performance Metric Statistical Results

Best Mean St.Dev.

Cvg(MOVEGA, MOGWO) 0.8745 0.8524 0.0346
Cvg(MOGWO, MOVEGA) 0.4249 0.4390 0.0571
Cvg(MOVEGA, MOMVO) 0.4612 0.4588 0.0224
Cvg(MOMVO, MOVEGA) 0.2459 0.2547 0.0489
Cvg(MOVEGA, MOALO) 0.4378 0.4174 0.0542
Cvg(MOALO, MOVEGA) 0.1947 0.2234 0.0672
Cvg(MOVEGA, MODA) 0.7716 0.7519 0.0516
Cvg(MODA, MOVEGA) 0.6904 0.6815 0.0672
S(MOVEGA) 0.0177 0.0179 0.0031
S(MOGWO) 0.0181 0.0186 0.0046
S(MOVMVO) 0.0102 0.0111 0.0012
S(MOALO) 0.0125 0.0128 0.0018
S(MODA) 0.0184 0.0178 0.0057

5. Conclusions

In this research, a modified virus-evolutionary genetic algorithm for single and multi-
objective optimization problems has been presented. The algorithm takes advantage of
two populations; one comprising the main individuals and the other one comprising the
population of viruses. Owing to the fact that the physical process of viral infection has
been simulated in this algorithm, both the horizontal propagation and vertical inheritance
operators are responsible for obtaining more reliable and antagonizing solutions compared
to those results obtained by the other algorithms. Through their coevolution, the individuals
and viruses exchange information to push further the envelope of maintaining the balance
between exploitation and exploration, while efficient binary schemata are rapidly processed,
and if they are beneficial, they increase the algorithm’s efficiency in finding either the global
optimum for single-objective optimization problems or a uniform and wide non-dominated
set of solutions for multi-objective optimization problems.
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The algorithm has been applied for solving three optimization problems related to a
modern additive manufacturing/rapid prototyping operation, which is widely known as
selective laser sintering and/or selective laser melting (SLS/SLM). The first case presented a
single-objective optimization problem using the maximum density as its optimization target
when laser-melting Ti6Al4V alloy powder was used for fabricating parts. The second case
presented a bi-objective optimization problem using the maximum hardness and maximum
tensile strength as the optimization objectives for simultaneous optimization when laser-
melting Ti6Al4V alloy powder was used for fabricating parts. The third case presented
a three-objective optimization problem, where a simultaneous optimization among the
minimum surface roughness, maximum hardness and maximum density needed to be
achieved during the laser melting of 316 L stainless steel. All three cases have been adopted
by the recent literature, and the regression equations from corresponding experiments have
served as the objective functions for the problems.

By applying five different optimization algorithms, including the one proposed in
this work (virus-evolutionary genetic algorithm), it was shown that a significant trade-off
among the objectives of the several cases exists, and it constitutes an important research
aspect for optimizing engineering applications using intelligent algorithms. The rest
of the algorithms tested were the Greywolf (MOGWO), the Multi-verse (MOMVO), the
Antlion (MOALO) and the dragonfly algorithms (MODA). The results obtained by the
three aforementioned cases examined in the work have been rigorously compared under
the same conditions to the best possible extent since all the algorithms handle the same
population size, number of iterations, number of function evaluations and initialization
conditions with the same starting search points. To characterize the performance of the
proposed virus-evolutionary genetic algorithm as well as the rest of competitive algorithms,
two widely applied performance indicators have been computed; the coverage between
the two non-dominated solution sets and spacing used to quantify the solutions spread.

It should be mentioned that the application of the virus-evolutionary genetic algorithm
to the individual cases examined in our current study by no means constitutes a generalized
optimization methodology dedicated to SLS/SLM operations. The results presented in this
study are as reliable as the problems’ domains and their related parameters will allow them
to be. However, this work, in its current state, puts forth new knowledge by developing
and enhancing the virus-evolutionary genetic algorithm for efficiently searching several
problem domains in real-world experiments. By taking into account the great number of
similar studies that have attempted to acquire results with commonly employed artificial
algorithms, this work has embraced “viral infectivity” to come up with original datasets
and results related to SLS/SLM operation to allow comparisons to be made with other
research by applying other heuristics. The benefits of the proposed optimization algorithm
against other competitive algorithms is the computational philosophy of the algorithm
based on the virus theory of evolution. The viruses in this algorithm act as “hill-climbers”
and manage to lead the search for the solution so that local trapping is avoided. The rest
of competitive algorithms are also beneficial, and their control environment has a low
cost, is user friendly and requires a basic technical computing level (i.e., in the MATLAB
environment). The limitation of the proposed methodology is that no online monitoring for
the direct control of process parameters and optimization is necessary. The current trends
suggest that we need new technology for optimizing the process parameters by analyzing
the signals and suitably balancing the operational parameters to reach an optimal solution.

It is within our interests in the near future to examine the potentials of automating
the software that controls the SLS/SLM parameters and try to develop a dynamic opti-
mization environment by using the proposed virus-evolutionary genetic algorithm, which
operates in-line with an application program interface of SLS/SLM software, which we
envision will be a more meaningful and generic path towards delivering a generalized
global optimization solution to further advance scientific knowledge and contribute to
engineering optimization.
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