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Abstract
A numerical method is used to determine the
winding shape that minimizes  total winding
losses in a gapped inductor with round-wire
windings.  The algorithm accounts for prox imi ty -
effect loss that results from the two-dimensional
field in the winding area, and for the effect of the
winding on that field.  Results are presented for
an example geometry.  The opt imized
configuration has significantly lower losses than
alternative designs including lumped-gap and
distributed-gap inductors with windings designed
using standard one-dimensional analysis.

I. INTRODUCTION

In an inductor winding, the core, and particularly the air
gap, strongly affect the field in the winding area, and thus
determine proximity-effect losses.  Conventional one-
dimensional analyses of proximity-effect losses and the
associated design methodologies developed for transformers
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10] do not account for
the true field of a gapped inductor, and do not allow accurate
prediction of inductor ac resistance [11].  This limitation is
particularly important because of the growing popularity of
soft-switching power-converter topologies, which require
inductors with high ac current.  Low ac resistance is essential
for efficient operation.

One approach to this problem is to modify the core and
gap to achieve a one-dimensional field configuration, for
example by using a distributed gap as shown in
Fig. 1 [12], [13].  Then standard one-dimensional winding
design and analysis methods can be used.  This solution is

often motivated by avoiding the "fringing field" associated
with the gap, which can impinge on the winding and increase
losses.  The quasi-distributed gap technique can be used to
approximate a distributed gap without requiring a low-
permeability material [14], [15], [16], [17], [18], [19], [20].

In this paper, we study an alternative approach:
developing winding designs to minimize loss with a given
gapped core structure, as explored in [21], [22].  We develop
analysis of proximity-effect losses with the actual field
distribution of a gapped inductor, and systematic optimization
of the winding configuration to minimize losses.  We
consider two-dimensional analysis of round-wire windings
including litz and single-strand wire; the fundamental
approach could also be extended to three-dimensional analysis.
Our original motivation was to find the lowest loss possible
with the constraint of a single lumped gap, because this is
less costly than a distributed or quasi-distributed gap.  In fact,
we found that the performance of the optimized lumped-gap
design is, in many cases, even better than that of the
corresponding distributed-gap design.

II. ANALYSIS OF PROXIMITY -EFFECT LOSSES

Direct numerical computation of eddy-current losses in
wire windings with many turns or many strands is usually
impractical, despite the availability of commercial finite-
element analysis tools with the capability of analyzing eddy
currents.  This is because the mesh resolution required to
model the individual strands is prohibitive.  A much more
computationally efficient approach uses the fact that
proximity-effect losses are proportional to the square of the ac
field impinging on any given conductor.  This field may be
accurately estimated by magnetostatic analysis, since eddy
currents circulating within a small conductor cannot
significantly perturb the overall field.

 For cylindrical conductors with diameter, d, small
compared to a skin depth, the proximity-effect loss in an ac
field, B, perpendicular to the axis of the wire, at a frequency
ω is [23],
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where l is the length of the conductor and ρc is the resistivity
of the conductor.  (For calculations for larger conductors, see
[9].)  From magnetostatic analysis, one can calculate the
average value of the square of the flux density over the region

of winding, | |B 2 , and then use this with (1) to calculate total
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Fig. 1. Distributed-gap inductor design.



2

proximity-effect loss.  This approach can be used with
standard magnetostatic finite-element analysis or with other
numerical or analytical methods of calculating the
magnetostatic field.  One derivation of the standard one-
dimensional analysis uses this approach [23].  Reference [23]
also describes an experimental measurement approach to

obtain information equivalent to | |B 2 , which can then be
used to predict losses.

III. COMPUTATION OF OPTIMAL SHAPE

Given a gapped inductor core, as shown in Fig. 2, we
wish to find the winding configuration that provides
minimum total loss for a given number of turns.  Since
solid-wire windings can be considered a special case of litz-
wire windings with the number of strands equal to one, and
because litz wire is particularly common and useful in
inductors with high ac current, we consider litz-wire
windings.  One may optimize a litz-wire winding with or
without constraints on cost-related parameters such as
diameter of strands and number of strands [24].  We begin by
optimizing the design with the strand diameter fixed, assumed
to be constrained by cost or manufacturing considerations.
The optimization problem becomes the choice of the number
of strands in the litz bundle (assumed equal for each turn), and
the positioning of the resulting bundles within the window.
We solve the continuous approximation to this discrete
problem: the number of strands is not limited to integers, and
rather than finding the individual position for each turn, we
find a region of the winding window, with area equal to the
area of the wire (adjusted by a packing factor) that gives
minimum total loss.  The considerations involved include the
tradeoff between lower ac loss with less copper and lower dc
resistance with more copper; the positioning of the wire in
regions of low field to minimize proximity-effect loss; and
the effect of that position, in turn, on the field in the window
area.

Our optimization program, COOS (Computation of
Optimal Shape), divides the window into a grid of typically

four hundred elements.  The shape of the winding is
represented by a matrix, P , in which each element indicates
whether that region is filled with wire (P(i,j) = 1) or is empty
(P(i,j) = 0).  Values between zero and one are also allowed,
and indicate either sparse filling of a region, or a border
between filled and empty regions that falls somewhere in the
middle of the element.  In practice, we found no sparsely
filled regions in our solutions, but we did not wish to
preclude that possibility prematurely.

The optimization problem is then to minimize the loss
by adjusting the elements of P , subject to the constraint of  
0 ≤ P(i,j ) ≤ 1.  In principle, any multivariable optimization
algorithm can be applied.  We had good results using the
procedure outlined in Fig. 3.  Although this algorithm does

Fig. 2.  Two-dimensional inductor configuration
analyzed, shown with a winding that has not been
optimized.
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Χοµπαρε τηε τοταλ ωινδινγ λοσσ
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τοταλ λοσσ φορ τηε σηαπε βεφορε
ρεµοϖαλ ορ αδδιτιον.

Fig. 3.  Flow chart of the COOS optimization algorithm.
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not guarantee finding a global minimum in loss, we found it
converged to the same solution regardless of the initial
configuration.  The algorithm used a specialized approach to
numerical computation of the field to take advantage of the
structure of the problem, as described in the Appendix.

IV. RESULTS

For a square winding window, 10 mm x 10 mm, and 0.1
mm strand diameter (approximately 38 AWG), we found
optimal shapes for a range of frequencies, as shown in Figs.
4, 5 and 6.  We used a 1 mm gap for most runs, but found
that, consistent with [20], for small gaps, gap length does not
significantly affect the results.

As the frequency increases and eddy currents become a
more severe problem, the optimal solution includes a
progressively larger "hollow" near the gap (Fig. 4).  At still
higher frequencies, this hollow takes on a slightly
mushroomed shape and additional hollows appear near the
corners (Fig. 5).  Eventually, the winding areas on each side
separate, and become thin layers on each of three sides (Fig.
6).  The accuracy of the solutions is limited by the resolution
of the grid breaking up the window into elements of the
"shape matrix" P .  Some details of the shapes shown are
based on our judgment in interpreting the matrix.

A comparison of the proximity-effect loss results
indicates the usefulness of the optimized shapes.  It is not
immediately clear what to compare our results to, as we do
not believe there exists a standard design methodology for

inductor design considering proximity-effect losses.  Designs
optimized on the basis of one-dimensional analysis are one
possibility.  We developed such designs and calculated actual
loss using finite-element magnetostatic analysis as described
in Section II, assuming that the winding is spaced away from
the gap by a distance of twice the gap length (2 mm) as
might occur with a typical bobbin and a center-post gap.
Two-dimensional analysis of the designs based on one-

10 κΗζ

(96 µµ2)

30 Κηζ
(83 µµ2)

50 κΗζ

(66.5 µµ
2
)

60 κΗζ

(58.6 µµ
2
)

10 κΗζ

30 κΗζ

50 κΗζ

60 κΗζ

60 κΗζ

 60 κΗζ

Fig. 4.  Optimal winding shapes computed by
COOS for a 10 mm x 10 mm winding window with
a gap at the center left and 0.1 mm litz-wire strand
diameter, for four frequencies.  The area near the
gap, bordered by the appropriate line for a given
frequency, is empty of conductors.  Cross-
sectional area used by each solution is indicated.
For the 60 kHz (58.6 mm2) solution, additional
empty areas appear at the top and bottom right.

70 kHz (51 .75 mm2)

100 kHz (37 .2 mm2)

 70 κΗζ

 100 κΗ ζ

Fig. 5.  Optimal winding shapes computed by
COOS as in Fig. 4, but for higher frequencies.
Areas empty of wire are bordered by the lines
shown and include a “mushroom” shape based at
the gap, bordered by the indicated line, and the
wedges at the top and bottom right.

120 kHz (3 2.4 mm2)
200 kHz (2 1.35mm2)

500 kHz (9 .75 mm2)
120 κΗζ

120 κΗζ

200 κΗζ

200 κΗζ

500 κΗζ

500 κΗζ

Fig. 6. Optimal winding shapes computed by
COOS as in Figs. 4 and 5, but for higher
frequencies.  Conductors fill the indicated areas
along the top and bottom walls and near the right
wall.
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dimensional analysis shows that they have substantially
higher losses than the one-dimensional analysis predicts.  But
the optimized solution computed by COOS shows a dramatic
improvement even over the overly optimistic one-
dimensional prediction for the one-dimensional design
(Fig. 7).

Comparisons with designs based on one-dimensional
analysis clearly shows the value of the two dimensional
analysis used in COOS.  But this doesn't directly demonstrate
the value of the unusual shapes developed by COOS.  To
asses the importance of the particular shapes, we compare
their performance to that of a rectangular winding, chosen
using two-dimensional analysis to minimize losses.  The
rectangular winding is then placed as far from the gap as
possible, and the area is chosen to minimize losses. To give
an overview of the performance of such solutions, and

compare them to the optimal shape, we can plot | |B 2  (a
measure of proximity-effect losses) vs. the winding area used,
A (an indicator of dc loss) (Fig. 8).  Thus, we get a complete
view of the design space spanned by the set of COOS-
computed optimal shapes, and the corresponding possibilities
with rectangular shapes.  The COOS solutions consistently
show a substantial advantage in ac loss for any given winding
area, often by a factor of two or better.

Finally, we may compare this solution to the distributed-
gap solution (Fig. 1), which has been considered ideal, by

adding to the plot the value of | |B 2  for a distributed gap with
a rectangular winding.  This is a constant value, independent
of A.  The optimal-shape winding with a single discrete gap
gives lower losses than the distributed-gap design for all but
very large A, corresponding to full windows that are rarely
useful at high frequency anyway.  Thus, by using COOS, we
have not only found the best solution to accommodate the
field in a gapped design, we have found a solution that is
superior to the distributed-gap design that we and others have
often considered ideal.

V. APPLICATION

An implementation of these designs requires a three
dimensional structure, for which this two-dimensional
analysis is only an approximation, albeit a much better
approximation than the standard one-dimensional analysis.
The construction will typically be an E- or pot-core.  The gap
may be placed in the center leg, in the outer legs, or both.
The winding shapes developed here will have lower dc
resistance when the gap is placed in the outer legs, because
more of the the winding is then near the center post, where
turn lengths are shorter.  But a center-post gap has the
advantage of low external field, particularly with a pot core.
To form the winding, specially shaped bobbins and/or
specially programmed automatic winding machines could be
employed.

Although improved inductors could be developed for
particular applications based on the techniques reported here,

Total loss for optimized winding   
Total loss of winding designed by 1−D analysis 
Total Loss predicted by 1−D analysis 
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Fig. 7.  Total winding loss for three different configurations.
The solid line shows loss for designs optimized using one-
dimensional analysis.  This would be the actual loss in an
optimized distributed-gap design.  However, if these same
designs are constructed with a lumped gap, the loss

(computed by using FEA to find | |B 2 ) will be higher, as
indicated by the ‘x’ marks on this plot.  For this, we assume
the winding is spaced 2 mm from a 1-mm-long gap.  The
circles indicate loss with designs optimized by COOS.
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Fig. 8.  Average square of magnetic field, | |B 2 , as a function
of winding area for configurations based on three different
design approaches.  The proximity-effect loss is determined by

| |B 2 , whereas the dc loss is determined by the winding area.
Thus, this illustrates the design tradeoffs possible with each
approach.  The solid line is a rectangular winding with a
distributed gap.  The ‘x’s are designs using a rectangular
winding and a lumped gap, with the winding spaced as far from
the gap as possible.  The circles are the optimal designs
computed by COOS.
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further research will be needed to fully exploit the advantages
of this winding-shape optimization approach.  Promising
directions include remove the arbitrary fixing of litz-strand
diameter, rigorously extending the analysis to three-
dimensional or axially symmetric (e.g., pot core) structures,
analyzing common commercial core sizes, and designing core
geometries to maximize the gains made possible by optimal
winding shapes.

VI. CONCLUSION

Through the use of specialized computational tools, we
have analyzed winding shapes for gapped inductors.  The
results give winding configurations that not only achieve
lower losses than other discretely gapped designs, but also
provide lower losses than distributed-gap designs.
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APPENDIX: NUMERICAL FIELD CALCULATIONS

To calculate the field in the window of a structure such as
that shown in Fig. 2, we first replace the gap with an
equivalent winding in an ungapped core, and then use the
method of images to reduce the problem to a set of currents in
a region of uniform permeability.  This allows direct
calculation of the field using the Biot-Savart law.  These
steps are described briefly below and in more detail in [25].

The process of replacing a winding with an equivalent
gap can be demonstrated by magnetic circuit analysis.  Fig.
A1 shows an inductor structure and a corresponding magnetic
circuit.  The leakage reluctance, ℜL, represents all the flux
paths through the air other than those directly within the gap,
including the gap fringing effects.  The magnetic material is
assumed to have infinite permeability, and so paths within it
have zero reluctance.  In the magnetic circuit, we can replace
any reluctance with an MMF source having exactly the same
MMF as appears across the original reluctance.  Thus, if we
replace the gap reluctance, ℜG, with an MMF source of NI,
the flux through the leakage reluctance will remain
unchanged.  In terms of the physical model, the gap can be
replaced by a ribbon of conductor around a closed core, as
shown in Fig. A2, with current NI, oriented to oppose the
winding current.  The equivalence can be demonstrated by
other analytical approaches and verified by finite-element
analysis [25].  For a two-dimensional model, only the strip of
current inside the window is needed for calculations of the
field inside the window.

Given the two dimensional model with a closed core, the
winding, and an opposing "gap current", we can approach the
calculation of the field using the method of images—each flat
side of the window, of infinite permeability material can be
removed from the model if image currents corresponding to
those in the original window are placed appropriately.  Like a
room lined with mirrors, the winding window surrounded by a
closed core implies an infinite number of images for each

original current filament.  Fortunately, the net field from any
given image window drops off rapidly with distance, because
the winding and gap currents are equal and opposite.  The
original window is first grouped with an image on the gap
side, to form a symmetric pair.  This pair is then reproduced
in a grid of further images.  A 3 x 3 grid of these pairs gives
about 1% error in the field, while a 5 x 5 grid gives less than
0.01% error.  We used at least a 5 x 5 grid for the results
presented here.  Given this grid of image currents, the field at
any given point in the original window can be calculated by
simply summing the field component due to each current
element.

For the purpose of optimizing winding shape, the field
calculations as outlined above are performed individually for
individual current filaments at each position in a grid of
within the window.  These calculations are then stored and
can be combined by superposition to calculate the field with
any given combination of current filaments representing a
winding shape.

I
N

+
NI
-

ℜG ℜL

Fig. A1.  Gapped inductor and corresponding magnetic
circuit

I
N

+
ΝΙ
−

+
ΝΙ
−

ℜL

ΝΙ

Fig. A2.  Equivalent structure and corresponding
magnetic circuit.
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Fig. A3.  Array of image currents used to calculate the field in the winding window.  The original winding window near the
center is outlined with a dark square, and includes round wire windings and a current representing the gap. This original
with its image to the left are repeated in a 5 x 5 array of images.


