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Abstract— The coil for the superconducting mag-
netic energy storage (SMES) is optimized by use of
the virial theorem with stored energy and stress. In
this work, we show the theoretical limit of stored
energy with the maximum stress. To achieve the
ideal limit, we propose the toroidal coil with heli-
cal winding. It is a hybrid coil of a toroidal field
(TF) coil and a solenoidal coil helically wound on a
torus. The winding is modulated in such that the
toroidal field is created in the torus whereas the
poloidal field is only out of the tours. In this case,
the electromagnetic force is represented by the dif-
ference in the poloidal and the toroidal magnetic
pressure. The virial theorem in the magnet is the
relation of the magnetic energy and the averaged
stress, and shows that the best coil to store the
magnetic energy under the weakest averaged stress
requires equal averaged principal stresses in all di-
rections, which determines the ratio of the poloidal
and toroidal current of our toroidal coil. The coil
increases the magnetic energy to 4 times the con-
ventional TF coil with the same maximum stress.

Keywords— SMES, superconductivity, coil, virial
theorem, magnetic field, stress, tensor, energy

I. INTRODUCTION

HE virial theorem shows the relation between
long time average or constant value of the kinetic
energy and the energy of the field. Famous examples
are the relation of the gravity potential and the kinetic
energy in the astrophysics, and the relation between
the kinetic energy and potential energy of the charged
particles in the electromagnetics. In the field of the su-
perconducting magnetic energy storage (SMES), the
relations between the mass of the structure and stored
energy are called the virial theorem[1], [2].
Recently, we designed the SMES system with force
balanced coil (FBC)[3]-[6] which is a helical type
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hybrid coil of the toroidal field (TF) coil and the
solenoidal coil. The combination removes the net elec-
tromagnetic force in major radius direction[3] by can-
celing the centering force of the TF coil and the hoop
force of the solenoidal coil. Furthermore, we showed
the configuration without the tilting force, by giving
poloidal dependence to the pitch angle of the helical
winding[7]. Next, we modified our works and pro-
posed the stress balanced coil (SBC)[5] which is able
to vanish the electromagnetic force at the point where
the magnetic field is strongest.

In this work, we extend and generalize our studies
with the virial theorem, and show the way to minimize
the stress working in the coil. Furthermore, we design
the coil with minimum stress under the condition of
the fixed magnetic energy. It means that this coil en-
able us to make a SMES system with less amount of
the structure to support the coil, because the mass of
the structure is proportional to the maximum stress.
In the next section, we explain the virial theorem
for the structure with electromagnetic force. In the
section III, we apply the virial theorem to the thin
toroidal shell, and show the optimal coil for stress. In
the section IV, we investigate the toroidal effect, and
summarize this work in section V.

II. VIRIAL THEOREM OF ELECTROMAGNETIC
STRUCTURE

When electromagnetic forces and stress are bal-
anced on the object €, the following equilibrium equa-
tions hold.

JxB+V.-S =0
VxB = uj
V-B = 0

(1)
(2)
3)

Here, j is the current density, B is the magnetic flux
density, S is the stress tensor. When we choose the
coordinate system as the principal axis directions, the
tensor S is expressed by the diagonal matrix,
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S = o9
03

(4)



These o;(i = 1,2,3) are called the principal stress.
From (1)—(3), the next equation is obtained.

V- (T+S)=0. (5)
Here T is Maxwell’s stress tensor defined by

1 B?
T=—(BB - —I) (6)
Ho 2
where | is a unit tensor. Maxwell’s stress tensor is also
turned to be diagonal when we choose z axis parallel
to the magnetic line of force.
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Here we consider the case that the current is flowing
only in the object 2 where the electromagnetic force
is acting. From (5) with the Gauss’s integral theory,
the next equation holds

/ Te(T +5)dV = / Tr(T)dV + / Te(S)dV = 0, (8)

where Tr() is a trace of tensor. When we pay attention
to that the trace of tensor is a scalar and does not
depend on the coordinate system, (8) with (4) and
(7) is reduced to

/Zaidv—/B—QdV— Upr. (9)

2410

This relation is called as the virial theorem[1]. Be-
cause the right hand side (the magnetic energy Un)
is positive, the positive stress (the tensile stress) is
necessary to store the magnetic energy. Furthermore,
to minimize the maximum stress under the condition
of a fixed magnetic energy, they are effective to re-
move the negative stress (the compressive stress) and
to have uniform tensile stress distribution. Next we
define the normalized stress ¢ as

5= oo (10)
av

o> = LoV (11)
Va

where Vg is the volume of 2. Using the above nor-
malized stress, the virial theorem (9) is reduced to the

simple form
< Z(}Z‘ >=1.
%

Hence it is clear that the uniform stress distribution
is required in order to decrease the maximum stress

(12)

under the condition of a fixed magnetic energy and
volume.

When we define the maximum stress in the object
) as omax, next relation is obtained|[1].

M > meM

~ 30max

: (13)

where M, p, are the mass and the density of the
object 2, respectively. The equality in (13) holds only
when three principal stresses have the same value and
uniform in the object ). In the other case, stress
distribution is necessary to evaluate the minimum of
mass M precisely.

III. APPLICATION TO THIN TOROIDAL SHELL

Here we consider the axisymmetric toroidal shell
with circular cross section whose thickness Ap is much
smaller than the major radius R and the minor ra-
dius a. The current distribution on the torus is de-
termined so that the magnetic surface can coincide
with the torus. Moreover, we assume that the mate-
rial of torus is uniform and A = R/a is much larger
than unity. Under these assumptions, we can use the
zero dimensional model, in which the physical quan-
tities are uniform on the torus. In this work, we use
semi-toroidal coordinate system (p, ¢, ). By using the
above assumptions, the principal stresses are o, 0y,
oy, and next relation holds.

0p << 0gp, 0¢. (14)
Therefore, we put o, = 0 in this paper.

In the case that the aspect ratio A = R/a is large

enough, the magnetic energy Uy of the toroidal coil

is given by
Uvm = Urr + Upr, (15)
v = B3, (16)
Upp = @ (log % — 2> 17, (17)

where Uty is the energy of the toroidal magnetic field
inside the torus, Upr is the energy of the poloidal mag-
netic field outside the torus, and Iy, Iy are the toroidal
and poloidal current. The net electromagnetic force
FRr, F, in the major and minor radius directions are
obtained from the partial differentiations of magnetic
energy Uyt with respect to R and a.

oUm

Frp = —
OR I=const.
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According to the principle of virtual work, the stress
is obtained as

(19)

<o >dV =
<ogg>dV =

< 04 > Ap2ra2rdR = FrdR(20)
< 0p > Ap2rR2nda = F,da. (21)

By use of the tensions for the unit length of toroidal
and poloidal direction,

Ty = 0pAp, T¢ = U¢Ap, (22)

< Ty >, <Tp > are obtained as follows:
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Next, we can get the normalized stress defined by (10),
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A%log8A — A? — NT

<Gyp> = , 25
’ NZ 1 A21og8A — 2A2 (25)
. N2 — A?
<0p> = 3 5 > (26)
& + A%log8A — 24
where I
[
= 27
7 (27)

is the ratio of the toroidal current and the poloidal
current which is called as the pitch number of a coil.
The relationships between the pitch number and nor-
malized stress are shown in Fig. 1. This figure shows
that the stress in the toroidal direction changes from
tension (positive) to pressure (negative) as the the
pitch number N increases. This characteristic is inde-
pendent of the aspect ratio A. The principal stress in
the poloidal direction reaches the value of 1/2 and be-
comes larger than that in the toroidal direction with
increasing N. Finally, 64 = —1, 69 = 2 which are
the values of the conventional TF coil in the limit of
N — 0.

When we get the sum of the normalized stresses
with (14), (25) and (26),

<0y >+ <og>=1,

A=2
1 A=5

A=10
A=10

Fig. 1. Relations between pitch number N and averaged
normalized stress < & > for aspect ratio A = 2,5, 10.
Solid and dashed lines are ¢ and G4, respectively.

the virial theorem (12) is satisfied. = From (25)
and (26), the average stress in toroidal direction or
poloidal direction vanishes in the case of

N? =24%(log8A — 1)
N=A

(< oy >=0),
(< opg >=0),

(28)
(29)

respectively. In particular, the coil with pitch number
of (28) is called as the force-balanced coil (FBC)[3]. In
the case that the material of the structure is not uni-
form and has the strength only in the particular direc-
tion, we had better use FBC. Because we assume the
uniformity of the structure in this work, the configu-
ration with the minimum stress is established when

- - 1
<Gy >=<0p >= o (30)

In other words, the configuration has the next pitch
number,

N? = §A2 log 8A. (31)
Figure 2 represents the relation of the aspect ratio
and the pitch number, and shows that the configura-
tion with minimum stress exists between FBC without
averaged hoop force and SBC without averaged pinch
force. In Fig. 3, the relations of the aspect ratio and
the maximum stress are represented. Our virial coil
reduces the maximum stress to 1/4 compared with TF
coil, and to half compared with FBC. Since the mass
of structure is proportional to the stress, our virial
coil requires only 1/4 structure of TF coil.
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Fig. 2. Relations between aspect ratio A and pitch num-
ber N. Solid, dashed and doted lines are in the case
of < 0g >=< 0y >, < 0y >= 0 and < g9 >= 0,

respectively.
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Fig. 3. Relations between maximum normalized stress &
and aspect ratio A.

IV. TOROIDAL SHELL WITH CIRCULAR CROSS
SECTION

In the previous section, we have investigated the
case that the aspect ratio A is sufficiently large, where
we are able to ignore the toroidal effect. In this sec-
tion, we evaluate the poloidal distribution of stress to
investigate the influence on the stress.

Supposing that the pressure inside the torus is p(f)
larger than that of outside, the force balance equa-
tions of the infinitesimal volume adfrd¢Ap for the
directions of p, 6 are obtained. Using the tensions for
the unit length Ty, Tj, defined in (22), we get the next
equations,

T+ (r—R)Ty =
d

—(r'Ty) = Ty.

4. ("To) b

arp(r), (32)

(33)

To solve this differential equation system, we define
the function wu,

u(r) = a/ r'p(r)dr’, (34)
R
and get the solution as follows:
U
Ty = 35
o (r—R)r’ (35)
arp U
T, = — . 36
¢ (r—R) (r—R)? (36)

These equations enable us to calculate the stress dis-
tribution on a toroidal shell with a circular cross sec-
tion whose current layer coincides with the magnetic
surface. When we obtain the toroidal current distri-
bution numerically, the pressure outside the torus is
obtained from the toroidal surface current density jg.
Hence the magnetic pressure acting on the torus is
given by
_ MOI¢92 1 Ho .o
T 82z 27
Next, we calculate the stress distribution of the he-
lical coil with A = 2 using (35)-(37). The results
for some kinds of coils are shown in Fig. 4. To com-
pare them in the condition of a fixed magnetic energy,
they are normalized by the magnetic energy Uy;. The
poloidal angle 6 is defined so as to take 0 at the out-
side of the torus and teke 7 at the inside of the torus.
Although the virial coil (solid line) is expected to re-
duce the maximum stress to 1/4 in comparison with
TF coil (dashed line), it does not decrease as is ex-
pected in Fig.3. Therefore, in order to recover the re-
duction effect, we decide the pitch number N so that
the principal stresses have the same value at the point
of 6 = 7 where the magnetic field is strongest, because
the stress has the maximum value at the point. The
stress distribution of the optimal coil is represented
by dash-doted line in Fig.4. This figure shows that
the maximum stress is reduced to about 40% in com-
parison with that of TF coil. Therefore, our virial coil
is effective to reduce the maximum stress even in the
case of a small aspect ratio.

(37)

V. SUMMARY AND CONCLUSION

Using the virial theorem, the optimal coil to store
the magnetic energy is obtained. The tension is avail-
able to store the magnetic energy while the compres-
sion does not work to store the magnetic energy and
should be replaced to the tension under the condition
of the constant maximum stress. Furthermore, in the
case of the structure made of uniform material, the
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Fig. 4. Distribution of normalized stress 6 for A = 2. Solid
and dashed lines are in the case of virial coil (IV = 2.7)
and TF coil, respectively. The optimized coil (N =
3.0), which minimize the maximum stress at § = 7, is
represented by dot-dashed line.

optimal configuration of stress is the uniform distri-
bution of tension.

Next, we apply this result to the coil of the very thin
toroidal shell with large aspect ratio approximation,
and obtain the optimal pitch number of the coil which
can store the maximum energy with the same maxi-
mum stress. The helical coil of the optimal pitch num-
ber can produce the magnetic energy 4 times greater
than the conventional TF coil with any aspect ratio.

To investigate the toroidal effect, the distribution
of stress is calculated. Although the reduction effect
decreases with the aspect ratio, the maximum stress
of the optimal coil is less than 40% that of TF coil in
the case of small aspect ratio A = 2.

Finally, the stress has been evaluated only from the
balance of force, since the direction of the principal
stresses are obtained from the isotropic, continuous
and axisymmetric nature in our model.
when we design an actual coil, we have to calculate
the stress from the displacement by the finite element
method or other numerical methods. Even in such a
case, the optimization shown in this work is applica-
ble to store the large magnetic energy with the less
structure material.

However,
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