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Abstract 44 

Efficient peptide and protein identification from data-independent acquisition  mass 45 

spectrometric (DIA-MS) data typically rely on an experiment-specific spectral library with a 46 

suitable size. Here, we report a computational strategy for optimizing the spectral library for a 47 

specific DIA dataset based on a comprehensive spectral library, which is accomplished by a 48 

priori analysis of the DIA dataset. This strategy achieved up to 44.7% increase in peptide 49 

identification and 38.1% increase in protein identification in the test dataset of six colorectal 50 

tumor samples compared with the comprehensive pan-human library strategy. We further applied 51 

this strategy to 389 carcinoma samples from 15 tumor datasets and observed up to 39.2% 52 

increase in peptide identification and 19.0% increase in protein identification. In summary, we 53 

present a computational strategy for spectral library size optimization to achieve deeper 54 

proteome coverage of DIA-MS data. 55 

 56 

Introduction 57 

Data-independent acquisition mass spectrometry (DIA-MS) based proteomics coupled with 58 

targeted data analysis is playing an increasing role in biomedical studies (1), owing to its high 59 

degree of reproducibility, quantitative accuracy, and high throughput (2, 3). Both spectral 60 

library-free and library-based strategies are being applied to analyze DIA-MS data (4). While the 61 

library-free strategies (5, 6) could identify peptides directly from DIA-MS itself without the 62 

requirement of an external spectral library, the depth of proteomic coverage is limited at the 63 

moment (7-9). The more widely adopted strategy is based on building a spectral library using the 64 
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corresponding data-dependent acquisition mass spectrometry (DDA-MS) datasets of the samples 65 

of interest (10), or a pre-built library from public data repositories (11-14).  66 

The size of the spectral library has a direct impact on the performance of DIA-MS data 67 

analysis (15). A larger number of DDA-MS runs, particularly from fractionated samples, leads to 68 

a more comprehensive spectral library enabling potential detection of a larger number of 69 

peptides and proteins from the DIA-MS datasets (15). However, it also generates a larger search 70 

space and reduces the statistical power to detect true positives (16, 17). Extra concerns are raised 71 

where the proteins and peptides within the library may not be specific to a particular specimen, 72 

potentially introducing more false positives (18). Other drawbacks include the prolonged 73 

computational time which is approximately linearly correlated with the size of the library (19), 74 

and distortion of retention time (RT) distribution for alignment (20). 75 

The spectral library size could be optimized to improve DIA-MS performance. The Van 76 

Eyk group have reported that applying a comprehensive fractionated library led to higher number 77 

of protein/peptide identifications from DIA-MS datasets than un-fractionated libraries with 78 

limited sizes (15). Similar results have been reported by Uszkoreit group, where they found 79 

larger library led to higher peptide and protein identification but the increase was minimal when 80 

the library is comprehensive enough (21). The combination of an in-house built library with 81 

external libraries from public data improves DIA data analysis performance (17). Inclusion of 82 

internal library extracted from DIA files also improved peptide and protein identification (9). On 83 

the other hand, it has also been observed that libraries of very large size led to higher FDRs in 84 

the DIA-MS analyses and hence compromises the identification results (17). It was further 85 

demonstrated that, even within the same spectral library, controlling the confidence of peptide 86 

identifications to exclude redundant peptides could improve peptide and protein identification 87 
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results (16). Although these studies have repetively reported the importance of the size of 88 

spectral library size, a systematic evaluation and optimization of library size is still lacking.  89 

Here, we propose a two-step strategy called subLib to generate the experiment-specific 90 

subset libraries using a priori analysis of the DIA data to improve the proteomic coverage. The 91 

strategy to derive a subset library of optimal size was further applied to analyze the DIA data of 92 

15 human tumors. 93 

 94 

Materials and Methods 95 

Colorectal cancer dataset 96 

To evaluate our strategy, the DIA-MS datasets were collected from a colorectal cancer 97 

proteomic project in our group (Xiang et al., manuscript in preparation). Briefly, 286 FFPE 98 

samples from 44 colorectal cancer patients were processed into peptides with a pressure cycling 99 

technology (PCT)-based protocol as described in the previous study (22). They were subjected to 100 

data acquisition on the nanoflow EASY-nLC™ 1200 System coupled with Q Exactive HF 101 

hybrid Quadrupole-Orbitrap in DIA mode over a gradient of 60 min using 24 DIA windows 102 

spanning from 400 Da to 1200 Da.  103 

Fifteen datasets of multiple tumor types  104 

A total of 389 tumor tissue samples from 15 tumor types were collected. The gastric 105 

carcinoma (n=30) and thyroid carcinoma (n=30) samples were collected from the First Affiliated 106 

Hospital College of Medicine, Zhejiang University. The prostate carcinoma (n=30) and bone 107 

carcinoma (n=30) samples were collected from the Second Affiliated Hospital College of 108 
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Medicine, Zhejiang University. The liver carcinoma (n=33) and leukemia (n=27) samples were 109 

collected from Wuhan Union Hospital. The ovarian carcinoma (n=30) samples were collected 110 

from Zhejiang Cancer Hospital. The cervical carcinoma (n=28) samples were collected from 111 

Shengjing Hospital of China Medical University. The lung adenocarcinoma (n=32) , gallbladder 112 

carcinoma (n=20), pancreatic adenocarcinoma (n=20), myosarcoma (n=19), clear cell renal cell 113 

carcinoma (CCRCC, n=20), diffuse large B-cell lymphoma (DLBCL, n=19), and papillary 114 

thyroid cancer (PTC, n=21) were collected from Harbin Medical University Cancer Hospital. All 115 

samples were approved by the ethics committees of their respective hospitals. The tissue samples 116 

were prepared with PCT-based tissue lysis and protein digestion protocol (22) and analyzed by 117 

DIA-MS, as listed in Table S1. Ethics approvals for this study were obtained from the Ethics 118 

Committee or Institutional Review. 119 

Proteomic data analysis workflow 120 

The raw DIA-MS data files were converted to mzXML format using the msConvert tool in 121 

ProteomeWizard (23). The DIA-MS datasets were analyzed using the open-source software 122 

OpenSWATH (version 2.4.0) (24) with the following criteria: common internal reference 123 

peptides (CiRTs) of each tissue were applied respectively for retention time alignment; m/z 124 

extraction window was set to 30 ppm, and RT extraction window was set between 200-800 125 

seconds, depending on different gradients of the DIA-MS module (Table S1). PyProphet (version 126 

2.1.3) (24) was used for statistical validation via setting the global cutoff of FDR as 0.01 at both 127 

peptide and protein levels. Protein inference was performed as described previously (25). Unless 128 

otherwise mentioned, the software parameters were kept the same for all the analyses in this 129 

study. 130 

Subset library generation 131 
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We proposed a two-step strategy to take a subset of the spectral library. Firstly, the public 132 

library is taken to analyze the candidate DIA-MS dataset using the OpenSWATH workflow. 133 

Different FDR cutoffs were set to generate a list of identification results. Afterwards, they were 134 

matched against the public library to generate experiment-specific subset libraries.  135 

In this study, we set the DIA Pan-Human Library (DPHL) (12) as the baseline library to 136 

analyze the colorectal cancer dataset containing 284 DIA-MS data files. FDR cutoffs were set at 137 

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 (n=15), to 138 

generate 15 identification results. After matching with DPHL, OpenSwathDecoyGenerator.exe in 139 

OpenMS (version2.4.0) was applied to generate equal amount of decoys in mutated fashion. The 140 

resultant subset library is a combination of DPHL subsets and decoys. 141 

 142 

Results and Discussions 143 

Generation of the subset library by refining DPHL 144 

For data comprehensiveness and accessibility, DPHL built from 16 human tissue types 145 

containing 359,627 peptide precursors and 14,782 protein groups was used as the baseline 146 

spectral library. A DIA-MS dataset of 286 colorectal cancer sample cohort was analyzed to 147 

derive the initial identifications. We set the FDR cut-off for peptide precursor and protein 148 

identification to 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 149 

(a total of 15 tests), then retrieved the resultant subset libraries at each FDR cutoff. The four 150 

representative DIA-MS data files (sample A1-A4) within the cohort and two external colorectal 151 

cancer DIA-MS data files (sample B1 and B2) were taken to evaluate the identification 152 

performance of each subset library (Figure 1A). The number of identified peptides shows a 153 
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generally decreasing trend as the FDR cutoff increases (Figure 1C), with the exceptions when 154 

FDR increases from 0.01 to 0,02, and from 0.04 to 0.05. The number of identified proteins 155 

increased as the FDR cut-off increased from 0.01 to 0.05, and gradually decreased afterward, 156 

with a drastic decline when the cutoff was beyond 0.1 (Figure 1D). This is not unexpected since 157 

the peptides identified with high FDR are more likely absent in the sample at the detection limit. 158 

As the library size increased,  the negative effect prevailed. The best result was obtained from the 159 

library with a FDR cutoff of 0.05. The optimal library was composed of 85,655 peptide 160 

precursors, 62,390 peptides, and 6,448 protein groups, leading to the identification of 29,979 161 

peptide precursors and 4,418 protein groups, respectively. This optimized library led to 44.7% 162 

and 38.1% increase of peptide precursors and protein groups, respectively, compared with the 163 

results by the unfiltered DPHL (Figure S1). The subset library with the FDR cutoff of 0.05 was 164 

the best subset library which was hence adopted for further evaluation. The DIA files used for 165 

library size optimization from samples A1-A4 led to similar data to those from independent 166 

samples (B1 and B2), suggesting that the library size optimization is generic and applicable to 167 

DIA files of the same tissue type. 168 

Adding unidentified peptide procursors to the subset library sacrificed identification 169 

To check if unidentified peptide precursors in a spectral library would affect the DIA-MS 170 

proteome coverage, we randomly generated nine sets of DPHL peptides that were excluded from 171 

the subset library (defined as “unidentified peptides”), with precursor number equivalent to n% 172 

of the subset library (n=10, 20, …, 90), and combined them with the subset library peptides 173 

(Figure 1B). When applying the reconstructed spectral libraries to analyze the test DIA dataset, a 174 

steady decrease of identified peptides and proteins was observed as more unidentified precursors 175 
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were included (Figure 1E, F), with the highest proteome coverage coming from the library with 176 

no unidentified peptides, summing up to 29,712 peptide precursors and 4,433 protein groups.  177 

We also replaced the unidentified peptides to in silico generated decoy peptides and 178 

repeated the above analyses. Peptide/protein identifications decreased as the computational 179 

peptide proportions increase from 0% to 60%. Further addition of decoys would, however, subtly 180 

increase protein identifications (Figure 1G, H). The highest proteome coverage came from the 181 

library with no decoy interferences, summing up to 19,322 peptide precursors and 3,461 protein 182 

groups. We hence concluded that any false positive interference in the library would suppress the 183 

peptide/protein identification.  184 

Adding subset library peptides to interferences improves identification 185 

We then conducted a backward analysis by adding increasing proportions of subset library 186 

peptides to the unidentified peptides (Figure 1B). The spectral library composed by precursors of 187 

unidentified peptides solely (n=0) could not identify any peptide or protein in the DIA-MS data. 188 

The numbers of identification of peptides and proteins exhibited almost marked increase as n 189 

increased (Figure 1I, K). Together with the above results, they validated the effectiveness of 190 

setting FDR cutoff as 0.05 to eliminate false positive targets. 191 

Applying subLib to DIA-MS of 15 tumor sample types  192 

We named the library generation strategy “subLib” and further applied it to the fifteen DIA 193 

datasets of different types of cancer samples, including bone, cervical, DLBCL, gallbladder, 194 

gastric, leukemia, liver, lung, myosarcoma, ovarian, pancreatic, prostate, PTC, and CCRCC  195 

(Figure 2A). Peptide/protein identifications using the subset library exceeded that from using 196 

DPHL in most cases (Figure 3A), and over 99% of the protein identifications were overlapped in 197 
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every cancer type (Figure S2). We collectively found that the subLib strategy outperformed the 198 

DPHL strategy in all cancer types, with the most prominent increase from PTC carcinoma 199 

samples (19.02% increase in protein groups and 36.17% increase in peptide precursors, Figure 200 

2B). Of note, the discrimination ability to separate the targets from decoys led to a marked 201 

increase (Figure 2C), further validating that the subLib strategy can reduce false positives in 202 

clinical proteomic data. Missing values were equivalent between DPHL and the subLib strategy 203 

(Figure 3B), and the protein quantification results were in good accordance as well with Pearson 204 

correlation ratios all over 0.92 across all the tumor tissue types (Figure 3B), suggesting that 205 

decreasing library sizes by adjusting FDR values does not impair protein identification nor 206 

quantification. Moreover, different tumor types could be well resolved using the thus generated 207 

protein matrix (Figure 2D). These results indicate that this subLib strategy could be generically 208 

used for DIA data generated from different samples. 209 

Concluding remarks 210 

In this study, we present a computational strategy to optimize library size for DIA data 211 

analysis. In our DIA data of human tissue specimens, setting FDR to 0.05 enabled effective 212 

spectral library subsetting. The application of this strategy to DIA data from 15 tumor types 213 

further consoidated this conclusion. This subLib strategy reduced false positive identifications, 214 

increased peptide and protein identifications, and generated protein data matrix quantitatively 215 

comparable to the DIA analysis with unfiltered library. In conclusion, the subLib strategy for 216 

DIA spectral library size optimization boosts proteome identifications of DIA-MS data. 217 
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Figure 1. Optimizing DPHL in the DIA dataset of colorectal cancer. (A) The workflow of 321 

spectral library optimization. Step 1: Select the best FDR for refining the subset library from the 322 

public DPHL library. The subset library refined from DPHL with FDR of 0.05 is considered as 323 

the optimal subset library, which was used as a primary optimized subset spectral library in this 324 

study. Step 2: Evaluate the performance of the spectral library consisting of the subset library 325 

and n% unidentified peptides. Step 3: Evaluate the performance of spectral library consisting of 326 

subset library and n% decoy peptides. Step 4:  Evaluate the performance of spectral library 327 

consisting of unidentified peptides and n% peptides from the subset library. By comparing all the 328 

identification results, the subset library refined from DPHL with FDR of 0.05 is the best 329 

experiment-specific spectral library for DIA data analysis. The numbers of identified peptides 330 

(C) and proteins (D) based on the subset libraries which were refined from DPHL at nine 331 

different FDRs.  The numbers of identified peptides (E) and proteins (F) based on the spectral 332 

libraries consisting of subset library and n% unidentified peptides. The numbers of identified 333 

peptides (G) and proteins (H) based on the spectral libraries consisting of the subset library and 334 

n% decoy peptides. The numbers of identified peptides (I) and proteins (K) based on the spectral 335 

libraries consisting of unidentified peptides and n% peptides from the subset library. 336 
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Figure 2. Tumor-specific subset library improves the identifications compared with DPHL. 338 

(A) The workflow of the subLib strategy. (B) The number of peptides and proteins identified 339 

base on tumor-specific subLib and DPHL in 15 tumor types. (C) The distribution of 340 

discrimination score (d-score) of the target and decoy of the subset library and DPHL. (D) The 341 

tSNE plot shows the samples are well resolved by tissue type. 342 

343 
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Figure 3. Peptide precursor and protein identification using the optimized subset library 345 

and DPHL. (A) The number of peptide precursors and protein groups identified using the 346 

optimized subset library and DPHL for each sample of every tumor type. subLib, the optimized 347 

subset library. Protein identifications were shown on the right, and peptide precursor 348 

identifications were shown on the left.  (B) The correlation values on the protein level between 349 

identification results of the optimized subset library and DPHL. The percentages of protein 350 

missing values identified base on DPHL and the optimized library of each tumor type. 351 
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 353 

Figure S1. Identification results of the four representative DIA-MS data in the colorectal 354 

cancer cohort.  355 
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Figure S2. Venn diagrams showing overlap of protein identifications between the optimized 358 

subset library and DPHL. 359 
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