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Abstract 

A numerical method for the solution of structural optimization problems 

involving ordinary differential equations is presented for a simple si- 

tuation where the constraint is of an aeroelastic nature. The method is 

adapted from optimal control theory and has proven successful in a num- 

ber of structural optimization problems. Its extension to two dimensio- 

nal structures is outlined ; limitation to situations involving plates, 

however, is emphasized. It is assumed that the instability exhibited by 

the optimality condition is related to the fact that plates cannot in 

general achieve global extrema. Suggestions for further research in 

this area are presented. 

I. INTRODUCTION 

The general theory of optimization finds a privileged field of applica- 

tion within the framework of Mechanics. Optimization of structural 

design, in particular, has raised considerable interest in recent year s . 

The available literature concerned with this subject is vast. A compre- 

hensive and organized review up to 1972 can be found in an article by 

Niordson and Pedersen (1972). Another excellent survey, concerned with 

constraints of a dynamic nature only, has been provided by Pierson 

(1972). Since then the flow of new research publications has continued 

steadily. A new phase seems now to have been reached with the appari- 

tion of monographs by Moe and Gisvold (1971), Hemp (1973), Gallagher 

and Zienkiewicz (1973), Distefano (1974), Majid (1974), among others. 

Research in structural optimization mainly follows two separate direc- 

tions. The first approach, sometimes termed structural synthesis, is 

concerned with the optimization of discrete or discretized structures ; 

it is cast as a mathematical programming problem of extremizing an 

objective function subject to several equality or inequality constraints. 
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For a more complete description, the reader is referred to the papers 

by Schmit (1971) or Fox (1973), as well as to the texts by Moe and 

Gisvold (1971) or Gallagher and Zienkiewicz (1973) already mentioned. 

Although relatively complex structures can be considered, the number 

of design variables remains, unfortunately, very limited for practical 

reasons. The second approach is concerned with the optimal design of 

continuous structural elements, the properties of which are amenable to 

description by ordinary (one-dimensional structures) or partial (two- 

and three- dimensional structures) differential equations. A consider- 

able literature exists in this field, although it is systematically 

ignored by those advocating the mathematical programming approach. This 

is rather unfortunate, since the continuous approach has the merit of 

raising basic questions such as the existence, uniqueness and character- 

ization of the solution, questions which cannot be answered by mathema- 

tical programming techniques alone. Moreover, the constitution of a 

library of optimal structural members under a variety of constraints 

and boundary conditions would provide the practicing designer with 

efficient ideas in situations where intuition alone is of little help. 

The present paper is concerned with the minimum-mass design of elastic 

structures whose behaviour is described by ordinary differential equa- 

tions (no mention will be made of so-called plastic design, which is 

quite a different subject altogether). Despite a large existing litera- 

ture, very few numerical solutions for structural elements have been 

presented, and the majority of those are of academic interest only. We 

present in what follows a numerical solution procedure borrowed from 

optimal control theory, which has proven quite useful in situations 

where the conventional variational approach leads to a set of complex 

nonlinear equations. 

2. OPTIMAL DESIGN OF CONTINUOUS STRUCTURAL ELEMENTS 

Application of the classical variational calculus to structural opti- 

mization dates as far back as Lagrange (1770-]773) who investigated 

the ideal shape that a column should possess in order to sustain its 

own weight. In this approach, the resulting equations are unfortunately 

quite complex and usually nonlinear. It is extremely rare to find a 

closed-form solution. A relative exception is the class of so-called 

linear stiffness structures, for which both stiffness and weight are 

linear in the design variable (cross-sectional area or thickness) ; 



this is the case of sandwichconstruction in particular. The paper by 

Prager and Taylor (1968) contains an exhaustive treatment of this sub- 

ject. A tutorial presentation can be found in Dym (1974). Generally, 

however, the investigator is left with a complex two-point boundary 

value problem (TPBVP) to solve in the case of one-dimensional elements, 

or a system of nonlinear partial differential equations in the case of 

two- or three-dimensional situations. 

Application of optimal control theory to structural optimization was 

independently suggested by Dixon (1967), Ashley and McIntosh (1968) and 

Haug (1969). It has up to now hardly been realized that the designer 

has at his disposal the powerful tools which have been developed for 

the solution of similar problems arising in control theory, described 

in the book by Bryson and Ho (1969), among others. The idea is to cast 

the optimization problem in a form amenable to conventional treatment 

through the introduction of state and design (control) variables. The 

optimality conditions are then derived through an extension of classic- 

al variational methods (a particular case of the more general Pontrya- 

gins's Maximum Principle). The resulting system of equations is then 

solved by an iterative procedure. 

A systematic presentation of the above points as well as an evaluation 

of the various numerical schemes will be found in a paper by Armand 

(1973), who also presents a review of the field. McIntosh (1974) also 

described the foundations of the method in a review paper in which 

comparisons with discrete solutions can be found. The approach presented 

here will be best described through a simple example where the constraint 

is of an aeroelastic nature, first suggested by Ashley and McIntosh 

(1968) and treated in detail by Armand and Vitte (1970), in which res- 

ults of computation can be compared with the ~xact analytical solution. 

3. MINIMUM - MASS DESIGN OF A RECTANGULAR WING FOR GIVEN TORSIONAL 

DIVERGENCE SPEED 

3.1 Statement of the problem 

Consider a cantilever straight wing with elastic axis perpendicular 

to the free stream. The wing profile is assumed to be constant along 

the span and characterized by a lift-coefficient slope a o. The other 

parameters and variables are defined in Fig. I. The thickness T of 
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the skin varies along t.he span. 

j  LAsTcAxs 
J I -z 

To 

Figure ! : Unswept cantilever wing with constant chord. 

The torsional divergence speed V for this wing is obtained by 

solving the eigenvalue problem : 

__d (G J de) + !pVZCEao 9 = 0 (I) 
dX dX 2 

e(O)  = o, 

GJ do = 0 

~XX= L 

(1,) 

p is the free stream density. The reader is referred to Bispling- 

hoff, Ashley and Halfman (1955) for details. 
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If we assume that the torsional stiffness of the wing is dominated 

by the contribution from the skin, then the torsion constant J is 

directly proportional to the skin thickness (Bredt's formula), 

J = KT 

It is possible to rewrite eqs. (I) and (I') in a convenient, non- 

dimensional form if we introduce that particular wing of constant 

skin thickness T O with identical cross-sectional profile and the 

same torsional divergence speed -the so-called reference wing. We 

define the dimensionless quantities 

X - 
X T 

) t - 

L T 
O 

and denote by ()' the differentiation with respect to x ; the eigen- 

value problem (I), (I') is then rewritten as : 

(t0')' + ~20 = 0 , ~ - ~ (2) 

2 

eCo)  = o 

tO' I = 0 
I x = I 

(z,) 

The optimization problem is now stated as follows : 

Minimize the functional 

m = x) dx 

representing the dimensionless skin mass, subject to the constraints 

(2) and (2'). 

Eq. (2) is split into a system of two first order differential equa- 

tions after introducing a new variable s, as follows : 

t 

S ) = _~Z@ 

(3) 

with boundary conditions : 
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o ( o )  = o s ( 1 )  = o ( 3 ' )  

We introduce unknown Lagrange multipliers I@ and X s and form the 

Hamiltonian 

H = t+~ ~ - ~ ~z@ (4) 
u t s 

Necessary conditions for an extremum of m are now derived. The opti- 

mality condition is : 

X@s 
~__H_H e 1 - - -  = 0 (5) 
~t t z 

X@, ~s are solution of the system of Euler-Lagrange equations : 

X~ ~ 8H _ W2~s 

s ~s t ( 6 )  

Transversality conditions furnish two additional boundary conditions: 

ze(1) = o As(O) = o (6,) 

Equations (3) and (6) together with eq. (5) and boundary conditions 

(3') and (6') form a system of 4 first order differential equations 

in the four unknowns @, s, ~@, A s. This system will be solved by 

resorting to the so-called neighboring extremal methods ; the idea 

is to construct a nominal solution satisfying the governing differ- 

ential equations (3), the optimality condition (5) and the Euler- 

Lagrange equations (6), but not all the boundary conditions (3') 

and (6'). 
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3.2 The numerical procedure : a__transition-matrix algorithm (Newton's 

met ,h£ ,d)  

The idea is to find the relation between unspecified boundary condi- 

tions at one end and specified boundary conditions at the other end. 

We start by "guessing" the unknown initial conditions s(0) and 

X@(0), then integrate (3) and (6) forward from 0 tO I, t being deter- 

mined through (5). We obtain values for s(1) and I@(I), which in 

general will differ from zero. A "measure" of the variations of the 

final values of s and I@ when the initial boundary conditions are 

perturbed is provided by the matrix T, the so-called transition 

matrix 

T = 

,,9,s(1,) 
~s(0) 

~s(O) 

Ss(l) 
She(O) 

(7) 

~X0(1) 

~Xe(O) 

linking small variations of s and ~e at I to small variations of the 

same quantities at 0 

: T 

6X0(1 
(8) 

To determine T, we begin by computing the first variations ~@, ~s, 

~I@, ~i s of the 4 quantities @, s, Xe, I s from the system of 

differential equations defining them ; we obtain : 

2 ~@ I@ 

~ S '  = -cozY@ 

~t~ = oJz6~, s 

s 2 s t 6 /  
(9) 
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If 6s(0) is set equal to unity, all other perturbations being init- 

ially set to zero, integration of this system (9)together with the 

initial system (3), (3'), (5), (6), (6') on [0,1] will yield values 

for 6s(]) and 6X@(1) which constitute the first column of T. Similar- 

ly, the second column of T is obtained by integrating both systems 

with, as initial conditions, 6X@(0) set equal to unity, all other 

perturbations equal zero, (3') and (5'). 

If the initial conditions s(0) and he(0 ) had been correctly 

chosen, s(1) and ~@(I) would both vanish. We therefore define 

variations of the final values As(1) and A~@(1) which will hope- 

fully bring the next solution closer to the desired values of s(1) 

and ~e(1), defined as : 

~s(1) =°ss(1) 

AXe(l) = - s x  e 1) 

Corresponding variations 

obtained from (8) : 

~,s(o)l = T -! [As(1)I 

O<e<1 

As(0) and Axe(0) of initial values are 

We now take as a new guess : 

s(0)new = s(0)old + As(0), 

ke(O)new = Xe(O)ot d + AXe(O) 

and start the whole process again until s(1) and X@(1) have the 

specified value zero to the desired accuracy. 

With values of s(0) and 4@(0) initially equal to 0.3 and 6, respec- 

tively, and s = I, convergence was very smoothly obtained in 6 iter- 

ations with a relative error of 0.04 % on the value of t at the root 

(Fig. 2). The profile obtained is that given by the exact analytical 

solution (Ashley and McIntosh (1968)). 
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Fig. 2 : A transition-matrix procedure- 
no minimal thickness constraint 
(N = number of iterations). 
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Fig. 3 : A transition-matrix procedure- 
minimum thickness constraint 

3.30~timization with a minimum thickness coo nstraint 

The more realistic case of a constraint on the value of the thick- 

ness is handled in the easiest fashion. A single statement needs to 

be added to the computer program, setting t equal to the prescribed 

value tmi n everytime its computed value t = ~  is smaller than 

tmi n. Results of the iteration procedure are shown in Fig. 3 for 

tmi n = 0.5 where they are compared with the exact analytical solu- 

tion given by Armand and Vitte (1970). The actual distribution was 

obtained after 7 integrations with a relative error of 0.01% on 

t ( O ) .  

The problem just described is governed by fairly simple equations, 

which explains the relative ease with which the numerical solution 

was iteratively found. Other successful applications of this proce- 

dure can be found in the work by Armand and Vitte (1970), or Weiss- 

haar (1970). 

A slighty more complex case, for which no closed-form solution 

exists, is that of a vibrating simply-supported beam, first treated 
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by Niordson (1965)~ and independently extended by Haug (1969) and 

Armand (1973) to handle minimum thickness constraint. The procedure 

described above has proven very powerful, both for the constrained 

and unconstrained case. Good estimates for the unknown boundary 

conditions were, in that case, obtained from the solution of the 

system of equations under consideration corresponding to the uniform 

reference case (therefore ignoring the optimality condition). 

4. TW0-DIMENSIONAL STRUCTURAL ELEMENTS 

The behaviour of two-dimensional structural elements such as plates and 

shells is described by partial differential equations in two independent 

variables. Optimization of such elements ot satisfy given requirements 

can be formulated as a problem in optimal control theory of distributed- 

parameter systems, extension to a spatial domain D of optimal control 

theory in which only one independent variable, the time t, is consi- 

dered. 

The domain D is the planar image of the spatial structure considered, 

and is referred to a set of orthonormal axes Ox, Oy. 

State and design variables are defined in the same fashion as before ; 

the deflection (in-plane or out-of-plane) and its derivatives will play 

the role of state variables, whereas the thickness will in some cases 

represent a design variable. 

For a minimum-mass problem, the functional to be minimized is the sur- 

face integral of the thickness over the domain D ; the constraints are 

in the form of partial differential equations to be satisfied inside 

the domain, together with equality and/or inequality constraints on 

functions of the state and/or design variables. 

A problem of this type is a special case of a general Mayer-Bolza pro- 

blem for multiple integrals, which received authoritative treatment 

from Lurie (1963) in a paper which also hints at possible applications 

to structural optimization. 

A statement of the general optimization problem as well as a derivation 

of the necessary conditions will be found in Armand (1972). 
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Applications of the theory to structural optimization problems has 

been up to now very limited. The plate optimization problem, in parti- 

cular, has not yet been solved in a satisfactory manner, although many 

researchers have considered it : reference is made to McIntosh (1974) 

for a comprehensive review. It shoud be mentioned at this point, 

however, that numerical problems are not characteristic of two-dimen- 

sional plates but also apply to axi-symmetric (one-dimensional) plates 

as well ; numerical difficulties encountered at the solution stage for 

situations involving plates, however, undoubtly correspond to problems 

associated with the non-existence of a global optimum. 

The above observations are in accordance with the works of Olhoff ~1973) 

and Mroz (1973), who independently pointed out that the optimization 

problem in the case of a vibrating plate does not seem to possess a 

global optimum solution, but instead an infinity of local extrema. 

Further research should therefore be pursued in this direction with the 

tools of control theory, since it is of particular interest to investi- 

gate existence and possible uniqueness of solutions to those problems 

for which an analytical formulation is still possible. 

Numerical methods developed in the frame of optimal control of distri- 

buted-parameter systems theory and similar to methods used to solve the 

TPBVP's of classical optimal control have hardly been used yet and will 

without doubt prove extremely helpful. 

A very promising approach is that described by Pierson and Genalo (1974), 

who applied a gradient projection algorithm to obtain the optimal 

design of a rectangular panel subject of a flutter speed constraint. 
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