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ABSTRACT

This study investigates the optimal design of simple structures
subjected to dynamic loads, with constraints on the structures' re-
sponses. Previous studies have mainly dealt with static loads, and
their methodology has been extended here to time dependent cases. The
contributions of this work are in the formulation and satisfaction of
the complicated dynamic constraints and inthe insights gained into the
nature of these problems,

Three separate analyses search for the optimal designof: (1) one-
dimensional structures excited by harmonically oscillating loads, (2)
similar structures excited by white noise and (3) a wing in the pre-
sence of continuous atmospheric turbulence, The first problem has con-
straints on the maximum allowable stress while the last two place bounds
on the probability of failure of tho structure., In all of these prob-
lems, approximations are made in order to replace the time parameter
with a frequency parameter. For the first, this involves the simple
assumption that the steady state response is the area of interest. 1In
the remaining cases, power spectral techniques are employed to £ind the
root mean square values of the responses, The primary means of seaxch
for the optimal solutions isg through the use of computer algorithms that
combine finite element methods with optimization techniques based on

mathematical programming,
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A general conclusion is that the inertial loads for these dynamic
problems can result in optimal structures ui.at are radically different
from those obtained for structures loaded statically by forces of com-
parable magnitude, In the case of the harmonically loaded structure,
it is found that the design space can be disjoimt. This makes the task
of finding the global optimum difficult for even the simplest of prob-
lens,

An interesting feature of the optimal designs for cantilevered
structures with a white noise excitation is that there is a tendency
for some mass to be concentrated near the tip. The inertial forces
from this mass tend to relieve the inboard stress.

The wing in a turbulent gust environment demonpstrates a possible
practlcal application of the methods developed in the study. The model
used contains a fuselage and nacelle and permits rigid body plunglng as
well as transverse bending. It is {elt that the preliminary techniques
developad are of practical value towards the design of aircraft that

have fatigue life as an important design factor.
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CHAPTER 1

INTRODUCTION

A, PROBLEM MOTIVATION

The goal of the field of structural optimization can be succinctly
described as one of finding the structure of least weight that satis-
fies certain specified constraints., The combination of more efficient
algorithms with modern computers has expanded the capabilities of this
field rapidly and to the extent that techniques have been developed N
that routinely optimize practical, statically loaded structures. Sim-
ilar results for dynamically loaded structures have lagged behind due
to the complications introduced by inertial loads and the time param-
eter, This thesis attempts a partial remedy of this situatio; by in-
vestigating a series of dynamic response problems in order to find the
least weight structure that can withstand the dynamic loads,

The design of many engineering structures is influenced by the
dynamic loads that act on the structure so that the search for opti~
mal structures is a legitimate exercise. Landing impacts, gust ex-
citation, rotating machinery and acoustic noise create loads on aero-
nautical vehicles that are dynamic in nature and that are of primary
importance in the design of aircraft substructures. Similarly, for

astronautical vehicles, rocket exhausts and atmospheric turbulence




are important degign loads, These aerospace applications were the
ones that were kept in mind while the methods of analysis used in this
thesis were developed. However, other disciplines could benefit from
the methods presented here. Specifically, for architectural struc-
tures, earthquakes and winds create loads that are dynamic in nature,
and these loads are playing an increasingly important role in building
design. Further examples could be drawn from naval architecture and
from mechanical design.

Many of the examples mentioned above include loads that are sto-
chastic, or random, in nature. Coupled with the fact that a large
proportion of in-service failure of metal structures are due to fa-
tigue, this provides a powerful motivation for studying the optimal
design of structures under stochastic loading conditions.

While no claim is made as to the direct applicability of the
techniques developed in this work to practical problems in engineering
design, tachniques are developed and results achieved that could be a
useful starting point for the wore practical problems. The usefulness
is enhanced by the use of constraints in the examples worked that are
of practical interert in actual designs. For instance, constraints
are placed on the maximum stress in the structure or on the fatigue
1ife in the case of random loads.

Due to the paucity of studies dealing with the optimization of
dynamically loaded structures, it is felt that this work makes sig-
nificant contributions to the hasic understanding of these types of

problems. The inertial loads present in these problems can have an




important effect on the loads a structure is required to withstand.
The results obtained show that the optimal structure can be radically

di fferent from one obtained buased on static strength considerations,

B. RELATED WORK

This section presents a survey of studies that have been done
that relate to the present one;, pointing out their characteristics
and how they compare with the present study., The thesis uses elements
from a mumber of disciplines, but the unidque portion of this work is
the use of structural optimization and it is in this area that the
survey will concern itself, Even in this specialized field, it would
be impractical to give a comprehensive survey; instead, only the most
relevant works are described. A more general view of the structural
optimization field can be obtained from a survey article by Sheu and
Prager (Ref., 1) while a text by Fox (Ref. 2) serves as an excellent
introduction to the computational aspects of optimal design. Two re-
cent conferences (Ref. 3 and Ref., 4) provide "state of the art" de-
scriptions of various portions of the field.

Structural optimization with constraints on the dynamic behavior
is a more specific area that includes the present study. A survey by
Pierson (Ref. 5) on this subject divided it further into two subdivi-
sicns: (1) problems with eigenvalue comstraints, and (2) problems
with constraints on the response. The present investigation clearly
falls into the latter category, but problems of the first kind played

an important role in the development of the methodology used in this
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report. In particular, references 5 through 10 are works that place
constraints on the natural frequency or the flutter speed of the sys- i
tems to be optimized and that provided a basis from which to attack b
the response problem. In fact, as Pierson pointed out, one of the
dynamic response problems solved by Icerman (Ref. 11) has results
identical to a problem with a natural frequency constraint that was
first solved by Turner (Ref. 9).

It is to be understood that the five references cited above for j
the eigenvalue constraint studies are in no way inclusive of the con-
tributions made to these problems. An attempt is made below to in-
clude all the significant studies that have been conducted with con-
straints on dynamic response quantities, These papers are a small,
but rapidly increasing, part of the literature.

The relative youth of the field presents difficulties when one
tries to classify the types of problems that have becn studied. The
ideal procedure would be to describe the problem that was studied, the
method of solution and a discussion of results, Unfortunately, and
untlike the more developed field of optimization with static loads,
each paper treats a unique problem, usually in a unique way and, of
course, obtains a unique result. Therefore, only the features of the
studies that are relevant to the present work will be stressed in what
follows.

The youthfulness of the field is indicated by the fact that the
earliest papers of this type known to the author were published in

1968, This work, published by Brach in two papers (Ref, 12 and Ref. 13),
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found approximate optimal solutions for some one-~dimensional struc-
tures loaded by impulsive or step forces. The problem formulation
for these studizs was in terms of finding the structure of fixed
weight that minimized a specified deflection., This is a transforma-
tion of the formulation used in this work: £finding the structure of
least weight with a constraint on the size of the maximum deflection.
Fox and Kapoor (Ref. 1lh) published another "early" work that de-
veloped a mathematical programming algorithm for finding the optimal
design of truss-frame structures subjected to a half-cycle sine pulse.
The response was estimated by using shock spectral techniques that
gave conservative upper bound iimits on the deflection and stress. A
previous work by Fox and Kapoor (Ref. 15) made the important contri-
bution of developing a simple technique for finding the derivatives of
the eigenvalues and eigenvectors with respeet to the system parameters.
Levy and Wolf (Ref, 16 and Rek. 17) provide a means of finding the
fully stressed design for onc-dimensional structures under dynamic
loading. A fully stressed design is one where all structural elements
exactly satisfy the stress constraints imposed on them, The motivation
for their study comes from the fact that for determinate, statically
loaded structures with conmstraints on the stress, the fully stressed
design is optimal. For the impulsive loading conditions and the fi-
nite element representations used, the solutions shown in these ref-
erences are found to be optimal. However, fully stressed designs are
usually not optimal in cases where more general dynamic loads are con-

sidered,



A series of related papers by Venkayya, et al. (Ref. 18 and Ref.

19) describes an optimality criterion that is used to find approximate

optimal solutions for various types of dynamic loading. The criterion
was developed specificallf for prublems with constraints on the natural
frequency, so that it is exact for that case. When more general dy-
namic conditions are considered, the results obtained have to be com-
sidered as preliminary, qualitative desgigns.

A specific area of practical interest that can benefit from the
methods of optimization with dynamic constraints is that of the opti-
mal design of structures to withstand earthquake loads. The 5th Worid
Conference on Earthquake Engineerianz held inm Rome in June, 1973 in-
cluded four short papers on this topic. One of these, by Solnes and
Holst (Ref. 20), replaced the dynamic load by an equivalent static
load, so that it is not a dynamic response problem, strictly speaking.
However, inertial effects are artificially inecluded in the statically
equivalent load, Another paper from the conference, by Nigam and
Narayanan (Ref. 21), considered the 2xcitation to be either a speci-
fied acceleration or a probabilistic acceleration with a given power
spectrum. The techniques employed in the paper and in another paper
by Nigam (Ref. 22) to deal with the probabilistic nature of the ex-
citation come closest to the techniques employed in Chapters IV and
V of the present work to treat similar loadings. Another work of
optimization for earthquake type of loads is given by Kato, et al,
(Ref. 23)., The loads in this case are approximated by shock spectra

in a manner similar to that of Ref, 14. The diversity of models and
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techniques used to study the optimization problem for civil engineer-
ing structures indicates that it is a fertile ground for further re-
gearch and systemization.

A study that is more general in scope, but that has application
to the earthquake problem, is contained in a recent report by Cassis
(Ref. 24). 1In this case, the load is modelled as a half-cycle sine
pulse and the response is obtained by performing a time integration
of the equations of motion., The constraints considered include inte-
grals of the time history of the response. This is one of the few
papers dealing with dynamic response that retain the time parameter
in an explicit form. It is also the first report known to the author
that includes mention € the fact that the feasible design space can
be disjoint for certain types of dynamic excitations, This feature
of such problems is one of the more exciting. The disjoint design
space receives extensive treatment in Chapter ILII of this report.

Chapter III deals with the optimization of structures excited by
harmonically varying leoads. 1In one sense, this is the simplest of
the dynamic response problems since the time parameter can be removed
by assuming that the steady state response is the only response of
interest. By the use of energy methods, Icerman (Ref. 11) was able
to develop an optimality criterion for one-dimensional structures ex-
cited by a point load with an equality coustraint on the displacement
uirectly under the load. 1In order teo develop the optimality criterion,

it was necessary to add the further constraint that the excitation fre-

i
4

quency be less than the first natural frequency of the structure. FPlaut




(Ref. 25) made 2 similar investigation but allow:d the loading to be
more general, While several ;xamples were analvzed, and their opti-
mality eriteria obtained, no explicit solutions were shown in this
second study. Mroz (Ref, 26) conducted a mathematically more rigor-
ous study, which replaced the displacement constraints by one on the
dynamic compliance of the structure, This is defined as the integral,
over the entire structure, of the product of the magnitude of the load
times the magnitude of the displacement under it. Despite the successes
reported in these studies, the auvthor knows of no effort that was made
to expand on the results, An obvious, although difficult, extension
would be to find an energy method that allowed the sinusoidal excita-
tion to be applied at a frequency greater than the structures’ first
natural frequency.

Finally, a series of papers that deal with static loads should be
mentioned because of their relevance to the problem investigated in
Chapters IV and V. They include some relatively early papers that
sought optimal structures with constraints on thelr reliability (Ref.
27 and Ref, 28). Moses and Kinser (Ref. 29) extended these results
and used mathematical programming to find the optima., Araslanov (Ref.
29) developed an optimalitﬁ criterion that is applicable to simple
beam structures lopaded stétically by forces whose properties are known
only probabilistically. To do this, he defined the optimal structure
to be the one where all cross sections have the same specified proba-
bility of failure. These problems are the counterpart of the present

study in that they assume that the structure and the load distributions
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are described in some probabilistic manner but the loads are assumed
independent of time, In the present work, the structural properties
are assumed to be given and the loads ars constant in the space co-
ordinate but vary in a probabilistic fashion with time., Perhaps an

enterprising investigator will integrate these two problems.

C. SCOPE CF WORK

The preceding literature survey omitted a few papers that were
considered redundant or of little importance. It is quite likely that
other papers were inadvertently overlooked. However, the survey at-
tempted to demonstrate the full scope of the field of structural opti-
mization with dynamic excitation and to indicate that this scope is
still quite narrow. In addition, few of the papers cited were pub-
lished, or, if published, were known to the author when this research
began. For these reasons, the work reported on here does not build
on the results of previous investigations to any major extent but
rather attacks new problems. Of course, the tools needed for the
analyses are gathered from existing disciplines, such as structural
optimization, structural dynamics, aeroelasticity and probability.

The core of the thesis is contained in three chapters that deal
with three distinct optimization problems. In addition, a separate
chapter describes the optimization algorithm used for the majority
of the examples studied and an appendix details the finite element

models that feed into each of the three problems.



The first problem is that of the structural optimizationof one-

dimensional structures excited by harmonically oscillating loads.

This is similar to the cases dealt with in references 11, 25, and 26,

but a different approach is used that provides added insight into the
| problem, In particular, the constcaint that the first natural fre-
quency of the optimal structure be greater than the excitation fre-
quency, which was an integral part of developing the optimality cri-
terion of the previous studies, is removed. Another change is that
the equality constraints on the displacements or the dynamic compli-
ance are replaced by inequality constraints on the allowable stress
within the structure, It is felt that these innovations provide for
solutions of greater physical interest. Another facet of the present
formulation is that the feasible region is disjoint., Tnis provides an
interesting theoretical result and one that may be of physical uscful-
ness as well, The major drawhack of this formulation is that it is no
longer possible to find an optimality criterion based on encrgy methods.
This forces the investigator to deal with each problem on an ad hoc
basis. One way of combatting this deficiency is the construction of
analytical solutions to the optimization problems by the use of con-
cepts from optimal control., This 1s a technique that met with some
success when applied to problems with constraints only on the natural
frequencies (Ref. 9), It is introduced, with limited success, in the
present investigation because it holds the promise of providing solu-

tions that analytically detail the effects of the various parameters.
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Chapter IV deals with . he second problem, which is the structural
optimization of one-diménsicnal structures excited by white noise uni-
formly distributed along the span. A technical note by Nigam (Ref. P2
aided in developing the means for decaling with this type of problem,
although the specific structures aml constraints of Chapter IV differ
substantially from those used by Nigam. Since the excitation is ex-
pressed in probabilistic terms, the constraints also have to be evalu-
ated using probability theory. Much of the chapter is therefore de-
voted to defining the failure criteria used to evaluate a structure's
lifetime. The methods ultimately used were obtained from Chapter § of
a text by Lin (Ref, 31) and include both fatigue failure and first ex-
cursion failure. Further analysis in Chapier IV is devoted to out-
lining how the response quantities and their derivatives, which are
needed in the optimization procedure, are obtained through the use of
superposition of natural modes. Tinally, some numerical results are
given and commernts are made on points of interest.

The metfods of the earlier chapters are applied in Chapter V to
a more practical problem, that of finding the optimal design for a
wing excited by continuous atmospheric turbulence. The turbulence was
represented by a power spectrum so that methods similar to those used
ir Chapter IV could be used to obtain the lifetime of the structure.

A complicating factor is the translation of the atmospheric turbulence
to the loads a wing experiences. A text by Bisplinghoff, et al.

(Ref. 32, Chap. 5), provided the theory that permitted this. This

- 11 -



text also supplied the example (Ref. 32, Example 10.0) that was opti-
mized, a tapered unswept wing that includes a nacelle and a fuselage
and allows rigid body plunging in addition to wing bending.

Finally, the last chapter summarizes the results obtained from

the research and indicates areas that merit further study.
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CHAPTIER 1T

OPTIMIZATION TLCHNIQUES

This chapter provides a description of the Optim;zation methaods
that were used for the majority of the examples studied in this work.
It does not attempt to describe alternative methods or to compare them
with the methods used here. As mentioned in the introductory chapter,
references 2, 3, and & collectively provide a good survey of the cur-
rent state of various methods.

Briefly stated, the methods used here involve coupling an inte-
rior penalty function technique with a wvariable metric algorithm.
These methods have been described clsewhere; in particular, Fox's text
(Ref. 2) provides an excellent genvral presentation. Theretore, the
present chapter gives only a brief outline of the method with emphasis
on modifications developed during the use of the technigues.

The first section defines terms that are common to optimization
studies and are needed when the actual procedures are described in the
following sections. A final section offers some observations on the
algorithm based on experience gained from exercising it for the prob-

lems of the thesis.

A. CONCEPTS QF OPTIMIZATTION

The general process of optimization entails searching for the

design that minimizes some specified function while satisfying all
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the limitations applied to the design or its response., This section
briefly outlines the concepts thal put this general concept into quan-
tifiable terms. Since finite elements are used for the majority of
examples presented in this thesis, the development is presented in
terms applicable to a finite element analysis.

The first term to be defined ig the objective or cost function.
This is the function (or functional)} to be minimized and is desig-
nated by J . For the problems of this thesis, the cost function is
always simply the sum of the desiga variables,

The design variable is the second concept to be defined. This is
an element of the system that may be changed in the process of seeking
an optimum. The presenc study is concerned with cne-dimensional thin
walled structures whose design variables are the thicknesses of indi-
vidual elements. The desipn variables are elements of a design vector
that is notationally represented bt [t} . A related concept is that
of the design space, which Is simp.y the space of all physically pos-
sible design.variables.

Limitations on the design arc termed constraints, and it is to
the formulation and satisfaction of these constraints that the bulk
of the effort of this work is directed. The constraints are desig-

nated by the requirement that

g, =2 0 , (i=1,2,...,n0. of constraines) (2.1)

- 14 -
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where 9 is a function (explicit or implicit) of the design vari-
ables and the time and space coordinates,

The simple two-dimensional oremple shown in Fig. 22,1 depicts
these concepts plus some additional terms, This figure illustrates
+ tg subject to

2
£

the problem of minimizing the cost function J

the constraints:

= - p-
= - =
g2 t2 0-5 0 2

The circular arcs are lines along which J 1is constant. The
design vector is {tl’tE}T and the design space is given by all real
values of t1 and t2 . This design space is divided into two re-
gions by the constraint conditions: the "feasible" and the "infea-
sible"” region. The shaded, infeasible region is where the constraints
are not satisfied, while tiie unshaded portion is the feasible region
from which the optimal design must be found. While the optimal value
of £, =ty = 1.0 can almost be found by inspection (or by methods of
ordinary calculus) in this case, it should be obvious that problems
involving a large number of design variables and more complicated con-
straints require considerable effort and iﬁgenuity in the search for
the optimum.

A further concept that can be demonstrated with this two-dimen-

sional example is that of the active and the inactive constraint., At

- 15 -
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the optimum it is seen that ponstraints gy and g5 are satisfied

as equality constraints (i.e., g, = B ~ 0.0 ). These are therefore
designated active constraints. Constraint N is also satisfied, but
the optimum does not lie on this constraint so that it is designated

inactive,

-

B. THE INTERIOR PENALTY FUNCTION

When inequality constraints are imposed on the design, penalty
function methods can be used to include the constraint in the objec-
tive function. This strategem converts the problem to one that can
utilize the powerful methods used o solve the unconstrained mini-
mization problem., Referenmce £ contains a good description of these
methods, and this presentation thevefore focuses on the details of
the particular penalty function used here.

An interior penalty function is one that forces the trial design

always to be in the feasible region. The specific function used in

this work was of the form:

nc
o = J- ¢ Z i (g,) X (2.2)
i=1

The modified objective functinn, @ , is seen to become arbi-
trarily large as the design vector approaches the constraint gy = o .
As mentioned, this has the effect of forcing the trial design to be in
the feasible region, Note that the form used here requires that the

constraint be in the range 0 = 8, =1 . This is accomplished by
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redefining a given constraiat so that it fits within these limits
(e.g., the constraint gy =ty - 1.0 of Fig. 2.1 can be cast into
the equivalent form g = 1.0 - l.O/tl . The r wused in cquation
(2.2) is a specified scalar. The procedure fvllowed is to minimize
® for a chosen value of 1r and then to reduce r by some factor
and repeat the optimization. In the limit as r — 0 , the optimal
result for the modified problem is seen to be arbitrarily close to
the optimum of the unmodified problem.

The extended interior penalty function method is a variation
that was applied in reference 2 to a similar penalty function method.
Figure 2.2 depicts an optimization problem that aids in explaining
this refinement. In this diagram the function J = ax is being mini~
mized subject to the constraint that x 2= b (or g =1 - (b/x) 20 ).
While the modified cost Function ® =ax - r fn (1.0 -~ b/x)} blows up
as x approaches b , thae extended penalty function remains finite,

This is done by using the Ffoirmulation:

ne
> = J-r ), 6(s) (2.3)
i=1
where:
fn (g;) g; 2 ¢
B, - €
1
In ¢ + g, < €
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The new expression is a Tayluor series expansion of /n (gi)
about the point In (gi) = € . 'Me reason for this esoteric con-
struction is that the optimization process can now deal with designs
in the infeasible region. Analysis of designs that are infeasible may
sometimes be inadvertently performnd either during the cne-dimensional
minimiéation described in the next section or by starting from an ini-
tial design that is infeasible,

The value used for € was selected by recourse to an argument
similar to cne used by Cassis (Ref. 2b) for a different penalty fuaction.
For the present penalty function, this gives € = exp (- r/@) . More

comments on this choice for € are made at the end of this chapter,

C. THE VARTABLE METRIC METHOD

This section describes the particular mathematical programming
algorithm used for the numerical optimizations of the thesis. When
this study was in its early stages, a steepest descent algorithm was
tried, The latter technique simply computes the gradient of the ob-
jective function with respect to the design vector at the design point.
A new design is then found by taking an improving step in the direc-
tion of the gradient ("down the hill")., 1t is well known that the
steepest descent method has wery poor convergence properties but it
was felt that it would suffice for the simple problems to be dealt
with., For designs with more than three elements, this proved not to

be the case, -




Following an investigation of various alternative algorithms, the
variable metric method (also referred to as the Davidon-Fletcher-Powell
method, after its developers) was settled upon, Reference 2 contains
an excellent description of this nethod, and what follows is essen-
tially a summary of that descripticn. The variable metric method can
be motivated by looking at 2 Taylur series expansion, about design

[to] , of an objective function:

o(t) = o(t)) + [ )} {at)
+ -;-{At]T (74 (to)] {ac]
+ higher orler terms s (2.1)
where:
n X L
(2} = fe - tg]
nx i
atl)
(Ve(ey)} = { l
i e} = {e)
n X a
3%

(V0 ()1
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At the optimum {V&} = [0} , «o that, to terms of sccond order,

near the optimum

(V8(e)) = [F0(r)} + [vetp(::c)] (ac} = {o} . (2.5)
Starting from {to} , the indicated correction step is:
fac} = - Fo(e 7T {W(e)) (».6)

If this were the actual procedire used to find the new design, it
would be a second-order method. {n practice, the [V 4] matrix is
often difficult to abtain, This s particularly true {or problems

dealt with herc since the constra.nts used are very complex,
The variable metric method was developed to circumvent this prob-
frs . . QE -1 - .
lem by finding an approximation to the [V ¢] matrix. The method
is outlined below and is folliowed by a brief justification of the al-
gorithm.

Directly frocm Ref. 2:

(1) Start with some initial design vector {t]o and an initial

positive definite matrix [HJO (typically the identity matrix). Set

(s}, = - w1, (w(c)} .

(2) Find {Ae} = ccq{s}q , yicking @, 80 as to minimize

¢(tq_1 + aqu) . The q subscript refers to the iteration number.

3
b
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(3) Compute:

[H] = [M]q + mq + [B] s (2.7)

q+l q

where, designating

{v}q = {vm(tqﬂ) —-V‘l?(tq)} ,
- 1Ty reren Ipy
tal, = [Wq{S}q{S:ql,’ (%szq{f}q)
= o0 i T T
(8}, = - (Cm (V3 0m1 fv P/l (vl ) .

— o Ffi <
(k) Then set [S}q+1 = - _V@(tq+1)} and return to (2)

q-+l
until convergence is achieved,

This rather complicated procedere can be heuristically justified
by the fact that, for a quadratic objective function with n design

variables, the procedure yiclds [H]n = [’\7’21.'11]—1 .

That is, if ¢ is of the form:

¢ = {t}T[M][t} + [NIft} + C

Then: [H]n 2 [’M]-L . (n.8)

A proof of this statement can be found in Ref. 33. While the
problems dealt with here are not quadratic in the design vector, the
assumption is made that, close to tne optimum, the gbjective can be

approximated by a quadratic,
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1, Interpolation

A remaining task is thw clasmation of the rather innocent state-~
ment contained in step two of th: ¢lporithm: 'picking aq g0 as to
minimize Q(tq + aqsq) ", This ertails performing a one-dimecnsional
minimization at each iteration, inc¢ it proved to be the most diffi-

cult and time consuming aspz2ct of the optimizaticn, The procedure

finally settled on to perform this 1-D search was a rather complex

form of cubic interpolation that will be summarized here.

*
The goal is to find the value ¢  that minimizes the scalar

function &(t + ¢8) . Assume thal the objective function can be

&ivroximated by a cubic equation i @

& = a byt 0 + dod . (2.9)

Lf this approximation were =xict, the minimum could be readily
found by setting the derivative 3f ¢ with respect to @ equal to

zero and then solving for o« :

30

— b + 2ex + 5:10:2 = 0 ’ (2.10)
X

T
i
H
i
i
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The choice of sign is resolved by using the additional constraint
that, at the minimum, the second derivative of the function is posi-
tive:

%0

5 = 2c + bdx = O . (2.11)

%

*
Substituting the solution for @  from equation (2.10) into

(2.11) gives:

= + 2 ch - 5:‘11:1 > 0 . (2.12)

Clearly, the positive sign must be chosen.

To complete the analysis, the values of the coefficients (a ,
b, c and 4 ) must be obtained, The original design is the value
of the objective function at G =0 . The slope of the objective in
the « direction at o =0 is given by {V%(to)}T{S} . Tmmediately
then, a = @(to) and b = [Vm(to)}T[S} . The remaining coefficients
are determined by evaluating ¢ at two different values of ¢ . In
order to assure convergence, these values were picked so that the min-
imum was bracketed by the three function evaluations.

Once Oﬁ is obtained using the above procedure, a test is made to
see 1f it indeed is at the minimum value of &@(t + 08) . The test

used was to compute |[{V@(t + a*S)}T{S}]/(|{V@(t + Q#S)]TII{S}[ =CL .
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*
1f « is exactly at the minimum, CI is zero. The criterion used

was that if CI was less than some specified & then the optimiza-
tion would proceed, If not, then an additional interpolation musi be

* * T
made utilizing the new values of @(t + @ S) and {(Vo(t +a 8)} (s}

until the criterion is satisfied,

2, Minimum Thickness Constraints

Under certain design conditions, it is possible, in the absence
of constraints on their size, that design variables may go to zero
and even take on negative values. Since these design variables cox=-
respond to element thicknesses, it is physically and computationally
undesirable for this to happen., Varicus methods have been constructed
to deal with this problem, and this section describes a novel method
used in Chapter III of this work. It is a method that worked quite
well and is not well krown in the structural optimization field.

The technique used is a transformation employed by Pierson (Ref.
10) for a continuous design variable. Modified to accept a discrete

design vector, this transformation has the form:

1,2
(e} = (e, }+%0B) X (2.12)
The t , is a constant minimum thickness constraint while u

min

is considered the new design variable. The beauty of this transfor- -
mation is the {t} remains positive even if {u} inadvertently has

some negative components,
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A minor difficulty arises when derivatives are needed with re-
spect to the new design vector {u} . The indi.~ted procedure is to
use the chain rule by first taking the derivative with respect to fe}

and then use

P o ot a®
S G Sl S Jrpa . (2.13)
Ju ot v ot

D. COMMENTS

Despite the amalytical underpinnings described above, optimiza-
tion techniques remain very much an art, It is felt that some per-
sonal observation from ome who began this work with a limited know-
ledge of optimization techniques might prove of value to others who
are in a similar situation.

First, a disclalmer must be made to the effect that the use of
the variable metric method coupled with an interior penalty function
should not be considered a vecommendation of either technique as the
best method for solving a general problem. Each problem must be ap-~
proached on an individual basis, with a consideration of the require-
ments and capabilities of each technique. The strong points of the
method are that it is a sophisticated gradient method that proceeds
to the optimum in a deliberate fashion. Other techniques, utilizing
feasible directions (Ref. 3l4) or optimality criteria (Ref. 3), are o

more efficient for certain applications and may even be better suited
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for the problems worked here. A further general comment is that com-
puter centers are now likely to contain optimization routines in their
libraries. The first step for anyone embarking on an optimization
problem should then be to determine if these readily available rou-
tines are adequate or can be adapted for their needs,

Given these general comments, specific perceptions gained while
exercising the programs are offered below.

The use of the -~ [n (gi) 4s a penalty function is an innovation
with respect to structural optimization problems as [Far as the author
knows. The more common interior penalty function is one of the form
1/gi . The log function seems to provide a smooth function with an
easily calculated derivative., It would be interesting to hear of
others' experience with different functions.

The values chosen for the penalty parameter r of equation (2.2}
have to be selected in an arbitrary manner. TFor this thesis, values

P

of r ranging from 10 #n 10”7 were used. The reduction rigq < ri/lo
was always used until the minimum r was reached.

Texts on this method advocate iterating on each value of r until
an optimum is reached before reducing it. This scems to be an unneces-
sarily strict requirement and an alternative was used that reduced =
after it appeared that little improvement would be made at the present
value, This was done by specifying that 1f ¢q/¢q-1 = 1.0/(1.0 + 10 1)

then r should be reduced by ten and the new optimization problem ini-

tiated. If not, iteration continued until the criterion was met. This
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approach has the added benefit that the criterion is satisfied quickly
for large values of v and becomes increasingly more stringenkt as ¢

is veduced. For the final value of r , a convergence criterion was

employed. The criterion used was obtained [rom Ref, 2 and entailed

checlking 1if
i{ve}T 8] {Ww}]|/e < o.02 .

I1f the inequality was satisfied, the problem was considered
solved; if not, the iteration conrtinued,

The use of the extended Lnterior penalty function described in
Scction TI.B proved to be of marginal value, The main reason for this
is that the values of € were so small that the objective functions
calculated using the extended penalty function were almost always too
large to be of value in the interpolation procedure. This in turn was
due t; the way in which € 1is calculated. In order to assure that the
transition point (i.e., €& ) is between the minimum point and the in-
feasible region it was found necessary to use ¢ = exp (~ r/@) .
Without going into detail, it is rxecommended that, if the extended
penalty function is to be used, further efforts be made to obtain a
better transition point when using the log penalty function, or that
the I/gi penalty function be used coupled with a transition point
calculated by Cassis (Ref. 2M): ¢ = rfg .

A number of cther "rricks" ware employed in the optimization and

particularly in the one-dimensional search. However, it seems of
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little value to detail them here. ‘The main thing to be kept in mind
is the nature of the optimization process and the mechanics involved.
Some of the calculations of the next three chapters may appear exces-
sive unless it is remembered why the optimization algorithm makes them

necessary.
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CHAPTER ITI

HARMONIC EXCITATTON

A, INTRODUCTION

Among the simplest dynamic response problems to formulate and
solve are those of one-dimensional structures excited by harmonically
ogcillating loads, 1If only the steady state response is of interest,
the time parameter can be removed from the equations of motion by as-
suming that the structure responds at the frequency of excitation. It
was supposed, therefore, that this type of problem would be a logical
beginning to a study of structural optimization in the presence of dy~
namic loading. The results of this chapter indicate that this suppos-
ition is essentially correct but there there are unanticipated diffi-
culties related to the fact that the feasible region is disjoint, 1In
order to demonstrate this difficulty, some extremely simple examples
are presented in the following paragraphs.

Consider a uniform cantilevered rod excited by a uniformly dis-
tributed sinuseidal torque. The differential equation and related

boundary conditions for this system are (Ref. 32, Chap. 3)

3 30 aes _ it
— laa—]-1,—5 = -Te °© ) (3.1)
% ax at
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and

a8 ]
and G] — = 0 . '

e|x=0 = 0 3%
xX=L

Here, ® is the excitation frequency. The amplitude of the
steady state solution of Eq., (3.l) is ;

T

g(x) =

cos qiiﬂx -1+ tan 1JX1L sin 1qux s (3.2)

GJA

where

A graphical representation of 6(L) is presented in Figure 3.1,

The points to be made are that the magnitude of the deflection does not
increase monotonically with the magnitude of the excitation frequency and
that, given a specified deflection, there is not a unique value of the
excitation frequency that results in that deflection. 1In fact, there are
an infinite number of such excitation frequencies. This should provide
an inkling of the problems to be encountered with a harmonic excitation,
To make it more explicit, a further example is presented below that in-

volves a structural optimization problem with only two design variables,
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B. TWO DESIGN VARIABLE EXAMPLE

This section seeks the optimal design of a thip walled canti-
levered rod excited uniforﬁly in torsion by a harmonically varying
load, 1If this system is modelled by two finite elements of equal
length, equations from Section A.l can be specialized to the n =2

case to give the steady state equation of motion:

2 2
( \ -
] @ T oL 2(t, +t, £, . t) +E, £y 91
ehGJO £, 2t2 -t £, 62
T2 2
e . (3.3)
BGJO 1

The constraints considered are that the magnitude of the stress
be no greater than some specified value, From the Appendix, the stress

can be expressed as:

The motivation for representing the structure by two design vari-
ables is that it is possible tc depict the results graphically, thereby
gaining a qualitative description of what would be encountered with a
more realistic representation containing many elements. In this par-

ticular case, an added benefit is that it is relatively easy to compute
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the stress amplitudes explicitly:

S, 2GR 3T t5(1 - 2))
= Bl =, 2
S L DET
max
(3.4)
S, 2GR Tn(jlecz + tl(l - 2}\3)
= (62 - 91) = ’
L DET
max
where:
2 .2
L 0 T ok
e = 2
ahGJO
T, = TLR/ (uJO S as) s
DET = t (t, (1 -2 )% - ¢ (Br - 3E))
A ! e’ 2V e e *

The constraints for this problem are that the absolute values of

Si/smax must be less than unity. In the notation of Chapter II, these

are written as g = 1l - (Si/S )2 20 .

max
Figures 3.2 and 3.3 show the feasible and infeasible regions for
values of le ranging from zero to three and for Tn equal to 0.085.
For the ke = 0 case (static loading), presented in Fig. 3.2(a),
the constraints are seen to be two straight lines. The cost function

is simply J = tl + t, S0 that the optimum is at the intersection of

2
these two lines. TFigure 3,2(b) shows the design space for le = I/EH
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and it is seen that there are two separate feasible regions. This is
the difficulty that is illustrated by this example and is discussed
further below,

Figure 3.3(a) ghows the results for le = 1/6 . The constraint
at tl = 0.0 is 4 minimum thickness constraint that is included to

eliminate the L, = 0.0 solutions that satisfy the stress constrainks

but are physically umrealistic., It is seen that the least weight solu-

tion is in the upper region at ¢, 0.0k and t, = 0.25 . Finally,

% case there is again only one

Hi

Fig. 3.5(b) shows that for the le
feasible region.

The explanation for this curious behavior is tobe found by study-
ing the eigenvalues of the syétem. Let kl and 12 denote the non-
dimensional values of the first and second eigenvalues. TIn Fig. 3.3(a),
the designs with kl equal to the excitation frequency are all oa a
straight line emanating from the origin with an equation given by
tl = 2,06 t, . This line proceeds directly through the middle of the
infeasible region, dividing the design space into two distinct regions,

Clearly designs that have he==l are infeasible because this repre-

1

sents A resonance condition with an unbounded response, The region
&, > 2.06 t, contains designs where X, > A, while the region

£ < 2.06 t, contains designs where ll < A, . Tach of these
regions has its own optimum, as is demonstrated by the figure.

Segenreich and Rizzi (Ref. 35) have shown that the eigenvalues of

cantilevered rods modelled in the fashion described in the Appendix
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have prescribed limits. TFor the specific case of two design variables

of interest here, these limits are given by:

0.5 s A, S 2.0 . (3.5)

As a function of the excitation £requency, there are, therzfore,

either one or two distinct feasible regions, These regions are given

by:

Excitation No. of Eigenvalue

Frequency Regions Relationships
me =0 1 12 > ll >-ke
1.) 0<Xh <k <}
D <X 0.5 2 { e 1 2
< A
2,) © A <R, <A
1.) XA, <X <}
0.5 <1 <2.0 2 { Loe 2
S
2,) M <2, <X
le > 2.0 1 le > ke > 11

The le > 2,0 case explains why Fig. 3.3(b) contains only one
feasible region; the excitation frequency is greater than any possible

eigenvalue of the system.,
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it should be clear why this disjoint property of the feasible re-
gion presents a difficult obstacle in the search for a global optimum.
While it is possible to analyze the two design variable case graphi-
cally in a thorough fashion, this is not practical for designs with a
greater number of elements. Figure 3.1 was presented to motivate the
hypothesis that for the continuous case there are an infinite number
of local optima corresponding to the infinite number of distinet re-
gions where li < le < li+1 s L= 1,2, 004,2 ,

For problems with an arbitrary number of elements, some method
such as that described in Chapter II has to be utilized to search for
an optimum. But such methods have the drawback that the search takes
place inside one feasible region. Therefore, for a given problem, the
global optimum is found by selecting the minimum of all the distinct
local minima. Cassis (Ref. 24) encountered disjoint feasible design
spaces while studying a different dynamic response problem and found
it preferable to search for the optimum in the infeasible region by
using an exterior penalty function method, His thought was that the
solution would be more likely to proceed to the global optimum. But
this technique provides nu advantage here since an exterior penalty
function technique still proceeds "downhill" and would not, therefore,
cross over the infinitely high "ridge" where the excitation frequency
equals an eigenfrequency in order to descend into the "valley" of the

global optimum. More comments are offered on this problem in Section D.




It might be supposed that the disjoint nature of the feasible re-
gion is due to the omission of structural damping; in a sense, this is
true, The addition of damping gets rid of the infinitely high ridges,
since a damped structure excited at its resomant frequency has a fi-
nite response, A brief study that included damping was made, and a
result from the study is presented in Fig. 3.4. The figure superim-
poses the le = 1/6 case of TFig. 3.3(a) and the results from an iden-
tical problem except that the shear modulus was multiplied by (1+ix) ,
where @ is a small structural damping factor, This is a technique
frequently used to take account of the fact that structures have damp-
ing present in them (Ref. 36, Chap. 12). The value of © used to ob-
tain the results shown was 0.1 — an unrealdistically high value, but
one that depicts the damping effect clearly. It is seen that the
damping reduces the infeasible region and prevents it from extending
to infinity. The disjoint character of the design space has been
eliminated, but two minima are stiil retained as pockets of the uni-
fied design spéce. The basic problem of finding the global optimum
still remains. WNote that the optimal solutions for the damped case
do not differ greatly from the undamped case, Damping was not ipn-
cluded in the analyses presented in the remainder of this chapter
since it was felt that the benefits gained from added practicality
or realism do not offset the complications introduced by complex

variables,

T .
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C. FUNCTION SPACE SOLUTIONS

Before procceding to the finite element solutions, another pro-
cedure that is applicable to these sorts of problems is presented;

that of solving optimization problems by dealing with the differen~

tial equations directly, The motivation for this section comes from

the success others achieved while applying optimal control techniques
to structural optimization problems. In particular, Weisshaar (Ref, T)
and Armand and Vitte (Ref. 8) were able to find optimal thickness dis-
tributions for a number of problems that had constraints on the system
eigenvalues.

This section develops the criteria for an optimal solution for a
harmonically loaded structure and solves some special cases,

Only one-dimensional structures are used in this study; therefore,

the equations can be put into the first order form generally used in

control theory:
{x}° = [F(t,s)1{x} + {P} . (3.6)

The terms used

With boundary conditions at s =0 and s =1 |,

are defined as:

i

n X1l wvector of state variables

{x} = {x(s)}

t = t(s) thickness distribution, the control

variable of the problem
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and

{F]
()

8 = the nondimensional coordinate and inde-
pendent variable,

n X 1l wv=zctor of the load amplitude

I

denotes a derivative with respect to s

The analysis given below is an application of the methods de-
scribed by Bryson and Ho (Ref, »7). Only the barest outline of the
procedure is presented here.

The problem statement used in this thesis is that of minimizing

the weight subject to constraints on the response. Mathematically,

minimize
i
J = f tds . (3 .T)
0
Subject to
{g(x,s,£)} =2 0 2
q X 1 vector . (3.8)

The Hamiltonian is constructed by using standard procedures of

Ref. 37

B o=t (M (FIx) + (23)+ (3T (g] (3.9)
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where

{r}
{n}

nx 1 wvector of adjoint states s

il

q x 1 adjoint vector for thc constraints .

The value of by is zero when g; # 0 and is = 0 when gy =0 .

The Euler-Lagrange equations are:

o

o - -
ox

08 .
} = - DT ) -t {5} .+ (5.10)

And the 'control equation' is:

H OF b)
T 1+ 3T =] (5} + (0}t gi} . (3.11)
at ot at

The transversality condition provides the required boundary con-

ditions:
T 1
(A" {Bx] o 0 . (3.12)

It is felt that the method is best dealt with here by example.

Hopefully, these examples also clarify the technique,
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1. Example: Cantilevered Beam With a Static Load

A cantilevered beam acted upon by a uniform static load has a dif-

ferential equation and associated boundary counditions given by

a2 ( 3w )
— BT —
ds® dx®

il
tae]
-

(3.13)

u

a dew
dx dxe

Using notation and assumptions given in Ref, T, the first order

x=0 x=L x=L

form of this system is

(xl\' 0 1 0 0] f’xl\ { 0 )
i

x2 0 0 o a XE _ 0
< ) = $ p o+ B < >

x3 0O O G 1 x3 0

kxu) “O O 0O 0__ kxh) \1)

x(0) = x%,(0) = xﬁ(l) = x(1) = 0 ’ (3.1k)
where
X = W/L ’
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and

1 dw
X, = - — P
2 L dx
E d2w
= 5 T a5 )
K3 L2 dx
1 d d2w
X, = — — |t — 5
b L3 dx dx2
-
P = — .
EIO

The optimization problem is specified as that of finding the
thickness distribution that minimizes the total weight while satisg-
fying the constraint that the magnitude of the stress along the span
of the beam is less than some specified Smax . By use of the fa-
miliar formula S = (Ed/2)(d2w/dx2) , this constraint can be put

into the form:
g = L-algl/e (3.1%)

2
where a = EdL /ESmax .

Equation (3.9) is then:

A _ alx,|
+ —§f§-+ Agry, + NP (l - —*fé—') . (3.16)

H = &t + A x
1 t

P
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Equations (3.10) and (3.11) are evaluated to give:

29y ~ 0 o 0o o ]{x) (o )
A -1 0 0O o0 S ap 0
2 2
S Y. (7 >
Ny o ~1/& 0 O 5 sgn (x5)
LNy, | o 0 -1 o_JN) A 0/, (3.17)
SH A% palx, | A x M
S -0 = 1- 225 b = 1 - —251 = . (3.18)
dt t t t t

The last substitution is made because if p % o, [a(x5)/t] =1 .,
The notation sgn ( ) designates that only the algebraic sign
of the quantity is used.

The boundary conditions on the adjoint variables are

M) = (1) = 13(0) = M{(0) = 0 .

The first order equations and the boundary conditions give immediately

¥, = P(s - 1) ,
6 = B(s® - 28 + 1)/2
A o= 0 ,
M, = 0 . (3.19)

- .48 -
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These results can be placed in Eq. (3.15) to give:

L+d =0 == t = -4 . (3.20)
Since u is zero only when a]xB!/t is less than unity, it is
clear that t 2 %? (1, -~ 28 + 52) . Equation (3.20) states that if
i is zero, then t =0 and the inequality on t is violated except
at s =1 , Therefore,  cannot equal zero, requiring a]x3|/t =
1.0 across the span., Stated another way, this says that the optimal
solution is the one that Ereates a fully stressed structure. This is

a well known result for problems of this type with a static loading.

The entire solution can now be written down as:

t = -p = aP(l - 2s + 52)/2
X, = s/a K} = as
X = 52/23 lk = a52/2 . (3.21)

The ease with which this analytical solution was obtained makes
it appear that solutions with a harmonically oscillating load might
also be tractable, The formulation for the same problem as above
except that the excitation is harmonic with £frequency o, can be
written in terms of the static problem by adding several terms. The

subscript ( )St in the following equations refers to the static case

- g -



CL
and Pe is a nondimensional frequency equal to fne‘qt%};/ﬁio .

With this notation, the changes

ically excited structure are:

. 2

in Eqs. (3.14)-(3.18) for the harmon-

xll- = T‘etxl + P »

H = H 4+ A Patx
st e ™1 ?

! 2

ll = - Fetlll- 2

SH 3

S U S S (3.22
. ' e™

ot ot

These additions prevent det
is fully stressed. Without this

treat these equations analytical

ermining that the optimal structure
; 1t has been found impossible to

ly. Numerical techniques that solve

the two point boundary value problem and the associated control equa-

tion have been applied with litt
in dealing with the stress const
changes at the value of s vher
inactive to being active. This

explained in Ref. 37, Chap. 3.

le success, The main difficulty is
raint. The character of the solutien
e the constraint changes from being
requires patching together arcs as

I1f numerical techmiques are to be

used, it seems preferable to convert the problem to an unconstrained

one by using the penalty functio

n method as described in Section II.B.
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If this is done, Eq. (3.7) becomes

1
J = .}f [t - r fa (g)] ds J
0

and the difficulty in patching arcs is avoided, albeit the formula-

tion becomes slightly more complex.

2, FExample: Torsional Rod Ixcited by a Harmonically Varying End Load

Consider a torsional rod that is being excited at its tip by a
harmonically oseillating load with frequency W, and constant ampli-
tude T . Pose the problem of finding the thickness distribution
that minimizes the weight of the structure subject to the constraint
that the tip rctational amplitude is equal to a specified value D .
This problem was first solved by Icerman using energy considerations
and with the additional constraint that the first natural frequency
of the structure be greater than the excitation Erequency. It is
similar to a problem studied by Ashley and McIntosh (Ref, 6) and by
Turner (Ref. 9) who found the minimum weight structure for a canti-
levered torsional rod with a fixed tip mass and an equality constraint
on the first natural £frequency.

With the familiar assumptions that GJ = GJ.t and Ia =1 t ,

0 o0

the differential equations can be put into the form (Ref, B):

= . . {3.23)



And the associated boundary conditions are

, xl (O) = 0 s
xl(l) = D ;
xg(l) = .‘f »
where

ad 2

(l)r"_[ A
PE = e o .

GJO

Note that the equality constraint and the excitation are con-

tained in the boundary conditions., The inertial loads appear in the

- Pzt term,

The Hamiltonian of Eq. (3.9) has the form:

2
7‘1 0 ™t )‘1
= 2
X -1/ 0 A,
oH Ax
— = 0 = 1 - 122 - XBngl s (5.26)
dt t

and the boundary condition 12(0) =0 .,

- 52 -
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A solution is found by noting that X, and x, are equivalent

2 1

ip that they have the same differential equations and similar boundary

conditions:

’ + 2
(£25)" + T7er, 0 A, (0)

1l
i

(txi)' & Mex

Il
o

Ik

1 %, (0)

1

o , txi(l) = T

Since the differential equations are linear, this requires that

A = - C‘.lxl/ E »

where Sy is an unspecified constant.

Similarly, it can be shown that

Substituting these relations into Eq. (3.26) gives

xgc Pec xa
1 - %}} -+ _} 1 = 0 .
£ T T
Since x, = txi , this can be written as

o
x)? = P ardE

where B2 = TYcl .

_53-.
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(3.27a)

(5.28)

(5.29)



Murphy (Ref, %8) lists threc solutions to this differential cqua-
tion, but Lthey arc essentially cquivalent and can be expressed in the

general form
B . . :
x; = % Zsinh (C £ T's) . (3.30)

Here C is the undetermined constant of the differential equa-

tion. Applying the boundary conditions on Xy gives
x, = Dsinh s/sinh T . (3.31)

Note that this determines that g E/Bg =T sinh2 ]‘/(Dl")2 .

Placing this value for Xy in the original differential equation

gives
cosh Ts o sinh Tsg dt
£'TD — + 2t ————  =» — = « 2T tanh Ts ds . (3.32)
sirth T sinh T t

Integrating both sides:

int = -2 /ncosh's + N s

or

T
]

ce/cosh2 I's . (3.33)
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The relation tx&(l) = T provides a value for ¢, and hence for

the optimal thickness distribution:

T
¢, = —cosh " siph T 3
D
and
T cosh T sinh T
b o= - . (3.34)

D cosh2 T's

This is the result found by Icerman while including the constraint
that the first natural frequency must be greater than the excitation
frequency, This constraint was not explicitly included in the present
formulation, but it is clear that the constraint is satisfied since the
solution is identical to Icerman's,

The question of whether additional solutioms exist that do not
satisfy the frequency constraint, and, if so, what they are, t.ok up
a larpge part of the time spent on the thesis. The answer to the ques-
tion of existence is clearly "yes" and can be demonstre.es by looking
at the behavior of the solution ag T becomes large. ° . total weight

of the structure is proportional to:

1
J = ftds = Esinh2 T‘/T"eD . (3.35)
0

J increases monotonically and without limit as T increases.

The curves of Tig., 3.1 show that a uniform rod can also satisfy the
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xl(l) = D constraint at any number of excitation frequencies. Clearly
then, the uniform rod at some f[requency satisfies the constraint and
has less weight than the "optimal" solution. This indicates that the
solution of tgs. (3.31)-(3.54) is not a global solution for all fre-
quencies.

Once this fact is established, the unanswered question is: ‘'What
are the other optimal solutions?" At first, it was thought that addi-
tional solutions could be found for Eq. (3.29). After a long fruit-
less search for other solutions, it was determined that the problem
was ill-posed, in a special sense,

The adjective ill-posed has generally been reserved for formula~
tions that possess no solutions or no physically meaningful ones, A
structural optimization example of such a problem is that of finding
the minimum weight thickness distribution for a cantilevered rod with
the constraint that the first natural frequency of the optimum rod
have the same natural frequency as the uniform rod, TIF the rod is
modelled in the same way as was done at the beginning of this sec-
tion, it is relatively easy to show (Ref. 8) that this problem state-
ment is satisfied by a uniform rod cf vanishingly small thickness, a
physically uninteresting solution.

Since Eq. (3.34) gives one solution to the problem at hand, it
cannot be considered to be ill-posed in a strict sense. However, by
modelling the rod with three equal length segments, each with constant

thickness, it is possible to find analytical solutions that satisfy
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all the boundary conditions and constraints and that have a vanishingly
small thickness distribution., The diagram below gives a qualitative
comparison of the mode deflection shape given by Eq. (3.31) and the

mode shape that this physically unrealistic thickness distribution

woulu have,

As the thickness goes to zero for the second solution, the dis-
placement is unbounded, except for finite values at the root and tip.

A physically meaningful problem statement must, therefore, have
additional constraints on the response or involve changes in the sys-
tem equations themselves, Possible modifications include:

(1) Imposing a minimum allowable thickness constraint,

(2} Additions of non-structural mass along the rod.

{3) More constraints on the response quantities (e.g., inequality

constraints on the stress or the displacement).
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The first two modifications were successfully applied to the opti-
mization problems with natural frequency constraints but have been un-
successful for the forced case developed above, It is felt that, even
with a minimum thickness constraint or a non-structural mass addition,
an optimal structure with the frequency of excitation greater than a
structural natural frequency has discontinuities in thickness. Specif-
ically, it appears likely that the optimal structures have concentrated
masses; i.e., thickness distributioas that include terms of the form
tc5(s-sc) , where © 1is the dirac delta, The motivation for this
speculation comes from solutions obtained using finite element models
and piecewise constant continuous models., More comments on this are
offered at the end of the chapter.

Inequality constraints, such as those mentioned above, can be in-
cluded in the manner described in the original formulation. Unfortun-
ately, the added complexity has made the problems so far insoluble by
analytical means. As mentioned, there is no reason why the equations
could not be solved by numerical means. However, once the decision is
made to go to the computer, the most cfficient means of attabking these
problems is by the use of finite elements. The next sections detail
how this can be done.

Before proceeding to this analysis, it should be stressed that
finding‘additional function space solutions remains as a suitable goal.
Variations on the example above are the only analytical solutions for

harmonically excited structures, as far as is known. Additional analytic
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solutions would aid tremendously in uncovering the special features of

this type of problem.

D, FINITE ELEMENT SOLUTIONS

The frustration encountered while dealing w?th the foaction space
formulation led to efforts utilizing finite elements. In any realistic
problem, the use of finite elements is practically a necessity; but the
generality and elegance of function space solutions makes them the first
choice for preliminary investigations.

Examples are given below that extend the two element case of Sec-
tion TIL.B to similar structures modelled by up to ten finite elements.
Further examples ceal with a cantilevered beam structure modelled by
various numbers of elements.

The constraints used for these exémples are inequality constraints
on the stress. The Appendix indicates how the stress can be determined
as a function of the displacements. With this formulation, the aug-

mented cost function hag the form:

n

il
® = 2 €, - T E fn [1 - (si/smax)gl . (3.36)

i
i=1 i=1

Note that the constraint ]Si| s Smax is handled by squaring the stress

values, thereby obviating the need for absolute value brackets.
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The thickness is transformed by a technique motivated and de-

scribed in Section II.C:

. 2,11)

The uj are considered the desipgn variables. Derivatives of

the cost unction with respect to uj are given by

30 n S; as./at.
— = 1, 1 . (5-57)
j 2

The specific examples given below develop the values for

asi/atj .

1. Example: Cantilevered Rod

This section deals with a cantilevered rod excited by a uniformly
distributed load in torsion, TFigure A.l aids in depicting the nature
of the problem,., The steady state equation of motion for the problem

is given by:
2
(- op I+ [kD{e} = {r} . (3.38)
The stresses in the elements are developed in the Appendix:

(Cont'd)




and
S = —— [ei i ei"ll i = 2,3,..-,“ M (A.g)

By taking the derivative of Eq. (3.38) with respect to tj , an

expression for the {aG/atj} vector is obtained:

5 Y] o oMMl 3IK] )
(-of M+ K]) {—p = - |- + {6} . (3.39)

Btj atj Btj

Note that {8} and {ae/atj} in Eqs. (3.38) and (3.39) have the
same coefficient matrix, This fact can be exploited by using a sub-
routine that solves [Al{x} = {b] by decomposing the [A] matrix
(Ref. 39). Since the [A] matrix remains unchanged, it has to be
decomposed only orce to solve for the n 4+ 1 systems of n simul-
taneous equations to find the separate vectors {8} and {ae/atj} 3
j= 1,2,...,nl .

With {ae/atj} determined, the stress derivative is found

directly:

e i
= H
3t Loty
3s. GRe [30. 20,
= = L. 24 : (3 .50)
At Lofar oty
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All the tools necessary for a solution using the techniques of
Chapter II are now assembled. The numerical values used in the com-

puter program wera

G = 3.79 X 106 psi JO = EﬂR; = 1352 in5
I . D
= ; = 1b
S i 5.5 x 10 psi P 0.1 lbm/in
R = 6 inches g = Jo = h.2 siugs
L = 120 inches P, = 35,200 in-1bs/in
£ . = (0,02 inches
min

A check on the algorithm was made by first solving the by = 0
case. By using the methods of Section IILIL.C, an exact answer can be
found for the optimal solution for this statically loaded case. With
the values of the structural parameters given above, this seolution can
be written as

p. RL
t = —F—— (1l -3) = 034 (1 - s) . (3.41)

Smax JO
Figure 3.5(a) shows a comparison of the optimal solution obtained

using ten finite elements with the exact analytical solution. The

agreement is seen to be excellent.

Figure %.5(b) shows a ten element solution for 55 = mglonLe/neGJ

= 1,0 , It is seen that the effect of the excitation is to make the

0
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thickness preater all along the span, compared to the static case.
This is because the inertial loads act in phase with the excitation,
necessitating a stronger structure,

Finally, Fig. 3.6 shows two solutions for the case 52 =Lk,0o .
The solution of Fig. 5.6(b) is an example where the fundamental frequency
is less than the excitation frequency and is designated the second sol-
ution. This second solution is lighter than the first solution by a
factor of 1.36 to 3.93.

Table 5.1 compares the rotational displacements and the constraint
values for these two solutions, The two deflection shapes are seen to
have similar magnitudes but the second solution is 180° out of phase
from the excitation. This allows the inertial load to partially can-
cel the effects of the excitation, with the result that much less
structure is required to satisfy the constraints. These constraints

are presented in the form g, = {1.0 - (Si/S 2} in Table 3.,1. With

max)
the convergence criterion used for the particular example, a value of
g; that is less than 0.l can be considered an active constraint, The
root element of the second solution is at its minimum thickness and
the constraint is clearly not tight for this element.

The constraints results for the first solution suggest an inter-
esting question: "Is the first mode solution fully stressed?" The
results presented here are ambiguous with the minimum thickness con-

straint clouding the issue further. One might suppose that it would

be possible to hypothesize that the optimal solution is fully stressed
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Displacement Constraint (gi)
Element First Second Pirst Second
Solution Solution Solution Solution
1 0.029 - 0.027 0.02k 0.150
2 0.058 - 0.056 0.012 0.030
3 0.088 - 0.085 0.010 0.016
b 0.117 - 0.115 0.006 0.008
5 0.146 - 0,1hh 0.006 0.002
6 0.176 - 0.17% 0.006 0.01hL
T 0.205 - 0,202 0.00k4 0.0l
8 0.235h - 0.251 0.006 0.018
9 0.264 - 0.242 0.006 0.851
10 0.293 - 0.246 0.006 0.987

TABLE 3,l--Properties of the Two Thickness Distributioms of Figure 3.6,

and use the function space methods on Section III.C to test the hy-

pothesis,

plications make a closed form result impossible.

ALITY

However, even for this simple problem, the analytical com~

A much simpler means




of testing the hypothesis is available, however. This is the two de-
sign variable exawple of Section III.B. Figure 3.3(a) shows an example
where the first solution is not fully stressed. For this figure, the
local optimum with the thickness values [t] = {1.27 s 0.35] has a
constraint vector given by {o.2L , 0.00} i,e., the first element
is not at the maximum allowable stress while the second is.

It should be admitted that the above demonstration is not a rigor-
ous proof that the optimal continuous structure is not fully stressed

and that the question merits further study,

2. Example: Cagtilevered Beam

The second calculation examines the structural optimization of a
beam excited transversely by a harmonically oscillating icad. As in
the previous example, a stress con:uraiat is imposed, and it is first
necessary to derive an expression for the derivative of the stress with
respect to the design variables,

The Appendix shows that the stress at thé‘center of the element
can be expressed as:

Edn

S = — W 3
2L 2

S, = - (WEi - ‘Nai_e) is= 2,5, scayll - (A‘18)
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Physically, this equation says that the stress is proportional
to the change in the end slopes of the elements. The analysis of

Eqs. (3.38)-(3.40) can be repeated almost directly to give:

[

S ] [K]
(- mi ] + [k1) {”ji} - (— W S o

. + ) {w} , (3.42)

atj atj Btj
- 2
ot 5 2L 3ty
3S. Edn W, W,
_i  _ - ( 2i Y 2i-2 ) , (3.153)
3t Lo\ B 3t
(i = 2,3,..0,0) .

The parameters cheocen for the optimization program were

E = 10.5 x 10° psi o, = 0.1 1bm/in0
L = length = 12D inches p, = 100 1bs/in
d = depth = I inches toin = 0.02 inches
b = width = 12 inches Smax = 30,000 psi

Solutions were found using five elements for excitation frequen-
cies ranging from 42.5 rad/sec to 300 rad/sec. Figure 3.7 shows first

type of solutions for ®, = ha,s rad/sec and 140 rad/sec « The line
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FIG. 3.7--0ptimal Thickness Distribution for a Cantilevered
Beam Using Five Finite Elements,
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superimposed on Tig, 5.7(a) is the exact soluticn for the statically
loaded structure given by Rq. (5.21), Tor the parameters given above,
the exact solution is t = 0.5 (1.0 - 28 + se) + Even with the har-
monic excitation, there is close correspondence between the two solu-
tions,

Figure 3.8 shows two solutions for me==80 rad/sec . The second
solution is slightly lighter for this case. Another second type of solu-
tion is shown in Fig. 3.9(a), while Fig. 3,9(b) plots the weight of the
two solutions as a function of frequency. It is seen that the first solu-
tion is the lighter for values of the excitatlon frequency less than 75
rad/sec and that the second solution becomes significantly lighter for

higher excitation values,

B. CONCLUDING COMMENTS

Cassis (Ref. 24) reported on the existence of disjoint feasible
design spaces in connection with problems dealing with truss structures
excited by half-wave sine pulses. It is felt that the problems investi-
gated in this chapter add a great deal to the understanding of this phe-
nomenon, primarily because the simplicity of the formulation permits a
minute examination of the behavior of the structure, The main coanclu-
sion from this investigation is that the natural frequencies play a
central role in creating the many feasible regions. Structures respond
vigorously when excited near a natural frequency, accordingly, the op-

timal designs try to stay away from these resonant conditions.
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FIG. %.8--Two Solutions for the Optimal Thicknes
of a Cantilevered Beam Excited at 7,
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The construction of analytical solutions by the methods of Sec~
tion III.C would further aid in the understanding of these types of
problems because they show the role that various parameters of the
problem (such as load, frequency and the constraints) play for a
range of values rather than the specific values of a particular
nunerical solution., It is curvrrently felt that much of the diffi-
culty in attaining these analytical solutions is due to the fact that
they often contain concentrated masses. At the present time, this is
just a hypothesis that is partially based on the results shown in
Figs. 3.5(b), 3.8(b) and 3.9(a). 1In these figures, it is seen that
the elements at the tip are significantly larger than the other ele-~
ments. Based on further studies that used more elements, it apﬁears
that in the limit as n —® the final element is discontinuous from
the rest of the structure and, in fact, represents a concentrated mass.
This is an area of current research and efforts to prove (or disprove)
the hypothesis have so far been unsuccessful, It is mentioned here to
indicate the quirks these problems can have and to hopefully aid in

further research in this area.
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CHAPTER IV

WHITE NOLSE LOADING

A, INTRODUCTION

This chapter moves from the area of the previvus chapter, where
the structure was excited at a single frequency, to cases where the
structure is excited at all frequencies. 1In particular, this chapter
deals with excitations that possess a Gaussian probability density
function and a power spectrum that has a constant valuec for all fre-
quencies, The present analysis considers loads that are random in
time only. It is possible to conceive of structures that are loaded
randomly in space as well and of structures whose properties are de-~
scribed in a probabilistiec fashion, but these complications are not
considered here. The motivation for this type of formulation comes
from the atmospheric turbulence example of the next chapter. The
turbulence wavelengths are frequently so large that any variation in
the turbulence magnitude across the span of the wing can be considered
negligible compared with the time variation due to the aircraft's rapid
penctration of the gust field.

The flat power spectrum mentioned above is a useful analytical
concept and is frequently referred to as a "white noise" spectrum.

Since the excitation is described in probabilistic terms, it is
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necessary to use probabilistlc estimates for the response quantities
as well. The most useful of these, the mean square values of re-
sponses, are obtained by integrating the power spectrum of the re-

sponse over the entire range of frequencies:

(4.1)

g
il
b~ 3
5
£
g

It has been shown (Ref. L0) that the quantities that are of in-
terest here, the displacements and the stresses, have finite mean
square values even though the excitation has a firite value over an
infinite range of frequencies, This fact is very important since it
allows the development of analyses using the attractively simple white
noise model, It is, of course, necessary to include structural damp-
ing in the model in order to obtain a finite response.

It is not possible to have a disjoint feasible design space for
this problem. The disjoint properties of the examples in the previous
chapter avose because of the relationships between the excitation fre-
quency and the natural frequencies of the structure. Since the white
noise excites the structure at all frequencies, it is no longer pos-
sible to have these relationships and, in fact, the design space ap-
pears to be very well behaved for these problems. The next two sec-
tions develop the constraint criteria used for the study and the anal-
ysis needed to evaluate the constraints. These methods are then ap-

plied to beam and rod models, and optimizations are performed.
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B. FAILURE CRITERIA

A difficulty intrinsic to the analysis of structures excited by
random loads is that exélicit values of the response quantities can-
not be obtained. Instead, mean values or expected values are computed
using principles from probability. A further complication is that it
is often unclear what meaning these estimates have relative to the
safe design of a structure. The aim of this section is to describe
and evaluate methods that can be used to estimate the life of a struc-
ture subjected to random loads.

Cyclic loading, characteristic of vhite noise excitation, can
cause a structure to fail even when the magnitude of the applied
stress is well below the theoretical yield stress of the material
ugsed., These fatigue failures, which are a common source of failure
in actual structures, are quite difficult to predict even empirically.
This is an area of intensive active research that is generally desig-
nated fracture mechanics, Current efforts divide the fatigue process
into three separate areas: (1) crack initiation, (2) crack propaga~
tion, and (3) strength degradation and failure, A recent summary of
this type of analysis is given by Yang and Trapp (Ref. 41). These
analyses require the definition of parameters relating to load time
histories, crack size, material properties and other factors, in addi-
tion to involving lengthy calculations, While the reliability esti-
mates obtained through the use of these methods should be quite good,

it is felt that the complexity of the calculations involved makes them
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ill-suited for the present p;eliminury analysis, Instead, assumptions
were made that allowed relatively simple calculations and that re-
quired the definition of a& minimum number of parameters. These as-
sumptions were obtained from Lin (Ref. 31) with supporting material
from Powell (Ref. k3).

With stochastic excitations, there are two logical Lailure eri-
teria, corresponding to two separate modes of failure, that could be
used in the optimization procedure. The fivst type is failure due to
the stress exceeding some specified upper limit. This is commonly
referred to as first passage or first excursion failure, The other
type of failure mode treats the damage to the structure as a cumula-
tive process resulting from the fluctuations in the load. When the
accumulated damage becomes equal to some specified value, the struc-
ture is assumed to have failed. (It should bz mentioned that while
this analysis treats these types of failure separately, the :more re-
cent fracture mechanics studies combine these two modes by postulating
that the random loading causes damage through crack initiation and
growth which results in the reduction of the failure stress so that
the final failure is of the first type.)

The reader's familiarity with certain concepts of probabilicy
theory is assumed in the following discussion. Papoulis (Ref, k)
was found to be a useful text for reviewing this theory and should

aid in the understanding of the pertinent results des:.ribed below.
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1. Firet Excursion Failure

in order to determine an estimate of the time to the arrival of
the first stress greater than some specified value, it is advantageous
to make a number of assumptions regarding the nature of the excitation
process. Basic assumptioms are that the process is stationary, Gaussian
and with a zero mean, If this process is denoted by x(t) , then the
time derivative of the process, %x(t) , is also stationary, Gaussian,
has a zero mean and is independent of x(t) . The joint probability

density function and x(t) and %x(t) is

2 2

1 X X ) )

p . (x,%) = —»—exp |~ —3~-—% . (k.2
XX 2no o, 202 20@
X X x b4

The parameters o and O in the above equation are the root mean
square values of x(t) and %(t) respectively. These can be evalu-

ated from the power apeci um of ¢xx@n) by the formula of Eq. (k.1):

2

o = “/n @xx@n) aw ’

2 2

a5 = ,in w0 () v . (+.3)

A second assumption is that large values of x(t) arrive inde-
pendently of one another. (Ref. 31 shows that this assumption is quite
conservative for narrow band processes.) This assumption leads to a

Poisson probability function for the number of times, n , that a
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T

- large magnitude, U , 1s exceeded in time interval, t ,

At
PU(n,t) = ~— exp (- At) . (k)
nt
The At term is the expected number of times the load will be

exceeded in time interval t . Figure 4,1 helps in explaining this

and in bringing out a further point.

+u-———_%}-—_.— _——— —— —
X(t} 4 ﬂ f\/,_

FIG, L.1--Exccedances of U .

In the diagram, an exceedance occurs when x(t) crosses through
U with a positive slope or through - U with a negative slope, In-
cluding the negative exceedances can be justified by the physical argu-
ment that the examples presented later deal with bending stresses in
structures that are symmetric about their neutral axis, Therefore, a

compressive stress of magnitude U is accompanied by a tension stress
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of magnitude U on the opposite surface, Note that since the process
has a zero mean, the number of negative exceedances can be assumed
equal to the number of positive exceedances,

With this formulation, Eqs. (%.2) and (4.4) provide the basis for
determining the expected time to the first arrival of value U. The
X term of Eq. (4.}) is twice the expected number of positive exceed-
ances of U per unit time, After placing =x(t) = U into Eq., (4.2),
the expected‘number of exceedances csn be determined by use of the

formula for expected value:

m -
A= E(Y) = 2f —— exp (- UP/ect - #P[ady) ax
0 Eﬂukaﬁ
1 o,
= — -Eexp (- UE/EGi) . (%.5)
™ Gx

With the use of Eq. (4.4), the probability of failure in time

interval t is simply one minus the probability of no failure:

pe(t) = 1-e7F | (4.6)

The probability of failure at time t is found by differentiating

Eq. (k.6) with respect to t . The expected time to failure is then

found by multiplying this probability density function times t and
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integrating it over times ranging from zerc to infinity:
Y .
E(T) ;-f EX e T dt . )

Integrating by parts yields
E(T) = 1A . (4.8)

Equation (%.8) can now be coupled with £1. (4.5) to provide the
means for determining the constraint on the life of the structure due
to first excursion failure, 1If it is specified that the stress in the

structure cannot exceed some specified value U, in the time period

S
LS , the constraint can be written in the form:
% 2, 2
= - I — - N I
g L~ Lomw exp ( US/EUs) =2 0 . (k.9)
%

Here g and Ug are the root mean square values of the stress

and the stress rate.

This constraint is applied independently to each element in the
structure. It should be mentioned that the concept of fleet or lot
size has been ignored here. Frequently, first excursion failure is
defined as the time to failure of just one member of a larger sample,
If the arrival times of the loads are independent from one sample mem-

ber to another, the expected time to first failure of one structure in
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a zample size of n is simply l/nl . This would impose a more
severe constraint on the individual structure, but, as was mentioned,

this concept was arbitrarily disregarded,

2. TFatigue Failure

An evaluation of the fatigue life can be made using some of the
results Ffrom the previous section, but it also requires further con-
cepts. An assumption that mskes the fatigue life calculation ana-
lytically straightforward is one that has come to be known as the
Palmgren-Miner Theory (Ref. 45), This "theory" is based on che
physically observable fact that a tension specimen that is loaded
eyclically at a constant amplitude of stress, § , fails in fatigue

after approximately N_, cycles. It is postulated that a structure

8
that is loaded at this same stress level for mng cycles (ns < NS)
has been damaged to the extent that it is at the nS/NSth fraction
of being failed., It is recognized that experimental results do not
always support this theory, but it provides a simple general rule
adaptable to analyses of the type proesented here.

This theory is applied to a continuous random process by deter-

mining the rate at which peaks of a given magnitude occur. The rate

of damage is then computed using the formula

 n(s) ds
DR = — s L1
fo = (+.10)
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where

1(8) = number of stress peaks of magnitude
5 occurring per unit time ,
N{S) = number of cycles to failure at stress

magnitude 8§ .

For the purposes of this work, it is assumed that the damage done
in a time interval T is simply DR X T .

The parameter N(S) in Eq. (4.10) can be obtained from curves
that show the number of eycles to failure as a function of the stress
amplitude, commonly referred to as S-N diagrams. A convenient ana-
lytical expression that is used in this work to represent this relation-
ship, and one that is partially supported by data, is the familiar re-

lation
b
N(S) s = ¢ . (4.11)

§ is the stress amplitude and b and ¢ are positive constants that
must be determined empirically. This clearly gives N(8) = c/Sb .
The remaining factor needed for %uq. (4.10) is n(S) . Powell
(Ref. 43) presents an analysis that can be used to readily evaluate
n(s) . This analysis starts by modifying Eq. (4.5) to obtain the

expected number of times a stress exceeds a specified positive value
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8 per unit time:

q

— exp (- 32/20§) . (4.5a)
3

1

I
E[N'(8)] = —
en
The derivative of this expression with respect to § can ba
considered a measure of the number of peaks occurring at the level

5 per unit time:

ENT(S)] S g
1(8) = - é——(—)—— = — iexp (-8 /Ecrg) . (k.12)
- on o

A point that must be considered here is that it is very diffi-
cult to specify what a cycle is for a random process. Equation (14.12)
counts only the net number of peaks at level S with the "troughs" of
magnitude & subtracted from the peaks, Figure 4.2 presents the rea-

soning behind this argument,

S(t) O

-

FIG. 4.2--Peaks in a Record of Random Noise.
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There are three peaks in this diagram at points A, B, and C ,
plus one trough at D . Powell's method says that the damage done by
this patch of noise is equivalent to the damage done by cycles with the
magnitude'of A, 3, and C wminus the damage resulting for a cycle of
magnitude D , Without belaboring the point, on physical grounds this
seems to be a better method of counting cycles than one that uses the
gross number of peaks. Lin (Ref. 42) arrives at the same conclusion
as that given below by assuming that the process is narrow band. For
such a process, "troughs" with a positive magnitude are not likely to
occur so that the problem of net versus gross number of peaks is of no
importance. Finally, Yang (Ref. 46 derives an expression based on the
magnitude of the excursion rather than the peak magnitude; this is
clearly an improvement, but was discovered too late to be included
in the present work.

The final step in the derivation is the substitution of the ex-

pressions for N(S) and n(S) into Eq. (k.10):

sP* 5. exp (- §2/20°) ds
DR = f E 2 (4.15)

QCﬂUg )

0

In]
The integral is evaluated by making the transformation 82/202 =V,

leading to

(2]
Te
DR = S ufﬂ (Ecgv)b/2 e™’ dv .
- LY
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This integral can be evaluated by the use of Eq. (3.381.4) of

Ref. b2

2nnoé

as b+2
)
R = —S— (26?2 1 (— ,
S
2
where T' is the gamma function,
To put this in constraint form, it is specified that the struc-

ture have a fatigue life greater than Lf . The constraint is then

written as

B, = L-DRXLg = 0 . (4.15)
This completes the description of the constraints used for the
randomly loaded structure. It is seen that the structural response
quantities that are required in order to evaluate the constraints are
the root mean square values of the stress and the stress rate. The
next section defails how these can be obtained and also develops
methods for obtaining the derivative quantities that are needed for

the optimization process.

C. RESPONSE TO WHITE NOISE

A finite element representation of the response problem can be

given by
MIfw} + [ki{w} = =w(E} . (4.16)
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The right~hand side indicates that the equivalent forcing func-
tion is a scalar multiplying a vector that discretizes the uniform

load. The scalar T has a white noise power spectrum:
(DFF((D) = NW -0 S = o v (ll..]_'?)
Given this representation, the problem is to find the mean square

values of the stresses, which are in turn a matrix function of the dis-

placement for the examples dealt with here:

{s} = I[TI{w} . (4.18)

e e w T

The exact form of [T] depends on the structure being studied,
but it is always independent of the excitation frequency and the de-
sign variables for the present study.

In order to make the problem meaningful, it is necessary to as-
sume that the sy:cem has damping. Otherwise, the white noise excita-
tion would result in unbounded resonances and an infinite mean square
response, This was done by assuming that the structure has damping
which is manifested by a complex shear modulus or Young's modulus,

This, in turn, means that the stiffness matrix can be represented by:

K] = (1 +ie)IK,] . (4.19)
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(K, ]

1 + 40 1is a complex scalar with @ representiag the damping factor

is a real matrixz that is developed in the Appendix and

which is much less than unity. This same representation was used in
Chapter IIT and, again, Ref. 36 contains a good discussion of it,
The response is determined by modal superposition., The modes

used are the first mn modes of the system:

mn

b = 37 e {p} = [la} (4.20)
i=1
where the {pi]'s are the mode shapes and the a 's are the modal
participation factors., The mode shapes are independent of the exci-
tation while the ai's are not, so the next step is to determine
power spectra of the ai's .

At a given excitation frequency, w, Eq. (h.16) becomes :
(- o2 ] + &) [eM{a} = FE} . (+.21)
By premultiplying Eq. (4.21) by [P]T , the equation for {a} can

be determined as a function of the generalized forces, masses and

stiffnesses:

(- o I + W) (&} = FlE1” {E} . (h.22)
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The eigenvectors arve normalized so that the generalized masses
are unity:
(p1" 1 p]

[ih] [T1 ’

] (P37 (k] [p] (L + i) [ 2] ] (4.23)

t
]

[ 2] is a diagonal matrix containing the eigenvalues of the system.
This is a system of mn uncoupled equations that can be solved

independently for the modal participation factors:

2

[- o

+m§(1 + ia)] a, = F[pi}T{E} == a,

= F[pi}T[E}/[— wz + a)f(l + i0t)] . (4.2h)

The term multiplying ¥ is the transfer function H F(jm) that
i
relates a; to ¥ ., This mekes it possible to form the power spectra

for the a's :

0, 5 @ = H (o) N B (jo) . (k.25)
i i

LN

The bar signifies the complex conjugate.
The most direct route to attaining the variances of the stress and

stress rates is to express them in terms of the covariances of the
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ai's . For computational purposes, this report distinguishes four

separate covariance integrals:

1)
e " S
1 = g = L) o )
1 a;a; J a;a,
-]
IE=Recraa.=Ref¢aa-dm ,
L] o 1]
2]
2 2
I3 = %.a, = ~,” ¢a.a.@D) & ?
i7i - A
o
1, = Re o= = Re w? o (@) av (h.26)
b a.a, a.a, ’ )
i ’ o i7j

where Re designates that only the resa. part is of interest.
The integrals can be evaluated by making a contour integration
around the upper half plane. Combining terms from Eqs, (4.17), (%.2W)

and (4.25) into (4.26) gives:

L
/

an

(L.27)

L= N, (ed'sn?

. [m2 - mi(l + icx)][w2 - mi(l - ia)]




For convenience and clarity, set f =0, .

The integrand has no zeroes and four poles:

L
21 s ﬁ(l + ia)a F}
22 == Z1 H
A -
25 = Bl - i) = N
le_ = =~ Z3 = - ;1 . (h-28)

Only poles z; and z) are inside the contour. The relation-
ships between the roots given by Egq. (4.28) and standard contour in-

tegration give

(zl - 22)(21 - 33)(21 - zu)

1
+ )

(2 - zl)(zh - 22)(zh - 23)

where C, = Nw({pi}T[E])g . Continuing:

1 1
Il = Eﬂiﬂl + -
2z12 Re 2121 m 2q 2 Re 2121 Sm 21221
mCy
=, ) . (h.29)
2 dn zl|zl|
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The magnitude of Zq is.calculated directly:

[V

|zl|2 = 532(1 4+ d?) . (4.30)

The Jm(zl) calculation is a bit more difficult;

X
2

z, = Re(zl) + i Jm(zl) = B(1 + i) .

By equating the real and imaginary parts of z? , two equations

thac can be used to solve for &m(zl) are formed:

b

2 dn(z,) Re(z)) = 8% =

Re(z)) = B°0/[2 dn(z))] (b.31)

I
2 2 2 p o ?
[Re(zl)] - [Jm(zl)] = g = - [Jm(zl)] . {bk.32)
h[Jm(zl)]
This results in a quadratic equation in Jm(zl) that has the

solution

[n(2)1% = - : (+.33)
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Since Jm(zl) is real, the minus sign can be rejected and

2 1 1
V2 BI(L + P - 1)1

Jm(zl) = """g'" . (.34)

By substitution of Eqs. (¥.3%) and (4.30) into the final result
of Eg. (L.29)
C.L'J'T

1 = T I~ N . h‘.ﬁ
b Bl 0F)F - 117 pE (L + oF)2 2

Since « < 0.1 , it is appropriate to make the approximation
that
5 P

1+ = 1+—+ 0(c
2

oo (k.36)

The substitution of the first two terms of BEq. (4.36) into Eq.

(k.35) gives:

Cl‘ﬂ'

L - (k.35a)
L s2all + (&°/2)]

It is now possible to neglect the 02/2 term compared with unity

to get the £inal result:

L, = N, ({pi}T{E])2 w/m?_cc . (1.37)
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The remaining integrals are evaluated in a similar fashion. Since
the calculations are lengthy, but straightforward, only the final re-

sults are presented:

NW{pi}T{E}{E}T{pi} o (w, + mﬁ)

T = (h‘58)

2 anfnj[ﬁni - mj)2 + Oag/h)@ni +-mj)2]

1y = N,(p,}%E)) w0 ;o (h39)
N, o, 1 EHEY () ma (o, + 0,)

Ib, = . (u.h-O)

2l(w; - mj)2 + (o, + wj)gﬁze/h)]

The varianccs of the stresses are obtained by a linear combina-
tion of the covariances that have just been calculated. The examples
in the sections to follow use the explicit relationships between the
stress and the displacement, The general form of Eq. (4.18) is ade-

y:ate for the present derivation:
{s} = I(ri{w} = (rl[rl{a} .

The power spectra of the stresses are, therefore, related to the
power spectra of the modal participation factors by the simple rela-

tion:

TimT
[0gg @)1 = (T1lRII®, (@)1(R17IT] . (4.41)
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The complex conjugate is included in the above equation because
the [T] matrix containg a complex structural parameter, Since
neither [T] mnor [P] are functions of the excitation frequency,
the stress variances are found‘by replacing @aa@n) with the covar-

iance matrix for the a's in Eq. (k.h1),

[k ] = [rllellx 1(eI7(T1% . (h.h2)
Similarly,
(Rgs] = [TI[RIIR, 10017 (W%

The square roots of the diagonal elements of [X,

s ] and [Xéél

are the rms values of the stresses and stress rates needed in order to

evaluate Eqs. (4.9) and (L4.15).

It is readily shown that these diagonal elements are real and that

they involve only the real parts of the {Xaa] matrix, To prove this,

some preliminary notations wmust be defined.

Express [T] as (1l + ia)[TO] , where [TO] is real.
. , .th
Define tpij as the 1i,j element of [To][P] , and Ptij
the i,jth element of {P]T[TO]T .
Note that tpij = ptji and that Xa_a = Xa a

1%y 354

..95...

SRR R S Y

AL




LTI e et vkt b5t e aer e e e e = . oo . e e e e et e - e e e e et epents b et g I AL

The diagonal elements of the stress covariance matrix can there-~ f

fore be explicitly expressed by:

mn mn 4
2 i
%58, T (L4 05) D) tpyy D) *a,a Pt
- j=1 k=l
mn
2 2 i
= (1 +a) 30 ({07 %y 4
. 3 11 4
i=
mn :
* Z tpij Pik 1{a a
=1
ki
mi
2
- +a2>[ (tpy )2 X, ,
mn
17
+ 2 :E: tpijtplk Re Xa.ak * (4.53)
k=j+1 J

All the elements in the equation above are real and, as was to be
proved, only ghe real parts of the {Xaa] matrix are included. This
explains why only the real parts of the integrals 12 and Ih of
Eq. (4.26) ﬁere required.,

This concludes tha derivation of the terms needed for the con-~
straint evaluation. A remaining task is the calculation of the de-

rivatives needed for the gradient in the optimization algorithm.
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1. Derivative Calculations

The design variables for these problems, the structural thick-
nesses, are manifested in the mass and stiffness matrices, The gra-
dient technique of the optimization algorithm requires that the deriv-
ative of the constraints be calculated. This in turn requires that the
derivatives be calculated for all the quantities used to compute the
constraints and that are a function of the design variables.

The first step is the calculation of the derivatives of the eigen-
values and eigenvectors of the system., Fox and Kapoor (Ref. 15) pre-
sented a straightforward method for calculating these quantities, and
this method is summarized below. |

-

Consider the unforced system with a given eigenvalue and eigen-

vector:

(- li[M] -+ [K]){Pi} = {o} . CREY

For ease of notation, set [Fi} - li[M} + {k1 .
The derivative of Eq., (k.Uh4) with respect to the design variable

£, 1is
J

alMl  JIKI 3, 3o,
(~ N e T ™ ) (o} + Ixl {"4£ =0 . (hl5)

ofy  of; 9 of;
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The system given by Eq, (b.l1b) is self-adjo.nt so that if Eq.

(4.15) is premultiplied by {pi}T , the last term drops out, leaving
S\, dIK] aiul
— (p,3700{p,} = (p,}" - p,} . (n.26)
% o3 o

Since the eigenvectors have been normalized to make the general-~
ized masses equal to unity, the eigenvalue derivative can be expressed

as.:

M, aiKl] 3 M]
—t {pi}T —_— )Li e {pi] . (l-l-.ll-6a)
Btj atj Btj

From Eq, (4,44), with the eigenvalue dexivative calculated, the

eigenvector derivative can be solved for:

P SIF, ]
(¥, ] {*3""} = - ——{p.] . (4. 47)

i
t. £,
0 J 0 |

But since [Fi] is singular, another equation is needed to specify

the magnitude of {api/atj} . This equation comes from differentiating

the generalized mass:

0 SP4
— [p-}T[M]{pi} = 0 = 2{pi]T[M] {.....1_
o 3t

]
v (pdt — fp} . (k8




Equations (%.47) and (4,48) can be combined to give:

[F,] SIF, 1/5¢t,
i ap i j
{—i} = - {p,3 .+ (k.bg)
2(p, ) 0 | V9% (o, 3" (a0M1/3t,)

In order to obtain a square, non-singular matrix, both sides of

Eq. (4.19) are premultiplied by [Fi, QEM]{pi]] o obtain

SP. IF. ]
e, 1% + bil{p, }{p,} " D] {—*—} = - Irl —=
dE. dt.
3 1
¢ oMl
- 2li{p; }p, 3" —— | {p,} . (4.50)
atl
J

This is a matrix equation that can be used to solve for the eigen-
vector derivatives {api/atj} . DMote that since the matrix multiplying
the eigenvactor derivative is not a function of the design variable, it
is necessary to decompose this watrix only once to solve for the n de-
sign variable derivatives. A further note is that experience with this
method has indicated that it is frequently helpful to multiply Eq. (4.48)
by li as a scaling procedure,

The remaining steps in the derivative calculation are much less
complicated, The derivatives of modal covariances I1 and I, are

2

given below as an example, but it seems of little purpose to show the
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entire analysis here., A few terms must be derived first:

¥ 1 A
(D? = }\.i = i-y—-i'- = e—— ——i. s
Btj a'ni atj
3(lp,17E]) alp, 1t
—F = —2— (5] : (4.51)
atJ atj
Then:
3L 3 b, 2 olp, HE}
Lo I, [-—~ 4 T = . (k.52)
Designate:
2
o
y = [(l-wl<)2-r?(mi+mk)2J .
Then
M 1 ole,)HE] ot alp, 3 (e}
2 T T R
3t 5 {p;}1{E] 3t {p 3 {E} 3t
“k 3 @5 e

cui(mi + CDk) atj o, (a)i + mk) Btj

e

1 o Iy
- ;. (g(mi - k) + ; (a)i +mk)) gt-:J— (Cont'd)
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o Py :
R T e O ) : (h.53)
ot .
J :
This should indicate that the remaining derivative calculations f
are tedious, but uncomplicated., It is mostly a matter of the contin- 3
uous application of the chain rule until the final derivatives that E
are required are reached. These are the derivatives of the constraints, ?
the first of which is given in Eq. (4.9); ?;
U’é Ug/zﬂ'g
5
The derivative is: {
agl ‘ 1 Ug BO'S 1 aa'é
e gm0 (— (1) 2= R sy
atj ag Eos atj og atj« {
Similarly for By from Eq. (4.15) é
o b+ 2 ¢
g, = 1L -1 ___§__(20_2)b/2P____ .
2 F 5 j
anca, 2 ;
5 s
And the derivative is ?
%
8 1 o (b-1) 3oy
2 . (g -1 [ — 2+ : (.55) -r
t. T t, o, t.
L i § ° h| s O 3
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D. EXAMPLES

As in the previous chapter, cantilevered rods and beam examples
were optimized. Figure 4.3(a) shows the power spectrum of the white
noise excitation while Fig. 4.3(b) is a qualitative depiction of a
response quantity. The peaks on the latter figure represent struc~
tural resonances which are the main contributors to the mean values
of the response.

It is perhaps necessary to justify the use of a finite number of
modes to represent the response of a structure excited by loads with
a white noise spectrum. As mentioned in the introduction to this
chapter, Bogdanoff and Goldberg (Ref. 40) show that the mean square
values of the stress and displacement in an Euler~Bernoulli beam are
finite when the beam is excited by the noise. They do this while
taking into account an infinite number of modes and by assuming con-
stant viscous damping. A further indication that a finite number of
modes suffice is given by Eqs. (#.24) and (4.25) which show that the
peaks of the spectra for the modal participation factors are inversely
proportivnal to m? . 'This indicates that the contributions to the
rms responses from the separate modes die off quickly as the mode num-
ber and, therefore the natural frequency increases, Finally an empir-
ical justification for using a finite number of modes is given by the
results below which show that solutions found using four modes differ

only marginally from solutions using two modes.
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FIG. %,3--Representative Power Spectral Density Shapes for
a Structural System with a White Noise Input,
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1. Torsion Rod

The thin walled rod of Section ILI.D.1 is used again in this sec-
tion, except that a white noise excitation i1s now present. The fol-
lowing list of parameters repeats some of the previocus values and adds

new ones for the special requirements of this problem.

G = 3.7'5x106 psi p, = 0.1 1bm/1n”
| R = 6 inches T = L,2 slugs
L = 120 inches & = 0.05
I, = 2n® = 1352 in b = 8
N, = 124 (1b)%/rad/sec ¢ = 10%

Ug = ko, 000 psi

The parameters b and c¢ are from the equation NSb = ¢ and
ware obtained by fitting an 8-N curve for aluminum given in Crandall
and Dahl (Ref. 46, Sec. 5-1%). The value chosen for « is rather
high and it is recognized that an important part of an actual design
ptocess using the methods described here would be to obtain more ac-
curate and justifiable values for the ¢ , b and c parameters,

The constraint placed on the fatigue life was that it be no less
than oae year, and the expected time to stress value U, was set to

]
be no less than one-half year.
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The results of the optimization algorithm are presented in Figs.
L% and 4.5. Figure 4.4 compares the optimal thicknu:ss distributions
when two, three and eight elements are used to represent the structure,
it is seen that as more elements are used, the total weight remains
nearly constant while there is some qualitative difference in the dis-
tributions. For the eight element structure, more mass tends to be
concentrated near the tip. More will be said about this later,

All the results presented in Fig. 4.4 used two structural modes
in their solution. Figure 4,5 compares results of analyses using two
modes and four modes, It is seen that there are some minor differ-
ences at the tip, but they have to be considered negligible, Table

L,i gives numerical results for the two cases.

Flement Thickness Fatigue Constraint
Number 2 Modes 4 Modes 2 Modes E 4 Modes
1 1.69k 1.698 9.5 * 1072 5.93 10"lL
2 1,582 1.577 1.8 - 107 | 3.90 - 107"
3 1.382 1.392 %0 « 107 | l.0% - 107
b 1.128 1.129 9.1 - 10 | 2,78 + 107
5 0.8592 | 0.875% | 4.8 » 107 | 9.57 - 107
6 0.6111 | 0.6170 | 5.0 « 1070 | 1.46 » 107
7 0.5262 0.5230 0.925 0.874
8 0.5618 0.5868 1.000 1.000

TABLE 4.1--Comparisasn of Two and Four Mode Solutions,
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This shows that although the four mode solution took 50% more

computer time to converge, it did not appreciably change the results,

i
3
4
£l
i

The fatigue constraint values are presented to show that the optimiza-
tion proceeded to the same level in determining the active constraints,
The values given are those computed using Eq. (4.15); therefore, the
numbers near zero indicate that the constraint is almost exactly satis-
fied (i.e., it is active).

The optimization seems to have found that placing some weight at
the tip provides an inertial load that relieves the inboard stress.
Since this phenomenon is exhibited in the beam results as well, it is

appropriate to ccnsider this in somewhat more detail,

2. Effect of a Tip Mass

This section presents some findings of a brief study that was made
to justify the optimal solutions that included a large finite thickness
at the tip. In particular, the study sought to determine what eifect a
concentrated mass at the tip would have on the maximum stress in a can-
tilevered beam. The hypothesis was that the effect would be to reduce
the stress. Obviously, this would not be the case for a static loading
or for a low frequency harmonic excitation, but the results of the op~-
timization indicated that something different was happening for the
white noise exciltation.

The model studied was a2 uniform cantilevered beam with a point mass

at the tip. The excitation was assumed to be uniform across the span
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and random in time with a white noise power spectr. density. The mass
of the beam was kept constant while the tip mass was varied as the only
independent parameter,

The problem could be solved by a differential equation approach
coupled with modal superposition s was done in Ref, L4O. However,
since a computer program that analyzed this type of problem using
finite elements already existed, it was more expedient to use it.

The next section presents the structural parameters and the excita-
tion spectrum used for the analysis. The thickness distribution was
held fixed for all elements at a value of one. A nonstructural point
mass was added to the last element and was varied through a range of
values.

Figures 4.6 and 4,7 present the results for the rms stress and
stress rate, respectively, for four values of the concentrated mass,
nondimensionalized by the mass of the beam. It is seen that the mass
has the effect of reducing the maximum rms stress, which always occurs
at the root. The effect on the rms stress rate is to increase its
peak value, but since the stress is of far more importance in the
evaluation of fatigue life than the stress rate, this increase is
relatively unimportant. It is interesting to note that the higher
modes are obviously present in the stress rate distribution but that
the first two modes seem to dominate the stress distribucion.

‘the main finding is that the addition of mass at the tip can im-

prove the fatigue 1ife. In hindsight it is clear what has happened:
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the added mass acts as an inertial force that resists the excitation
and, in the limit as the mass becomes very large, acts as a simply
supported boundary.

For the cantilevered rod, a similar effect takes place in that a
mass would act to restrain the tip rotation and in the limit act as a
fixed boundary.

This is an interesting and unanticipated result. A further study
that could be done is a two design variable optimization study using
the concentrated mass and the uniform thickness as the variables.
Constraints could be placed on the rms stress or on the fatigue life.
The above analysis shows that the optimal concentrated mass would not

be zeroc.

3. Cantilevered Beam

A beam example was optimized to see 1f it had any new, interesting
characteristics. The methods of Section IV.B are directly applicable
to the beam example so that the only changes necessary are the inclu-
sion of the proper forms for the finite element representation of the
beam structure, Since the Appendix and Chapter IIT are quite thorough
in these aspects, they are not repeated here.

The properties chosen for the beam and the load are

Length = 2LO inches E = 10.5 x 106 psi
Width = 30 inches pg = 0.1 1bm/in3
Depth = 3.0 inches o = 0,05
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b = 8 e = 10
N, = 0.01 (lb/in)gfrad/sec Ug = 40,000 psi

The large width to depth ratio was chosen because of a future

anticipated application of the model to aercelastic problems where

it would represent a wing.

The constraints were continued at one year for the fatigue life

and one-half year for the

- tpected time to failure,

A comparison of the results obtained using two elements and eight

elements ig presented in
tained from an analysis
The concentration of mass

lem, but the qualitative

Fig. 4.8, while Fig. 4.9 compares results ob-
that used four modes with one that used two.
near the tip is more pronounced for the prob-

affects are the same as Ffor the rod example,

Table 4,2 compares the four mode and the two mode solutions.

TABLE b.2--Cantilevered Beam:

Thickness Fatigue FiFst Excursion
Element Constraint Failure Constraint
2 Modes | Lt Modes | 2 Modes | 4 Modes | 2 Modes | U Modes
1 0.1750 | 0.1751 0.0k2 0.034 0.990 0.990
2 0.1335 0.1352 0.049 0.0L3 0.961 0.977
3 0.1015 0.1033% 0.055 0.064 0.941 0.968
4 0.0801 { 0.0809 0.069 0.070 0.9% 0.99L
5 0.0596 0.0602 0.113 0.096 0.99% 0.999
6 0.0381 0.0387 0.165 0.2kg 1.00 1.00
7 0.055k4 0.0550 1.00 1.00 1.00 1.00
8 0.6hh 0.0647 1.00 1.00 1.00 1.00
Total 0.7078 0.7171

Comparison of Two and Four Mode Solutions
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The four mode solution is 1.3% heavier than the two mode solution;
a disparity that is probably less Lhan the percentage by which these
solutions differ from the true optimum, It is possible that further
iteration would make some of the constraints tighter, but it is felt
that little information would be returned to justify the added com-

puter time.

E. CONCLUDING COMMENTS

The results of the two examples tend to show that, as in some of
the harmonically forced solutions of the previous chapter, there is a
tendency for some of the mass to be concentrated near the tip. In fact,
the solutions obtained for the white noise examples could perhaps be
thought of as a superposition of the two solutions given for a single
harmonic excitation, such as those of Fig. 3.6. It is not known whether
this observation has any practical significance for the solution of
this class of problems.

It is felt that a formulation of this type makes a useful con-
tribution in that it presents new results and extends the methods of
structural optimization into an almost unexplored field. Obviously,
however, the examples studied in this chapter are mainly of theoreti-
cal interest. Methods of fraecture mechanics combined with load spec-
tra that are of great practical interest would aid greatly in the ap-

plication of the techmniques to more applied studies,
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The next chapter does attempt to perform an optimization on a

structure that is of more interest: an aircraft wing in the presence

3 of atmospheric turbulence.
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CHAPTER V

CONTINUOUS ATMOSPHERIC TURBULENCE

4,  INTRODUCTION

Structural fatigue and failure resulting from stochastic loads
are one of the most commonly occurring maintenance and safety prob-
lems for aireraft structures, The nature of these vehicles is such
that there is a very high payoff in terms of performance and operating
economy for savings made in the structural weight, These two facts
combine to provide a powerful motivation for finding optimal struc-
tures under the condition of random aerodynamic excitation with fa-
tigue life as one of their constraints. Specifically, this chapter
deals with the minimization of the structural weight of an aircraft
wing that is subjected to continuous atmospheric turbulence.

The formulation used in this study is, in keeping with the scope
of the thesis, of a prelimipary nature with a continual tradeoff made
between physical realism and computational simplicity. The main ob~
jectives in the development of the mathematical models that are pre-
sented in the next section are to obtain a representation that is
consistent in terms of level of sophistication and to wetain the
important elements of the problem. After the presentation of these
models, it is necessary to develop the analytical tools needed for

the constraint evaluation and then some results are presented,
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B. COMPUTATIONAL MOBELS

There are three distinct areas :hat have to be considered in the
development of the mathematical representation of a wing excited by
turbulence: (1) the structure of th: wing, (2) the aerodynamic oper-
ators and (3) the disturbing gust forces. Before dealing with each of
these separately, some general limitations on the analysis should be
mentioned here.

The motion of the wing was constrained to consist of rigid body
plunging motion plus transverse bimding, A more general formulation
would include at least rotationnl deformation and perhaps rigid body
rotations as well, While it would not be impossible to include these,
it is felt that the present Ffommulation is the logical place to start.

A similar decision was made to limit the constraints to those
dealing with the life of the structvre. It is realized that an ac-
tual design has to meet a myriad of criteria so that the results pre-
sented here represent only the speciiic designs obtained for aspecifi-

cally posed problem.

1, Structural Model

Many of the mathematical aspects of the present problem were pro-
vided by Ref. 32. 1In selecting a structural model to use in this study
it seemed natural, therefore, to choose a wing that is used extensively
in the examples of that text. Ir particular, Example 10.6 of that text
presents an analysis that parallels much of what is presented below.

Figure 5.1 shows a planform of that wing with its important dimensions.
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As the figure shows, the structural model chosen includes a nacelle
and fuselage. The masses of these two elements were held fixed during

the optimization at the values of

mFUS 430.4% slugs )

Myac

)

163.0 slugs .

The assumption regarding linearity between the design variables
and the structural inertia and wass was retained in this chapter. By
fitting data given in Ref. 32, the following factors of proportionality
were obtained:

a2

mass/inch .2 t(y) slugs/inch s

Ii
]

m(y)

EI stiffness 5.9 1010 t(y) 1bs-in.2 .

The taper of the chord adds cumplexity to the numerical calcula-
tions that determine the mass and stiffness matrices. Section C of
the Appendix details corrections that are made to the untapered re-
sults to account for this fact. 1In addition, the Appendix describes
how the non-structural masses representing the nacelle and the fuse-

lage are incorporated into the mass matrix,
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2. Turbulence Model

The previous chapter dealt with the responses to a random excita-
tion whose power spectrum Wwas constant over all frequencies. Numerous
studies have shown that this whitce noise assumption is inadequate as a
model for atmospheric turbulence, Chapter 13 of Ref., 47 and Ref. 48
contain excellent discussions of the procedures used and the approxi-
mations made in the development of alternative models, From these
references it was decided that the analytical expression for the tur-
bulence spectrum that is best suited for the present study is the one
designated the von Karman model, The power spectrum of the vertical

component of the atmospheric turbulence given by this model is

2 3 2
T LT[l + 5 (1.339 LTQ) 1

o (9) = —E - . (5.1)
& 7 11+ (1.339 LTQ)E]]‘]‘/

The terms of this equation are defined in the list of symbols,

A number of crucial assumptions have to be made about the nature
of the turbulence in order to arrive at this form (e.g., that the tur-
bulence is homogeneous and that it has a Gaussian distribution). The
adequacy of these assumptions are evaluated quite well in Ref. 48 and
will not be discussed here.

Values for the turbulence scale and the mean sgquare value of the

turbulence had to be selected. From Ref. 48, values were chosen that



were typical for severe thunderstorm conditions. These were

e
i

5000 ft, s

Q
]

ik ft./sec. .

The scale length (which is a measure of the turbulence wavelength)
is considerably greater than the 83 ft. span of the wing used for this
study., This large difference in scale reinforces the appreximation
that the turbulence is one~dimensional with a uniform wvalue across
the span at any instant,

Figure 5.2 compares the von Karman spectrum used in the present
study with the spectrum used in Example 10.6 of Ref, 32. It is neces-
sary to present the comparison here because a later figure compares
two bending moment spectra that werc obtained using the two different
excitation spectra. It is seen that the von Karman spectrum has a

considerably higher proportion of its energy in the lower irequencies.

P Aerodynamic QOperators

The most important difference in the nature of the present problem
compared to those of the previous chapters is in the manner in which
the loading is exerted on the structure. In the previous chapter, the
random disturbance was assumed to be transferred directly to the struc-
ture in some unspecified manner. In the present example, the aerody-
namic loads that result from the unsteady gust differ in phase and

magnitude from the gusts themselves. This is due to the fact that
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the loads on the struckture, which are a function of the civculation,

T

do not respond instantancously to the gust. A further complication

is the fact that the motion of the wing moving in response to the

¥ gust's excitation gives rise to additional forces.

This study is restricted to vertical motions only; therefore,
| the relevant load acting on the wing is the lift. As the previous

paragraph indicates, this load can be separated into two components:
P = L + 1.g . (5.2)

Lg is the direct 1ift associated with the impingement of the
gust while Lm is the added lift resulting from the wing's motion.
Values for these two components are developed in Chap. 5 of Ref. 32
for a two-dimensional airfoil in incompressible flow that is en~-

countering a sinusoidal gua+. These values are given by

L
£ = . -4 . .
= - 2mp U, { G (k) L4, (&) - 13; (&)1 +13 (k)¢ (5 3_:)
g
2 2 . -
: L, = mo,u° [k% - 2ik C(k)]h ; (s.k)
? where:
g h = wvertical displacement ,
f C{k) = Theodorsen’s function ,
; JO and Jl = Bessel functions of the first kiand .
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Theodorsen's function is a cumplex function of the reduced fre-
quency and is an analytical representation of the change in amplitude
and phase of the circulatory lift due te a vertical oscillation. Tt
can be expressed explicitly in terms of Hankel functions, but for the
low magnitudes of k of interest to this study, it was deemed ade-
quate to uge an approximation that is given by Fung in Section 6.9 of

Ref, Lg:

0.165 0.335

¢{k) = 1.0 - . (5.5)

[1.0 -~ (0.0h551,Kk)] ) [1.0 - (0.31/k)]

Perhaps it is in order to point out here that the complex nature
of the aerodynamics makes it unnecessary to include structural damp-
ing. This damping was required in the previous chapter in order to
obtain finite response, but the out of phase component of the aero-
dynamics acts as a damping mechanism that limits the structural re-
sponse to finite values regavrdless of the excitation frequency.

In order to apply these results to the problem at hand, a number
of additional assumwptions must be made, These are mainly the approx-~
imations that are used in aerodynamic strip theory:

(1) The incompressible results are valid for the analysis. (The
example considered has a free stream Mach number of 0.62 so that com-
pressibility effects could be constructively considered.)

(2) The reduced frequency is computed using a reference chord,

as opposed to the local chord, resulting in a k that is constant
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across the span. While this‘is not strictly necessary, it greatly
simplifies the calculation. The range of actual reduced frequency
values across the span is‘small enough so khat the error introduced
by this assumption is net large.

(3) The loads on the three~-dimensional wing are the same as
would occur at that wing station in a two-dimensional flow (except
for the disparity in k values mentioned in the previous assumption).

It would be interesting, and not too difficult, to determine what
effect these assumptions have on the final results., However, these
were congidered to be secondary matters that did not require evalu-
ation for the present study.

Once these aerodynamic loads huave been evaluated, it is necessary
to put them into a form consistent with the finite element models de-
veloped for the mass and stiffness matrices. Again, the Appendix pro-
vides the details of how this is done,

Finally, values of the parameters necessary for calculating the

aerodynamic loads are:

U = 696,8 ft/sec ’

p, = 2.378 x 10_5 slugs/ft5 ’

bos = 6.771 ft .
r . [

..]_2'?..




C. RESPONSE QUANTITIES AND GRADIENT EVALUATION

The end result of the development of the models in the previous

section is the construction of an equation of motion in the form:

v}

(- w

T i+ (K] - [AD {w} = [g) . (5.6)

]

Some new terms have been added to the formulation used to study

white noise, These are

{c}

Vector representing the load due to a unit sinu-

soidal gust of frequency W, .

{a]

Matrix relating the loads on the aircraft due to

the aircraft's oscillation at frequency o, -

The general method used in the previous chapter can be repeated
here to find the root mean square response values for the stresses and
the stress rares. However, the new clements of the problem necessi-
tate going through a brief description of these methods. While it is
not explicitly emphasized, it must be remembered that the analysis
presented bélow is in terms of a unit gust excitation,

Modal superposition can again be used to obtain the response of

the wing at a specified frequency: v
mn X
W} = 37 (pla, = [B] (a] . (5.7)
i=1
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The [pi} vectors are the elgenvectors of the system
(- li[M] + {K])[pi} = 0.0 and the ai's are the modal participation
factors that are ko bhe determined for the forced response. The next
]T

step is to premultiply Eq. (5.6} by [P
(<02 [T 1+ [2]- [cal) {a} = {cc] . (5.8)

The mode shapes have been normalized so that the generalized

masses are unity. The new terms of Eq. (5.8) are clearly

te1% a1 [P] ,

te1%(c} :

[GA]

{ccl

I

In the previous chapter, multiplying the equation of motion by
the transposed eigenvector matrix uncoupled the equations in the ai‘s
by diagonalizing the mass and stiffness matrices, The generalized
aerodynamic matrix is not diagonal, however, so the system of equa-
tions for the {a] vector have to he treated simultaneously.

Also, since [GA] and {GG} vary in a complex fashion with the
reduced frequenecy, it is necessary to evaluate Bg., (5.8) at a number
of discrete reduced frequency values.

Once the modal participation factors have been found for a large
enough number of reduced frequency values to represent the complete

range of interest, it is possible to move on to the calculation of
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the stresses. Once again, the methods of the previous chapter are
inadequate for this problem, The difficulty now is that since the
model permits rigid body mpticns, the bending moments cannot be cal-
culated from a derivative of the displacement vector. Instead, ex-
ternal and inertial loads are summed and the bending moment is found
from these forces and from the fact that the shear force and bending

moment at the wing's tip are zero. The force acting is given by
2
F = L +L +ndw .
g m e
Or in matrix notation:
2
{F} = (Al »og M]) {w} + {c] . (5.9)

The {F} vector represents concentrated forces and moments acting
at the node points., From this vector, it is possible to calculate the
bending moment acting at any specified location on the wing. For the
purposes of this analysis, the bending moments were computed at the
center of each element plus an additional calculation at the wing's
root,

Performing the moment summations at these points gives:

BM.

H
1l
e

L
. T o 1 1
[F2j+1 + o Fej [2(; - 1) + 1] {Cont'd)

(SN
H
I
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and

I

= . iL
oot = Z (12!j~11 b Fay ﬂ) . (5.10)
j=1

This can be summarized by a matrix equation: [BM} = [T]{F} .

The vector of bending moments calculated in this way can be
thought of as the admittance functions for the structure. The fac-
tor that is of prime interest is the mean square bending stress,
Given the bending moment, the remainder of the calculation is quite
straightforward, First, the admittance of the bending stress is
calculated using the standard § = Mc/I formula. Proper account
has to be made of the tapered property of the wing in this calcula-
tion as it enters into both the ¢ and T terms in the stress equa~
tion. With the bending stress adweittance calculated at a number of

frequencies, the mean square response is calculated from:

2]

2 2
Ogy = f Is] o, (@) av . (5.11)
0 g

The mean square stress rate is computed in a similar fashion:

>

oGy = f oF s[%0 @) @& . (5.12)
A g

Simpson's rule was used in performing the numerical integrations.
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Once these two parameters have been determined, the analysis of
Section IV.B can be used to determine the fatigue life and time to
first excursion failure at the wing stations of interest, This anal-
ysis will not be repeated here.

The changes in formulation described above also create some dif-
ferences in the way the gradients are calculated. Again, only the new
details are described in this section, since the previous chapter is
available to provide added detail.

The eigenvalue and eigenvector derivatives ave found in the same
manner as previously except that the rigid body mode allows certaln
simplifications., Specifically, since the rigid bedy frequency is zero,
the derivatives of this frequency are trivally zero:

L]

— = 0 j=1,2,00.5n . (5.13)
The rigid body mode shape is a vector given by relation:
(o )" o= afw)? y
Py = n{1,1,0,1,...,1,0} = nfu} ’ (5.14%)
where T is the normalizing factor used to obtain {pl}T[M][pl} =
2¢. 2T
1.0 = n°{u} " m{u} .

Since the mass matrix varies with the design variables, the

rigid body mode does have a derivative with respect to the design




variables that can be evaluated by the use of the relationship just

obtained:
an - 5M)
on{u}T (v} — = - gt — (v} ;
atj atJ
an 5 1M]
— = -t — (e . (5.15)
dt, 3t

The matrix triple product [U}T (B[M]/Btj) (U} can be shown to

be equal to the structural mass of the jth element, mj s divided

by the design variable tj . The derivative expression for the mode
shape then becomes:

afpy} oM
A

ot, ot

{u} .

I"JI’:jg

LB

The next step is the determination of the derivative of the modal

participation factors. Recall Eq. (5.8):

(-o? {11+ 021 - (ea]) {a) = g} .

Taking the derivative with respect to the thickness of the jth

element gives:

da } 30e]t
fg} - (Cont'd)

(-w§[1]+[l]- [GAT) g—-—
o€ o}

w 1%3% -



it e P

) . o1P]
(-——- [> 1 -2lpitia) : ) {a} ’ (5.16)

oty Of;5

Ags in previous cases of this ty»ve, the wmatrices ‘on the, left-hand

stdes of Eqs. (5.8) and (5.16) are -he same, regardless of which de-

sign vector ig of interest, Therefoce, the matrix decomposition of

(- mg [T 1+ [X1~[GA]l) needs to be evaluated only once for the
n-+ 1 systems of 2n + 1 simultapncous equations.

Another unote is that the derivazive of the generalized aerody-

namics matrix involves only the mode shapes since the aerodynamics

matrix, [A] , is not a funmction of the design variable., This is

different from flutter optimization jroblems, where the aerodynamics

are indirectly a function of the desiyn variable because the flutter

? frequency is contained in the matrix [Ref. 50),
Finally, note that even though spatxix [GA] is symmetrie, the
derivative a[GAI/atj is not.

The remaining derivative calculitions can now be evaluated:

W ale] s
—y = {a] + |P] — ]
atj atj !)tj
SF > [M] 3 o
{_..} = m‘z —— {w} + (@, M+ [A]) {‘“"} ’
3ty aty 9y
SBM oF
— 4 o g {— . (5.17)
atj E)tj /
N,
CB”}¥X) L'PA{H?lS . 1350 -




Another new derivative that must be evaluated is:

2
dls. | _ 38
i . & 2+ (5.18)
dt at,

where the bar indicates the complex conjugate.

Since the bending strass is proportional to the bending moment
and inversely proportional to the element thickness, (Si==cpiBMi/ti 3
vhere Cp; is the constant of proportionality), the bending stress

derivative is given by

aSi aBMi cp;
- = cpi - - _2' BMi E’ij 2 (5'19)
t. t. .
° ] 9 1 3

where Bij is the Kronecker delta,

Finally,

o

y 3
—— G.gs =f‘bw —_— |S
t. 1°i t,
ot o & oty

1° @ , (5.20)

and similarly for the stress rate. The remaining derivatives for the
constraints and the objective function are identical in form to those

of the previous chapter and are not repeated here,

D. RESULTS

As the above descriptions have perhaps indicated; the function
evaluation and gradient calculation require a considerable amount of

computation., Consider an example that has N elements and a mesh of

- 135 -



NI discrete frequeucies used in the response calculations. Further
specify that MN natural modes are used for modal superposition,
Then each function evaluation requires the solution of a 2N + 1
eigenvalue problem. In addition, the. M¥ linear simultaneous
equations given by Eq. (5.8) must be solved NF separate times.

If gradient information is desired, the MN simultaneous equations
given by Eq. (5.15) must be solved NF x N times., An additional
factor is that unless one is very clever or sacrifices programming
speed and clarity, the arravz needed for the computation quickly fill
the comput ¢'s available cor:., E,z., a reasonable way to dimension
as/atj of Eq. (5.19) is DS(N+ 1,NF,N) signifying that each of the
N + 1 stress values for each of the NF frequencies has derivatives
with respect to N different design variables.

For these reasons, the examples done for the thesis were kept as
simple as possible while retaining the capability of obtaining mean-
ingful results.

The first example used three structural elements and retained the
rigid bocdy mode plus one bending wmode, Twenty-nine reduced frequency
values ranging, at equal intervals, from 0.0 to 0.28 were used. Al-
though this first example was worked mainly as a check on the algorithm,
the results aré of sufficient interest to be presented here. The con-
straints were identical with those of the previous chapter in that the
fatigue life was specified to be greater than one year while the time
to first excursion failure was specified to be greater than one-half

year,
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The initial and optimal thickness distributions for this example

are
1.00 0.0k965
{t}i = 0.90 [:]O = 0.02539 .
0.50 0.01146

A plot of the final thickness distribution is given in Fig. 5.3.
The active constraints designated on the figure are all first excur-
sion failure type constraints.

The marked reduction in weight is partially due to the fact that
the ipitial configuration is extremely overdesigned with respect to
the constraints considered here. %he rms stress at the root for the
initial design is approximately 600 psi; a value so far below the
specified ultimate strength level of 40000 psi as to be insignificant,
Thir should not be too surprising, since the textbook example from
which the model was obtained was not intended to be near a critical
value with respect to this particular constraint. It is surprising
that the weight is reduced by a facter greater than twenty. This fact
is discussed following the presentation of the second and last example.

The final example used five elements to represent the structure

and retained two bending modes plus the rigid body mode, The same

¥
The cost function used for the wing examples was the sum of the

design variables, Due to the taper of the wing, this is not exacily
proportional to the structural weight; therefore, the final thickness
distribution is not the minimum weight solution. This oversight was
detected after the two examples were completed, and it did not seem
a large enough error to require re-optimizations with their attendant
computer costs.
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number of reduced frequencies were used, Since the previous example
had permitted an optimal design that was unrealistically light, the
constraint lives were multiplied by a factor of ten. The fatigue life
was therefore constrained to be greater than tem years and the time to
first excursion failure was required to be preater than five years.
The remaining parameters were left unchanged,

Figure 5.4 compares the power spectral density of the root bending
moment obtained from Example 10.6 of Ref, 32 with that obtained using
the initial design and the models developed for the present study,
The different turbulence spectra used for the two cases account for
the majority of the discrepancy, while some differences in the model-
ling of the structure account Ffor the shift in the location of the
se2cond peak. In the figure, the first peak is almost entirely due to
the rigid pody response while the second peak occurs very close to
the natural frequency of the first bending mode., The second bending
mode occurs at such a high frequency that it does not have an effect
on the root bénding moment. OFf interest here is the fact that the
two solutions are qualitatively the same, indicating that the computer
analysis has been done correactly.

The initial and optimal thickness values, as well as the rms
values of the stress and stress rate for the final design are given
in Table 5.1.

Figure 5.5 plots the final thickness distribution and indicater
where the censtraints are active., In this example, all the active

constraints were of the fatigue type,
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|

i Thickness Final Design

; Element .

; Initial Optimal RMS Stress RMS Stress Rate
é Root - - h328 psi 25,706 psi/sec
1 1.00" 0.0628" | 5965 18,562

2 0.955 0.0512 5521 31,506

3 0.915 0.02L5 5753 ol 971

; L 0.810 0.,0125 539M 3k, 877

5 0.380 0.0035 5157 32,590

TARLE 5.1--Wing in a Turbulent Atmosphere

The most striking fact that this solution exhibits is that, even
with the constraint lives multiplied by ten from the previous example,
: there is a very large weight decrease from the initial te the final de-
sign, Part of the explanation for this behavior is indicated by Fig. 5.6,
This Figure shows the power spectral density of the root bending moment

for the final design. A comparison of this figure with Fig. 5.4 points

out two things: (1) The area under the power spectrum, and hence the
yme bending moment, for the final design is substantially less than the

area under the comparable curve for the original design and (2) the re-

: sponse to the first bending mode has disappeared in the optimal design,

These two results are related to the fact that, as the weight is re-
duced, the inertial loads become increasingly less important compared

to the aerodynamic loads.
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Of course th