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	e powerful genetic algorithm optimization technique is augmented with an innovative “domain-trimming” modi
cation. 	e
resulting adaptive, high-performance technique is called Genetic Algorithm with Domain-Trimming (GADT). As a proof of
concept, the GADT is applied to a widely used benchmark problem. 	e 10-dimensional truss optimization benchmark problem
has well documented global and local minima. 	e GADT is shown to outperform several published solutions. Subsequently, the
GADT is deployed onto three-dimensional structural design optimization for o�shore wind turbine supporting structures. 	e
design problem involves complex least-weight topology as well as member size optimizations.	e GADT is applied to two popular
design alternatives: tripod and quadropod jackets.	e two versions of the optimization problem are nonlinearly constrained where
the objective function is the material weight of the supporting truss. 	e considered design variables are the truss members end
node coordinates, as well as the cross-sectional areas of the truss members, whereas the constraints are the maximum stresses in
members and the maximum displacements of the nodes. 	ese constraints are managed via dynamically modi
ed, nonstationary
penalty functions. 	e structures are subject to gravity, wind, wave, and earthquake loading conditions. 	e results show that the
GADT method is superior in 
nding best discovered optimal solutions.

1. Introduction and Background

O�shore structures o�er presumably the greatest level of
sophistication and di�culty in the analysis, design, and
construction stages. 	is is due to multitude of complexities
introduced by the o�shore locations. 	e entailed unique
conditions such as underwater currents, surface waves and
wind, and seabed soil can o
en become problematic quickly.
Such conditions introduce additional factors to the design
challenge, such as extreme temperatures and rough weather
conditions, marine growth, fatigue, corrosion, marine vessel
impact, and interaction with aeroelastic and hydrodynamic
loads. 	ese conditions need to be thoughtfully taken into
consideration due to the long and short term e�ects that
can compromise the structure. 	e intricacy of the design
and analysis process multiplies when earthquake loads are
factored in. However, it is recommended to account for all
loads simultaneously except for seismic loads, based on the

potential occurrence combinations [1, 2]. 	erefore, seismic
e�ects are not typically considered to occur at the same time
as other loads [3]. 	e considered combinations of di�erent
loads and their in�uence on the design of o�shore structures
are further elaborated on in a later section.

	e design solution selected from a range of viable
options o
en imposes additional restraints to the structural
design as it shapes the structure’s response to the applied
loads. 	e size, type, and con
guration of the members
supporting o�shore structure, for instance, may produce a
signi
cant in�uence on marine growth size, which poses a
consequent impact on hydrodynamic drag forces.	e result-
ing e�ects of nonlinearities associated with �uid-structure
interaction may be too signi
cant for a thoughtless dismissal
in the design phase [4]. Furthermore, the interaction between
the soil, foundation, and the structure is crucial phenomenon
to be studied for the development of enhanced structural
system designs supporting o�shore wind towers [5–10].
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A common simpli
ed approach to the complex process of
o�shore structural design is the use of uncoupled load e�ects
[11–13]. 	e justi
cation of the above simpli
ed method in
fatigue analysis is attributable to the following: (a) material
and geometric nonlinearities are not signi
cant structural
fatigue responses, (b) wind and wind-induced currents and
waves can be assumed as stationary and independent pro-
cesses, and (c) soil stress levels aremoderate to presume linear
behavior under wind and sea wave loading [14]. Employing
such approach allows for the advantageous implementation
of simple soil-structure interaction behavior.

Devising optimal designs that satisfy multiple perfor-
mance criteria, such as minimizing cost and maximizing
e�ciency, is arguably one of the most in�uential factors in
modern structural design.Member-level (local) optimization
techniques are routinely used to identify design quantities for
acceptable structural performance. Within this framework,
several optimization techniques have been utilized in the
past [15]. In the presence of multiple optima and nonsmooth
constraints in the design variable space, it is di�cult to
obtain a set of optimum values usingmember-level optimiza-
tion formulations. 	is shortcoming inspired researchers to
explore using the relatively new and innovative evolutionary-
based optimization techniques. For example, these methods
have been used recently to address structural engineering
optimization problems: Shu�ed Complex Evolution Opti-
mizer (SCEO), Ant ColonyOptimization (ACO), theGenetic
Algorithms (GA), and Particle SwarmOptimizer (PSO) (e.g.,
[16–24]).

Many structural optimization problems involve problem-
speci
c constraints applicable to the solutions limiting the
feasible search space. In these types of problems, it is challeng-
ing to adapt traditional optimization techniques to handle
constraints. One of the most popular constraint handling
methods is by incorporating penalty functions due to the
relative simplicity and ease of implementation.

Topology optimization was used by many researchers to
generate alternative structural design concepts for bench-
mark wind turbine blades. In these studies, the focus is
alternative structural layout for wind turbine blades with
the aim of improving its design, minimizing weight, and,
ultimately, wind energy cost reduction (e.g., [25–35]).

	e materials’ cost for o�shore wind turbine supporting
structures constitutes a considerable amount of overall cost.
Potentially signi
cant cost savings that result from optimized
structural designs encourage the incorporation of e�cient
optimization techniques. However, determining the optimal
structural shape and weight of the supporting system is not a
trivial task.	e complexity is increased due to themathemat-
ical description of loads (aeroelastic [wind], hydrodynamic,
and seismic), the many variables describing the geometry,
the nonsmooth objective function, and the constraints that
have to be satis
ed. 	e above considerations have inspired
the implementation of the e�cient Genetic Algorithm with
Domain-Trimming (GADT) optimization technique.

	is study presents the implementation of the GADT to
achieve superior optimization. 	e capabilities of the pre-
sented optimization tool are demonstrated on a well-estab-
lished optimization benchmark problem known for being

challenging with known global and multiple local minima.
Finally, the GADT tool is used to solve two typical least-
weight design problems for o�shore wind turbine supporting
structures through topology and member size optimization.
	e algorithm is coded using the MATLAB [36] commercial
so
ware package and its GA libraries, while the structural
analysis and design for the di�erent topology and loading
con
gurations is performed using the SAP2000 [37] com-
mercial so
ware package. 	e linkage and automation of
the structural analysis and design tasks are initiated from
within the MATLAB code and established through the Open
Application Programming Interface (OAPI) capabilities of
the SAP2000 so
ware.

2. Primary Loads on Offshore Structures

2.1. Hydrodynamic Loads (Sea Waves and Currents). Hydro-
dynamics [the kinematics of the water particles] is a very
sophisticated branch of applied science that has been studied
extensively. 	e motion of salty ocean water is a result of
several causes, such as tidal e�ects that initiate underwa-
ter currents, thermal gradient e�ects, surface-level winds,
and topology of the seabed especially for shallow waters
(where the water depth is lesser than half the characteristic
wavelength). All of the mentioned which are site dependent
and their individual in�uences and their interactions would
potentially vary signi
cantly.

Several wave theories exist which span in sophistication
and acceptance. Among the widely used theories are the
following: linear or Airy wave theory, Stokes 2nd-order and
higher order theories, and stream-function and cnoidal wave
theories [44, 45]. 	e range of applicability of the di�erent
wave theories can be found in [4]. 	e superposition of
several Airy wavelets is routinely used to model the irregular
sea states. 	e speci
cs of the site conditions can be captured
through the di�erent wavelength, amplitude, phase, and
direction of the superimposed linear waves [4, 46].

When wave loading is applied to an o�shore structure, by
means of Airy’s wave theory and Morison’s equation, gravity
loads are assumed to be simultaneous. 	e analysis o
en
accounts for the various nonlinearities introduced by the
nonlinear hydrodynamic force (drag and li
). Typical repre-
sentation ofwave loads is based on the three parameters: wave
period, wave height, and mean water depth (Figure 1(a)).
	e velocity along the water depth is assigned a nonlin-
ear pro
le to account for the appropriate experimentally
observed conditions, as can be seen in Figure 1(b). Drag
and inertial force pro
les are also representative of realistic
situations. Figure 1(c) schematically depicts the di�erentwave
and current actions and e�ects on an o�shore pole with a
circular cross-section of diameter (�).

In suchmathematical procedures, wave and current kine-
matic 
elds are o
en modeled using 5th-order Stokes wave
theory. Forces on individual structural elements are then
generated using Morison’s equation. 	ese forces account
for the inertial e�ects through the mass coe�cient �� and
the hydrodynamic drag via the coe�cients �� [47]. 	e
used values for this research are adopted from the American
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Figure 1: Schematic representation of o�shore loads (a) sea current wave pro
le (adopted from [47]); (b) velocity pro
le (adopted from [47]);
(c) hydrodynamic loads (adopted from [48]).

Petroleum Institute (API) standards [1, 2] and will be intro-
duced in Section 4.1.

Speci
cs and more details of quantifying such forces can
be found elsewhere [4, 47–49]. Although the forces induced
by ocean waves on platform are dynamic in nature, it is
the common practice to design by static approaches. 	is
is deemed a reasonable approximation especially for rigid
o�shore structures submerged in shallow to intermediate
water levels. As the water depth increases and/or o�shore
structures become more compliant (�exible), the dynamic
e�ects gain signi
cance. In such cases, static loading condi-
tions assumption will no longer be appropriate.

2.2. Current Loads. Waves induce orbital particle motion
through the matter in which they travel; such orbits are
typically closed but may undergo minor forward dri
 result-
ing from wind-surface interaction e�ects. So, in essence,
currents are produced due to wave kinetic energy. If a current
coincides with awave propagation path or direction, the wave
length is typically elongated [1, 48].

2.3. Wind Loads. Atmospheric temperature and pressure
gradients provide wind with ample kinetic energy. As obsta-
cles are placed in the path of this kinetic energy, some
or all of it is converted into potential energy due to path
de�ection or obstruction and discontinuation.	e generated
potential energy is manifested through di�erential pressures
on the obstacle body. 	e resulting pressures are in�uenced
by many factors such as the obstacle shape, orientation in
space, and contact area, as well as the wind speed and angle of
approach.Wind-induced forces are highly dynamic in nature,
but o
en times, for design purposes, it is deemed appropriate
to represent them by equivalent static pressures.

Land-based structures approaches can be adopted for
representing wind loads on o�shore structures with proper
adjustments accounting for open ocean surface roughness
(lower category of surface roughness). 	e lesser roughness
produces lower levels of turbulence than would be produced
on land; this is translated into a slower rate of variation with
height. 	at is, at any given height, the storm conditions
are more severe and produce higher wind speeds in o�shore
locations as compared to onshore. An illustrative schematic
is provided in Figure 2.

2.4. Earthquake Loads. As the ground shakes under a struc-
ture during a seismic event, inertial forces are generated
within the structure. During that oscillatory vibrational
movement, other forces are engaged as well, namely, dissi-
pative forces (damping) and restoring forces. 	e interaction
between all these forces to maintain dynamic equilibrium
gives rise to complex structural response. Being an extreme
event, seismic activity o
en involves high structural response
demands where inelastic and nonlinear response is to be
expected, thus adding to the already complex interactive
loading situation in an o�shore site. Luckily, signi
cant seis-
mic events are not very frequent and require relatively a long
time to build up (store) strain energy. 	is warrants separate
(nonsimultaneous) consideration of earthquake loads from
other loads for o�shore structures. At o�shore sites, tidal
waves may or may not require special attention depending
on the speci
c site conditions. Tidal waves travel with great
velocities at sea but with small amplitude (wave height) as
large bodies of water are displaced during an earthquake.
It is only as these waves approach the shoreline that they
attain huge amplitudes due to the shallow depths of the
seabed. 	ese scenarios are considered on site-speci
c basis
and require special seismic hazard studies prior to any design
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Figure 2: Variation of mean wind speed with height (adopted from [4]).

e�orts. 	e authors are not aware of any speci
c tidal wave
design codes for o�shore structures.

When seismic loads are deemed signi
cant to control
the o�shore structural design either partially or entirely,
equivalent static representations are o
en utilized. 	is is
very much similar to design considerations of on-land sites.
If the o�shore structure under consideration is irregular or
complex in geometry, dynamic (linear or otherwise nonlin-
ear) response needs to be properly modeled. 	e details of
the used design code, design loads, design load combinations,
and so forth are speci
ed in Section 4.1 where a numerical
example is introduced.

3. Genetic Algorithm with
Domain-Trimming (GADT)

3.1. Development of the GADT Optimization Technique. In
the master’s thesis of the third author [50], the GADT
optimization algorithm was introduced by augmenting the
GA with a domain-trimming (DT) to enhance its capacity
of discovering global optima. Conventional GA optimization
begins with a randomly generated population of solution
alternatives�� (population size) using a uniform probability
distribution; a combination of variables (�1, �2, �3, . . . , ��)
comprises each solution of the GA having its own 
tness
value. When the optimization is performed to 
nd the least
weight for a given problem, a function �∗�(X) = total mass

+ penalty must be minimized. Low �∗�(X) yielding solution
alternatives would have better 
tness while they maintain
the problem constraints satis
ed. A 
tness value is allocated
to each solution � using (1) once �∗�(X) is computed for
all the solutions in the initial population. Solutions with
�∗�(X) higher than the population’s �∗ave are eliminated by
an assigned 
tness value of zero as they are deemed un
t:

�� (X) = {
{
{

0 for �∗� (X) ≥ �∗ave
�∗ave − �∗� (X) for �∗� (X) < �∗ave

� = 1, 2, . . . , ��,
(1)

where (X) is the design variables vector.
	e three basic operations of a GA—reproduction,

crossover, and mutation—are the tools improving each pop-
ulation’s 
tness across generations/iterations. During repro-
duction, better 
t designs are selected, copied, and placed
into a pool allowing each design to mate and reproduce. 	e
selection method used in this study is the roulette wheel due

to its simplicity and popularity. One prominent advantage
of the GA optimization is its inherent resilience against
converging to local optima rather than global optima. GA’s
resilience can also be sometimes a potential shortcoming as
its “low-resolution” becomes problematic. 	is is especially
prominent when the population size is relatively limited. In
such cases, the technique may converge to solutions that are
in the vicinity of, but not necessarily at, the global minima.
An explanation to such occurrence is that solution variables
are 
rst randomly selected from a predetermined domain,
which do not change in nature but rather in location from
one solution to the other, except for mutation, which occurs
at small probability. Such issue is aggravated by poor choices
of solution domains, for example, selecting a domain of [1,
1000] while the optimal is at a value of 2. While blending
techniques aim at reducing this drawback, they may pose a
distinct undesirable e�ect of refuting the strong traits of the
parents.

	is study features a new technique developed to tackle
GA’s limitation, which involves 
rst reducing the selected
domain and then recommencing the GA algorithm to
enhance the probability of selecting the optimal solution. To
demonstrate, take the previous example of an optimum solu-
tion of 2 which is searched for in a domain of [1, 1000]. When
the same solution is searched for in a “trimmed” domain
of [1, 10], the probability of being selected as the optimal
solution is increased 200-fold, when the GA is reinitiated and
all else maintained constant. Domain-trimming is carried
out herein by reducing a percentage (10%) of the initial
domain. A continuity of domain reduction and reinitiation
is maintained until the global optimum solution is located.

Naturally, the possibility that the global optima may exist
within the removed (trimmed) region of the solution space
persists. In such cases, the GADT will converge to equivalent
solution achieved by the typical GA algorithm, as trimming
is queued only by the initial convergence of the GA process.
Experimentation has demonstrated that theGADT technique
will typically outperform conventional GA as will be shown
herein with the o�shore support structure examples.

3.2. Constraints Handling. Penalty functions are very useful
in enabling the solution of constrained problems as uncon-
strained.	e solutions that violate any number of constraints
are penalized, which results in associating high objective
function values to nonfeasible solutions. Of the two types
of penalty functions, stationary (static) function generally
exhibit an inferior performance to that of nonstationary



Mathematical Problems in Engineering 5

(dynamic) function. A nonstationary penalty function is
generally de
ned as follows:

� (
) = � (
) + � (
, �pn, �pn) , (2)

where �(
) is the original objective function of the con-
strained optimization problem and �(⋅) is a dynamically
modi
ed penalty, de
ned as

� (
, �pn, �pn) =
�
∑
1
� (��, �pn, �pn) ,

� (��, �pn, �pn) = {
{
{

(�pn��)	pn , �� > 1
0, �� ≤ 1,

(3)

where �� is the performance criteria of an individual member
(o
en taken as the ratio of utilization to satisfaction of
pertinent design code, or the demand-to-capacity ratio, etc.).
Figure 3 pictorially lays out the �owchart for the general
GADT algorithm as well as the speci
cs of the domain-
trimming subalgorithm.	e algorithm starts by generating a
randomized set of potential population of “parent” solutions
and then sets out to order them based on their 
tness.
For 
t solutions, no actions are necessary at this point,
while the un
t solutions are penalized such that their 
tness
function values will cause them to be eliminated from the
pool. A
er convergence checking is performed (including
maximum number of solution iterations), the GA operations
are performed in order to create o�springs that carry the
favorable traits of the parents. 	e top 10 most 
t solutions
are ordered, updated, and saved. Domain-trimming (DM) is
performed once the top 100 most 
t solutions are collected.
In this step, the domains are reduced such that the least 
t
solutions are eliminated from the pool of feasible solutions.
	e domain-trimming was carefully executed in order to
guarantee survival of the 
ttest solutions upon GA reiniti-
ation, which utilizes this pool of solutions as the starting
population for the next optimization cycle, and so on until
convergence is achieved or any of the stopping criteria is
reached, for example, maximum number of populations is
reached.

While �pn and�pn are the penalty exponent and coe�-
cient, respectively, they enable penalizing the optimization
objective function value if �� exceeds unity. Both �pn and �pn
will minimize the probability of un
t solutions reappearing
in subsequent generations and trimmed solution domains by
penalizing them with proportional severity to their excessive
values above unity. In this investigation, several combinations
were considered (Figure 4) and the used values of the penalty
coe�cient and exponent are 2 and 2.5, respectively.

3.3. GADT Veri�cation Example: Cantilever 10-Bar Planar
Truss Structure. 	e GADT technique is tested against a
classical global optimization problem, the Cantilever 10-Bar
Planar Truss Structure optimization problem, before using
it to solve o�shore problems. 	is 10-dimensional problem
has been investigated by many researchers and has been
well-established as a challenging optimization benchmark

problem. It has a best discovered global minimum as well as
multiple local minima.

Figure 5 shows an illustration of the benchmark struc-
ture tested. 	e length � is 360 in (914.4 cm), the modulus
of elasticity is 10,000 ksi (68,950MPa), and the assumed

material density is 0.1 lb/in3 (2767.990 kg/m3). 	e member’s
de�ection and stress restrictions are ±2.00 in (5.08 cm) and
±25.0 ksi (172.375MPa), respectively. Cross-sectional areas
for all structural members can assume any values between

0.1 in2 and 35 in2 (0.6452 cm2 and 225.806 cm2). All members
are designed and optimized independently, which could yield
in a unique cross-sectional area for each member (A1 to
A10). 	is truss optimization problem has 10 design variables
that are subject to 32 constraints (10 compression stresses, 10
tension stresses, and 12 displacements). 	e studied scenario
is when �1 = 150 kips (667.2 kN) and �2 = 50 kips (222.4 kN).

Table 1 gives the best optimum computed solutions
with the corresponding minimum weight for the considered
scenario, compared against optimal designs presented by
scholarly studies available in the literature. Note that it
required nearly 4000 iterations to reach the best discovered
solution with an initial population size of 500 solutions prior
to any domain reductions.

	e optimal solutions found by GADT satis
ed all the
problem constraints and Table 1 demonstrates how GADT’s
performance is superior to preestablished solutions.

Figure 6 shows the convergence history for the GA and
the GADT solutions. 	e GADT is distinctively outperform-
ing the conventional GA, by converging to more optimal
solution in lower number of iterations. Notice that GADT
convergence plateaus a
er approximately 800 iterations a
er
which any trimming hasminimal e�ect on theGA, indicating
that most or all un
t values have been eliminated.

4. Problem Formulation for Offshore Jacket
Structure Optimization

	e proposed optimization problem for the supporting wind
turbine truss structure is highly sophisticated as it requires
the determination of the optimumcon
guration of geometry,
shape, and member sizes simultaneously. 	e mathematical
expression of the problem is as follows:

Find �
 = {�1, �2, . . . , ��, ��, ��, ��}

To Minimize � = �(�, ��, ��, ��) = !
�
∑
�=1

� �� �

Subject to "�� ≤ "� (�) ≤ "
� � = 1, 2, . . . , #,
�min
� ≤ � � ≤ �max

� $ = 1, 2, . . . , %,

(4)

where � � is the design variable $ (member $ cross-sectional
area), �(�) is the objective function (the structural weight),
(��, ��, and ��) are the members’ end nodes coordinates, ! is
thematerial density,# is the number of inequality constraints
("), % is the number of the design variables, � � is the member
length, and �max

� and �min
� are the upper and the lower

bounds of the $th variable. Joint displacements and truss
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Figure 3: Continued.
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Figure 3

member stresses based on the speci
ed design code constitute
the upper and lower bounds of the constraints given in (4).

Combining the penalty and objective functions produces
the 
tness function used in GADT:

min � (� �, ��, ��, ��, �pn, �pn)
= � (� �, ��, ��, ��) + � (� �, ��, ��, ��, �pn, �pn) .

(5)

To limit the spatial shapes of structure to practical and
feasible potential solutions, joint coordinates are restricted
to remain on the main (vertically inclined) legs but are
free to move along them (see Figure 7). 	us, the design
parameters and their combinations that would be explored
are as follows: the slope of the main legs (&), the members’
lengths (�), diameters (�), and wall thicknesses (WT). For
each spatial con
guration combinedwithmembers’ sizes, the
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Figure 5: 10-bar planar cantilever truss model.

total structural weight is calculated as the objective function
to be minimized.

4.1. Numerical Illustrations. 	e e�ciency of the GADT
algorithm is demonstrated through two widely used o�shore
wind turbine support systems, namely, the quatropod and
the tripod jacket trusses (Figure 8). 	e two design problems
are subjected to the o�shore loading conditions described
earlier. A total mass of 3.4 × 105 kg represents the turbine
mass assumed to be atop the towers. 	e supporting truss
systems are analyzed for load combinations and designed for
conditions speci
ed according to the ASCE7-10 [51] design
speci
cations and the 2010 AISC-LRFD design speci
cations
for steel structures [52].

	e design constraints included the traditional permissi-
ble member stresses and truss joint displacements prescribed
in the adopted AISC-LRFD design standard. All structural
elements are modeled as frame elements subjected to gravity
as well as wind, wave, and seismic loads. 	e dead loads are
accounted for by the member dimensions and density, while
the turbine weight is superimposed at the appropriate loca-
tion. Typical live loads are treated as movable and temporary,
and, as such, a static equivalent uniform 50 psf (2.39 kPa)

was used. A typical water depth for the type of jacket was
adopted 110 
 (33.5m). 	e wave loading application was
carried out via a 5th-order Stokes theory representation.
	e design wave was designated as a 100-yr return event
with a height of 26 
 (7.92m) and the period of 8 sec. 	e
horizontal velocity contours for the waves during the 100-
yr design storm conditions are shown in Figure 9. 	e ��
and �� values are adopted from the recommendations of
the API document [1, 2] to be 0.65 and 1.6, respectively.
Since the wave loads are represented in a static fashion,
the load direction and incidence angle are varied and an
envelope of the di�erent scenarios was used for the analysis
and design. Speci
cally, the wave loading was applied in
the following con
gurations: 0∘/180∘, 45∘/135∘, and 90∘/270∘.
	e wind loading was combined with the wave loading due
to their close coupling and associations. 	e design wind
speed was chosen to be 100mph (45m/s) measured at 30 

(10m) above the Lowest Astronomical Tide (LAT).	e wind
speed variation with elevation is typically assumed to follow
a power law relationship. Equation (6) is used for wind speed
evaluations:

'� = '30 ( -
30)
�
, (6)
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Table 1: Optimization results for the 10-bar planar truss.

Optimal cross-sectional areas

Variable (in2)
(cm2)

	is work
Kaveh and

Talatahari [38]
Lee and Geem

[39]
Schmit and
Farshi [40]

Schmit and
Miura [41]

Venkayya [42]
Dobbs and
Nelson
[43]

�1 23.764 23.052 23.25 24.29 23.55 25.19 25.81

153.3 148.72 150.0 156.7 151.9 162.5 166.5

�2 0.101 0.1 0.102 0.1 0.1 0.363 0.1

0.652 0.645 0.658 0.645 0.645 2.342 0.645

�3 25.033 25.601 25.73 23.35 25.29 25.42 27.23

161.5 165.17 166.0 150.6 163.2 164.0 175.7

�4 14.113 15.139 14.51 13.66 14.36 14.33 16.65

91.1 97.671 93.6 88.1 92.6 92.5 107.4

�5 0.106 0.1 0.1 0.1 0.1 0.417 0.1

0.684 0.645 0.645 0.645 0.645 2.690 0.645

�6 1.987 1.969 1.977 1.969 1.97 3.144 2.024

12.8 12.703 12.8 12.7 12.7 20.3 13.1

�7 12.888 12.206 12.61 12.54 12.81 14.61 14.22

83.1 78.748 81.4 80.9 82.6 94.3 91.7

�8 12.427 12.568 12.21 12.67 12.39 12.08 12.78

80.2 81.084 78.8 81.7 79.9 77.9 82.5

�9 0.1 0.1 0.1 0.1 0.1 0.513 0.1

0.645 0.645 0.645 0.645 0.645 3.310 0.645

�10 20.253 20.33 20.36 21.97 20.34 20.26 22.14

130.7 131.16 131.4 141.7 131.2 130.7 142.8

Weight (Ib)
(N)

4668.78 4676.05 4668.81 4691.84 4676.96 4895.6 5059.7

20775.6 20808.0 20775.8 20878.3 20812.0 21785.0 22515.2

Max
de�ection

2.00 2.00 2.00 2.00 2.00 2.00 1.82

Max stress 25.0 25.0 25.0 25.0 25.0 23.3 25.0

where '� is velocity at height of - feet (
/sec); '30 is velocity
at height of 30 feet (
/sec); - is height above LAT (feet); 
 =
0.125; '� shall not be less than '30.

Seismic loads were accounted for using the 2006 Inter-
national Building Code [53] response spectrum constructed
based on a 2,500-yr event corresponding to high seismicity.
All speci
cs of the load case de
nition are in Figure 10. 	e
earthquake loads were also applied in the same directions as
the wind and wave loads in order to justify implementing
them in load combinations as per the ASCE7-10 [51] design
speci
cations. 	e ASCE7-10 strength deign load combina-
tions are well-known and not listed herein for brevity.

5. Results and Discussion

	e GADT algorithm is applied to the structures mentioned
above. 	e e�ects of the GADT control parameters (popula-
tion size, penalty coe�cient, and exponent) on the optimum
solutions are explored and the combination producing the
best results is adopted but omitted for brevity.

5.1. Quatropod (64-Bar) Jacket Structure. 	e truss members
are assigned to one of 14 member groups as the 64-bar
3D truss structure is symmetric about both principal axes
(
 and :). 	e 14 groups are as follows: 1 group for the
slope of the main legs, 1 group for supports, 1 group for
the rod, 1 group for platform beams, 5 groups for bracing
members, and 5 groups for legs members. Figure 7 illustrated
each of these groups. 	erefore, the optimization problem
has 33 independent design variables and 32 constraints
(6 displacements, 13 tension stresses, and 13 compression
stresses). Table 2 gives the best discovered solutions for the
64-bar 3D truss structure.

	e GADT algorithm produced an optimum weight of
3,965,364 kgf a
er completing 500 searches as shown in
Figure 11. It is worth mentioning that the optimal solutions
found by the GADT meet all constraints and, thus, have no
active constraints.

5.2. Tripod (48-Bar) Jacket Structure. Similar to the quatro-
pod jacket, the tripod jacket truss members are assigned to
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Figure 6: Path to optimum solution for the 10-bar planar truss via GA and GADT.
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Figure 7: Description of the design groups (variables) in optimization problem.
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(a) (b)

Figure 8: Wind turbine supporting truss structures: (a) quatropod jacket and (b) tripod jacket.
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Figure 9: Horizontal wave velocity contours for the 100-yr return
storm event [37].

Figure 10: Earthquake load case de
nition [37].
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Figure 11: Convergence history for the minimum weight of the 64-
bar 3D truss.

one of the 14 member groups that are illustrated in Figure 7.
Again, the optimization problem has 33 independent design
variables and 32 constraints. Table 3 gives the best discovered
solutions for the 48-bar 3D truss structure.

	e GADT algorithm produced an optimum weight of
3,901,710 kgf a
er completing 1000 searches as shown in
Figure 12. Similarly, the optimal solutions found by theGADT
meet all constraints, and thus, have no active constraints.

5.3. Computational E
ciency versus Best Discovered Optima.
	e GADT is observed to outperform the conventional
GA technique in terms of discovering optima consistently
throughout the three problems presented in this paper.
Typically, such improvements to optimal solutions come
at a computational price. 	e domain-trimming and GA
reinitiation are the main sources of additional computational
cost. However, it can be reported that the GADT is still
considered to be a rather computationally e�cient technique.
In comparison to the conventional GA, the GADT optimiza-
tion algorithmo�ers improvements to the discovered optima,
which far exceed theminute extra numerical burden. A head-
to-head performance comparison on the 10-bar benchmark
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Table 2: Optimal design values for the 3D 64-bar space truss (quatropod jacket).

Optimal design variables (m)

Variable BDV∗ Variable BDV Variable BDV

1 � 0.74 12 WT 0.14 23 � 0.57

2 WT 0.055 13 � 13.53 24 WT 0.08

3 � 0.71 14 � 0.96 25 � 13.50

4 WT 0.047 15 WT 0.12 26 S 8.00∘

5 � 0.64 16 � 11.75 27 � 0.59

6 WT 0.036 17 � 0.74 28 WT 0.07

7 � 0.55 18 WT 0.13 29 � 0.45

8 WT 0.037 19 � 13.91 30 WT 0.07

9 � 0.54 20 � 0.59 31 � 5.10

10 WT 0.035 21 WT 0.12 32 � 1.80

11 � 0.84 22 � 9.80 33 WT 0.06

Weight (kgf) 3,965,364
∗BDV = Best Discovered Value

Table 3: Optimal design values for the 3D 48-bar space truss (tripod jacket).

Optimal design variables (m)

Variable BDV∗ Variable BDV Variable BDV

1 � 0.73 12 WT 0.14 23 � 0.60

2 WT 0.03 13 � 12.83 24 WT 0.13

3 � 0.62 14 � 0.86 25 � 12.94

4 WT 0.025 15 WT 0.14 26 S 9.58∘

5 � 0.59 16 � 13.08 27 � 0.36

6 WT 0.041 17 � 0.65 28 WT 0.08

7 � 0.46 18 WT 0.14 29 � 0.40

8 WT 0.032 19 � 13.55 30 WT 0.09

9 � 0.55 20 � 0.61 31 � 5.27

10 WT 0.061 21 WT 0.12 32 � 1.55

11 � 1.06 22 � 9.94 33 WT 0.06

Weight (kgf) 3,901,710
∗BDV = Best Discovered Value
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Figure 12: Convergence history for the minimum weight of the 48-
bar 3D truss.

problem demonstrated the superiority of the GADT over
conventional GA. A more thorough and conclusive com-
parison between the GADT versus conventional GA can be
included in a future study.

6. Summary and Conclusions

	e genetic algorithm optimization technique is augmented
with a novel “domain-trimming” variation. 	e resulting
superior optimization technique is called Genetic Algorithm
with Domain-Trimming (GADT). Initially, the GADT per-
formance is demonstrated by application to the widely used
10-dimensional truss benchmark optimization problem. 	e
10-bar truss has best discovered global and local minima
that are published in the literature. 	e GADT is shown
to be superior to several published solutions. Subsequently,
the GADT is deployed onto the main focus of this work,
which is three-dimensional structural design optimization
for o�shore wind turbine supporting structures. 	is design
optimization problem is highly complex entailing least-
weight topology andmember size optimization.	eGADT is
applied to two popular alternatives for the o�shore wind tur-
bine support structures, namely, quadropod and tripod jacket
trusses. 	is design optimization problem, with its two ver-
sions, is nonlinearly constrainedwhere the objective function
is the material weight of the supporting truss. 	e selected
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design variables are the truss members’ cross-sectional areas,
as well as the truss members’ end node coordinates (which
determine the members’ lengths). 	e maximum displace-
ments of the nodes and the maximum stresses in members
are the applied constraints. 	ese constraints are managed
via nonstationary, dynamically modi
ed penalty functions.
During analysis and design of the two jacket structures, they
are subjected to gravity, wind, wave, and earthquake loading
conditions.	e results show that the (GADT)method is very
e�cient in 
nding the best discovered optimal solutions in
both cases. 	e resulting savings in the optimally designed
o�shore support structures using the GADT far outweighs
the necessary additional computational e�ort.
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