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Abstract Operating rooms (ORs) are simultaneously
the largest cost center and greatest source of revenues
for most hospitals. Due to significant uncertainty in
surgery durations, scheduling of ORs can be very chal-
lenging. Longer than average surgery durations result
in late starts not only for the next surgery in the sched-
ule, but potentially for the rest of the surgeries in the
day as well. Late starts also result in direct costs asso-
ciated with overtime staffing when the last surgery of
the day finishes later than the scheduled shift end time.
In this article we describe a stochastic optimization
model and some practical heuristics for computing OR
schedules that hedge against the uncertainty in surgery
durations. We focus on the simultaneous effects of se-
quencing surgeries and scheduling start times. We show
that a simple sequencing rule based on surgery duration
variance can be used to generate substantial reductions
in total surgeon and OR team waiting, OR idling, and
overtime costs. We illustrate this with results of a case
study that uses real data to compare actual sched-
ules at a particular hospital to those recommended by
our model.
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1 Introduction

Operating rooms (ORs) have been estimated to ac-
count for more than 40% of a hospital’s total rev-
enues [1] and a similarly large proportion of their total
expenses, which makes them a hospital’s largest cost
center as well as its greatest revenue source. Recent
studies indicate that OR performance measures, such
as utilization, overtime, and on-time start performance
are well below achievable targets at most hospitals
[2]. Therefore they offer the potential for significant
improvements in operational efficiency. The purpose
of this article is to present results from a study of a
stochastic optimization model for daily scheduling of a
single OR. We present a two-stage stochastic recourse
model and numerical results illustrating its application
to real-world problems encountered at a large hospi-
tal. We begin by providing some background on OR
scheduling.

There are several different environments in which
surgical services are delivered. Hospitals provide a
broad range of services including an emergency depart-
ment for handling cases resulting from unpredictable
adverse events. Surgery at hospitals may be on an
inpatient or outpatient basis. In the inpatient setting pa-
tients are admitted to the hospital prior to surgery and
assigned a hospital bed. After their scheduled surgery
and postoperative recovery they are returned to their
room for the remainder of their recovery. Outpatients,
on the other hand, arrive at the hospital on the day
of the surgery. After surgery outpatients are held until
recovery is complete and then they are released from
the hospital. More recently, new delivery systems called
Ambulatory Service Centers (ASCs) have emerged [3].
ASCs service elective (scheduled) surgeries that can be
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performed safely in an outpatient setting with minimal
supporting resources. More complex surgeries that re-
quire inpatient services and possibly other supporting
services (e.g. emergency services) are performed at
hospitals.

Whether surgery is performed on an inpatient or
outpatient basis, at an ASC or hospital, many opera-
tional aspects of the OR scheduling problem remain the
same. ORs in both environments have very high fixed
costs, and in many cases the large proportion of the
cost is associated with the labor cost of the OR team.
Typically ORs have a planned utilization time (e.g. 8 h)
beyond which overtime costs for some members of the
OR team begin to accrue. Therefore on-time surgery
starts are important since late starts result in the OR
team waiting, and increase the likelihood of overtime
which results in higher direct surgery costs and OR
team fatigue. At many hospitals and ASCs the OR
availability is limited and therefore there is heightened
emphasis on scheduling as many cases in a day as
is safe and cost effective. While some surgeries have
relatively predictable durations others may have signif-
icant (and unavoidable) uncertainty in their duration.
The combination of tight schedules and uncertainty in
duration creates the need for careful consideration of
OR schedules to balance the competing criteria of OR
Team waiting, OR idling, and overtime.

There are two well known surgery scheduling sys-
tems, block- scheduling and open-scheduling. Under a
block-scheduling system individual surgeons or surgi-
cal groups are assigned times in a particular OR in a
periodic schedule (typically weekly or monthly). Sur-
geons book cases into their assigned time subject to the
condition that the mean duration of the cases fit within
the scheduled time period. For cases that do not fit, the
surgeon must request an allowance to overbook. On the
other hand, in open scheduling systems the intention is
to accommodate all patients. The surgeons submit cases
up until the day of surgery and all cases are scheduled
in ORs. Individual surgeries are allocated to ORs to
create a schedule prior to the day of surgery.

The model we present in this article considers the
scheduled time for surgical cases as well as the se-
quence of cases in a particular OR on a particular
day. We limit the scope of decisions to a particular
OR/day combination and we do not consider reas-
signing procedures from one day to another, or from
one OR to another. Therefore our model is applicable
to both block-scheduling and open-scheduling systems
described above. Our model extends the two-stage sto-
chastic linear programming model first presented in
Denton and Gupta [4]. Their model was used to com-
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pute scheduled time for cases given that the sequence
of surgeries is known.

In this article we relax the assumption of a fixed
sequence to study a more realistic version of the prob-
lem. Based on numerical experiments using real surgery
duration data, we compare optimal schedules to actual
schedules and show that sequencing decisions also play
a significant role in scheduling decisions. We present
the results from testing several heuristics including (a)
a pairwise interchange heuristic that takes advantage of
lower bounds on the optimal solution and (b) heuristics
that use the mean and variance of the surgery durations
to select a sequence. Our results indicate that the com-
mon practice of scheduling longer and more complex
cases earlier in the daily schedule may have a significant
negative impact on OR performance measures.

The remainder of the article is organized as follows.
In the next section we provide a brief review of the
literature relating to OR scheduling. Next, in Section 3,
we discuss the model and solution methodology used
for optimizing surgery schedules. We describe some
structural properties of our model, and discuss several
heuristics for computing OR schedules. In Section 4
we present the results of numerical experiments based
on real data. In Section 5 we discuss some practi-
cal challenges to implementing the model. Finally, in
Section 6 we summarize our findings and point out
future research directions.

2 Literature review

More general reviews than the following can be found
in Blake and Carter [5], Przasnyski [6], and Magerlein
and Martin [7]. Several papers present quantitative
models to allocate time for customers arriving to a
stochastic server. Sabria and Daganzo [8] consider the
problem of scheduling arrivals of cargo ships at a
seaport. Wang [9] discusses the problem in a man-
ufacturing context in which the arrival of parts are
scheduled on the shop floor. In the health care con-
text there have also been several articles presenting
heuristics for assigning appointments for arrivals at out-
patient clinics (for example Bailey [10], Soriano [11],
Mercer [12], Charnetski [13], Ho and Lau [14] and ref-
erences therein). Weiss [15] and Denton and Gupta [4]
propose stochastic optimization models for determin-
ing OR schedules. Strum, Vargas, and May [16] de-
scribe an application of a news-vendor model as a
heuristic for determining the planned OR schedule
duration to allocate for surgical subspecialties. They fit
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probability distributions to historical patterns of surgi-
cal demand and combine them with the newsvendor
model to minimize costs associated with underutiliza-
tion and overutilization of OR time. In contrast, in
our model we assume the total OR schedule dura-
tion is known in advance and is an input into our
model.

The problem of simultaneously sequencing and
scheduling surgical procedures that we consider in this
article is a combinatorial stochastic optimization prob-
lem. Few articles have considered both of these fac-
tors in constructing OR schedules. Weiss [15] studied
sequencing decisions in the two-surgery context and
showed, using stochastic dominance arguments, that for
certain selective choices of distributions the optimal
solution is in order of increasing variance of service
durations. Wang [9] conjectured that the optimal rule
for n > 3 customers is also in order of increasing vari-
ance; however, no proof is given beyond the case of
n = 2. Vanden Bosch and Dietz [17] evaluate a pairwise
interchange heuristic for sequencing patient arrivals
at a medical office with varying service duration dis-
tributions. They consider a heuristic based on a dis-
crete lattice of potential service durations, and present
encouraging results for small (n = 6) problems which
consider waiting and idling time costs as the relevant
measures. Dexter and Ledolter [18] study prediction
bounds for operating room times and consider the ef-
fect of sequencing on mean tardiness, pointing out that
sequencing less uncertain cases earlier reduces mean
patient waiting.

Surgical case sequencing decisions may also have an
effect on other activities, such as patient intake and
recovery. Dexter and Marcon [19] consider the impact
of sequencing on post anesthesia care unit staffing.
They find that the longest case first rule, often used in
practice, performs poorly from a staffing perspective,
and that the shortest case first rule performs relatively
well with respect to a number of other decision rules.
As we show in the remaining sections, these results tend
to be consistent with our findings about the impact of
case sequencing rules on the OR scheduling measures
of waiting, idling, and tardiness.

In contrast to the above referenced work, we provide
a formulation of the model as a two-stage recourse
problem with first stage binary decision variables repre-
senting sequencing decisions. While many of the stud-
ies above are based on Monte Carlo simulation, our
approach seeks to optimize the scheduled time and
sequence of surgical cases in an OR. We exploit the
structure of the problem to develop and test several
easy-to-implement heuristics.

3 Model formulation and methodology

In this section we describe a two-stage stochastic pro-
gramming model for determining the optimal surgery
schedule. In addition to the measures considered in the
cited literature, the model we propose also includes
tardiness (overtime) with respect to a planned OR uti-
lization. Tardiness is important because late completion
of surgeries in an OR can have a negative impact on an
organization’s performance. For instance, depending
on the compensation policies, in some cases there can
be a direct cost associated with overtime for members
of the OR team if the planned completion time is syn-
chronized with a shift end. In other situations, where all
members of the OR team are salaried, late completion
impacts planned future activities for staff members. For
example, if an OR is planned to close at noon a surgeon
may have outpatient clinic hours in the afternoon which
would be impacted by late closure. In our model we
assume that the quality of a schedule can be measured
as a weighted sum of the expectation of three measures:
waiting time, idling time, and tardiness. We let n denote
the number of surgeries to be scheduled in a given
session. Uncertainty is denoted by a scenario w that
defines the vector of collective outcomes of the random
surgery durations, denoted by z(w), having support
E C %" and probability distribution F on E. Surgery
duration random variables are denoted by z;(w) where
the subscript i indexes the n surgeries. The decision
variable, x;, defines the scheduled time for surgery i.
Note that selecting the scheduled time is equivalent
to selecting the start time for surgeries where the first
starts at time zero, the second at x|, the third at x; + x,,
and so on. The waiting and OR idling time prior to each
surgery are represented by w;(w) and s;(w) respectively,
where each depends on the random surgery durations
through the scenario, w. Based on this notation the
waiting and idling times can be written as the follow
recursive functions.

i=2,...,1,

1)

w;(w) =max(w;— (@) +z;—1 (w) —x;_1, 0),

si(w)=max(—w;_j(w)—z;—1 (@) +x;-1,0), i=2,...,n.

2
It is assumed that the first surgery starts on time, i.e.,
wi(w) = s1(w) = 0. Tardiness, denoted by ¢, is mea-
sured with respect to the planned duration for which
the OR will be utilized, d, and can be written as

n—1
{(w) = max (w,,(a)) + z,(w) + Zx,- —d, 0)

i=1
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Waiting, idling, and tardiness are all functions of the
random surgery durations. Given these definitions the
stochastic optimization problem can be written as min-
imization of the weighted sum of the expectation of
waiting, idling, and tardiness, as follows

Z =min Z c;"E[w,-(a))]—i—Z cfE[si(a))]-i-Ce E[Z(a))]} .

i=1 i=1
®)

Since the expectations in Eq. 3 are over multiple ran-
dom variables, evaluation of the objective function is
computationally challenging, let alone computing the
optimum. Denton and Gupta [4] exploit structural
properties of the problem to develop fast solution
methods based on an L-shaped decomposition method.
We discuss this further in the next section. For now we
describe a special case in which Eq. 3 is easy to solve.

3.1 Two surgery model

The special case of Eq. 3 in which n = 2 and ¢! = 0 was
analyzed by Weiss [15]. For this case it is only necessary
to determine the scheduled time for the surgery that is
selected to be first since the other case comes second by
default. Thus, for simplicity we drop subscript i from x;,
¢, and ¢}, in the following discussion. Weiss showed the
case of n = 2 corresponds to the newsvendor problem
and therefore a closed form expression for the optimal
surgery allowance for the first job (the job allowance
for the second job is immaterial) is known. Letting
F;(-),i=1,2, denote the cumulative distribution func-
tion (c.d.f.) of the two surgeries, and F(-) = 1 — Fi(-),
the problem for n = 2 can be written as follows:

Z =min {¢" E,[wy(@)] + ¢' Eyls2(e)]} . (4)
where
Eolwn(@)] = /0 " (@itw) — 1) dFi(w)
_ / " @) dFiw) — xEi()
and
E,l52()] = /0 "= w@) dFiw)
_ /0 " @) dFi@) + xFy ().

where E,[w,(w)] and E,[s2(w)] both depend on which
surgery is selected to be first i = 1 or 2. The optimal
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allowance, x, is the solution to the newsvendor problem
obtained as follows:

x*:Fi_l{ ¢ }
c? + ¢’

Weiss described properties of this problem related
to sequencing including showing that when a convex or-
dering exists between surgeries it is optimal to sequence
surgeries according to that ordering. In our study of
the model we extend the objective function to include
expected tardiness, in addition to expected waiting and
idling. While a closed form expression for x* is not
available in this case, it is straightforward to extend
Weiss’s original sequencing argument to our model.

Proposition 1 If z;(w) <. z2(w) then the sequence
{1, 2} is optimal.

Proof Let the objective function for sequence {i, j} be
denoted by Z (x; {i, j}). Since z;(w) <r z2(w) and x7, x3,
are the optimal solutions for sequences {1, 2} and {2, 1}
respectively, it follows that

Z(x1;{1,2) < Z(x3; {1, 2})
=c"E[(z1(®w) —x5) "1+ E[(x; — z1(w)) "]
+ c'E[(z1 (@) + 22(0) + (x5 — 21 (@) T—d) 1]
< " E[(z2(0) —x3) T+ E[(x5 — 22(w)) "]
+ ¢ E[(z2(w)+ 21 (@) + (x5 — 22 (@) T—d) 1]
=Z(x3;{2,1}). O

Where the last inequality follows from the convex
ordering and convexity of the expectation of waiting,
idling, and tardiness times.

The above proposition establishes, for certain special
cases, the optimal sequence of surgeries. To the authors
knowledge no such results for the appointment schedul-
ing problem for n > 2 are known. However, we can use
the insight from Proposition 1 to motivate heuristics for
n > 2. In the next section we present a stochastic pro-
gram which captures decisions about scheduled surgery
time and sequencing decisions. We describe some easy-
to-implement heuristics for sequencing surgeries based
on the model, and in Section 4 we compare the results
of the heuristics to optimal solutions based on actual
surgery schedules.

3.2 Stochastic programming formulation

The special case in which sequence is determined a
priori can be formulated as a two- stage recourse prob-
lem. In this article we assume a discrete finite set of
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scenarios, denoted by {w | kK = 1, ..., K}, that are repre-
sentative of the uncertainty in surgery durations, such
as would result from statistical sampling. Given this

discrete set of scenarios we can write the deterministic
equivalent of the two-stage recourse problem as the
following sample average approximation [20].

Z = min {kz; lK <lz;: c;wiwg)  + lz;:c‘si(a)k) + c‘fﬂ(wk)) } (5)
s.t. — wi(wr) + wigr(wp) = sip1(wr) = zilwr) — X, (i, wk) (6)
—wa(wp) + L) — g(wr) = Zn(wp) —d+ % xj, Yoy (7
=1
xi = 0, Vi, wi(wk) = 0, si(wr) =0, V (I, wk) €(wp), g(wr) = 0, Yoy (®)

The first constraint balances waiting and idling times
with respect to the actual and scheduled time for
surgery. Similarly, the second constraint balances the
overtime based on the completion time of the last
surgery and the planned OR utilization, d. The above
formulation includes an additional slack variable g
which denotes the earliness with respect to the planned
OR utilization. It is necessary for an accurate formula-
tion, however, earliness is not explicitly penalized in the
objective function.

Relaxing the assumption that the sequence is prede-
termined makes the problem combinatorial in nature
(with n! sequences if all surgeries are distinct). This
relaxed version of the problem can also be formulated
as a two-stage recourse problem. However, the formu-
lation includes first stage binary decision variables rep-
resenting sequencing decisions which must be defined
in advance of knowing the outcomes of the random
surgery durations. The following is the corresponding
two-stage stochastic mixed-integer-program

Z(x*, 0") = min {XK: % <2n: ) cirwir (@) + i (@) + C%(wk)) } €
k=1 i=1 =1

st wip(wr) — Mi(wp)oiy <0 VG, 1, k) (10)
sk — Mi(w)oiw <0 V(. i', k) (11)
Xn:oﬁ/ <1 Vi (12)

i=1
Z ; oir =n—1 (13)

i=1 =1
- 2”: wii(wk) + Xn: wii (@k) — Xn:sii’ (wr) +x;i = zi(wk) V(G wx) (14)

=1 =1 =1
Xn: zi(wy) + z”: Zn:Sii’ (@) — (i) + () = d (15)
i=1 i=1 =1

oir € {0, 1} Y(i, ), x; = 0, V; &), g(@k) = OV wi, wii(wk), si(wk) = 0V (@, 1, wx) (16)
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In the above two-stage stochastic mixed-integer-
program o;y and x; are the first stage decision variables
and wy, s;7, £, and g are the second stage variables.
The variable o; is a binary decision variable repre-
senting sequencing decisions where o;; = 1 if surgery
i directly precedes i’ and 0 otherwise. Waiting and
idling variables, w;; and s;7, are now indexed by mul-
tiple surgeries, and constraints (10) and (11) require
that waiting and idling times between surgeries be
zero unless the surgeries are consecutive. Multiple in-
dices are required for w;; and s;; in this formulation
because waiting and idling are sequence dependent
and the optimal sequence is not known in advance.
Thus waiting and idling may be non-zero between any
surgeries and, furthermore, they are constrained to be
zero between all surgeries except those that are con-
secutive. Similarly, cost coefficients for waiting and
idling, c}; and cj, respectively, depend on the sequence
of surgeries. Thus, for example, waiting time between
two surgeries performed by different OR Teams will
have a higher waiting cost since in such instances the
OR Team and a patient waits, as opposed to just the
patient waiting. Therefore, setting a high cost for OR
Team waiting will tend to result in contiguous cases
for each team. Constraints (12) and (13) are sequence
feasibility constraints enforcing the fact that all sur-
geries must be sequenced, and that subtours are not
permitted. Finally, constraints (14) and (15) balance
waiting/idling and tardiness/earliness respectively. The
inclusion of sequencing decisions in the above model
makes it considerably more complex. Therefore, in the
next sections we propose and test several heuristics
based on the model.

3.3 Heuristics

The stochastic mixed-integer-program of the previous
section is presumably NP-hard, and the combination of
stochastic and combinatorial elements of the problem
makes it particularly difficult to solve. We consider
several simple heuristic rules for approximating the
optimal solution and demonstrate their value by com-
parison with actual schedules used in practice. The fol-
lowing heuristics are motivated by the convex ordering
property we discussed in Section 3.1.

Heuristic I (HI): Sequence surgeries within each sur-
geons block of cases in order of increasing mean of
durations. Compute the optimal scheduled time as the
solution to Eqgs. 5-7, and 8.

Heuristic 2 (H2): Sequence surgeries within each sur-
geons block in order of increasing variance of du-
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rations. Compute the optimal scheduled time as the
solution to Egs. 5-7, and 8.

Heuristic 3 (H3): Sequence surgeries within each sur-
geons block in order of increasing coefficient of varia-
tion of durations. Compute the optimal scheduled time
as the solution to Egs. 5-7, and 8.

The above heuristics resequence each surgeon’s cases
individually based on first and second moment infor-
mation, thus retaining contiguity of each surgeon’s
cases. Maintaining contiguity of cases minimizes setup
costs that would result from interchanging OR teams.
Thus, heuristics H1 and H2 generate orderings that
are identical to a convex ordering, if such an ordering
exists. Heuristic H3 captures both mean and variance
information to generate an ordering. In Section 4 we
compare H1-H3 to the optimal solution for several
instances of Egs. (9-14, and 15) that can be solved to
optimality via total enumeration.

For model instances that are too large for total enu-
meration we compare H1-H3 to an interchange heuris-
tic, HI. Heuristic H1 is a local search that starts with an
initial sequence (corresponding to the actual sequence
used in practice) and computes optimal scheduled times
by solving Eqgs. 5-7, and 8. At each iteration HI in-
vestigates randomly generated pairwise interchanges,
accepting an interchange each time it makes an im-
provement in the solution. By maintaining a feasible
choice of oy it is possible to take advantage of a fast
method for generating optimality cuts in an L-shaped
implementation to solve the restricted (fixed o0;) ver-
sion of formulation (9-14, and 15) (see [4] for details).
Furthermore, heuristic H/ can take advantage of the
lower bound generated from the solution of the master
problem at each iteration of the L-shaped method.
Thus, if the current bound at any given iteration is
worse than the best solution so far, the sequence can
be abandoned without fully solving the 2-SLP. With a
good initial bound this can significantly reduce aver-
age computation time per iteration for the interchange
heuristic. Following is a description of the algorithm.
Index j denotes the iteration with respect to pairwise
interchanges, and index v denotes iterations (cut gen-
eration) for the L-shaped algorithm for a particular
sequence. The algorithm stops when the maximum
number of interchanges, J, have been explored.

3.3.1 Interchange heuristic (HI)

Step 1. Initialize o; to a feasible surgery sequence.
Set j=v=1, ZY8 = 00, and Z* = 0. Initial-

ize the master problem.
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Step 2. Add an optimality cut to the current mas-
ter problem and solve to obtain Z'*!. Set
v=v+1.

If Z¥ > ZYB then set j= j+ 1, v = 1, reini-
tialize the master problem by removing all
optimality cuts, generate a new feasible se-
quence, 0;7, using random pairwise inter-
change, and return to Step 2.

It Zv—7Z""1'=0set ZVB=27v . If j=J
then stop. Otherwise generate a new feasible
sequence, o;r, using random pairwise inter-
change, reinitialize the master problem, and
return to Step 2.

Return to Step 2.

Step 3.

Step 4.

Step 5.

Steps of HI such as initializing the master problem, and
adding an optimality cut to the master problem are the
same as the steps of the L-shaped method for solving
two-stage stochastic linear programs [21].

4 Numerical results

In this section we present numerical experiments based
on real surgery scheduling data collected at Fletcher
Allen Health Care, a non-profit academic health cen-
ter serving Vermont and upstate New York. Approx-
imately 20,000 surgical procedures are performed at
Fletcher Allen each year. The main hospital campus
had 12 operating rooms that were scheduled for out-
patient and inpatient surgical procedures in 2004, and
the operating schedule was based on a 5-week block
schedule. Booking is done through a centralized oper-
ating room scheduling center and surgeons specify the
sequence for their individual cases. Collected data for
this study includes:

— The actual weekly surgery schedule for all ORs in
2004

— Historical surgery duration data for all surgeries
scheduled in the ORs in 2004

— Objective function weights based on input from OR
scheduling decision makers

We describe the results of an empirical evaluation of
confidence intervals for the optimal schedule of a single
OR, comparisons of the optimal to actual schedules
for 50 model instances, and the results of sensitivity
analysis for cost coefficients in the objective function.
Model instances were selected to present a broad range
of different settings including different numbers and
types of surgeries. However, the choices were biased
towards cases with a sufficient sample size to construct
scenarios for the stochastic program. There were ap-

proximately 250 different types of surgical procedures
(based on aggregations of CPT codes) performed dur-
ing the period of our analysis, with an average of 21
samples per surgery type. Scenarios were generated
by sampling with replacement from the historical data
set of individual surgery procedure durations. Sampling
was based on the surgery type alone, and not specific
to an individual surgeon. Therefore our results do not
control for systematic differences between different
surgeons.

4.1 Numerical experiments for a single OR

We begin the presentation of our results with an analy-
sis of a 1-week schedule for a single OR. The purpose
of this analysis is to provide summary statistics for
surgery durations within a particular OR (referred to
as OR1 from this point on), and empirical justification
of the sample size we use in our model. The OR1 test
models were selected since they have a range of model
instances corresponding to 2, 3,4, 6, and 12 surgeries for
the 5 days respectively (Monday through Friday). The
data set for OR1 contained 19 distinct procedure types
with an average of 47 observations per surgery type,
and a minimum of 11 observations for each surgery
type. The coefficient of variation across all surgery
types varied from 0.17 to 0.88. For each model instance
presented in this section the planned duration of OR
utilization, d, is defined as the difference between the
actual planned end time of the last case and the planned
start time of the first case. For instance, if the actual
schedule planned to start the first case at 7:30am and
the last case to end at 4:30aM then d was set to 9 h.

The results presented in this section and Section 4.2
are based on cost coefficient settings that were selected
through consultation with a senior decision maker and
management engineer involved in managing the oper-
ating room schedules during the period of the study.
The waiting time cost coefficients, ¢}, had two values.
For cases in which the same OR team was operating
on a new patient the waiting cost was set as ¢}y =
On the other hand, for surgeries in which the surgeon,
OR team, and patient wait for the OR to become
available the cost was set to ¢}; = 8 to reflect waiting
for additional resources (OR Team and patient). Thus
the waiting cost coefficients, c};, incorporate a sefup cost
which promotes contiguous sequencing of surgeries for
the same surgeon. Operating room time was highly
valued and the cost coefficient for idling the OR was
set to ¢j, = 8. Tardiness costs were set to ¢, = 4 in this
instance of the model. It is important to note that the
length d was not selected as the shift end time (e.g. 8 h)
which would, for some team members, correspond to
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Fig. 1 Illustration of 25

frequency distributions for
two surgery types based on a
sample of surgery durations

0 50 100

the time at which overtime costs would begin to accrue.
Therefore ¢, should be viewed as a penalty for late com-
pletion of surgeries, rather than a precise overtime cost.

Figure 1 illustrates the empirical probability distri-
butions for two specific examples of surgeries in OR1.
The structure of these example distributions is typi-
cal of uncertainty in surgery durations, where there is
a fairly significant mass of probability confined to a
predictable range, and a tail indicating a lower prob-
ability of extended surgery duration resulting from
unexpected complications. Instances of the stochastic
linear programming model were created using 10, 000
scenarios. To evaluate the effect of sample size 100
replications of the optimal solution with K = 10, 000
were performed for each of the 5 daily schedules for
the OR1 weekly schedule. The confidence intervals for
the optimal solution for OR1 test models ranged from
approximately +1 to 2.5% relative to the mean. Based
on these results we use K = 10, 000 scenarios for the
remainder of our numerical experiments.

4.2 Optimal vs. actual schedules for multiple ORs

In this section we draw comparisons between actual
schedules, optimal schedules, and schedules computed
using the proposed heuristics. We evaluate a large
sample of daily schedules (50 in total) with each one
corresponding to a different OR/day combination. The
OR/day combinations were selected such that multiple
schedules were chosen from each of the ORs, schedules
included most of the types of surgeries performed in
2004, and the number of surgeries scheduled varied
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between 2 and 12 (where 12 was the maximum number
scheduled in any OR).

Table 1 compares results for 20 representative sam-
ples. In the table we let x” and x* denote the vectors
of actual and optimal scheduled times respectively, and
0" and o* denote the vectors of actual and optimal se-
quence respectively. The results compare the proposed
heuristics to (a) the objective function, Z(x°, 0%), for
the actual schedule used in practice for the OR dur-
ing the period of the study (b) the objective function,
Z (x*, 0%), for the optimal scheduled time and the actual
sequence and (c) the objective function for the optimal
sequence and optimal scheduled time, Z (x*, 0*). Thus,
the effects of optimizing scheduled time and sequence
of surgeries can be separated.

For the 50 test models considered, 14 had n > 4 and
were evaluated using the pairwise interchange heuristic
rather than total enumeration, due to unacceptable
computation time for the latter. The remaining test
models were solved to optimality by total enumeration
of all sequences. To compare heuristics we define the
relative difference between the best solution found,
Z*, and the heuristic, Z, as 100 x (Z# — Z*)/ Z*.
Comparing heuristics H1-H3 to the best solution (the
optimal, Z*, for n < 4 and the best solution found with
H1I for n > 4) yields the following results

— HI1, H2, H3, found the best solution 32, 62, and
58% of the time respectively. For all instances in
which H1 was optimal, H2 was also optimal, i.e, the
ordering for H1 and H2 were the same in these test
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Table 1 Numerical example

illustrating the effects of Model # n Zx% 0" Zx*o") Zx* o) HI H2 H3
optimizing scheduled time
and sequence vs. heuristics 1 2 886.61 162.73 134.82 162.73 134.82 134.82
for an actual OR schedule for 2 2 303.01 232.15 232.15 232.15 234.46 234.46
varying numbers of surgeries 3 2 337.44 297.61 297.61 358.71 297.61 297.61
fromn=2ton=12 4 3 759.05 213.87 212.65 213.87 212.65 212.65
5 3 341.33 298.99 248.76 249.26 248.76 248.76
6 3 1,548.85 393.63 245.32 245.32 245.32 245.32
7 4 791.30 436.57 331.07 419.05 331.07 406.68
8 4 806.21 665.89 571.35 571.35 571.35 571.35
9 4 925.61 474.05 304.37 476.49 304.37 304.37
10 5 1,529.66 518.19 430.60 517.96 432.36 430.60
Obiecti . 1 5 1,289.29 1,216.11 852.55 976.98 852.55 884.04
jective function
coefficients: c¥ = 3 (no OR 12 5 1,290.79 433.06 406.23 485.05 408.12 406.23
Team setup between i and 7), 13 5 1,173.77 807.36 496.26 597.08 554.66 554.66
¢ = 8 (with OR Team setup 14 6 1,209.27 1,058.25 951.00 951.00 951.00 1,000.82
betweeniandi’), ¢}, = 8,and 15 6 886.94 686.25 592.10 695.55 592.10 592.10
C[ — 4. Note that for instances 16 7 1,44—742 1,16797 886.43 920.89 892.02 910.78
where n > 4 HI was used to 17 7 922.67 386.07 308.34 467.95 308.34 308.34
generate the best sequence 18 10 2,159.32 931.17 599.96 637.49 603.54 617.93
because these problems could 19 11 1,790.65 737.91 567.10 655.50 567.61 567.10
not be solved to optimality in - »( 12 143308  1,055.10 868.50 902.38 877.19 910.69

reasonable computation time

models. For all but two test models in which H3 was
optimal, H2 was also optimal.

— The average deviation of H1, H2, H3, from the
optimum for all 50 test models is 12.74, 3.57, and
5.58% respectively. The worst case deviation for
H1, H2, H3, is , 243, 102, and 102% respectively.
These results indicate the performance of H?2 is
quite robust on average, and superior to heuristics
H1 and H3. However, there are specific instances
in which the heuristic performs poorly, which is to
be expected among a large number of experiments.

Across all test models we found that optimizing sched-
uled times while leaving the sequence fixed leads to
a 40.40% average improvement, with maximum and
minimum improvements of 88.57 and 2.76% respec-
tively. Optimizing both scheduled times and sequence
results in a 24.17% additional improvement on average,
with a maximum and minimum of 243.30 and 0% re-
spectively. In addition to the results presented above
we have also found that sequencing alone, without opti-
mizing scheduled time, can have a significant effect, i.e.,
resequencing cases while assuming the actual scheduled
time for cases remains unchanged.

4.3 Cost sensitivity analysis

Recognizing that the calibration of cost coefficients
is sensitive to the particular health care environment,

and its associated cost structure, we present numerical
experiments for the OR1 model instances described
above with three choices of cost parameters in Table 2.
For each choice we assume idling costs are zero to
simplify comparisons between problems with different
cost coefficients. This was done for two reasons. First, to
differentiate the results from those of Table 1 in which
idling costs take nonzero values. Second, because idling
and tardiness similarly penalize excess scheduled time
for surgeries (note that penalizing tardiness is equiv-
alent to penalizing idling when d = 0). Thus, Table 2
corresponds to numerical experiments in which the
relative differences between waiting and tardiness costs
are set to high/low, equal and low/high, respectively.

The most significant feature of Table 2 is that the
relative improvement for the optimal schedule (near
optimal in the case of larger instances) is quite large
for all choices of cost coefficients. Another significant
feature of Table 2 is that heuristic H2 outperforms
the other heuristics, except in one large instance of
the model (Thursday) in which heuristic HI finds a
marginally improved sequence. The relative difference
between H2 and HI in this case is very small (less
than 1.1%). Combining these results with the numerical
results of Table 1 provides strong evidence that H2 is
robust with respect to problem size, surgery procedure
mix, and cost parameters.

Based on the results in Table 2 it is clear that the
relative importance of optimizing scheduled time and
sequence depends on the choice of cost coefficients.
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Table 2 Numerical example

illustrating the effects of Cost Coefficients Heuristic  Monday Tuesday Wednesday Thursday Friday
optimizing time allocation

and sequence vs. heuristics & =1c,=0c=1 2Zx%e") 2411 28.65 241.03 230.53 131.66

for an actual OR schedule Z(x*, 0% 1103 12.66 148.98 142.59 124.66

Z(x*, 0*) 1103 12.66 100.21 133.08 91.36

HI 11.03 13.15 100.21 142.77 124.85

H2 11.03 13.00 100.21 134.61 91.36

H3 11.03 13.00 100.21 140.77 91.36

ch=1c,=0c"=3 Zx%a 908 35.06 339.80 362.61 262.75

Zx*, 0% 350 22.12 275.15 275.00 240.21

Z(x*,0%) 3.0 22.12 225.47 256.48 200.59

HI 3.50 23.01 225.47 274.73 240.93

Objective function H2 3.50 23.29 225.47 257.65 200.59

coefficients: ¢ — 1 H3 3.50 22.29 225.47 273.07 200.59

(independent of OR Team & =3,¢,=0c=1 Zx 0 1420 79.55 624.32 650.24 312.68

setup between i and i/)’ 7 (x*, 00) 10.64 23.07 248.26 291.96 254.38

¢$, =0, and ¢! = 1. Note that Z(x*,0%)  10.64 23.06 143.51 275.89 169.48

instances for Thursday and Hi 10.64 23.50 143.51 287.58 254.60

Friday, withn = 6 and n = 12 H2 10.64 23.83 143.51 278.89 170.11

respectively, were solved H3 10.64 23.83 14351 288.39 170.11

using HI

Figure 2 illustrates the difference between the solution
with optimal surgery start times, for a particular exam-
ple (Tuesday for OR1), and assuming that the sequence
is fixed a priori to the best and worst sequence. The
objective function for the two cases is plotted as a func-
tion of @ which controls the relative difference between
waiting and tardiness cost coefficients as follows

¢ =a,

l__
i cc=1—«

where « varies from 0 to 1 in Fig. 2. Figure 2 shows that
the relative difference is higher when the costs are more
evenly matched, and the differences are less substantial
when one cost is significantly higher than the other.
These results are intuitive for the following reasons.
If waiting costs are very high compared to overtime
costs then the optimal scheduled times will tend to be
chosen so that waiting is minimized, i.e., surgeries will

Fig. 2 Illustration of the 10
range in the optimal objective

function for the best and
worst sequences of surgeries
as a function of the relative

difference in the waiting cost
coefficient, c¢j; and tardiness

cost coefficient, c
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be scheduled such that they tend to start on time. As
a result, surgeries are approximately decoupled, and
the importance of sequencing is reduced since each
surgery can be approximately treated as independent.
On the other hand, if overtime costs are high relative
to waiting costs then time will be scheduled such that
waiting is likely. Thus surgeries will tend to start im-
mediately with little or no idling between surgeries. In
this case the probability distribution for the complete
sequence of surgeries can be well approximated by the
convolution of individual surgery durations. Since the
convolution is independent of sequence the effects of
sequencing are expected to be low.

5 Practical challenges and open problems

The model we present assumes complete flexibility
in making scheduling decisions. In practice there are
additional constraints that may affect sequence deci-
sions. For instance, in some situations it is preferable
to schedule complex (typically more variable) cases
early in the day when more significant resources are
available to deal with potential complications. At some
facilities day-of-surgery cases that will be admitted as
inpatients are scheduled later in the day since doing so
increases the probability of a hospital bed being avail-
able. Also, some cases are preferentially scheduled at
certain points in the day (e.g. patients with an infectious
disease may be scheduled later in the day to avoid con-
tamination of an OR) and patients that must fast prior
to a procedure are preferably scheduled early in the day
to avoid the hardship of fasting throughout the day.

The above constraints are based on patient safety
and convenience. Additional constraints may arise due
to staff and other resource availability constraints. For
instance, surgeons must be available at outpatient clin-
ics for pre and post-surgery appointments with patients,
thus OR sequencing decisions are coupled with other
activities during the day. (These constraints tend to be
more significant in block-scheduling than open booking
environments, since the latter tend to have surgery and
outpatient clinic hours on separate days.) The availabil-
ity of diagnostic equipment or other finite resources
can limit the number of a certain type of procedures
that may occur at the same time. Therefore, myopic
resequencing of cases in all ORs, without consideration
of resource based constraints, may result in infeasible
schedules.

The numerical results presented in this paper are
based on a relatively comprehensive data set sufficient
for modeling probability distribution functions for
surgery durations. However, in many environments

such historical data may be unavailable or insufficient.
When limited data is available subjective estimates of
mean and variance in surgery durations may be the
only means for implementing the proposed heuristics.
Dexter and Ledolter [18] present encouraging results
of a bayesian method for developing lower and upper
prediction bounds. Combining this approach with the
model presented in this article could extend use of
this model to environments with less historical data;
however, our heuristics were not tested under these
assumptions, and therefore the results are an upper
bound on the real benefits that could be achieved in
such environments.

Based on the results presented in this article we find
that the heuristics we present lead to significant im-
provements when compared to actual schedules used in
practice. For the special situation of n = 2 we proved a
convex ordering of surgeries is optimal, however, more
general results for n > 2 are not known. Furthermore,
no bounds on the quality of the results of the heuristics
we present are available, leading to open questions
about new heuristics and bounds on the optimal solu-
tions. In addition to new heuristics and bounds for the
single OR problem, more general models and methods
for optimizing multi-OR schedules represent an open
area of research including:

— Consideration of allocation of surgeries to multi-
ple operating rooms to optimize surgery mix, and
across multiple days to construct optimal weekly
and monthly schedules

— Allocation of scarce resources (e.g. specialized
staff, mobile diagnostic equipment)

— Reservation of OR capacity for accommodating
urgent and emergent cases (add-ons) that arise on
short notice.

6 Conclusions

Based on the analysis presented in this article we draw
the following general insights of relevance to OR man-
agers, directors, and surgical planning committees.

— Stochastic models that consider uncertainty in
surgery durations offer the potential for significant
improvement to daily OR schedules

— Improvements to OR schedules are sensitive to
both scheduled time and sequencing decisions

— The effects of optimal sequencing depend on the
relative importance of performance measures

— Most of the improvements resulting from rese-
quencing of surgeries can be achieved using the
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easy-to-implement heuristic, H2, which dominates
heuristics H1 and H3 in nearly all test models

The performance of H2 for sequencing decisions is
supported by the numerical results presented, and the
analytic result for the special situation of n =2 pre-
sented in Section 3.1. Heuristic H2 seems intuitively
reasonable, since positioning high variance surgeries
late in the schedule minimizes the potential impact on
waiting time for surgeries later in the schedule. In other
words, a high variability surgery at the beginning of
the day may increase waiting time for the next surgery,
as well as all consecutive surgeries. Furthermore, due
to its ease of implementation (compared to HI which
performs similarly well) heuristic H2 demonstrates the
best trade-off between solution quality and solution
method complexity. Anecdotal evidence indicates this
heuristic is not commonly implemented in practice,
where it is typical to schedule longer and more variable
surgeries earlier in the day. Therefore there is the
potential for practical improvements in many surgery
scheduling environments. The rule is also directly ap-
plicable to other manufacturing and service systems
where appointment based models are used.
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