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Optimization of synchronizability in multiplex networks by rewiring one layer
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The mathematical framework of multiplex networks has been increasingly realized as a more suitable
framework for modeling real-world complex systems. In this work, we investigate the optimization of
synchronizability in multiplex networks by evolving only one layer while keeping other layers fixed. Our
main finding is to show the conditions under which the efficiency of convergence to the most optimal structure is
almost as good as the case where both layers are rewired during an optimization process. In particular, interlayer
coupling strength responsible for the integration between the layers turns out to be a crucial factor governing the
efficiency of optimization even for the cases when the layer going through the evolution has nodes interacting
much more weakly than those in the fixed layer. Additionally, we investigate the dependency of synchronizability
on the rewiring probability which governs the network structure from a regular lattice to the random networks.
The efficiency of the optimization process preceding evolution driven by the optimization process is maximum
when the fixed layer has regular architecture, whereas the optimized network is more synchronizable for the fixed
layer having the rewiring probability lying between the small-world transition and the random structure.
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Introduction. The framework for a single network has been
extremely successful for predicting and understanding the
behavior of complex systems [1]. However, recent studies
of multiplex networks are providing new insights into the
research in real-world complex systems by incorporating in
the analysis the fact that more than one type of interaction
may exist among the same units. Thus, multiplex networks are
expected to provide a better understanding of the underlying
structural and dynamical properties of real-world systems as
compared to the traditional isolated networks approach [2]. For
instance, diffusion processes taking place on multiplex net-
works have been shown to exhibit abrupt transitional behavior
guided by interlayer coupling strength [3]. Entropy rates and
information transmission was shown to be strongly regulated
by the ratio between interconnectivity and the size of the
single layer [4]. Similarly, cluster synchronization of a layer
in multiplex networks has been demonstrated to be strongly
affected by the network parameters of other layers [5,6].
Furthermore, endemic states in multiplex networks have been
shown to crucially depend on the interconnectivity of the
layers, not emerging in individual layers when considered
in isolation [7,8]. The multiplex framework has been incor-
porated to explain patterns formation in a reaction-diffusion
system [9].

Furthermore, synchronization phenomena or the collective
behavior of coupled dynamical units has been a topic of
intensive research [10]. The dynamical behavior of interacting
units depends on the structural properties of interactions. One
such relation between the structural property of a network
and the synchronous dynamical behavior of units interacting
via diffusive coupling is measured by the synchronizabil-
ity of the network, defined by the ratio between the first
nonzero and the largest eigenvalues of the corresponding
Laplacian matrix [11,12]. The larger (smaller) the R values,
the smaller (the larger) the coupling strength interval for which
synchronization is observed. Furthermore, using a master
stability function, various possibilities of synchronization such

as inter- or intralayer have been discussed for multiplex
networks [13].

The most optimized network in terms of synchronizability
has been shown to exhibit homogeneity in its degree distri-
bution and in the betweenness centrality of the nodes [14].
Optimization of synchronizability in networks with nodes
connected by weighted strengths is a problem with an
extra dimension of complexity. However, it has been shown
that such networks can be successfully evolved to become
optimally synchronizable [15–17]. Even more challenging is
the optimization of multiplex networks, which would require
optimization strategies involving several network parameters
and larger dimensional systems. Take the brain as an example;
it learns by rewiring its synaptic connections. If the brain were
to adapt (optimize behavior) based on all its possible scenarios,
that would be a fantastic complex optimization process. Rather,
it is plausible to think that optimization in the brain (such as
those driven by Hebbian learning rules) is driven by evolution
rules applied locally. This Rapid Communication shows that
indeed synchronizability of a whole multiplex network can
be achieved by rewiring only one layer, thus showing that
the computational complexity of optimization in multiplex
networks can be drastically reduced.

More specifically, we study optimization of a layer in a
multiplex network such that the entire network becomes more
synchronizable. During the evolution, only one layer is rewired
while keeping the other layer(s)’s topology fixed. Changing
the network architecture of one layer affects the dynamical
evolution of the other layers because of the interactions medi-
ated by the interlayer couplings. We therefore investigate the
efficiency of the optimization in terms of the interplay between
the intralayer coupling strengths of the layer going through
the evolution process and interlayer couplings. Furthermore,
we investigate the impact of the network architecture of the
fixed layer on the optimization efficiency. Our investigation
reveals that the interlayer coupling strength plays a crucial
role in determining the impact of the optimization process
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on the synchronization of the entire network. Interestingly,
even if the layer going through the evolution has much weaker
intralayer coupling strength as compared to that of the fixed
layer, the efficiency of optimization is high if there is a strong
interaction between the layers. Moreover, the optimization
leads to the best synchronizable multiplex network when the
network architecture of the fixed layer lies between a complete
random architecture and the one observed at the small-world
transition arising due to the combined impact of the degree
homogeneity and the diameter.

Optimization of complex networks is behind the success
of technological as well as natural adaptive processes. It is a
current scientific challenge to understand natural optimization
processes in order to reproduce them. For example, Ref. [18]
introduced a secret-key exchange protocol based on the
synchronization of two neural networks. The secret key would
be formed by the final trained synaptical weights, adapted
to promote full synchrony between the sender and receiver
networks. Security of the method is based on the fact that
an eavesdrop network would need more time to become
synchronous with either network. This Rapid Communication
shows that the ability of a whole network to synchronize can
be optimized by only rewiring a single network layer. This
result thus provides a way to improve on the security of
this secret-key exchange protocol by creating a sender and
a receiver network that could potentially become synchronous
more quickly. Finally, deep learning machines change the
internal structures of its neural network to optimize its logical
outputs. Even though synchronization is not required to train a
deep learning machine, if what we have shown in this work can
be transported to deep learning training, i.e., only one or fewer
hidden layers are trained, that would contribute to increasing
efficiency in the training of these complex machines.

Theoretical framework. Let A and B be two adjacency
matrices with dimension N × N representing layers of a
multiplex network. The elements in the adjacency matrices
(aij and bij ) take values 1 and 0 depending upon whether or
not there exists a connection between the i and j nodes. The
weighted adjacency matrix of the multiplex networks can be
written as

M =
[
A DxI
DxI EyB

]
, (1)

where Dx and Ey represent inter- and intralayer coupling
strength, respectively, and I (I T ) is the interlayer adjacency
matrix representing the connections from B to A (A to B).

We optimize the eigenvalue ratio (R) = λmax

λ2 , inverse of
synchronizability, where λmax and λ2 are the largest and
the first nonzero eigenvalue of the Laplacian matrix of the
multiplex network constructed from

∑2N
j=1 MijI − M , where I

represents the identity matrix. We use the simulated annealing
technique [19] to perform the optimization. Our optimization
aims at minimizing R, and thus, maximizing synchronizability.
This optimization technique has several variations depending
upon the problem at hand. For the current work, the method is
explained as follows. We take an 2initial multiplex network
with a given set of parameters. Next, we calculate the
eigenvalue ratio R1 of the corresponding Laplacian matrix
of the initial multiplex network. Rewiring is performed

only in one layer by keeping the second layer’s architecture
fixed throughout the evolution. We calculate the eigenvalue
ratio R2 of the multiplex network after performing a single
rewiring. The initial multiplex network is replaced by the
rewired multiplex network if the latter is more synchronizable
and R2 � R1 otherwise replaced with the probability p =
exp[(R1 − R2)/T ]. Whereas, the initial network is selected
with the probability 1 − p. T is a constant taken initially as
1.000. It is updated to the end of each generation by 0.999T .

During the optimization process, the fixed layer introduces a
limit to the synchronizability of the entire multiplex network.
Nevertheless, the effect of the fixed layer varies depending
upon inter- and intralayer coupling strengths. Naturally, if
the layer going through the rewiring during evolution has
stronger intralayer couplings as compared to that of the fixed
layer, the optimization should be more efficient. Interestingly,
we find that the interlayer coupling strength Dx has a more
profound impact on the optimization. To observe the impact
of Ey and Dx on the efficiency of the optimization process, we
systematically investigate the following cases. In case I, the
interlayer coupling strength is weak, i.e., Dx = 1 and the layer
with weaker intralayer coupling strengths (layer A) is rewired
resulting in evolution of this layer, whereas the architecture
of the layer (B) with stronger intralayer coupling strengths is
maintained throughout the evolution process. In case (II), the
interlayer coupling strength is strong (Dx is large), and other
parameters are the same as for case (I). In case (III), Dx is
large and the layer with smaller intralayer coupling (layer A) is
preserved during the evolution. The rewiring is performed only
in the layer having larger intralayer coupling strength (layer B).
To compare the results about the impact of change in only one
layer on the synchronizability of the entire multiplex network
with those obtained for changes in both the layers, we consider
two more cases. In cases (IV) and (V), evolution is allowed in
both the layers with case (IV) considering Dx > 1 and case (V)
considering Dx = 1. In case (VI), Dx = 1 and the layer with
weaker intralayer coupling strengths (layer A) is preserved,
and the layer with stronger intralayer couplings is evolved.
Furthermore, we measure the efficiency of synchronizability
by Rnorm = Ropt

Rini
, where Ropt and Rini represent the value of

R for the final optimized and the initial multiplex network,
respectively. As R and the synchronizability of a network are
inversely related, the lower the Rnorm value, the better the
efficiency of the synchronization.

Results. As the evolution progresses, the optimization
attempts to bring the layer being rewired to a structure which
is favorable for synchronization, whereas the fixed layer
imposes a limit to the synchronizability or on the efficiency of
the synchronization. Figure 1 demonstrates that for case (I),
optimization does not succeed in producing a synchronizable
network for any value of Ey we have considered. Whereas for
case (II), the optimization succeeds in finding synchronizable
networks for all the values of Ey considered here. Although the
maximum efficiency corresponds to a value of Ey for which
Rnorm is minimal, the exact value of Ey for which efficiency
is maximal depends on the size and average degree of the
network. Further, a low value of Dx typically produces a low
value of λ2, whereas high values of Dx lead to high values
of λmax [20]. Both these factors contribute to an increase in

040301-2



RAPID COMMUNICATIONS

OPTIMIZATION OF SYNCHRONIZABILITY IN . . . PHYSICAL REVIEW E 95, 040301(R) (2017)

1 2 3 4 5
log2(Ey)

0.5
0.6
0.7
0.8
0.9

1

R
n

o
rm

1 2 3 4 5
log2(Ey)

0.63

0.64

0.65

R
n

o
rm

1 2 3 4 5
log2(Ey)

0.6

0.7

0.8

R
n

o
rm

FIG. 1. R̄norm against Ey for several optimization configurations.
Left panel: Rnorm for case (I) for Dx = 1 (circles), case (II) for Dx

taking values from 2 to 32 (squares), case (III) corresponds to the
scheme for 2 � Dx � 32 and rewiring is done in the layer having
stronger intralayer coupling (layer B) (upper triangles), and case (IV)
(lower triangles). Middle panel: Rnorm for case (V) which is similar
to case (IV) except that the interlayer coupling is weak, i.e., Dx = 1
(stars) and case (VI) (diamonds). We consider Dx = Ey for the cases
having stronger interlayer coupling strengths. For the left panel and
middle panel, 〈k〉 of each layer is 10 with N = 500. Right panel:
Rnorm for case (III) (upper triangles) and case (IV) (lower triangles).
Network parameters are 〈k〉 = 20 with size N = 500. For each case,
optimization minimizes R for 200 000 iterations.

the R values, and for the model considered here, R can be
determined as follows: For Dx being smaller with respect to
Ey , referred to as the weaker Dx case, one can understand the
behavior of R using the following approximation:

R ≈
max

α
[λmax(Lα) + Dx]

2Dx

, (2)

where Lα is the Laplacian of the αth layer and λmax(Lα) is the
maximum eigenvalue of the Laplacian of the αth layer. For
the model considered in Eq. (1), the α index represents the
matrix A or matrix EyB, and therefore LA = ∑

j Aij I − A,
and LB = ∑

j EyBij I − EyB.
For Dx being larger as compared to the intralayer coupling

strength, referred to as the stronger Dx case, we have

R ≈ 2Dx + √
2λmax(LAV)

λ2(LAV)
, (3)

where LAV is the average Laplacian of two layers.
For small Dx values, R is governed by Eq. (2). Since

λmax of the fixed layer having stronger intralayer coupling
strength governs the numerator of Eq. (2) which leads to the
same value of R throughout the optimization, this results in
Rnorm

∼= 1. For larger Dx values, Eq. (3) starts to dominate
over Eq. (2). The layer going through the evolution, even
though having smaller intralayer couplings as compared to
those of the fixed layer, contributes to R as it is the average
value of the Laplacians of both the layers which appears in
the denominator of Eq. (3). Furthermore, structural changes
caused by the evolution process are capable of steering λ2

of the evolved layer toward larger values, resulting in the
smaller R values [Eq. (3)] and therefore, optimization is
successful. For a further increase in Dx , Eq. (3) holds even
better for the R values, and suddenly there is an increase in the
efficiency of the optimization. However, the larger the values
of Dx and Ey , the stronger the contribution of the fixed layer
coupling strength in LAV of Eq. (3). As a result, the efficiency
again decreases for case (II). The efficiency for cases (V)

and (VI), i.e., for smaller values of Dx , can be explained by
Eq. (2) where λmax comes from the rewired layer, which has
stronger intralayer couplings and hence always dominates the
numerator of Eq. (3). Interestingly, for smaller Dx values,
rewiring in both the layers [case (V)] does not lead to an
increase in the efficiency as compared to the rewiring in a
single layer having stronger coupling strength [case (VI)] as
illustrated in Fig. 1(b). For larger values of Dx and Ey , Eq. (3)
controls the values of R where structural properties of both
the layers are crucial to determine the spectral properties of
the LAV matrices. As a result, the efficiency is higher for case
(IV) corresponding to rewiring performed in both the layers as
compared to that of case (III), which corresponds to rewiring
performed in only one layer. However, further increments in
Dx , as well as in Ey (as Ey = Dx for Dx > 1), lead to a
domination of the contribution of stronger couplings in LAV

and as a result, the efficiency for case (IV) converges toward
that of case (III). Figure 1(b) depicts that the efficiency of
the optimization is the same for cases (V) and (VI), although
there are huge differences in the computational cost for the
optimization process. Case (V) considers rewiring performed
in both layers and case (VI) has only one layer being rewired.
Equation (2) explains this behavior since for both cases the R

values depend on λmax which is only determined by the layer
having the stronger intralayer coupling strength going through
rewiring for both the cases.

Furthermore, denser networks exhibit similar behavior for
efficiency as the sparser networks. The one difference as
compared to the sparser networks is that for cases (III) and
(IV), the efficiency is equal for a larger value of Dx (Dx � 4)
[Fig. 1 (right panel)]. As discussed earlier, that same efficiency
(single layer vs both layer rewiring) is achievable if R is
described by Eq. (2), since in the rewiring process only
one layer having stonger intralayer couplings dominates the
equation irrespective of whether both or a single layer get
rewired. As already demonstrated in Ref. [21], with an increase
in the average degree of networks, the value of Dx for which the
best synchronizable networks are obtained shifts toward higher
values and hence there exists an increment in the range of Dx

toward the higher side, for which R is governed by Eq. (2).
Consequently, for denser networks, the same efficiency for
cases (III) and (IV) is observed.

To study the dependence of the optimization process on the
topology of one fixed layer, we consider the initial fixed layer
constructed by the small-world model with various rewiring
probabilities pr . The small-world transition [Fig. 2 (left panel)]
for the Watts-Strogatz model is characterized by a clustering
coefficient as high as that of the regular network and the
characteristic path length being as small as that of the random
networks. For an Erdös-Rényi (ER) network representing the
layer going through the rewiring during the optimization
process, and for small values of pr typically smaller than
the small-world (SW) transition, the initial and the optimized
multiplex networks both have the same synchronizability
[Fig. 2(b)]. For pr larger than the value for the SW transition,
the synchronizability of both the initial and the optimized
multiplex networks starts increasing and attains its maximum
value (the lowest R value) at a rewiring probability which is
much higher than the critical parameter for the SW transition
pr , but much smaller than pr = 1. Such a dependence of
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FIG. 2. Left panel: Clustering coefficient (circles), characteristic
path length (squares), and normalized eigenvalue ratio (star) as
a function of small-world rewiring probability (pr ) of an initial
multiplex network having one layer represented by a SW network
with pr rewiring probability and other layers represented by an ER
network. Middle panel: Impact of pr on the optimized R value for
the average degree of each layer taken as 〈k〉 = 10 (circles) and
〈k〉 = 20 (squares). The fixed layer is represented by a small-world
network with pr rewiring probability and the layer represented by an
ER network is evolved through the optimization mechanism. Right
panel: pr vs Rnorm for 〈k〉 = 10 (circles) and 〈k〉 = 20 (squares). Each
layer of the multiplex networks has N1 = N2 = 500 and Dx = 1.

synchronizability on pr is the result of an interplay between
the degree homogeneity of the fixed layer and the layer going
through the optimization. Initially for a pr being smaller than
the value for the SW transition, the diameter of the fixed layer
is large resulting in a poor synchronizability of the entire
multiplex network. For pr being greater than the value for
the SW transition, as long as the fixed layer still has a small
degree of heterogeneity, the optimized multiplex networks
possess the following topological characteristics contributing
to better synchronizability: (1) degree homogeneity for both
the fixed layer and the layer experiencing the rewiring (i.e.,
the distribution of degrees is not broad); (2) small values
of both the average path length and the diameter of the
entire multiplex network. For the fixed layer generated with
pr = 1 or close to 1, although the diameter and the average
path length of the entire network are still small, the degree
heterogeneity of the fixed layer is high enough that it does
not get balanced by the rewiring of another layer during the
optimization process, resulting in a smaller synchronizability
of the optimized network. The value of pr , corresponding to
the maximally synchronizable network achieved through the
evolution process, decreases as the average degree of the initial
networks increases. This shift in pr toward the lower values
arises due to the fact that for denser networks, even very small
rewiring probability values are sufficient to destroy the degree
of homogeneity of the initial fixed layer, having a similar
impact on the synchronizability of the final evolved network.

Moreover, optimization of denser networks leads to a
less synchronizable evolved network than those achieved by
optimizing sparser networks, since denser networks possess
a larger amount of mismatch in the inter- and the intralayer
connections [22]. For the sparser networks, the efficiency of
synchronizability is high for a very large range of pr . However,
denser networks reflect comparatively a lesser efficiency of the
optimization, i.e., smaller values of Rnorm [Fig. 2 (right panel)],
as the fixed layer restricts the value of R to decrease beyond
a limit even though the second layer is rewired to enhance the
synchronizability of the entire multiplex network.
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FIG. 3. The initial (circles) and optimized values (star) of the
eigenvalue ratio (R) with an increase in the interlayer coupling
strength Dx for (a) one layer having a fixed ER configuration and
the other layer is rewired, (b) the fixed layer represented by a SF
network and the other layer is rewired, and (c) both layers are initially
represented by ER networks and both layers are rewired during the
optimization. (d) depicts the efficiency of optimization (Rnorm) when
the fixed layer is represented by an ER network and the other layer is
rewired (square). The case when the fixed layer is represented by the
SF configuration and the other layer is rewired is depicted by circles.
The case when both layers are represented by ER networks before
optimization and both the layers are rewired during the optimization
is depicted by stars. For all the cases, the network size in each layer
is 500 with average degree 10.

Further, to study the impact of change in the structural
properties of the fixed layer on the efficiency of optimization,
we consider the fixed layer being represented by ER random
and scale-free networks. Figure 3(a) depicts that there is
a decrease in R with an initial increase in Dx . With a
further increase in Dx , R starts increasing for the case of
ER representing the fixed layer. For the fixed layer being
represented by a scale-free network, R first decreases with
an initial increase in the value of Dx , and after attaining
a minimum value it remains almost constant for a further
increase in Dx or for larger Dx values. As Dx increases further,
R finally starts increasing. Again, similar to the previous
case of a fixed layer represented by an ER network, the
networks with lower Dx values are not optimizable [Fig. 3(b)].
This result is in contrast to the behavior exhibited for the
unrestricted rewiring scheme. When both layers are rewired,
the networks are optimizable for all the Dx values [Fig. 3(c)].
Figure 3(d) reflects that for the unrestricted rewiring, i.e.,
for rewiring taking place in both the layers, the efficiency
of optimization is maximum for a certain value of Dx after
which it again decreases. Interestingly, Dx for which efficiency
is maximum is shifted toward a larger value for the case
of a fixed layer being represented by ER random networks
which also corresponds to the maximum efficiency. There
is more shift toward a larger value for the case of a fixed
layer represented by the scale-free (SF) networks. The reason
behind this shift is that the local minima of R gets shifted
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toward a higher value of Dx for the layer having the scale-free
architecture [12].

Moreover, irrespective of an initially considered mirror
node correlation or the topology of the layer experiencing
rewiring, the final evolved multiplex networks possess the
same mirror node correlations as well as the intralayer
configuration. Note that for various values of Dx , the mirror
node correlations of the optimal multiplex networks have been
shown to exhibit negative degree-degree correlations [21].

Conclusion. Our results show that there are several path-
ways to improve synchronizability of multiplex networks,
either by altering parameters such as those that promote
integration of the layers (increasing the interlayer coupling
strength), or by evolving the network topology by rewiring
edges within layers, under an optimization process. The
surprising result is, however, that optimization of a single
layer can achieve networks that are roughly as capable to
synchronize as networks where all the layers are evolved
under similar optimization criteria. This result is particu-
larly relevant to works intended to improve synchronization
of systems where only one layer is accessible or when
one wants to optimize a system in a very cost-effective
fashion. Having in mind that real-world systems are very

large, complex, and composed of many layers, our work
points out that optimization in such systems can indeed be
carried out.

We have also studied the effectiveness of the optimization
process, measured by the network synchronizability achieved
through the evolution process, when the initial preevolved
networks have different initial topologies. We found that the
optimization leads to the maximum synchronizable multiplex
networks when the fixed nonevolved layer has a topology lying
in between a network with incipient small-world and fully
random topologies.

Networks theory has proven its aptness in providing insights
into controllability at a fundamental level. The controllability
is desirable for dynamical behavior associated with the
functionality of real-world systems. In traditional approaches,
external inputs are imposed to affect the dynamics of few nodes
which further causes a control of the entire system [23,24]. Our
work might refine the concept of controllability by the addition
of a system (one layer) that changes the dynamical evolution
of the entire system (multiplex) to a desired behavior. Further-
more, our work might complement works on controllability
by creating more synchronous evolved networks that could be
more controllable.
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