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1 Introduction

This is the revised edition of our technical report, which has been published in 1992.
There is no new stuff in this revision, but some minor bug fixes are helpful for imple-
menting the described algorithms. The results of this report also have been published
on ESANN ’93 [Schiffmann et al., 1993]. The dataset used in this comparision is
available by anonymous ftp (FTP server: ics.uci.edu, files: pub/machine-learning-
databases/thyroid-disease/ann � ).

Backpropagation is one of the most popular training algorithms for multilayer per-
ceptrons. Unfortunately it can be very slow for practical applications. Over the last
years many improvement strategies have been developed to speed up backpropagation.
It’s very difficult to compare these different techniques, because most of them have been
tested on very special data sets. The reported results are based on some kind of tiny and
artificial training sets like XOR, encoder or decoder. It’s very doubtful if this results
hold for a much more complicate practical application. In these report an overview
of many different speedup techniques is given. All of them are tested on a very hard
practical classification task, which consists of a big medical data set. As you will see
many of these optimized algorithms fail in learning the data set.

2 Application

We have used measurements of the thyroid gland for testing different approaches. Each
measurement vector consists of 21 values – 15 binary and 6 analog. Three classes are
assigned to each of the measurement vectors which correspond to the hyper-, hypo- and
normal function of the thyroid gland. Since over 92% of all patients have a normal
function, a useful classifier must be significantly better than 92% correct classifications.
The training set consists of 3772 measurement vectors and again 3428 measurements
are available for testing. The training period was limited to 5000 epochs using a fixed
3 layer network architecture with 21 input- , 10 hidden- and 3 output units. The
Network was fully interconnected. Using a SPARC2 CPU training takes from 12 to 24
hours. The weights of the network have been randomly chosen by a normal distribution
( ��� 0 � 0 ����� 0 � 1). The bias of each unit has been computed as follows. First the
average input pattern of the whole learning set has been calculated. While propagating
this averaged pattern through the network the bias of each unit is tuned to half activate
every hidden or output unit. By this means the gradient of the sigmoid activation
function of every unit is maximized, which has some benefits on the gradient descent
during the training.

3 Mathematical Notation

Many different mathematical notations are used to describe training algorithms for neu-
ral networks. In order to compare different techniques a uniform notation is necessary:
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��� : Activation of unit
�

����� : Connection strength from unit
�

to unit �	 � : Desired activation of output unit
�

(i-th’s component of the output vector)
����� : Netinput to unit
�


����� � �� ���������� 0

����� � ���

� � � 1
1 � �����! �" �

#%$
: Quadratic Error for pattern p

#%$
� ��'&)(+* " $ * " * � � "-,

. ���0/1	2�43 2
#

: Total quadratic error on the training set

#
� � $ #%$

5 #�$5 ���6� : Partial derivative for pattern 7 with respect to � ���
5 #5 � �6� : Partial derivative for the whole training set with respect to �8�6�

5 #5 � �6� � � $
5 # $5 � �6�

9:#
: Gradient with respect to the whole trainings set

9:#
�

. 5 #5 �
1
�

5 #5 �
2
� � � � �

5 #5 � � 39:#%$
: Gradient with respect to pattern p

9:# $
�
. 5 #%$5 �

1
�

5 #%$5 �
2
� � � � �

5 #%$5 � � 3
∆ ���6� . 
;3 : Weight update of �<�6� in the 
 -th learning step

� �6� . 
 � 1 3 � ∆ � �6� . 
=3 � � �6� . 
;3

4



4 Backpropagation

Basically, Backpropagation [Rumelhart, 1986] is a gradient descent technique to min-
imize some error criteria

#
. In the batched mode variant the descent is based on the

gradient
9:#

for the total training set :

∆ � ��� . 
=3 � /�� � 5 #5 ����� ��� � ∆ � ��� . 
 / 1 3
� and � are two non negative constant parameters called learning rate and momentum.
The momentum can speed up training in very flat regions of the error surface and
suppresses weight oscillation in step valleys or ravines. Unfortunately it is necessary
propagate the whole training set through the network for calculating

9:#
. This can

slow down training for bigger training sets. For some tasks (e.g. neural controllers)
[Schiffmann and Geffers, 1993] no finite training set is available. Therefore the update
is based just on the gradient for the actual training pattern

9 #<$
:

∆ ����� . 
=3 � /�� � 5 #%$5 ����� ��� � ∆ ����� . 
 / 1 3
A good choice of � and � is very essential for training success and speed. Adjusting
these parameters by hand can be very difficult and might take a very long time for more
complicated tasks.

Results of the training with backpropagation and update after every pattern presen-
tation heavily depend on a proper choice of the parameters (see Figure 1 and Table 1,
respectively). Nevertheless good results can be achieved by carefully adjusting learning
rate and momentum. Total error and recognition rate with respect to the training set and
for the testing set (rightmost 2 columns) are presented in every table of this report. In
order to compare the results more easily the best result in every column is underlined.
The recognition rate specifies the percentage of correct classified patterns. A pattern
is called correct classified, if the euclidian distance between the network output vector
and the desired output vector is smaller than to any other possible output vector.
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Figure 1: Backprop updated after every pattern for run 4, 8, 12 and 16
of Table 1
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Training Set Testing Set
� � Error Recog. rate Error Recog. rate

1 0.01 0.0 267.3 95.07 293.14 94.52
2 0.01 0.1 250.9 95.47 279.14 94.69
3 0.01 0.2 231.8 96.24 261.44 95.19
4 0.01 0.5 123.8 98.25 163.95 97.14
5 0.01 0.9 61.3 98.91 151.07 97.37
6 0.05 0.0 70.7 98.94 141.86 97.64
7 0.05 0.1 72.0 98.94 145.83 97.52
8 0.05 0.2 68.3 98.94 150.04 97.49
9 0.05 0.5 80.9 98.75 173.97 96.85

10 0.05 0.9 50.5 99.13 139.11 97.55
11 0.1 0.0 74.9 98.81 168.92 97.05
12 0.1 0.1 67.0 98.83 158.50 97.17
13 0.1 0.2 64.5 98.91 171.50 96.94
14 0.1 0.5 103.7 98.14 208.52 96.30
15 0.1 0.9 77.0 98.67 170.02 97.05
16 0.5 0.0 59.3 98.89 137.63 97.58
17 0.5 0.1 69.8 98.75 149.26 97.32
18 0.5 0.5 55.0 98.94 148.45 97.52
19 0.5 0.9 77.5 98.59 150.63 97.26

Table 1: Backprop updated after every pattern
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Results for a batched update after every training epoch are much worse (see Figure
2). No suitable parameters have been found for training a useful network.

5 Global learning rate adaptation

One way to optimize the backpropagation algorithm is to find proper values for the
learning rate automatically. The following techniques try to adjust this parameters
during the training. Most of them also adjust the momentum parameter, so that step size
and search direction are altered.

5.1 Fixed calculating of the learning rate

Harry A. C. Eaton and Tracy L. Olivier have suggested a calculation of the learning
rate for backpropagation using batched updates [Eaton et al., 1992]. This calculation is
based on the assumption that similar training patterns result in similar gradients. So it is
desirable to reduce the learning rate if there are many similar training patterns. Therefore
the training set must be divided in � subsets of similar patterns. Let

�
1 �
�

2 � � � � �
���

be
the sizes of these subsets. Learning rate and momentum can now be set in the following
manner:

� �
1 � 5� � 2

1 � � 2
2 � � � ��� �

2�

� � 0 � 9

For our application the training set was divided in 3 subsets representing the 3 different
output classes:

� �
1 � 5�

932 � 1912 � 34882 � 0 � 00043

As one can see (see Figure 3) the results are very disappointing. The learning rate
is to small while the momentum is to big (compare with Figure 2). No useful network
could be trained with this technique.

5.2 Decreasing learning rate

Christian Darken and John Moody decrease the learning rate during the training [Darken
et al., 1990]. This so called “Search-Then-Converge” strategy is suggested for back-
propagation using updates for every training pattern. Starting with a big learning rate
� . 0 3 the value is decreased during the training to approx �

.
0 3�� . 1 � 
;3 later on:

� . 
=3 � � . 0 3
1 � � 	

8



Training Set Testing Set
�

� Error Recog. rate Error Recog. rate
1 0.0001 0.0 525.5 92.47 462.63 92.71
2 0.0001 0.1 524.8 92.47 461.98 92.71
3 0.0001 0.9 478.5 92.58 426.07 92.85
4 0.001 0.0 473.3 92.60 422.32 92.85
5 0.001 0.1 461.8 92.63 414.34 92.85
6 0.001 0.9 568.0 92.47 500.00 92.71
7 0.01 0.0 568.0 92.47 500.00 92.71
8 0.01 0.1 568.0 92.47 500.00 92.71
9 0.01 0.9 568.0 92.47 500.00 92.71
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Figure 2: Backprop using batchmode
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Training Set Testing Set
�

� Error Recog. rate Error Recog. rate
1 0.00043 0.9 568.0 92.47 500.00 92.71
2 0.00043 0.0 511.0 92.47 450.10 92.71
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Figure 3: Fixed calculating of the learning rate
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The constant parameter � can be used to adjust this learning rate schedule with respect
to the total training period. After the first � learning steps the learning rate is halved by
this update rule.

As you see in Figure 1 big learning rates are useful in the early training phase but
result in oscillation later on. By using a decreasing learning rate during the training
the advantages of big values (fast learning in the early learning phase) and small values
(good asymptotic behavior) can be combined by a proper value for � (see Figure 4).
Unfortunately a good � can only be found by trial and error. Nevertheless networks with
a moderate performance have been trained by this algorithm.

Training Set Testing Set
�

�
� Error Recog. rate Error Recog. rate

1 0.5 0.0 500 57.7 98.99 141.78 97.46
2 0.5 0.0 1000 51.8 99.15 135.62 97.67
3 0.5 0.0 2000 44.2 99.20 126.84 97.90

 

1

2

3

Error

3Periods x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

0.00 1.00 2.00 3.00 4.00 5.00

Figure 4: Decreasing learning rate
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5.3 Learning rate adaptation for each training pattern

J. Schmidhuber also uses updates for every training pattern [Schmidhuber, 1989]. He
is calculating a new learning rate for every update and doesn’t use any momentum.
Therefore the tangent in the error surface of the actual training pattern at the current
position is used. The new values for every connection are found by calculating the point
of intersection with the zero plane. For practical reasons it is necessary to define an
upper limit for a single learning step. There also may be some error surfaces which never
reach the zero plane. For those surfaces a small constant value

# ����� ,� �" is subtracted to
make sure that zero points exists:

� . 
=3 � min
. # $ / # ����� ,� �"� 9 #%$ � 2 � �

���	� 3

∆ � ��� . 
=3 � /�� . 
=3 � 5 #%$5 ���6�
20 � 0 is the recommend value for �

���	�
. Schmidhuber emphasized, that his algorithm

is able to escape from a local minimum. Undoubtedly his strategy can escape from
such a local minimum (

# $�

� 0 � � 9:# $ �

� 0). Nevertheless this may result in very
big updates, which might corrupt the whole network in one learning step. It’s doubtful
if this is desirable especially for networks which already classify most of the training
patterns correctly. This strategy also can’t handle very big training sets where some
wrong classified patterns are likely to exist.

The achieved results (see Figure 5) support this theoretical disadvantages. Without
any offset the system shows a chaotic behavior which results in infinite updates. By
using a small offset useful networks can be trained. Nevertheless training with fixed
learning rates is superior to this approach (compare with Figure 1).

5.4 Evolutionarily adapted learning rate

R. Salomon uses a simple evolution strategy to adjust the learning rate [Salomon, 1989
and 1990]. Starting with some � the next update is done by using an increased and a
decreased learning rate. The one which results in better performance is used as a starting
point for the next update:

1. Create two equal networks and an initial learning rate .

2. Adjust the weights of both networks as follows:

∆ ���6� . 
=3 � / � . 
=3 � �� � � �
� 9 # �
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Training Set Testing Set
� ��� � # ����� ,  �" Error Recog. rate Error Recog. rate

1 20 0.00 - - - -
2 20 0.03 91.5 98.36 163.54 97.23
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Figure 5: Learning rate adaptation for each training pattern
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3. Discard the networks and restart with the former network and the initial learning
rate, if both total errors have been increased (Backtracking).
In the case of decreasing total errors use the network with a smaller total error
with learning rates �

. 
;3 � �
and �

. 
;3 � 1� to start the next learning step.

This simple strategy can handle almost any initial learning rate and greatly improves
the performance of backpropagation using batched updates (see Figure 6). To compare
the results one has to take into consideration the doubled calculation time. Nevertheless
no useful network can be trained.

Training Set Testing Set
� . 0 3 �

Error Recog. rate Error Recog. rate
1 0.001 1.1 332.1 94.64 347.32 94.14
2 0.01 1.1 331.1 94.64 346.79 94.08
3 0.1 1.1 331.3 94.64 346.73 94.11
4 0.5 1.1 535.2 92.47 472.46 92.71
5 1.0 1.1 536.1 92.47 472.85 92.71
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Figure 6: Evolutionary adapted learning rate
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5.5 Angle driven learning rate adaptation

L.-W. Chan and F. Fallside adapt learning rate and momentum during the training [Chan
et al., 1987]. Therefore the angle between

9:# . 
=3 and ∆ � . 
 / 1 3 is calculated. The
adaptation tries to adjust this angel at 90

�
. As long as the angle is less than 90

�
the

learning rate is increased otherwise it is decreased:

1. Calculate:

cos Θ
. 
;3 � / 9:# . 
=3 � ∆ � . 
 / 1 3� 9:# . 
=3 � � � ∆ � . 
 / 1 3 �

2. Adapt the learning rate:

� . 
=3 � � . 
 / 1 3 � . 1 � 0 � 5 ��� 	�� Θ . 
=3�3
3. Adapt the momentum:

�
. 
;3 � � . 0 3 �

� 9:# . 
=3 �
�

∆ � . 
 / 1 3 �
4. Adjust the weights:

∆ ���6� . 
=3 � � . 
=3 � . 5 #5 � �6� ��� . 
=3 � ∆ ���6� . 
 / 1 3 3
Unfortunately the learning rate was adapted much to rapidly which results in very big

learning rates. So we tried to modify the adaptation rule:

� . 
=3 � � . 
 / 1 3 � . 1 � 0 � 1 ��� 	�� Θ . 
;3 3
In addition we use a backtracking strategy, which restarts a learning step using a

halved learning rate in the case of increasing total error. Results (see Figure 7) are
almost similar to the evolution strategy.

5.6 Nearly optimal learning rate adjust using line search

On principle it’s possible to calculate the optimal learning rate for an update direction. A
learning rate is called optimal for a given update direction if it minimizes

#
with respect

to that search direction. If one uses the negative gradient for the search a “steepest
descent” is performed. A simple way to approximate the optimal learning rate is to start
with a small value, perform a weight update and calculate the total new error. As long as
the total error decreases the update is redone using an increased learning rate [Hertz et
al., 1991]. Unfortunately

#
has to be calculated for every new iteration of the learning

rate. This may be computational intensive if many iterations are necessary. It’s also
difficult to define a proper start value for the learning rate iteration.
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Training Set Testing Set
� . 0 3 �

.
0 3 Error Recog. rate Error Recog. rate

1 0.0001 0.0 332.1 94.64 347.46 94.14
2 0.0001 0.001 317.6 94.67 335.47 94.17
3 0.0001 0.01 568.0 92.47 500.00 92.71
4 0.0001 0.1 568.0 92.47 500.00 92.71
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Figure 7: Angle driven learning rate adaptation
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Finding the optimal learning rate for a given search update direction means to mini-
mize a one dimensional function. Therefore standard strategies like Newton’s method
can be applied. Unfortunately Newton’s method requires the calculation of the second
derivative. Another possibility is to use a Newton like iteration like the method of “False
Position” [Luenberger, 1973]. Instead of using the second derivative an approximation
by calculating a difference quotient is used:

� “ .���� 3 �
� ‘
.�� � � 1

3+/ � ‘
.�� � 3

� � � 1
/ � �

The minimum can now be approximated by calculating the following iteration:

� ���
1 �

� � / � ‘ .�� � 3 � ��� � 1
/ ���

�
‘
.���� � 1

3 / �
‘
.���� 3

Finally 	 �	�
 has to be calculated and some criteria for stopping the iteration is necessary
to apply the “False Position” method. In our simulations the search is terminated by the
following criteria:

� � � / � � � 1
�

� � � �  0 � 01

Starting values for the iteration have been calculated as follows:

�
0
. 
 � 1 3 � � . 
=3�

1
. 
 � 1 3 � � . 
=3 � 1 � 5 , if

� ‘ .��
0
3  0 � 0�

1
. 
 � 1 3 � � . 
=3 � 1 � 5 , else

Typically the line search requires about 3 iterations when used with the Polak–
Ribiere rule (chapter 5.6.1). Using a conjugate gradient method (chapter 5.6.2) a more
conservative setting for the start values is necessary, resulting in some more iterations:

�
0
. 
 � 1 3 � � . 
=3�
1
. 
 � 1 3 � 0 � 0

5.6.1 Polak–Ribiere method and line search

A. H. Kramer and A. Sangiovanni-Vincentelli are using the Polak–Ribiere method for
calculating the momentum [Kramer et al., 1989]. The learning rate is adjusted by a line
search to minimize

#
with respect to the current search direction:

∆ � . 
=3 � � . 
;3 � . / 9:# . 
=3 �
. 9:# . 
=3;/ 9:# . 
 / 1 3�3�� � 9 # . 
;39:# . 
 / 1 3 � � 9:# . 
 / 1 3 � ∆ � . 
 / 1 3�3
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This algorithm is free from any adjustable parameters. Results (see Figure 8) are
similar to the evolution strategy and the angle driven adaptation. Unfortunately some
more calculation time is necessary due to some iterations needed to adjust the learning
rate by a line search (typically 2 - 3 iterations). Nevertheless no useful networks can be
trained by this algorithm.

Training Set Testing Set
Error Recog. rate Error Recog. rate

1 322.0 94.70 339.33 94.17
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Figure 8: Polak–Ribiere method with line search

5.6.2 Conjugate gradient method and line search

J. Leonard and M. A. Kramer combine a conjugate gradient method and a line search
strategy [Leonard et al., 1990]:

1. Calculate the exponential averaged gradient:

9 ¯# . 
;3 � 9:# . 
;3 � � 9:# . 
=3 � 2
� 9:# . 
 / 1 3 � 2

� 9 ¯# . 
 / 1 3
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For to start this calculation and every � updates simply use the actual gradient:

9 ¯# . 
;3 � 9:# . 
;3 , if 
 mod � � 0

2. Update the connections:

∆ � . 
;3 � � . 
=3 � 9 ¯# . 
;3
� . 
=3 is calculated by a line search to minimize

#
with respect to the actual search

direction.

This algorithm is the most powerful one using global adaptations and batch mode
updates (see Figure 9). Nevertheless results are very poor.

6 Local learning rate adaptations

Local adaptations are using independent learning rates for every adjustable parameter
(every connection). Therefore they are able to find optimal learning rates for every
weight.

6.1 Learning rate adaptation by sign changes

F. M. Silva and L. B. Almeida are using separate learning rates � �6� for each connection.
The adaptation of these learning rates is done by observing the signs of the last two
gradients. As long as no change in sign is detected the corresponding learning rate is
increased. If the sign changes the learning rate is decreased. This is the exact algorithm:

1. Choose some small initial value for every � ��� . 0 3 .
2. Adapt the learning rates:

� �6� . 
;3 � � �6� . 
 / 1 3 � � , if
5 #5 ���6� . 
=3 �

5 #5 ����� . 
 / 1 3�� 0

� �6� . 
=3 � � ��� . 
 / 1 3 ��� , else

3. Update the connections:

∆ � �6� . 
=3 � / � �6� . 
=3 � . 5 #5 ���6� ��� � ∆ � ��� . 
 / 1 3 3
According to Silva and Almeida the choice of proper parameters � and � is easy as long
as � � 1� holds. The recommend values are 1 � 1 / 1 � 3 or 0 � 7 / 0 � 9 respectively. They
also use a backtracking strategy which restarts an update step if the total error increases.
For this restart all learning rates are halved.

Results (see Figure 10) are very impressing. Most of the runs result in better perfor-
mance and reduced learning time.
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Training Set Testing Set
r Error Recog. rate Error Recog. rate

1 50 244.9 94.57 267.92 93.84
2 100 252.6 94.54 278.28 93.84
3 1000 267.5 94.57 299.24 93.73
4 5000 269.1 94.54 297.83 93.70
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Figure 9: Conjugate gradient method and line search
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Training Set Testing Set
� �6� . 0 3 � �

� Error Recog. rate Error Recog. rate
1 0.0001 1.1 1 � � 0.0 25.9 99.60 105.54 98.45
2 0.0001 1.1 1 � � 0.1 38.4 99.42 108.73 98.28
3 0.0001 1.1 1 � � 0.9 536.7 92.47 473.87 92.71
4 0.001 1.1 1 � � 0.0 21.5 99.60 97.40 98.37
5 0.001 1.1 1 � � 0.1 33.9 99.34 96.65 98.45
6 0.01 1.1 1 � � 0.0 568 92.47 500.00 92.71
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Figure 10: Learning rate adaptation by sign changes (Silva and
Almeida)
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T. Tollenaere’s SuperSAB algorithm [Tollenaere, 1990] is quite similar to Silva and
Almeida’s approach. He has modified the update rule, so that updates which result in
sign changes are undone:

3. Update the connections:

If
5 #5 ����� . 
=3 �

5 #5 ���6� . 
 / 1 3 � 0:

∆ � �6� . 
;3 � /�� ��� . 
;3 � 5 #5 ���6� ��� � ∆ � �6� . 
 / 1 3
Else:

� �6� . 
 � 1 3 � � �6� . 
 / 1 3 ; ∆ � �6� . 
=3 � 0 � 0

Recommend values for � and � are 1 � 05 or 0 � 5 respectively. Instead of using global
backtracking only some kind of local backtracking is used. Therefore weight updates
which result in sign changes in the corresponding gradients are undone.

Results for the first 1000 training epoch are superior to Silva and Almeida’s approach.
Nevertheless the training became chaotic later on. In Figure 11 a typical training run is
shown (momentum = 0.0, learning rate = 0.001).

Therefore we tried to combine SuperSAB with Silva and Almeida’s backtracking
strategy. Nevertheless to many backtracking steps are performed. One reason may be
the local backtracking technique in the SuperSAB algorithm, which may result in an
increased total error.

Our second try was to perform some weight decay in every update:

3. Update the connections:

If
5 #5 ����� . 
=3 �

5 #5 ���6� . 
 / 1 3 � 0:

∆ � �6� . 
;3 � /�� ��� . 
;3 � 5 #5 ���6� ��� � ∆ � �6� . 
 / 1 3+/ � � � ��� � � �6� . 
=3
Else:

���6� . 
 � 1 3 � / ∆ ���6� . 
=3 ; ∆ ���6� . 
;3 � 0 � 0

Unfortunately no suitable � � � ��� factor could be found. The � � � ��� factor just slightly
changes the time, where the chaotic behaviour starts. Therefore one may suggest that
it’s not a problem with to big connection strength rather the learning rates may grow to
much. So we used an upper limit for the learning rates:

2. Adapt the learning rates:

� �6� . 
;3 � � �6� . 
 / 1 3 � � , if

5 #5 � �6� . 
=3 �
5 #5 � ��� . 
 / 1 3�� 0 �

� ��� . 
 / 1 3  � ��� �
� �6� . 
=3 � � ��� . 
 / 1 3 ��� , else
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Figure 11: SuperSAB
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By using a proper upper limit �
���	�

the algorithm behaves perfectly all over the
training period. Results are similar to Silva and Almeida’s approach but even somewhat
better in the early training phase (see Figure 12). Figure 13 illustrates dependencies on
the momentum factor.

Training Set Testing Set
� �6� . 0 3 � ���	� � �

� Error Recog. rate Error Recog. rate
1 0.001 0.1 1.05 0.5 0.0 57.9 99.15 111.12 98.02
2 0.001 1.0 1.05 0.5 0.0 40.4 99.39 108.72 98.25
3 0.001 10.0 1.05 0.5 0.0 32.9 99.47 105.31 98.42
4 0.001 100.0 1.05 0.5 0.0 29.2 99.55 122.44 98.19
5 0.001 1000.0 1.05 0.5 0.0 107.8 98.49 153.94 97.70
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Figure 12: SuperSAB with limited learning rates

6.2 Delta–Bar–Delta Technique

Robert A. Jacobs also uses a local learning rate adaptation [Jacobs, 1988]. In contrary
to the former approaches his delta–bar–delta algorithm controls the learning rates by
observing the sign changes of an exponential averaged gradient. He increases the
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Training Set Testing Set
� �6� . 0 3 � � �	� � �

� Error Recog. rate Error Recog. rate
1 0.001 100.0 1.05 0.5 0.0 29.2 99.55 122.44 98.19
2 0.001 100.0 1.05 0.5 0.1 30.6 99.47 123.59 98.07
3 0.001 100.0 1.05 0.5 0.9 41.0 99.31 122.73 98.28
4 0.001 10.0 1.05 0.5 0.0 32.9 99.47 105.31 98.42
5 0.001 10.0 1.05 0.5 0.1 27.9 99.55 107.71 98.13
6 0.001 10.0 1.05 0.5 0.9 30.0 99.47 128.30 97.72
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Figure 13: SuperSAB with limited learning rates
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learning rates by adding a constant value instead of multiplying it:

1. Choose some small initial value for every � ��� . 0 3 .
2. Adapt the learning rates:

� �6� . 
;3 � � �6� . 
 / 1 3 � � , if
5 #5 ���6� . 
=3 � ¯� �6� . 
 / 1 3�� 0

� �6� . 
;3 � � �6� . 
 / 1 3 ��� , if
5 #5 � �6� . 
=3 � ¯� �6� . 
 / 1 3�� 0

� ��� . 
;3 � � �6� . 
 / 1 3 , else

¯� . 
=3 denotes the exponential averaged gradient:

¯� �6� . 
=3 � .
1 /��=3 � 5 #5 � ��� . 
=3 � � � ¯� ��� . 
 / 1 3

3. Update the connections:

∆ � �6� . 
=3 � / � �6� . 
=3 � 5 #5 ���6�
Very different values are recommend for �

.
5 � 0 � 0 � 095 � 0 � 085 � 0 � 035 3 . Jacobs uses.

0 � 9 � 0 � 85 � 0 � 666 3 for � and 0 � 7 for � . Using � � 0 the algorithm becomes quite similar
to Silva and Almeida’s approach.

Results (see Figure 14) are quite good but worse than using Siva and Almeida’s
algorithm. In particular it’s difficult to find a proper � . Small values may result in slow
adaptations while big ones endanger the learning process.

6.3 RPROP

M. Riedmiller and H. Braun are using an adaptive version of the “Manhattan-Learning”
rule [Riedmiller et al., 1992]. In contrast to all other described algorithms the “Manhattan-
Learning” rule uses a fixed update step size not influenced by the magnitude of the
gradient. Only the sign of the derivative is used to find the proper update direction.
RPROP uses independent update step sizes ∆ �6� for every connection. Further more
these step sizes are adapted with respect to the sign of the actual and the last derivative.
The step sizes are bound by upper and lower limits in order to avoid oscillation and
arithmetic underflow of floating point values. Finally local backtracking is applied to
those connections where sign changes of the derivative are detected:

1. Choose some small initial value for every update step size ∆ �6� . 0 3 .
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Training Set Testing Set
� ��� . 0 3 � � � Error Recog. rate Error Recog. rate

1 0.0001 0.0001 0.9 0.7 51.6 99.20 110.64 98.37
2 0.0001 0.001 0.9 0.7 295.4 94.90 316.59 94.31
3 0.0001 0.01 0.9 0.7 568.0 92.47 500.00 92.71
4 0.0001 0.1 0.9 0.7 568.0 92.47 500.00 92.71
5 0.001 0.001 0.9 0.7 317.8 94.70 335.71 94.19
6 0.001 0.01 0.9 0.7 505.1 92.50 445.34 92.71
7 0.001 0.1 0.9 0.7 568.0 92.47 500.00 92.71
8 0.01 0.01 0.9 0.7 568.0 92.47 500.00 92.71
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Figure 14: Delta–Bar–Delta
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2. Adapt the step sizes:

∆ �6� . 
=3 � ∆ �6� . 
 / 1 3 � � , if
5 #5 ����� . 
=3 �

5 #5 ���6� . 
 / 1 3 � 0

∆ �6� . 
;3 � ∆ �6� . 
 / 1 3 ��� , if

5 #5 � ��� . 
=3 �
5 #5 � �6� . 
 / 1 3 � 0

∆ �6� . 
;3 � ∆
���	�

, if ∆ ��� . 
;3�� ∆
���	�

∆ �6� . 
=3 � ∆
� � � , if ∆ ��� . 
;3  ∆

� � �
3. Update the connections:

If
5 #5 ����� . 
=3 �

5 #5 ���6� . 
 / 1 3 � 0:

∆ ���6� . 
=3 � / ∆ �6� . 
=3 , if
5 #5 ���6� . 
;3 � 0

∆ � �6� . 
=3 � � ∆ �6� . 
=3 , if
5 #5 ���6� . 
;3 � 0

Else:

� �6� . 
 � 1 3 � � �6� . 
 / 1 3 ;
5 #5 ���6� . 
;3 : � 0 � 0

Recommend values for the parameters are:

∆
���	�

� 50 � 0

∆
� � � � 0 � 000001

� � 1 � 2
� � 0 � 5

RPROP is fastest training algorithm tested in this report (see Figure 15). Results are
almost independent from the initial setting of the update step size. Networks with very
good performance have been trained. According to training speed only Quickprop is
comparable to RPROP.

6.4 Quickprop

This algorithm is a collection of different heuristics for optimizing backpropagation
[Fahlman, 1988]. Having a closer look at the derivative

�� ��� � we have to notice that it’s
necessary to calculate 	 � � . 1 / 	 � 3 . By using a sigmoid activation function this value
is limited to the range [0.0 � � � 0.25]. Unfortunately it tends to become very small if
the output approaches 0.0 or 1.0. This may slow down a gradient descent. Therefore
Fahlman modifies the calculation to 	 � � . 1 / 	 � 3 � 0 � 1. The modified gradient based
on this calculation is further denoted by

�� � ��� � . Further a new error function is used. If
the absolute unit error becomes less than 0.1 the error is simply set to zero. By using
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Training Set Testing Set
∆ �6� . 0 3 Error Recog. rate Error Recog. rate

1 0.0001 52.0 98.81 155.12 97.02
2 0.001 25.99 99.58 123.42 97.93
3 0.01 26.0 99.52 129.13 97.93
4 0.1 29.1 99.47 120.73 98.02
5 1.0 28.4 99.50 129.84 97.93
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Figure 15: RPROP
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this error criteria units having a quadratic error less than 0.01 aren’t trained anymore.
For to prevent weights from growing very large a small weight decay is used by further
modifying the gradient:5 #����5 � �6� . 
=3 �

5 #��5 � �6� . 
=3 � � � � � � � ���6� . 
;3

∆ ����� . 
=3 � /�� �6� . 
=3 � 5 #����5 ���6� . 
;3 ��� �6� . 
=3 � ∆ ����� . 
 / 1 3
Basically the connection updates is calculated by the method of “False Position”

(chapter 5.6), which is applied independently to every connection. The second term
of the sum exactly calculates this value if the momentum in chosen in the following
manner:

�
� �6� . 
;3 �

�� � � ��� � . 
=3
�� � � ��� � . 
 / 1 3;/ �� � � ��� � . 
=3

Nevertheless the calculated update has to be limited if the step computed by this
formula is too large, infinite or uphill on the current gradient

�� � � ��� � . 
=3 :
� ��� . 
;3 � � ���	� , if

�
� �6� . 
=3 infinite

� �
� �6� . 
;3 � � ���	�

� �
� �6� . 
;3 � ∆ ���6� . 
 / 1 3 � 5 #����5 ���6� . 
=3 � 0 � 0

� �6� . 
;3 � �� ��� . 
;3 , else

A learning rate is still necessary to start the training or restart it after a 0.0 update. If
the gradient and the last update have the same sign the learning rate is also used:

� �6� . 
=3 � � 0 , if
5 #����5 ���6� . 
=3 � ∆ ���6� . 
 / 1 3 � 0 � 0

� ∆ ���6� . 
 / 1 3 � 0 � 0
� ��� . 
;3 � 0 , else

Recommend values for the parameters are:

�
� �	�

� 1 � 75

�
0 � 0 � 55

� � � ��� � 0 � 0001

Almost perfect results (see Figure 16) have produced by this algorithm. Quickprop’s
performance is close to rprop’s results.
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Training Set Testing Set
�

0 Error Recog. rate Error Recog. rate
1 0.0001 33.8 99.5 123.38 97.99
2 0.001 29.2 99.6 119.28 98.10
3 0.01 36.8 99.4 110.91 98.25
4 0.1 568.0 92.5 500.00 92.71
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Figure 16: Quickprop
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6.5 Cascade Correlation

Scott E. Fahlman and Christian Lebiere have presented a new learning architecture called
cascaded correlation algorithm [Fahlman et al., 1990]. This algorithm differs in many
ways from all other approaches. It begins with a minimal network, then automatically
trains and adds new hidden units one by one, creating a multi-layer structure. Once a
new hidden unit has been added to the network, its input-side weights are frozen. The
hidden units are trained in order to maximize the correlation between the unit output and
the output error. So a training cycle is divided into two phases. First the output units are
trained to minimize the total output error. This training is done up to 	 �  ���	� epochs. In
phase two 
 � �)
 � candidate units are inserted having connections to every output unit
and every previously inserted hidden unit. This units are trained up to

� � � ���	� epochs
in order to correlate with the output error. The best of this candidate units became a new
hidden unit, whereas the other ones are deleted. Next weights of the new unit get frozen.
Now a new training cycle starts. Weights are adjusted by the quickprop update rule.
Because all input connections of a hidden unit are frozen after the training of this unit,
it’s possible to store the activations of the hidden units over the entire training set. This
can speed up the training. For further details of this algorithm see Fahlman et al. 1990 .
This algorithm was included in our report, because it seems to be interesting to compare
the results. Nevertheless comparison is quite difficult, because networks grow during
the training and start with very little connections. Although hidden units connections get
frozen after training. Figure 17 shows results in terms of training epochs. Nevertheless
results became more impressing if we compare it in terms of updated connections.
Therefore we have calculated the number epochs in conventional training having nearly
the same number of updated weights (see Figure 18). As one can see this algorithm
is superior to training algorithms using fixed topologies. Nevertheless the network
performance could not be further improved. The algorithm was able to train networks
with 100 % recognition rate with respect to the training set, if sufficient hidden units are
used ( 
 � � � � ��
 � 20). Nevertheless generalization ability with respect to the testing set
could not be improved. Most of the networks using 10 hidden units generalize as good
or even better as those having 20 hidden units.

7 Conclusion

Table 2 shows a comparison of the best results of every training algorithm.

Many “optimized” algorithms failed in training the considered task, although most
authors promised a algorithm superior to standard backpropagation. Many of these
algorithms have only been tested by training tiny artificial tasks. These results cannot
be transferred to more complicated training sets. Especially for these kind of training sets
optimization is necessary, whereas it’s of little importance to speed up XOR learning.
Nevertheless most of the algorithms are superior to standard backpropagation running in
batched mode. On the other hand backpropagation updating the connections after every
pattern presentation outperforms all global adaptive learning algorithms. Algorithms
using local adaptation strategies greatly reduce the training time and also improve the
network performance. In terms of learning speed RPROP and Quickprop seems to be
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Training Set Testing Set
 � �)
 � 	 �  ���	� � � � ���	� 
 � � � � � 
 Error Recog. rate Error Recog. rate
1 8 50 50 10 38.44 99.47 99.56 98.25
2 8 50 50 20 14.20 99.81 123.79 98.10
3 8 50 100 10 23.51 99.71 91.50 98.42
4 8 50 100 20 0.83 100.00 104.84 98.25
5 8 100 50 10 40.79 99.36 99.36 98.34
6 8 100 50 20 0.82 100.00 101.36 98.48
7 8 100 100 10 10.37 99.84 122.32 97.96
8 8 100 100 20 6.55 99.89 142.69 97.84
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Figure 17: Cascade Correlation
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Figure 18: Cascade Correlation with rescaled x-axis

Training Set Testing Set
Algorithm Error Recog. rate Error Recog. rate
Backprop 50.3 99.13 137.63 97.58
Backprop (batch mode) 461.8 92.63 414.34 92.85
Backprop (batch mode) + Eaton and Oliver 511.0 92.47 450.10 92.71
Backprop + Darken and Moody 44.2 99.20 126.84 97.90
J. Schmidhuber 91.5 98.36 163.54 97.23
R. Salomon 331.1 94.64 346.73 94.14
Chan and Fallside 317.6 94.67 335.47 94.17
Polak-Ribiere + line search 322.0 94.70 339.33 94.17
Conj. gradient + line search 244.9 94.57 267.92 93.84
Silva and Almeida 21.5 99.60 96.65 98.45
SuperSAB 27.9 99.55 105.31 98.42
Delta-Bar-Delta 51.6 99.20 110.64 98.37
RPROP 25.99 99.58 120.73 98.02
Quickprop 29.2 99.60 110.91 98.25
Cascade correlation 10 units 10.37 99.84 91.50 98.42
Cascade correlation 20 units 0.82 100.00 101.36 98.48

Table 2: Best results
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superior to all other training algorithms using fixed topologies. Nevertheless Silva and
Almeida’s approach and SuperSAB have trained networks, which generalize a little
better. The cascade correlation algorithm clearly outperforms all other approaches but
is not directly comparable with them.

Most algorithms are using batched updates. Very little optimization is done on back-
propagation updating connections with respect to

9:# $
. Further research in needed on

this topic. There seems to be little influence on the generalization ability. Nevertheless
generalization depends on the network topology, as the cascade correlation algorithm
shows. Training a network with more and more hidden units just increases the approx-
imation quality with respect to the learning set but doesn’t improve the generalization
behaviour.
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