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Optimization of the electron transport layer in
quantum dot light-emitting devices
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Abstract
Quantum dot light-emitting devices have emerged as an important technology for display applications. Their emission
is a result of recombination between positive and negative charge carriers that are transported through the hole and
electron conductive layers, respectively. The selection of electron or hole transport materials in these devices not only
demands the alignment of energy levels between the layers but also balances the flow of electrons and holes toward
the recombination sites. In this work, we examine a method for device optimization through control of the charge
carrier kinetics. We employ impedance spectroscopy to examine the mobility of charge carriers through each of
the layers. The derived mobility values provide a path to estimate the transition time of each charge carrier toward the
emitting layer. We suggest that an optimal device structure can be obtained when the transition times of both charge
carriers toward the active layer are similar. Finally, we examine our hypothesis by focusing on thickness optimization of
the electron transport layer.

Introduction
Semiconducting quantum dots (QDs) carry tunable

optical properties and good stability and can be synthe-
sized following scalable colloidal synthesis routes. They
have attracted much interest in the development of
quantum dot light-emitting devices (QLEDs)1–6. In a
typical QLED, the nanoparticles emit light as a result of
radiative recombination between positive and negative
charge carriers. The emitting layer of the nanoparticles is
termed the active layer. The charges are injected from the
anode and cathode to the active layer with adjacent
electron and hole transport layers (ETL and HTL,
respectively). The device performance is directly related to
the light-emission efficiency of the materials selected for
the active layer of the device architecture. Among differ-
ent types of light-emitting nanoparticles, CdSe and CdS
QDs (II–VI elements) exhibit high efficiency and stability.
Their high photoluminescence (90%) implies the high

efficiency of radiative electron-hole recombination in
these materials. This recombination has a significant role
in electroluminescent devices. Recently, published works
exhibit an external quantum efficiency of ~20% for CdSe
\CdS QLED devices7–9. However, the heavy metal ion
cadmium (Cd) raises health concerns and requires cor-
responding environmental regulations9,10. For example,
the EU directive specifies a maximum limit of 100 ppm for
the Cd concentration in electronic devices. Hence, it is of
high interest to unveil alternative materials and explore
the effect of the device architecture on QLED perfor-
mance. Multinary compounds composed of Cu-In-S, Ag-
In-S, and their alloys with ZnS are promising candidates
for these applications. These materials offer structural and
compositional flexibility, which can be utilized to control
their optical properties. Moreover, some works exhibit
60–90% photoluminescence efficiency of these nano-
particles11–13. The efficiency of charge transport between
layers depends on the alignment of energy levels within a
device. It is generally accepted that material selection for
the optimal device should give precedence to charge
movement toward the active layer, where the charges then
recombine14–17.
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Recent works have suggested that not only does energy
alignment (i.e., thermodynamics) have a role but also the
rates of charge carrier transfer toward the active layer (i.e.,
kinetics)18. The time that is required for charge transfer
from the anode or cathode toward the active layer
depends on the charge mobility, concentration of the
charge carriers, and thickness of the HTL or ETL. If
the hole transport time through the HTL differs from the
transport time of electrons through the ETL, accumula-
tion of one type of charge carrier at the interfaces can
result in a loss of emission efficiency and can induce
degradation. Thus, the optimization of QLEDs requires
the development of experimental approaches that will
esteem to the abovementioned thermodynamic and
kinetic parameters.
Impedance spectroscopy is a well-established experi-

mental method for elucidating the charge transfer
kinetics in materials. During impedance analysis, the
resistance and capacitance response to alternating vol-
tage as a function of frequency is recorded. Subse-
quently, the data are fitted to the analytical models,
representing equivalent electrical circuits composed of
elemental components, such as resistors, capacitors, and
inductors. The fitting parameters shed light on the
kinetics of charge transfer phenomena in electronic
materials or devices.
In this work, we employ impedance spectroscopy to

evaluate the apparent charge mobility of electrons and
holes in the ETL and HTL, respectively. Based on these
values, we estimate the optimal thickness of the ETL for a
given thickness of the HTL. Finally, we show the agree-
ment between our model and the efficiency trend of
experimentally examined devices.

Results and discussion
QD characterization
The emission properties of QLEDs are controlled by the

optical properties of the nanoparticles. The absorbance
combined with the electron affinity determines the
alignment of energy levels within a device and the cor-
responding electroluminescence activation conditions.
The photoluminescence spectra complete the picture by
revealing radiative electron-hole recombination paths19–22.
Figure 1a shows the absorbance and emission spectra of
Cu-In-Zn-S (CIZS) nanoparticles in toluene solution. The
broad excitonic transition and large Stokes shift are typical
for multinary nanoparticles. They originate from
donor–acceptor interactions as a result of crystalline and
surface defects21–26. In spin-coated nanoparticle films
(Fig. 1b, curve b), the distance between the nanoparticles is
reduced. Thus, the probability for energy transfer from
high-energy transitions to narrower transitions increases,
and the corresponding emission spectrum is redshifted
(Fig. 1b, the emission is redshifted from curve (a) toward

curve (b))27–30. The application of an external voltage
further redshifts the emission (from 685 to 715 nm),
implying an enhancement of the interparticle interactions
(Figure S1(A)). However, as the voltage is increased,
opposite blueshifting (Figure S1(B)) can be observed, as
the nanoparticles with wider donor–acceptor energy
transitions (a consequence of the shape and size of the
composition distribution) are activated (curves c–h).

Layer characterization
An appropriate alignment of energy levels between

different layers of QLEDs is often set as one of the cri-
teria in QLED design engineering. Figure 2a exhibits the
energy levels of different materials in our devices. The
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Fig. 1 Optical properties of CIZS nanoparticles. a Absorbance and
photoluminescence spectra of CIZS nanoparticles. The
photoluminescence spectrum was recorded under excitation at
370nm. b Photoluminescence of the nanoparticles a in a toluene
solution and b as a film on a glass slide; c–h electroluminescence of
the QLED under different voltages.
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Fig. 2 Crossection of light emitting devices. a HOMO-LUMO
energy levels of different materials that were used in this work.
b Cross-section of a representative device.
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characteristic values of the valence and conduction
edges were reported by others16,18,30–36. In nano-
particles, the valence and conduction edges are size- and
composition-dependent. However, the variations remain
within tenths of electron volts (eV)37. Hence, these
values represent the typical range for reference purposes
only. The materials are selected in a manner that
prioritizes electron-hole recombination in the QD
layer38. Fig. 2b shows the cross section of a typical
device that was fabricated in this work.
Although the energy diagram (Fig. 2a) provides an

important guideline for the selection of materials, it does
not offer sufficient information on the controlled thickness
of each individual layer. Optimization of the device struc-
ture requires balancing the charge carrier concentrations
and their mobility in both the ETL and HTL. In other
words, the concentration of the holes in the active layer
needs to be similar to the concentration of the electrons to
maximize charge carrier recombination18. Thus, we need to
achieve the transition time of the electrons from the alu-
minum contact to the CIZS active layer, which is the same
as the transition time of the holes from the ITO to the CIZS
layer. By controlling the thicknesses of the ETL and HTL, it
should be possible to maximize the availability of electrons
and holes at the CIZS interface. This parameter of mod-
ulating the flow of charge carriers becomes important in the
design and optimization of QLEDs.
Impedance spectroscopy monitors the system response

to alternating current modulation. These data can be
used to shed light on the charge transfer and recombi-
nation processes39–42. We employed impedance spec-
troscopy to probe the apparent charge mobility in each
of the layers, viz., ZnO, TPD, and CIZS QDs. A film of
the examined material with varying thickness was
deposited between gold electrodes (cross-section is
shown in Fig. 3a). The response of the system under
different frequencies of alternating perturbation can be
presented using a Nyquist plot (Fig. 3b). The maximal
value of the imaginary component of the impedance is
obtained at a frequency corresponding to the char-
acteristic response time of the sample (τ). The value of τ
is calculated as a product of the resistivity (R1) and
capacity (C1) of the represented electrical circuit
(Fig. 3c)25. This characteristic time (τ) is related to the
bias voltage (Vb), charge drift mobility (μ), and thickness
(d) of the sample through Eq. (1):42–46

τ ¼ d2

μ � Vb
ð1Þ

Finally, the mobility of the charge carriers can be
calculated from the slope of the curve, which describes
the dependence of τ on the reciprocal voltage (1/Vb)
(Fig. 3d).

The linear dependence of τ on the bias voltage confirms
the validity of Eq. (1). From the slopes of the linear plots
(Fig. 3d), we can obtain a ratio of d

2

μ . We further determine
the thickness of each layer by scanning electron micro-
scopy and focused ion beam cross-sectional analysis
(Figure S2). This allows us to calculate the charge mobility
of each of the layers that are part of the light-emitting
device. It is difficult to compare the charge mobility
in CIZS QDs owing to the dependence on the exact
composition, crystalline structure, size, and type of
ligands47,48. However, for other layers, we find good
agreement with previous reports (Table 1). The mobilities
of different layers vary between 1.7 × 10−4 and 1.2 × 10−2

cm2/(V*s). This varying degree of mobility indirectly
prescribes the optimal thickness of each layer. To
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Fig. 3 Impedancy spectroscopy characterization. a FIB-SEM cross-
section of a typical sample for charge mobility measurement,
employing impedance spectroscopy analysis. b Nyquist plots for TPD
at different bias voltages. c Equivalent circuit for the calculation of the
characteristic transfer time. d Transfer time as a function of the
reciprocal bias voltage (Vb).

Table 1 Charge mobility values determined from
impedance spectroscopy analysis.

Material μ [cm2/(V*s)]

current work

μ [cm2/(V*s)] previous reports

ZnO 1.7×10−3 7.2×10−4–4.8×10−3 Ref. 35

CIZS QDs 1.7×10−4 NA

TPD 2.1×10−3 2×10−3–3×10−3 Ref. 36,51

PEDOT 1.2×10−2 8×10−3–1×10−2 Ref. 52
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optimize the device thickness, we employ an HTL
(PEDOT+TPD) thickness of 45 ± 5 nm and vary the
thickness of the ETL (ZnO) layer.

Device optimization
The power conversion efficiency (PCE) of light-emitting

devices is calculated as the ratio of the optical power
generated from an LED to the electrical input power. The
input power is a product of the operating voltage and
current. The emission power can be calculated from the
photocurrent of a calibrated photodiode placed close to
the QD LED assuming Lambertian emission
η ¼ Pout

Pin
¼ Pout

IV

� �
30,49. Figure 4 shows the power conver-

sion efficiency as a function of the ZnO layer thickness.
We calculate the thickness of the ZnO layer such that it
promises equal transition times for electrons (through
ZnO) and holes (through PEDOT/TPD) τeðZnOÞ ¼ τhð Þ.
For the calculation, we use the mobility values from Table
1 and the measured thickness of the HTL (30–40 nm).
Owing to the thickness variation of the HTL, the optimal
thickness range is marked by a shadowed zone (rather
than by a line) in Fig. 4. Subsequently, we measure the
efficiency of the devices as a function of the ZnO layer
thickness, between 15 and 460 nm. Initially, increasing the
thickness of the ZnO layer from 15 to 60 nm improves the
balance between the positive and negative charge carriers
by increasing the transition time of electrons. Accord-
ingly, the PCE of the devices increases six times from 0.1%
to ~0.6%. The characteristic PCE for multinary nano-
particle light-emitting devices reported by others is
~1%30,31,50. A further increase in ZnO thickness increases
the transition length and time of the electrons. This
deteriorates the balance of charge carriers with the active
layer, and the PCE is reduced. This observation leads to an
estimation where the optimal thickness of the ZnO layer
in this device is ~80 nm. Obviously, there is an agreement
between the estimated optimal range and the experi-
mental results. A more-accurate approximation requires
estimating the dependence of the emission efficiency

on the depth of the radiative recombination in the
active layer.
In this work, we showed how impedance spectroscopy

analysis can be employed for the measurement of the
charge transport time through hole or electron transport
layers. While keeping the thicknesses of the hole and
active layers constant, we could estimate the optimal
thickness of the electron transport layer. Our experi-
mental results show that the maximal emission efficiency
is obtained when the negative and positive charge carrier
transition times are equal. Further work is required to
estimate the contribution of the active layer thickness and
emissions from different depths of this layer.

Conclusions
The outstanding optical properties of colloidal QDs

make them good candidates for light-emitting devices. A
typical QD LED is composed of a light-emitting layer
between the electron and hole conductors. The efficiency
of the devices is a result of the nanoparticle emission
efficiency and the device architecture. Commonly used
interlayer energy alignment (a thermodynamic con-
sideration) provides a guideline for efficient charge
transfer. However, it does not provide any information
regarding the film thickness, which affects the transition
time of the charge carriers. Unequal transition times of
positive and negative charge carriers lead to charging
phenomena and subsequently nonradiative decay pro-
cesses. Hence, an unequal transition time deteriorates
the device efficiency. Impedance spectroscopy can be
employed to obtain essential information on the charge
mobility in each of the layers. Based on these data,
the optimal thickness of each of the layers can be evaluated.

Supporting information
The supporting information contains experimental

details, the synthesis of QDs, device fabrication, and
optical and material characterizations.
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