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ABSTRACT  
The felge, or undersomersault, to handstand on parallel bars has become an important 
skill in Men’s Artistic Gymnastics as it forms the basis of many complex variations.  To 
receive no deductions from the judges, the felge must be performed without 
demonstrating the use of strength to achieve the final handstand position.  Two male 
gymnasts each performed nine trials of the felge from handstand to handstand while data 
were recorded using an automatic motion capture system.  The highest and lowest 
scoring trials of each gymnast, as determined by four international judges, were chosen 
for further analysis.  The technique used by each gymnast was optimised using a 
computer simulation model so that the final handstand position could be achieved with 
straight arms.  Two separate optimisations found different techniques identified in the 
coaching literature that are used by gymnasts.  Optimum simulations resulted in improved 
performances through a combination of increased vertical velocity and height of the mass 
centre at release.  Although the optimum technique found close to the gymnasts’ own 
technique was more demanding in terms of the strength required, it offered the potential 
for more consistent performance and future developments in skill complexity.       

 

INTRODUCTION 

In the new Code of Points (Fédération Internationale de Gymnastique (FIG), 2006) 
the felge, or undersomersault, on parallel bars has become an important skill in Men’s 
Artistic Gymnastics as it forms the basis for many variations of the skill.  Although the 
basic skill is performed to support, it is the felge from handstand to handstand (Figure1) 
that provides the basis for the more complex variations.  From the handstand position the 
gymnast lowers the body by closing the shoulder angle (shoulder extension) and allowing 
the shoulders to move forwards relative to the hands (Figure 2).  The gymnast then 
rotates backwards about the point of contact with the bars and circles below the bar.  
Release occurs shortly after the mass centre has passed above the level of the bars 
(Figures 1 & 2).  The gymnast re-grasps the bars before reaching the handstand position.  
In order to receive no deductions from the judges, the gymnast must perform the felge 
without demonstrating the use of strength to achieve the final handstand position.  The 
gymnast should arrive in the final position without bending the arms or appearing to press 
to handstand (excessively flexing at the shoulder once the bar has been caught).  

 The technique depicted in the Code of Points (FIG, 2006), Figure 1, closely 
resembles a backward clear circle to handstand as performed on the high bar.  During 
this technique the gymnast maintains the hip flexion angle throughout the majority of the 
circle, in particular whilst the gymnast is below the bars (Figure 1).  It has been 
recommended that this technique is used during the initial stages of learning the felge 
(Davis, 2005), presumably because it is less demanding of the young gymnasts.  
However, the technique used by many senior gymnasts more closely resembles a “stoop 
stalder” (Davis, 2005).  As the gymnast passes beneath the bars a deep pike position 
(large hip flexion angle) is adopted from which the gymnast rapidly extends passing 
through release and into the final handstand position (Figure 2).  One of the problems 
encountered during the felge is that as the mass centre passes above the bars the 
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gymnast’s grip on the bars is reduced.  With a reduced grip, the gymnast is less able to 
press against the bars and forcibly open the shoulder angle to generate the necessary 
vertical velocity of the mass centre.  It is speculated that in the stoop stalder technique 
the gymnast uses rapid hip extension earlier in the circle, whilst the grip on the bar is 
strong, to generate the required vertical velocity.  Such a technique, however, may 
require greater joint torques. 

 
 

 
 

Figure 1.  The felge from handstand to handstand on parallel bars (adapted from the FIG Code of Points, 
2006). 

 
 

 
 

Figure 2.   The flege from handstand to handstand performed with a “deep” hip flexion as the gymnast 
passes beneath the bars. 

 

 Previous research has investigated the felge to handstand mount on parallel bars 
(Takei and Dunn, 1996).  The mount starts from a standing position from which the 
gymnast jumps into the swing.  The performances of 26 national gymnasts were split into 
two groups by score and then analysed.  It was found that the better performances were 
associated with a higher mass centre position and vertical velocity at release.  It was also 
found that in the poorer performances the gymnasts over-rotated before releasing the 
bars which lead to a poor body position on re-grasp.  Being over-rotated at release would 
result in the gymnast re-grasping the bars with a larger angle between the body and the 
vertical.  To achieve the handstand from this position the gymnast would be required to 
press to handstand, incurring deductions from the judges.  
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 In order to investigate which is the best technique, computer simulation modelling 
could be used as it allows many variations in technique to be tried without risking injury to 
the gymnast.  Limited work has been carried out on simulating swinging on parallel bars.  
A two-dimensional frontal plane model of the gymnast and bars has been used to look at 
the lateral movements of the bars during handstand (Linge et al., 2006).  The model was 
evaluated using data collected from a pendulum oscillating in the frontal plane and was 
then used to simulate a gymnast re-grasping the bars in the handstand position from a 
flighted backward somersault.  Although the model was able to simulate the lateral 
movements of the bars during these activities no data or results were presented for 
swinging in the sagittal plane.  It might be expected that there will be lateral movements 
of the bars during the felge to handstand, although these are likely to be relatively small 
(< 0.02 m) and symmetrical about the sagittal plane.  Therefore a two-dimensional 
sagittal plane model of swinging on parallel bars would seem to be appropriate to 
investigate improving a gymnast’s technique.   

 The aim of the present study was (a) to optimise the existing technique of gymnasts 
performing the felge from handstand to handstand so that the final position could be 
achieved with straight arms and without excessive pressing to handstand and (b) to 
investigate to what extent minimisation of joint torque can explain the technique used by 
gymnasts.  An additional aim was to determine the relative advantages of the two 
techniques described above (i.e. the stoop stalder and the clear circle).  

 

METHODS 

 Subsections in Methods describe the protocol used to optimise the technique in the 
felge from handstand to handstand on parallel bars.  Initially data collection was carried 
out in which performances were recorded using a three-dimensional motion capture 
system and the data were processed for subsequent use with a computer simulation 
model.  The model was used to obtain matching simulations of the actual performances 
in order to obtain model parameters.  The matching simulations were then used as the 
starting point to optimise the gymnast’s technique in order to achieve the final handstand 
position with straight arms.  

 

Data collection 

 Two senior male gymnasts competing at national level (subject 1: mass = 61.2 kg, 
height 1.65 m; subject 2: mass = 63.5 kg, height 1.75 m) each performed 9 trials of the 
felge from handstand to handstand. All trials were captured using 13 Vicon M2 cameras 
operating at 100 Hz (reconstruction error for the calibration of the motion capture system 
was less than 0.002 m).  Spherical reflective markers 25 mm in diameter were attached 
to the lateral side of the wrist, elbow, shoulder, hip, knee and ankle joint centres and toes 
on each side of the body.  Offset measurements from each marker centre to the adjacent 
joint centre were recorded using an anthropometer for subsequent determination of the 
joint centres.  Additional markers were attached to each side of the gymnast's head and 
on top of each parallel bar at its centre.  In addition to the Vicon cameras all trials were 
recorded with a standard 50 Hz digital video camcorder (Panasonic NV-GS200EB).  Prior 
to data collection a volume centred on the parallel bars spanning approximately 5 m x 5 
m x 5 m was wand calibrated using the Vicon motion analysis system.  Three-
dimensional marker coordinates were reconstructed and joint centres were calculated 
using the measured offsets from which arm orientation and joint configuration angles 
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were calculated (Yeadon, 1990a).  A set of 95 anthropometric measurements were taken 
on each gymnast and inertia parameters were calculated using the model of Yeadon 
(1990b).  

 Four judges with international accreditation (FIG) scored each felge from the video 
recordings.  The highest and lowest scoring trials of each gymnast were chosen for 
further analysis.  None of the chosen trials achieved the final handstand position with 
straight arms, using instead a combination of bent arms and pressing to handstand.  

 

Simulation model 

 A four-segment planar model of a gymnast comprising arm, torso, thigh and lower 
leg segments was used to simulate the swinging movement on the parallel bars (Hiley 
and Yeadon, 2003a).  Since flexing of the elbow or knee would lead to deductions from 
the judges, a single segment was sufficient to represent straight arms and the legs were 
constrained to be straight.  The bar and the gymnast's shoulder structure were modelled 
as damped linear springs (Figure 3).  The shoulder spring represented the stretch at the 
shoulder and any extension of the spine that may occur.  The movement of the shoulder 
(gleno-humeral) joint centre due to scapular rotation was represented by allowing the 

torso length to vary as a function of shoulder (arm elevation) angle  (Figure 3).   

 

 

Figure 3.  Four segment simulation model of the gymnast and parallel bars. 

 Input to the simulation model comprised the segmental inertia parameters, the 
stiffness and damping coefficients of the bar and shoulder springs, the initial 
displacement and velocity of the bar, the initial orientation and angular velocity of the 
arm, and the joint angle time histories at the hip and shoulder in the form of Fourier 
series.  Output from the model comprised the time histories of the bar displacements, the 

linear and angular momentum of the model and the rotation angle  (the angle from the 
upward vertical of the line joining the neutral bar position to the mass centre). 

 The equations of motion were derived using Newton's Second Law and by taking 
moments about the neutral bar position and the segment mass centres (Hiley and 
Yeadon, 2003a).  The angular momentum of the body about its mass centre at release 

was normalised by dividing by 2 times the moment of inertia of the body about its mass 
centre when straight, giving the number of straight somersaults per second (ss/s). 

 

 

 

α β 
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Matching Simulations 

 In order to determine model parameters and provide a starting point for the 
optimisation of technique a close match between simulated and recorded performance 
was required for the two selected trials of each gymnast.  The simulation model was 
implemented with the Simulated Annealing optimisation algorithm (Goffe et al., 1994) to 
minimise the difference between the recorded and simulated performance.  The cost 
function used included terms for differences between recorded and simulated rotation 
angle, bar displacements and joint angle time histories at the hip and shoulder, 
normalised angular momentum at release and linear velocity at release (Table 1).  The 
method for obtaining the data from the actual performances is described in Hiley and 
Yeadon (2003b).  

 Since the model was designed to simulate the swinging portion of the skill each 
simulation was started once the angular velocity of the arm segment was in the positive 
direction (anticlockwise, Figure 2).  The end of the simulation was defined as the point at 
which the gymnast lost contact with the bars.  The previously determined subject-specific 
inertia parameters were used in the simulation model.  The initial conditions, including the 
initial angle, angular velocity and bar displacements, for each simulation were taken from 
the corresponding trial.  During the optimisation the following parameters were allowed to 
vary in order to improve the match between the recorded and simulated performance.  
The vertical bar stiffness was allowed to vary between 40,000 N/m and 90,000 N/m to 
conform with the specifications of the International Gymnastics Federation (FIG, 2006) 
and the vertical damping coefficient of the bar was allowed to vary between 0 N·s/m and 
1000 N·s/m.  The horizontal bar stiffness was allowed to vary between 75,000 N/m and 
200,000 N/m and the horizontal damping coefficient of the bar was allowed to vary 
between 0 N·s/m and 10,000 N·s/m.  The horizontal stiffness of the bar was much larger 
than the vertical stiffness since the bars were constrained to minimal movement in the 
horizontal direction due to the construction of the apparatus.  The stiffness and damping 
coefficients of the shoulder spring were allowed to vary over wide ranges, between 0 N/m 
and 30,000 N/m and 0 N·s/m and 5,000 N·s/m, respectively, since there was less 
information available regarding these parameters.  The masses of the arms and legs 
were allowed to vary independently by ± 5% and the torso mass was adjusted to maintain 
whole body mass, since density values were taken from the literature for the segmental 
mass calculations. The torso length parameter was allowed to vary between 0 m and 
0.15 m (Begon et al., 2008).  In addition small variations in the initial conditions, rotation 
angle and angular velocity were permitted to compensate for any errors propagated in 
their calculation (± 0.1 rad and ± 1.0 rad/s, respectively).  Finally, the coefficients which 
defined the Fourier series were allowed to vary to obtain a close match with the recorded 
joint angle time histories. 

 

Optimisations 

 The cost function optimised was based on minimising the joint torques at the hip 
and shoulder joints whilst seeking an acceptable felge through the use of appropriate 
penalties.  From the matching simulations peak joint torques for flexion and extension at 
each joint were determined.  The joint torque limits during optimisation were based on 
these values (Table 2).  In addition a reduced limit based on the results of the matching 
simulations was placed on the joint torques (Table 2) once the model had rotated through 
250° to reflect the reduced grip on the bars.  The simulations started from the same point 
as in the matching process and finished once the torso segment had rotated 40° past the 
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vertical, since release should occur before this point in a good performance (Takei and 
Dunn, 1996).  The cost function was calculated from when the torso segment reached 
the vertical through to 40° past the vertical.  The value returned to the optimisation was 
the lowest value of the cost function obtained during this period. The matching 
simulations were used to give the initial estimates of the joint angle time histories for the 
four optimisations.  The upper and lower bounds for the Fourier series coefficients were 
allowed to vary by ± 25% from the initial values.  The optimum technique was required to 
produce sufficient vertical velocity at release to achieve a mass centre height in flight of 
at least 90% of the final handstand position measured above the bars.  The 90% of 
handstand position was chosen as gymnasts re-grasp the bars before handstand is 
reached. It also represented a marked improvement over the actual performances (on 
average an improvement of 21% and 28% for subjects 1 and 2, respectively – Table 1).  
The vertical velocity required  to reach 90% of handstand was calculated from the height 
of the mass centre at release and in the final handstand position using the equations of 
motion under constant acceleration.  The simulation also incurred penalties if the 
horizontal velocity and normalised angular momentum at release exceeded the range 
obtained from the video analysis of the 18 trials and the values reported for high scoring 
performances by Takei and Dunn (1996) (0.3 m/s > horizontal velocity > -0.2 m/s and 
0.025 ss/s > normalised angular momentum > -0.025 ss/s).  A further penalty was 
imposed for excessive hip flexion angles at release from the bars as this was likely to 
result in poor body configurations on re-grasping the bars (Takei and Dunn, 1996).   

 The optimisations were run twice: the first set of four optimisations with no limits 
placed on the joint angle time histories (other than those described above) and the 
second set where they were constrained to produce a stoop stalder technique – this was 
achieved by creating a penalty for flexing too early in the felge and not producing the 
characteristic deep pike position.  

 

RESULTS 

 The information from the motion capture analysis gave the following results.  The 
release parameters for the four performances are given in Table 1 along with the height 
of the mass centre at re-grasp and in the final handstand position (relative to bar height). 

 

Table 1. Release parameters for the four felge to handstand performances 

Variable 

Subject 1 Subject 2 

Best trial Worst trial Best trial Worst trial 

CMh release (m)  0.177 0.187 0.176 0.145 

CMh re-grasp (m) 0.642 0.595 0.614 0.656 

CMh handstand (m) 0.902 0.902 1.018 1.018 

Vert velocity release (m/s) 3.115 2.902 3.171 3.169 

Horiz velocity release (m/s) 0.097 0.164 0.035 0.319 

Angular momentum (ss/s) 0.000 0.007 -0.004 -0.002 

Note: CMh is mass centre height  
Note:  Angular momentum is measured in straight somersaults (ss) per second 
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 Over the approximate 270° rotation of the four matching simulations the model was 
able to reproduce the whole body rotation angle to within 2° root mean squared (rms) 
difference and the displacements of the bar to within 0.005 m rms difference (Figure 4).  
The matches between the measured joint angle time histories from the video analysis 
and those determined using Fourier series were close with an average rms difference of 
4° (Figure 4c).  The simulation model matched the mass centre velocity at release to less 
than 1%.  The mean vertical stiffness and damping coefficients of the bar obtained in the 
four matching trials were 63,573 N/m (standard deviation 1,041 N/m) and 686 N·s/m (± 
58 N·s/m), respectively.  The horizontal stiffness and damping coefficients of the bar 
were considerably larger, due to the construction of the apparatus (152,189 N/m ± 
10,052 N/m and 7,880 N·s/m ± 1824 N·s/m). The average shoulder stiffness and 
damping coefficients were 14,308 N/m (± 2,018 N/m) and 1,656 N·s/m (± 42 N·s/m), 
respectively.  The peak joint torques at the hip and shoulder during the matching 
simulations are given in Table 2. 

 

 

    
   (a)  (b) 

 
    (c) 

Figure 4.  Typical matches between simulation (solid line) and actual performance (crosses) of the bar 
contact phase of the felge to handstand for (a) whole body rotation angle, (b) net bar 
displacement and (c) joint angle time histories of the shoulder and hip. 
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Table 2.  Peak joint torques for the four felge to handstand performances and the joint torque limits used 

in the optimisations 

Variable 

Subject 1 Subject 2 

Best trial Worst trial Best trial Worst trial 

Peak shoulder torque (max / min, Nm) 374 / -427 402/ -377 354 / -169 429 / -212 

Peak hip torque (max / min, Nm) 93 / -209 191 / -398 213 / -469 184 / -460 

Shoulder torque limit (max / min, Nm) 405 / -430 430 / -215 

Hip torque limit (max / min, Nm) 200 / -400 215 / -470 

Shoulder torque limit release (Nm) ± 175 ± 175 

Hip torque limit release (Nm) ± 200 ± 200 

 

 

 In the first set of optimisations where the joint angle time histories were not 
constrained the model was able to achieve the appropriate vertical velocity at release 
whilst satisfying the criteria for a successful performance.  At release the model had a 
higher mass centre position and vertical velocity than in the actual performances.  The 
release parameters and peak joint torques for the optimised simulations are given in 
Table 3.  The peak joint torques from the optimisations were lower than in the actual 
performances and did not exceed any of the limits (Figure 5).  Negative torques refer to 
hip extension and shoulder flexion (opening the joint angles).  The technique in the first 
set of optimised simulations differed from the technique of the gymnasts (Figure 5, 6 and 
7) and more closely resembled the clear circle technique. 

 

 

Table 3. Release parameters and peak joint torques for the four optimised felge to handstand simulations  

Variable 

Subject 1 Subject 2 

Best trial Worst trial Best trial Worst trial 

CMh release (m)  0.196 0.201 0.249 0.274 

Vert velocity release (m/s) 3.574 3.540 3.623 3.558 

Horiz velocity release (m/s) -0.137 0.105 -0.104 -0.084 

Angular momentum (ss/s) -0.025 -0.023 -0.017 -0.019 

Max shoulder torque (Nm) 136 139 383 281 

Min shoulder torque (Nm) -124 -179 -138 -126 

Max hip torque (Nm) 143 139 165 195 

Min hip torque (Nm) -206 -195 -200 -226 

Note:  Angular momentum is measured in straight somersaults (ss) per second 
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  (a)  (b) 

Figure 5.   Joint angle and joint torque histories of the hip (circles) and shoulder (crosses) for the matched 
and optimised (solid line) simulations of (a) subject 1 worst trial and (b) subject 2 best trial. 

 

 

 

Figure 6. Graphical sequences of the (a) matched (re-grasp position taken from video analysis), (b) 
optimised and (c) constrained optimisation of subject 1 worst trial. 

(a) 

(b) 

(c) 
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Figure 7.  Graphical sequences of the (a) matched (re-grasp position taken from video analysis), (b) 
optimised and (c) constrained optimisation of subject 2 best trial. 

 

 In the optimisations where the joint angle time histories were constrained to produce 
a technique similar to the gymnasts’ own technique the model was still able to achieve 
the appropriate vertical velocity at release whilst satisfying the criteria for a successful 
performance.  However, although the peak joint torques did not exceed the limits set from 
the actual performances (highest torques obtained from each of the gymnasts’ two trials) 
they were higher than those obtained from the first set of optimisations (Tables 3 and 4).  
The common feature of the optimal stoop stalder simulations was a more rapid hip 
extension over a slightly larger hip angle range, when compared with the actual 
performances (Figure 8).  Graphical sequences of the constrained optimal simulations for 
each gymnast are given in Figures 6 and 7.   

 

Table 4. Release parameters and peak joint torques for the four constrained optimial felge to handstand 
simulations  

Variable 

Subject 1 Subject 2 

Best trial Worst trial Best trial Worst trial 

CMh release (m)  0.179 0.242 0.271 0.329 

Vert velocity release (m/s) 3.550 3.536 3.558 3.396 

Horiz velocity release (m/s) -0.189 -0.130 -0.175 -0.199 

Angular momentum (ss/s) -0.022 -0.020 -0.011 -0.021 

Max shoulder torque (Nm) 309 326 414 423 

Min shoulder torque (Nm) -308 -387 -201 -179 

Max hip torque (Nm) 106 126 109 198 

Min hip torque (Nm) -396 -369 -419 -433 

Note:  Angular momentum is measured in straight somersaults (ss) per second 

(a) 

(b) 

(c) 
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  (a)  (b) 

Figure 8.   Joint angle and joint torque histories of the hip (circles) and shoulder (crosses) for the matched 
and constrained optimised (solid line) simulations of (a) subject 1 worst trial and (b) subject 2 
best trial. 

 

DISCUSSION AND IMPLICATIONS 

 In all four cases the first set of optimisations were able to improve the gymnasts’ 
performances with the mass centre able to reach over 90% of handstand height in the 
flight phase.  The average heights achieved by the two gymnasts in their actual 
performances were 72% and 66% of handstand, respectively.  The improvement was 
achieved through a combination of increased vertical velocity and an increase in the 
height of the mass centre at release (Tables 1, 3 and 4).  However, the optimised 
techniques were not representative of the gymnast’s actual performances. The technique 
changed from the stoop stalder to one that more closely represented the clear circle 
technique.  The main characteristics of this technique are achieving the peak hip flexion 
angle earlier in the circle and having a less flexed hip angle (Figures 5, 6b and 7b).  It 
may be argued that given the cost function the clear circle technique was the global 
optimum, since it was found when no constraints were placed on the joint angle time 
histories.  However, the aim was to optimise the gymnasts’ technique rather than find an 
alternative optimum solution.   

 Therefore additional joint angle constraints were imposed to obtain an optimal 
solution which was similar to the gymnasts’ technique.  When the optimisation used a 
constraint to encourage a stoop stalder technique the second set of optimal solutions 
were still able to achieve the required increase in vertical velocity at release.  The 
increased vertical velocity at release was produced predominantly by a more rapid 
extension of the hip angle (Figure 8).  The hip angle was also extended over a larger 
range (Figures 6c, 7c and 8) which also lead to an increase in mass centre height at 
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release.  The higher mass centre location and more extended body configuration at 
release have been shown to be desirable from a judging perspective (Takei and Dunn, 
1996).   

 Both sets of optimisations were able to achieve the improved performance whilst 
staying within the joint torque limits defined by the gymnasts’ actual performances.  It 
might therefore be expected that the level of improvements seen in the optimisations 
could be achieved by the gymnasts.  When choosing which technique to use, it can be 
seen from Tables 3 and 4 that in terms of peak joint torque the stoop stalder is more 
demanding of the gymnast.  This is why in the early stages of learning, the clear circle 
technique is adopted, as recommended by Davis (2005).  The clear circle technique may 
be characterised as a global optimum arising from minimisation of joint torque.  Since this 
is the case, why then is the stoop stalder technique adopted by the majority of senior 
gymnasts?  It has been demonstrated here that it requires more strength, so what 
benefits does it offer the gymnast compared with the clear circle technique? 

  The path of the mass centre during the optimal felges is shown in Figure 9.  In the 
optimisations encouraged to produce the stoop stalder the path of the mass centre is 
flatter and more vertical as the gymnast approaches release.  This has two advantages: 
firstly the direction of the mass centre velocity changes less near to release, when 
compared to the clear circle technique, and this should lead to a more consistent 
performance.  If the release is mistimed the mass centre will still be moving in the correct 
direction.  This has been shown to be the case for other release skills in gymnastics 
(Hiley and Yeadon, 2003b).  Secondly, the felge to handstand forms the basis of more 
complex skills, typically the felge to handstand with either a half or full twist.  In these 
skills there is not a flight phase as such, rather the gymnast makes hand changes whilst 
the force on the bars is low.  Having a vertical mass centre velocity while the body is 
twisting reduces the task complexity of the hand changes (i.e. less correction for non 
vertical alignment).  Had the requirement of a near vertical path of the mass centre prior 
to release been included in the cost function, it might be expected that the stoop stalder 
would have arisen as a global optimum.       

 

           

  (a)  (b) 

Figure 9. Path of the mass centre for the optimised (dashed line) and constrained optimisation (solid line) 
for (a) subject 1 worst trial and (b) subject 2 best trial. 

 



 13 

 

 

 One of the limitations of the present study is the use of the fixed joint torque limits. 
Although it would be desirable to have limits based on a joint torque - angle - angular 
velocity relationship it can be seen that the results do not depend on excessively large 
joint torques compared with the actual performances (Figures 5 and 8).  Inspection of the 
joint angular velocity time histories revealed that peak angular velocity occurred at 
periods of low joint torque values.  Inclusion of a torque – angle – angular velocity 
relationship may make small changes to the optimal technique, but it is not expected to 
affect the conclusions regarding the two techniques.  A further limitation of the model was 
the single segment used to represent the spine.  During large hip flexion angles there will 
be associated spinal flexion.  In the present model both spinal and hip flexion were 
included at the hip.  In future models spinal flexion could be represented as a function of 
hip flexion. 

 

CONCLUSIONS 

   It was found that both good and poor performances of the felge from handstand to 
handstand could be improved.  The technique used by the gymnasts could be improved 
by extending the hip angle more rapidly and over a larger range. The minimisation of joint 
torque resulted in a global optimum similar to the clear circle technique.  Since the 
strength requirements of the clear circle are lower than those of the stoop stalder the 
clear circle is more appropriate for the early stages of development as suggested by 
Davis (2005).  Although the optimum technique that closely resembled the technique 
used by the gymnasts was found to be more demanding in terms of the strength 
required, it does offer the potential for more consistent performance and future 
developments in skill complexity.  
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