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Optimization of the G&H bubble model

Thomas L. Geers∗ and Chung-Kyu Park
Department of Mechanical Engineering University of Colorado, Boulder, CO, USA

Abstract. A spherical model for the bubble created by an underwater explosion is enhanced to account, in approximate fashion,

for the effect of bubble distortion on translation and dilation. The enhancement consists of introducing artificial drag in the form

C|ν|P , where ν is translation velocity, and C, P produce an optimum fit to empirical formulas for the second dilation maximum

and first two translation jumps. The recommended values are C = 0.4 and P = 1 for charge weights between 100 lb–1000 lb

and and depths exceeding 200 ft.
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1. Introduction

Recently, Geers and Hunter developed a bubble bubble model for a very deep to moderately deep underwater

explosion that integrates the shockwave and oscillation phases of the motion [2]. The model was then specialized

to the case of no bubble distortion, thereby limiting the motion to dilation plus translation. The specialized model

produced bubble-motion histories exhibiting predictive capability superior to that of earlier bubble models.

The principal limitation of the specialized model is that its neglect of bubble distortion results in the over-prediction

of bubble translation, which in turn affects bubble dilation. Hicks reviously attempted to remedy such deficiency

by introducing the hydrodynamic drag force FD(t) = πa2(t) · 1
2
ρℓD(t), in which a(t) is the bubble radius, ρℓ is

the density of the liquid surrounding the bubble, and D(t) = CDu̇2(t), where u̇(t) is the translation velocity of the

bubble [3]. Hicks recommended CD = 2.25, which is an order of magnitude larger than the typical value for a rigid

sphere at high Reynolds number. Hunter and Geers found that neither this nor any other C D-value simultaneously

yields accurate dilation and accurate translation at moderate depths [4].

In principle, the above limitation of the specialized model can be relieved by using the boundary element method

to implement the more general model. However, this increases the number of degrees of freedom by one or two

orders of magnitude. Furthermore, the resulting non-spherical collapse process is difficult to treat [1]. Hence, it

is worthwhile to seek an approximate technique that accurately accounts for the effects of bubble distortion on

translation and dilation within the confines of the specialized model. This is the motivation for the work reported

here.

2. Equations of motion for the specialized bubble model

With a(t) and u(t) as the spherical bubble’s radius and vertical displacement, with φD(t) and φT (t) as the

dilation and translation velocity potentials for the external liquid at the bubble surface, and with ϕ T (t) as the

translation velocity potential for the internal gas at the bubble surface, the oscillation-phase equations of motion for

the specialized bubble model, including the drag function D(t), are [2]
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Fig. 1. Dilation and translation histories for a 1000-lb charge of TNT detonated at a depth of 250 ft, calculated with two different hydrodynamic

drag coefficients. CD = 0.0 (dashed), CD = 2.25 (solid).

ȧ = a−1φD − c−1
ℓ (φ̇D − ȧ2 −

1

3
u̇2 −

2

3
u̇a−1φT ),

u̇ = −2a−1φT − c−1
ℓ (φ̇T − 2ȧu̇),

φ̇D = (1 + ζ)−1

{[

1

2
+

1

2
(ρg/ρℓ) + ζ

] (

ȧ2 +
1

3
u̇2

)

− (ρg/ρℓ)cga
−1φD +

2

3
(1 + ζ)u̇a−1φT

−ρ−1
ℓ [Pg − Patm − ρℓg(d − u)] −

1

3

[

(a−1φT )2 − (ρg/ρℓ)(a
−1ϕT )2

]

}

, (1)

φ̇T = (1 + ζ)−1

{

[1 + (ρg/ρℓ) + 2ζ]ȧu̇ − (ρg/ρℓ)cg(2a−1φT + a−1ϕT ) − (1 − ρg/ρℓ)ga +
3

8
D(t)

}

,

ϕ̇T = (1 + ζ)−1

{

[2 + (cg/cℓ) + ζ]ȧu̇ − cg(2a−1φT + a−1ϕT ) + (cg/cℓ)(1 − ρg/ρℓ)ga −
3

8
(cg/cl)D(t)

}

.

In these equations, cℓ and cg(t) are the speeds of sound in the liquid and the gas, ρg(t) is the density of the gas,

ζ(t) = ρg(t)cg(t)/ρℓcℓ, Pg(t), is the uniform component of pressure in the gas defined by its equation of state, P atm

is atmospheric pressure, g is the acceleration due to gravity, and d is the initial depth of the explosive charge. In the

explicit numerical integration of Eq. (1), the right sides of (1c) and (1d) are used for φ̇D and φ̇T on the right sides of

(1a) and (1b).

If cℓ(t) and ρg(t) are both set to zero, and D(t) is taken as CDu̇2(t), Eq. (1) reduce to the equations of Hicks [3]:

aä +
3

2
ȧ2 −

1

4
u̇2 − gu = ρ−1

ℓ [Pg − (Patm + ρℓgd)],
(2)

aü +
3

4
CDu̇2 + 3ȧu̇ − 2ga = 0.
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These equations clearly exhibit the coupling between dilation and translation. Of particular interest are the terms

gu (in the first equation) and 2ga (in the second). The first accounts for the change in ambient pressure as the bubble

rises, and the second accounts for the buoyancy force that causes the bubble to rise. Although insights provided by

Eq. (2) are valuable, the equations are not accurate predictors of bubble motion [2].

Shown in Fig. 1 are response histories for bubble dilation and translation produced by Eq. (1) for a 1000-lb charge

of TNT detonated at a depth of 250 ft; one pair of histories pertains to C D = 0 and the other pair to CD = 2.25. The

horizontal and vertical lines in Fig. 1(a) mark empirical values for maximum bubble radius and time of minimum

bubble radius, respectively. The asterisks and circles in Fig. 1(b) mark empirical values for bubble depth at the times

of bubble maximum and bubble minimum, respectively. These values are based on extensive experimental data [3,

5,6]. In [5] Snay characterizes the data beyond the third bubble minimum as “sparse and uncertain”.

The histories in Fig. 1 demonstrate that the use of CD = 0 over-predicts both dilation and translation, while the use

of CD = 2.25 under-predicts these responses. This implies that values between these extremes might work better.

In fact, a drag formula that admits velocity to a power other than two might be better still. These considerations are

only pertinent to motion during and after the first bubble minimum, as the bubble undergoes negligible translation

before that time.

3. Modification of the drag formula

Seeking to improve model performance without increasing computational effort, we replaced the drag formula

D(t) = CDu̇2(t) with the ad hoc relation

D(t) = C|u̇(t)|P . (3)

Then we searched for optimum values of C and P over practical ranges of charge weight W and detonation depth

d. We based our search on accurate computation of the wave field generated by an explosion bubble rather than on

accurate prediction of bubble motion per se. Specifically, emphasis was placed on accurately predicting the first and

second pressure pulses generated by bubble collapse/rebound. Bubble dilation is the primary contributor to these

pulses, translation is a secondary contributor, and distortion is a minor contributor. The pulse characteristics are

significantly affected by wave effects in both the external liquid and internal gas, as well as by bubble depth [4].

In accordance with the above criterion, the search employed an error measure computed with the following

procedure:

1. For specified values of W , d and C, P , perform a bubble simulation with the G&H equations (Eq. (1)) and

record the values a(t2), u(t1), u(t2), and u(t3), where tn is the time of the nth bubble maximum.

2. For the same values of W and d, calculate a(t2), u(t2)−u(t1), and u(t3)−u(t2) from the empirical formulas

of Snay [5].

3. With the results produced in the preceding steps, compute the errors

εD2 = {[a(t2)]G&H − [a(t2)]Snay}/a,

εT1 = {[u(t2) − u(t1)]G&H − [u(t2) − u(t1)]Snay}/h, (4)

εT2 = {[u(t3) − u(t2)]G&H − [u(t3) − u(t2)]Snay}/h.

Here, ā and h̄ are the equilibrium radius and initial head, respectively, given by

ā = ac(Kc/ρgh̄)1/3γ , h̄ = d + Patm/ρℓg, (5)

where ac is the charge radius, Kc is the energetic constant for the charge material [2], and γ is the ratio of

specific heats for the bubble gas.

4. With Eq. (4), compute the error magnitude

ε =
√

(ε2
D2 + ε2

T1 + ε2
T2), (6)
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Fig. 2. Translation histories for a 1000-lb charge of TNT detonated at a depth of 250 ft, calculated with C = 1.0 and various values of P .

Thirty-six hundred G&H simulations and corresponding Snay calculations were performed for W = 100, 400,

700, 1000 lb; d = 200, 250, 300, 400, 500 ft; C = 0.2 (0.2) 3.0; P = 0.8 (0.2) 3.0.

Three different optimization procedures were pursued, as follows:

A. Copt and Popt were considered functions of W and d. With the 20 W, d pairs as points on a horizontal

W -d plane, the C- and P -values were sought for each W, d pair that minimized ε. Then the surfaces

Copt(W, d) and Popt(W, d) were determined by performing least-squares fits of the quadratic representation

c0 + c10W + c01d + c20W
2 + c11Wd + c02d

2. Fits with polynomials of higher order were also carried out,

with little improvement.

B. Copt and Popt were considered functions of the parameter η = h̄/ā, where, from Eq. (5), h̄ is a function of d
and ā is a function of W and d. With the 20 η-values as points on a horizontal η-axis, C- and P -values were

sought for each η-value that minimized ε. Then the curvesC opt(η) and Popt(η) were determined by performing

least-squares fits of the quadratic representation c0 + c1η + c2η
2. Fits with higher-order polynomials were

also carried out, to little effect.

C. Copt and Popt were considered constants. The ε-values were grouped according to their C, P pairs, and the

average and maximum values of ε for each C, P pair were recorded in Table 1.

4. Computational results

The most successful of the optimization procedures was the last. Table 1 produced by that procedure is shown

below. We see that the errors in the vicinity of C = 0.4, P = 1.0 are the smallest. As the maximum error for

C = 0.4, P = 0.8 is slightly smaller than that for C = 0.4, P = 1.0, we performed additional simulations for

C = 0.4 and P < 0.8. Figure 2 shows representative translation histories generated by these simulations. We

see that a sufficiently small value of P causes large negative translation. For all of the simulations performed, a

minimum P -value of unity was safe in this regard. Hence, the recommended drag formula for all cases in the ranges
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Fig. 3. Dilation and Translation histories for a 1000-lb charge of TNT detonated at a depth of 250 ft, calculated with C = 0.4 and P = 1.0.

100 lb � W � 1000 lb, d � 200 ft is

D(t) = 0.4|u̇(t)|. (7)

Shown in Fig. 3 are response histories for bubble radius and translation produced by the G&H equations with

Eq. (7) for a 1000-lb charge of TNT detonated at a depth of 250 ft. We see that overall agreement with experimental

data is better than that seen in Fig. 1.
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