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Optimization of the G&H bubble model

Thomas L. Geers™ and Chung-Kyu Park
Department of Mechanical Engineering University of Colorado, Boulder, CO, USA

Abstract. A spherical model for the bubble created by an underwater explosion is enhanced to account, in approximate fashion,
for the effect of bubble distortion on translation and dilation. The enhancement consists of introducing artificial drag in the form
C|v|”, where v is translation velocity, and C, P produce an optimum fit to empirical formulas for the second dilation maximum
and first two translation jumps. The recommended values are C' = 0.4 and P = 1 for charge weights between 100 1b—1000 1b
and and depths exceeding 200 ft.
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1. Introduction

Recently, Geers and Hunter developed a bubble bubble model for a very deep to moderately deep underwater
explosion that integrates the shockwave and oscillation phases of the motion [2]. The model was then specialized
to the case of no bubble distortion, thereby limiting the motion to dilation plus translation. The specialized model
produced bubble-motion histories exhibiting predictive capability superior to that of earlier bubble models.

The principal limitation of the specialized model is that its neglect of bubble distortion results in the over-prediction
of bubble translation, which in turn affects bubble dilation. Hicks reviously attempted to remedy such deficiency
by introducing the hydrodynamic drag force F'p(t) = ma?(t) - 1p,D(t), in which a(t) is the bubble radius, pg is
the density of the liquid surrounding the bubble, and D(t) = C pu?(t), where 7(t) is the translation velocity of the
bubble [3]. Hicks recommended C'p = 2.25, which is an order of magnitude larger than the typical value for a rigid
sphere at high Reynolds number. Hunter and Geers found that neither this nor any other C' p-value simultaneously
yields accurate dilation and accurate translation at moderate depths [4].

In principle, the above limitation of the specialized model can be relieved by using the boundary element method
to implement the more general model. However, this increases the number of degrees of freedom by one or two
orders of magnitude. Furthermore, the resulting non-spherical collapse process is difficult to treat [1]. Hence, it
is worthwhile to seek an approximate technique that accurately accounts for the effects of bubble distortion on
translation and dilation within the confines of the specialized model. This is the motivation for the work reported
here.

2. Equations of motion for the specialized bubble model

With a(t) and wu(t) as the spherical bubble’s radius and vertical displacement, with ¢ p(¢) and ¢ (t) as the
dilation and translation velocity potentials for the external liquid at the bubble surface, and with ¢ 1 (¢) as the
translation velocity potential for the internal gas at the bubble surface, the oscillation-phase equations of motion for
the specialized bubble model, including the drag function D(t), are [2]
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Fig. 1. Dilation and translation histories for a 1000-1b charge of TNT detonated at a depth of 250 ft, calculated with two different hydrodynamic
drag coefficients. Cp = 0.0 (dashed), C'p = 2.25 (solid).
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In these equations, ¢, and c4(t) are the speeds of sound in the liquid and the gas, p4(¢) is the density of the gas,
C(t) = pg(t)cq(t)/pece, Py(t), is the uniform component of pressure in the gas defined by its equation of state, P 44,
is atmospheric pressure, g is the acceleration due to gravity, and d is the initial depth of the explosive charge. In the
explicit numerical integration of Eq. (1), the right sides of (1c) and (1d) are used for qﬁ p and qBT on the right sides of
(1a) and (1b).

If co(t) and py(t) are both set to zero, and D(t) is taken as C' pi%(t), Eq. (1) reduce to the equations of Hicks [3]:

aii + gdg - iif — gu= p; '[Py = (Patm + pegd)),

3 )
at + ZCDQQ + 3ad — 2ga = 0.
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These equations clearly exhibit the coupling between dilation and translation. Of particular interest are the terms
gu (in the first equation) and 2ga (in the second). The first accounts for the change in ambient pressure as the bubble
rises, and the second accounts for the buoyancy force that causes the bubble to rise. Although insights provided by
Eq. (2) are valuable, the equations are not accurate predictors of bubble motion [2].

Shown in Fig. 1 are response histories for bubble dilation and translation produced by Eq. (1) for a 1000-1b charge
of TNT detonated at a depth of 250 ft; one pair of histories pertains to C'p = 0 and the other pair to C'p = 2.25. The
horizontal and vertical lines in Fig. 1(a) mark empirical values for maximum bubble radius and time of minimum
bubble radius, respectively. The asterisks and circles in Fig. 1(b) mark empirical values for bubble depth at the times
of bubble maximum and bubble minimum, respectively. These values are based on extensive experimental data [3,
5,6]. In [5] Snay characterizes the data beyond the third bubble minimum as “sparse and uncertain”.

The histories in Fig. 1 demonstrate that the use of C'p = 0 over-predicts both dilation and translation, while the use
of Cp = 2.25 under-predicts these responses. This implies that values between these extremes might work better.
In fact, a drag formula that admits velocity to a power other than two might be better still. These considerations are
only pertinent to motion during and after the first bubble minimum, as the bubble undergoes negligible translation
before that time.

3. Modification of the drag formula

Seeking to improve model performance without increasing computational effort, we replaced the drag formula
D(t) = Cpu?(t) with the ad hoc relation

D(t) = Clu(t)|". 3)

Then we searched for optimum values of C' and P over practical ranges of charge weight W and detonation depth
d. We based our search on accurate computation of the wave field generated by an explosion bubble rather than on
accurate prediction of bubble motion per se. Specifically, emphasis was placed on accurately predicting the first and
second pressure pulses generated by bubble collapse/rebound. Bubble dilation is the primary contributor to these
pulses, translation is a secondary contributor, and distortion is a minor contributor. The pulse characteristics are
significantly affected by wave effects in both the external liquid and internal gas, as well as by bubble depth [4].

In accordance with the above criterion, the search employed an error measure computed with the following
procedure:

1. For specified values of W, d and C, P, perform a bubble simulation with the G&H equations (Eq. (1)) and
record the values a(t2), u(t1), u(t2), and u(t3), where t,, is the time of the n*" bubble maximum.
2. For the same values of W and d, calculate a(t2), u(t2) — u(t1), and u(t3) — u(t2) from the empirical formulas
of Snay [5].
3. With the results produced in the preceding steps, compute the errors
ep2 = {la(tz)laen — [a(ta)lsnay } /@,
er1 = {[u(t2) — u(t1)]cen — [u(t2) — u(tr)lsnay } /7, ©)
er2 = {[u(ts) — u(t2)]cen — [u(ts) — u(t2)]snay }/h.
Here, @ and h are the equilibrium radius and initial head, respectively, given by

a= QC(KC/PQB)USV’ h=d+ Patm/Péga (5)

where a, is the charge radius, K. is the energetic constant for the charge material [2], and ~y is the ratio of
specific heats for the bubble gas.
4. With Eq. (4), compute the error magnitude

e = /(e + By +ed), ©6)
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Fig. 2. Translation histories for a 1000-1b charge of TNT detonated at a depth of 250 ft, calculated with C' = 1.0 and various values of P.

Thirty-six hundred G&H simulations and corresponding Snay calculations were performed for W = 100, 400,
700, 1000 1b; d = 200, 250, 300, 400, 500 ft; C = 0.2 (0.2) 3.0; P = 0.8 (0.2) 3.0.
Three different optimization procedures were pursued, as follows:

A. Copt and P,y were considered functions of W and d. With the 20 W, d pairs as points on a horizontal
W-d plane, the C- and P-values were sought for each W, d pair that minimized €. Then the surfaces
Copt (W, d) and P, (W, d) were determined by performing least-squares fits of the quadratic representation
co + c10W + co1d + cooW?2 + c11Wd + cood?. Fits with polynomials of higher order were also carried out,
with little improvement.

B. Copt and P,,; were considered functions of the parameter 7 = h /a, where, from Eq. (5), h is a function of d
and @ is a function of W and d. With the 20 n-values as points on a horizontal n-axis, C- and P-values were
sought for each n-value that minimized e. Then the curves C o, (1) and P, (1) were determined by performing
least-squares fits of the quadratic representation co + ¢11 + con?. Fits with higher-order polynomials were
also carried out, to little effect.

C. Copt and P,y were considered constants. The e-values were grouped according to their C, P pairs, and the
average and maximum values of ¢ for each C, P pair were recorded in Table 1.

4. Computational results

The most successful of the optimization procedures was the last. Table 1 produced by that procedure is shown
below. We see that the errors in the vicinity of C' = 0.4, P = 1.0 are the smallest. As the maximum error for
C = 0.4, P = 0.8 is slightly smaller than that for C' = 0.4, P = 1.0, we performed additional simulations for
C = 0.4 and P < 0.8. Figure 2 shows representative translation histories generated by these simulations. We
see that a sufficiently small value of P causes large negative translation. For all of the simulations performed, a
minimum P-value of unity was safe in this regard. Hence, the recommended drag formula for all cases in the ranges
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Fig. 3. Dilation and Translation histories for a 1000-1b charge of TNT detonated at a depth of 250 ft, calculated with C' = 0.4 and P = 1.0.

1001b < W < 1000 1b, d > 200 ft is
D(t) = 0.4[a(t)]. (7

Shown in Fig. 3 are response histories for bubble radius and translation produced by the G&H equations with
Eq. (7) for a 1000-1b charge of TNT detonated at a depth of 250 ft. We see that overall agreement with experimental
data is better than that seen in Fig. 1.
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