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I. INTRODUCTION

In this report we show how the intermodulation (IM) performance of a

small-signal amplifier is optimized when the amplifier is designed

according to available-gain criteria. In this design process, the MESFET's

output is conjugate-matched and its input is mismatched to obtain a

specified value of gain. We choose this method because it generally

results in better noise performance than do other design options.

Furthermore, when one designs for available gain, the value of source

impedance that provides the desired gain is not unique; it can be selected

to optimize IM levels.

Several attempts have been made in the past to model nonlinearities in

GaAs FETs via the Volterra series. 1-4 Much of this work employs

simplifying assumptions that inevitably reduce accuracy. For example, in

the work by Gupta et al.,1 the second-degree terms in the Volterra-

series expansions were set to zero. Minasian2 and Lambrianou et al. 3

employ simplified equivalent circuits of the MESFET; the simplifications

are required in order to express the Volterra kernels algebraically.

In this work we avoid the use of approximate equivalent circuits by

calculating the Volterra kernels numerically.1,10 This allows the circuit

topology to be arbitrarily complex (within, of course, the limits of

computer time and memory). Thus, we employ an accurate model that includes

all the important nonlinear and parasitic elements of the packaged FET,

accounts for feedback effects, and includes nonlinearities to third degree.

i I I I3,,I I



II. MODELING THE MESFET

This work is based on the packaged Avantek AT10650-5 MESFET, a

0.5 x 250-vm device. The MESFET chip and its package are modeled by a

lumped-element equivalent circuit in which some of the elements are

nonlinear. The voltage dependences of the nonlinear elements are expressed

via Taylor-series expansions of their current/voltage (I/V) or

charge/voltage (Q/V) characteristics in the vicinity of their bias points.

The equivalent-circuit elements were derived from a c-mbination of de

and rf S parameter measurements in the 45-MHz to 17-GHz range. The

equivalent circuit of the packaged device is shown in Fig. I, and the

measured S parameters are compared in Fig. 2 to those of the model.

The controlled source and conductance are modeled as two separate

nonlinear elements, each controlled by a single voltage; thus

id(vgvd) id,g(vg) + id,d(Vd) (1)

where

i (v =a v + av 2+ av3(2
d,g g = g 2 3 (2)

and

i (v) b + b 2  bv 3 (3)

d,dd b1vd 2d 3 d

The an and bn coefficients are the derivatives 6n1 d/6V and 6n1 d/6V . We

note that a1 = gm and b1 = Gds.

Because of the weak nonlinearity of id(vg) , it is usually not possible

in practice to determine the derivatives of id(vg) by dc measurements. The

an terms in Eq. (2), which represent a nonlinear controlled-current source,

were determined by the method described in Ref. 5. This method involves
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Fig. 1. Linear Lumped Equivalent-Circuit Model of the Packaged AT10650-5
MESFET
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Fig. 2. Measured S Parameters of the AT10650-5 MESFET at a 3-V, 20-mA Bias
over the 2 to 14-GHz Range. The solid line represents measured
data; the dotted line shows the S parameters calculated from the
model in Fig. 1.
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extracting the source's Taylor-series coefficients from harmonic

measurements at low frequencies. The bn terms in Eq. (3) represent a

nonlinear cond,:ctance; because of their frequency sensitivity, they must be

measured at rf frequencies, not at dc. These terms were found by

numerically differentiating values of Gds that were obtained from

low-frequency Y parameters over a range of values of vd.

The gate capacitance Cgs was modeled as a uniformly doped

Schottky-barrier diode capacitance having the controlling voltage vg. The

nonlinear equivalent circuit is shown in Fig. 3.

• • . . ., i i I I I I8
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Fig. 3. Nonlinear Equivalent Circuit of the MESFET in the Vicinity of the

3-V, 20-mA Bias Foint. id,g coefficients are a, = 0.04 1, a2
0.0171, a = -0.01 5; id d coefficients are b, = 0.0030, b2 =

3.09 x 10 , b 3 =.99 x'10-5; Vgo = 0.54 V.
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III. RESULTS

The available-gain and stability circles for the GaAs FET were plotted

on a Smith chart -or three frequencies: 2, 5, and 10 GHz. Third-order

intermodulation intercept poi s (IP3 ) were c~lculated for points chosen

periodically along the gain circles. The stability circles and th-

intercept points are shown in Figs. 4, 5, and 6.

The process of calculating the intercept points is implemented

numerically, and thus is straightforward. The program uses the method of

noniinear currents,6 which includes the effect of all low-order mixing

products on each high-order mizing produc~t. The calculations require only

a few seconds per data point when run on an 8-MHz IBM PC-AT desktop

computer.
7

The 5-Gz results were verified by using an amplifier whose input-

matching circuit could be adjusted to give rs values that would range from

the poorest to the best points on several gain circles. This input circuit

consisted of a quarter-wave transformer and a length of 50-ohm line.

Different values of r were achieved by trimming the transformer's width.S

The output in each case was conjugately matched by means of a tuner.

Figure 7 compares the measured and calculated results.

At 10 GHz the MESFET is unconditionally stable. The relative

insensitivity of its 1P 3 to r is a characteristic of unilateral circuits.
6

We believe this insensitivity occurs because feedback effects are minimal

in an unconditionally stable circuit. ThL.s, in terms of its 1P.3

characteristics, the amplifier behaves much like a unilateral circuit.

At 5 GHz the MESFET is conditionally stable and has optimum values

of r that minimize third-order intermodulation distortion. Figure 5 shows

that the intercept points are highest near the counterclockwise extreme of

the gain circles and are ne,.rly independent of gain; at the clockwise

extreme, they are lower and are much more sensitive to gain. In general,

the intercept points are lower for regions near the stability circle.
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Fig. 4. Gain and Stability Circles and Calculated Third-Order Intercept
Points of the MESFET at 2 GHz
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STABILITY CIRCLE

Fig. 7. Gain and Stability Circles and Both Calculated and Measured
Third-Order Intercept Points of' the KESFET at 5 GHz. Calculated
IP3 values are indicated by crosses, measured values by circles.
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The same conclusions can be deduced from the 2-GHz case shown in

Fig. 4, except that the effects in Lhi udbe ait wt- :- pronounced. The best

performance is obtained near the counterclockwise e.id of the gain circle,

and the worst performance -- a 12-dB reduction in IP3 -- occurs near the

clockwise end.
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IV. CONCLUSIONS

In small-signal MESFET amplifiers there is a clear region in

the rs plane where intermodulation performance is optimized at low

frequencies. However, as frequency increases, the sensitivity of

intermodulation to r decreases and essentially disappears at the pointS

where the MESFET becomes unconditionally stable. This sensitivity

decreases because feedback effects are minimal in unconditionally stable

circuits.
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